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I The singular part of a function around a pole
consisted finitely many negative powers of z − a.

I A natural question is what happens when we
allow infinitely many terms.

I Of course, we need to assume that such an
‘infinite sum’ is convergent
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I Let
∑

m≥1 bmtm be a power series of infinite
radius of convergence. Then for any a ∈ C the
sum f (z) =

∑
m bm(z − a)−m makes sense for

all z 6= a and defines a holomorphic function f
in C \ {a}.

I What kind of singularity f has at a?

I Answer depends on how many terms bm are non
zero.
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I The point a is a removable singularity iff all
bm = 0.

I It is a pole iff only finitely many and at least one
of bm are non zero.

I It is the third type that we are interested in,
now.
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Let z = a be an isolated singularity of f 6≡ 0. It may
turn out that z = a is neither a removable
singularity i.e., limz→a(z − a)f (z) 6= 0, nor a pole,
i.e., limz−a f (z) 6=∞. Such a singularity is called an
essential singularity.
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It can be proved that if f has an essential singularity
at a, then there is a holomorphic function g in a nbd
of a and a power series

∑
m≥1 bmtm of infinite radius

convergence with infinitely many bm 6= 0 such that

f (z) =
∑
m≥1

bm(z − a)−m + g(z)

where g is holomorphic in a nbd of a.
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Essential Singularity: Example

I f (z) = e1/z = 1 +
1

z
+

1

2!z2
+ · · · , z 6= 0.

I We have

lim
x→0+

f (x) =∞; lim
x→0−

f (x) = 0

and |f (ıy)| = 1 for all y ∈ R. Thus
lim z → 0f (z) does not exist nor we have
limz→0 |f (z)| =∞.

I Therefore z = 0 is an essential singularity of
e1/z .
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Singularity at Infinity

I The discussion of isolated singularity can be
carried out for the point z =∞ as well.

I To begin with we need that the function is
defined and holomorphic in a neighborhood of
infinity, i.e., in |z | > M for some sufficiently
large M .
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I We say that ∞ is a removable singularity or a
pole of f iff

lim
z→∞

∣∣∣∣f (z)

zn

∣∣∣∣ = 0 (1)

for some integer n. (If this integer can be chosen
to be ≤ 1, then ∞ is a removable singularity,
otherwise, it is a pole.)

I (1) is the same as saying

lim
w→0
|w nf (1/w)| = 0. (2)
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I Therefore, ∞ is removable singularity or a pole
is the same as saying that 0 is a removable
singularity or a pole for g(z) = f (1/z).

I The simplest examples are polynomial functions
of degree d ≥ 1. They have a pole only at ∞
and the order of the pole is d .
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I More generally, any rational function of positive
degree d has a pole of order d at ∞; if the
degree d is ≤ 0, then it is a removable
singularity.

I The following theorem, which can be proved in
different ways is a converse to this.

Anant R. Shastri IITB MA205 Complex Analysis



Lecture 11 : Isolated Sungularities: continued
Application to Evaluation of Real Integrals

Trigonometric Integrals
Improper Integrals

Essential Singularities
Singularity at infinity
Residues

Singularity at Infinity

I More generally, any rational function of positive
degree d has a pole of order d at ∞; if the
degree d is ≤ 0, then it is a removable
singularity.

I The following theorem, which can be proved in
different ways is a converse to this.

Anant R. Shastri IITB MA205 Complex Analysis



Lecture 11 : Isolated Sungularities: continued
Application to Evaluation of Real Integrals

Trigonometric Integrals
Improper Integrals

Essential Singularities
Singularity at infinity
Residues

Singularity at Infinity

I Theorem

Let f be a meromorphic function on C. Suppose ∞
is a removable singularity or a pole of f . Then f is a
rational function.

I Proof: By definition lim
z→∞

f (z)

zn
= 0.

I Observe that the condition implies that f has
finitely many poles.

I Therefore there exists a polynomial Q(Z ) such
that g(z) = Q(z)f (z) is an entire function with
∞ as a removable singularity.
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Now we apply Cauchy’s estimate. The given
condition implies that for |z | >> 0 we have,

|g(z)

zn
| < ε.

Fix z ∈ C and take C to be the circle

|z − ξ| = r for sufficiently large r and use the
Cauchy’s integral formula

|g (n)(z)| =

∣∣∣∣ n!

2πı

∫
C

g(ξ)dξ

(ξ − z)n+1

∣∣∣∣ ≤ n!ε

2πr

∫
C

|dξ| = n!ε.
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It follows that the n−th derivative of g vanishes
identically. Therefore is g a polynomial of degree at
most n − 1. ♠Thereofore f is a rational function.
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Residues

The height of glory of Cauchy’s integration theory is
fully attained in the theory of residues. This comes
as a logical conclusion of the results that we have
seen earlier, viz., relation between the value of line
integrals, nature of isolated singularities, and
existence of primitives.
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I Definition

Let f be a function on a domain U with the set of
isolated singularities denoted by S . To each a ∈ S ,
let Ca be a circle with center a, and contained in U .

Put Pa =

∫
Ca

f (z)dz . The number Pa is called the

fundamental period of f at a.
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I (i) Clearly Pa(f ) is independant of the radius of
the circle Ca.

I (ii) We know that the function 1/(z − a) has

period 2πı, i.e.,

∫
C

(z − a)−1dz = 2πı.

I Treating this as a normalizing factor, we define,

Ra :=
Pa

2πı
=

1

2πi

∫
Ca

f (z)dz =: Resa(f ). (3)

I We call Ra the residue of f at z = a.
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Theorem

The residue of f at an isolated singularity z = a is
the unique number w such that the function

g(z) := f (z)− w

z − a
(4)

has a primitive in the whole of the annulus
0 < |z − a| < δ.
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Proof: First to prove the uniqueness of w .

Recall
the fact that (z − a)−1 does not have a primitive in
the annulus. If there were two such numbers w1,w1

such that f (z)− wj

z−a have primitives in the annulus,
then their difference will have a primitive as well.
Dividing out by the constant w1 − w2 this will imply
that (z − a)−1 has a primitive, which is a
contradiction. So, the number w is unique.
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We shall now prove that for w = Ra(f ),
g(z) = f (z)− w

z−a has a primitive in the annulus.

From Primitve Existence Theorem, it is enough to
prove that for all oriented simple closed curves γ in
the annulus, we have∫

γ

g(z)dz = 0.
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There are two cases to be considered.

Case 1:γ encircles the point a
OR
Case 2: it does not.
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I CASE 1. We can choose the circle Ca around a
so small that the disc Da bounded by Ca is
contained in the inside of γ.

I Now apply Cauchy’s theorem version-II, to the
region R \ Da to conclude that∫

γ

f (z)dz =

∫
Ca

f (z)dz
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For the same reason we also have∫
γ

dz

z − a
=

∫
Ca

dz

z − a
= 2πi .

Therefore,∫
γ

g(z)dz =

∫
C

f (z)dz − Ra(f )

∫
γ

dz

z − a
= 0.
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For the same reason we also have∫
γ

dz

z − a
=

∫
Ca

dz

z − a
= 2πi .

Therefore,∫
γ
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CASE 2: By Cauchy’s theorem (I-version) both∫
γ

f (z)dz and

∫
γ

dz

z − a
vanish.∫

γ

g(z)dz = 0.

This completes the proof of the theorem. ♠
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I The following theorem is of practical importance
in computing the residues at poles.

I Theorem

Let a be a pole of order n of f and let
g(z) = (z − a)nf (z). Then g is complex
differentiable at a also, and the residue of f at a is
given by

Ra(f ) =
g (n−1)(a)

(n − 1)!
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Residues

I Proof: We have,

f (z) =
bn

(z − a)n
+ · · ·+ b1

z − a
+ gn(z). (5)

I Upon integration all terms in this sum vanish
except the term involving b1 which gives you
Ra(f ) = b1. Multiplying both sides of (5) by
(z − a)n, we get

g(z) = bn + · · ·+ b1(z − a)n−1 + gn(z)(z − a)n. (6)

where gn is holomorphic at a.
I Differentiate (n − 1)−times and put z = a. ♠
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Residues: A Remark

At a simple pole z = a of f , note that the residue
Ra(f ) is never zero.
For, in this case, we have f (z) = b1

z−a + g(z) where
g is holomorphic and b1 = Ra(f ).
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Residues: Examples

I (i) Let f (z) = ez/(z2 − 1), z 6= ±1. Then
z = ±1 are simple poles of f .

I To compute the residue at z = 1, we write
g(z) = (z − 1)f (z) = ez/(z + 1) and find
g(1) = e/2. Therefore Res1 = e/2. Similarly
R−1 = −e−1/2.
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Residues: Examples

I (ii) Let f (z) = (sinh z)/z3 := (ez − e−z)/2z3.
Clearly z = 0 is a pole. What is the order of this
pole?

I Caution is needed in this type of examples. For,
sinh has a zero of order 1 at 0. Hence it follows
that the order of the pole of f at 0 is 2.
Therefore the residue is given by the value of
((sinh z)/z)′ at z = 0. This can be computed as
follows:
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Examples

R0 = lim
z−→0

((sinh z)/z)′

= lim
z−→0

z cosh z − sinh z

z2

= lim
z−→0

cosh z − z(sinh z)− cosh z

2z

=
1

2
lim
z−→0

(−z cosh z − sinh z) = 0.
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I Alternatively, the Taylor’ expansion can be
employed, whenever the method above becomes
cumbersome. For instance, when the order of
the pole is very high.

I In this example, we know that

sinh z = z +
z3

3!
+

z5

5!
+ · · · .

I Therefore, it follows immediately that the
(1/z)-term is missing from the expression for
sinh z

z3
. Hence, R0 = 0.
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More Examples

I (i) Consider the case when f (z) = g(z)p(z)
where g is given by a Laurent series and p is a
polynomial:

g(z) =
∞∑
−∞

anzn; p(z) =
m∑
0

αkzk .

I Then the residue of f at 0 is given by

R0(f ) = a−1α0 + · · ·+ a−k−1αk + · · ·+ a−m−1αm.
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Residues: Examples

For example, if g(z) = e1/z then, the residue of f at
0 is :

αm

(m + 1)!
+ · · ·+ α1

2!
+ α0.
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More Examples

I (ii) Let f have a simple pole at z0 and g be
holomorphic. Then Rz0(fg) = g(z0)Rz0(f ).

I To see this write

f (z) =
b−1

z − z0
+
∞∑
0

bj(z−z0)j ; g(z) =
∞∑
0

cj(z−z0)j ,

valid in a neighborhood of z0.

I Clearly, the Laurent series for fg which is the
Cauchy product of these two, has the coefficient
of (z − z0)−1 equal to c0b−1.
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Real Integrals

I How to use complex integration theory in
computing definite real integrals?

I Given a real definite integral, associate a
complex integration, evaluate it, and then take
real or( the imaginary) part.

I We perceive several obstacles in this approach.

I For instance, the complex integration theory is
always about integration over closed curves.

I When it works it works like magic. Not always
the best.
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I Let us show that∫ 2π

0

dθ

1 + a sin θ
=

2π√
1− a2

, −1 < a < 1.

I Observe that for a = 0, there is nothing to
prove. So let us assume that a 6= 0. We want to
convert the integrand into a function of a
complex variable and then set
z = e ıθ, 0 ≤ θ ≤ 2π, so that the integral is
over the unit circle C .
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I Since, z = e ıθ = cos θ + ı sin θ, we have,
sin θ = (z − z−1)/2ı, and dz = ıe ıθdθ, i.e.,
dθ = dz/ız .

I Therefore,

I =

∫
C

dz

ız(1 + a(z − z−1)/2ı)

=

∫
C

2dz

az2 + 2ız − a
=

2

a

∫
C

dz

(z − z1)(z − z2)
,

I where, z1, z2 are the two roots of the polynomial
z2 + 2ı

a z − 1.
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I Note that

z1 =
(−1 +

√
1− a2)ı

a
, z2 =

(−1−
√

1− a2)ı

a.

I It is easily seen that |z2| > 1. Since z1z2 = −1,
it follows that |z1| < 1.
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I Therefore on the unit circle C , the integrand has
no singularities and the only singularity inside
the circle is a simple pole at z = z1.

I The residue at this point is given by

Rz1 = 2/a(z1 − z2) = 1/ı
√

1− a2.

I Hence by the Residue Theorem, we have:

I = 2πıRz1 = 2π/
√

1− a2.

In summary, we have a theorem:
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Theorem

Trigonometric integrals : Let
φ(x , y) = p(x , y)/q(x , y) be a rational function in
two variables such that q(x , y) 6= 0 on the unit
circle. Then

Iφ :=

∫ 2π

0

φ(cos θ, sin θ)dθ = 2π

∑
|z |<1

Rz(φ̃)

 ,

where, φ̃(z) =
1

z
φ

(
z + z−1

2
,

z − z−1

2ı

)
.
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Improper Integrals

I We shall begin with a brief introduction to the
theory of improper integrals.

I Chiefly there are two types of them. One type
arises due to the infiniteness of the interval on
which the integration is being taken.

I The other type arises due to the fact that the
integrand is not defined (shoots to infinity) at
one or both end point of the interval.
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Improper Integrals

Definition

When

∫ b

a

f (x)dx is defined for all b > a we define

∫ ∞
a

f (x)dx := lim
b−→∞

∫ b

a

f (x)dx , (7)

if this limit exists.

Likewise we define∫ b

−∞
f (x)dx := lim

a−→−∞

∫ b

a

f (x)dx , (8)

if this limit exists.
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Improper Integrals

Definition

continued: Also, we define∫ ∞
−∞

f (x)dx :=

∫ ∞
0

f (x)dx +

∫ 0

−∞
f (x)dx , (9)

provided both the integrals on the right exist.
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Recall the Cauchy’s criterion for the limit. It follows
that the limit (7) exists iff given ε > 0 there exists
R > 0 such that for all b > a > R we have,∣∣∣∣∫ b

a

f (x)dx

∣∣∣∣ < ε. (10)

In many practical situations the following theorem
and statements which can be easily derived out of it
come handy in ensuring the existence of the
improper integral of this type.
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Improper Integrals

Theorem

Existence of Improper Integrals : Suppose f is a
continuous function defined on [0,∞) and there
exists α > 1 such that xαf (x) is bounded. Then∫ ∞

0

f (x) dx exists.
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However, the condition in the above theorem is not
always necessary. For instance, the function

f (x) =
sin x

x
does not satisfy this condition.

Nevertheless

∫ ∞
0

sin x

x
dx exists as will be seen

soon.
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Cauchy’s Principal Value

I Observe that there are several legitimate ways of
taking limits in (9). One such is to take the

limit of

∫ a

−a
f (x)dx , as a −→∞.

I This is called the Cauchy’s Principal Value of
the improper integral and is denoted by,

PV

(∫ ∞
−∞

f (x)dx

)
:= lim

a−→∞

∫ a

−a
f (x)dx . (11)
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Cauchy’s Principal Value: An Example

I However, this limit, even if it exists, is, in
general, not equal to the improper integral
defined in (9), above.

I As an example consider f (x) = x .

I Then the Cauchy’s PV exists but the improper
integral does not. However, if the improper
integral exists, then it is also equal to its
principle value. This observation is going to play
a very important role in the following
application.
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An Example

I Example Let us consider the problem of
evaluating

I =

∫ ∞
0

2x2 − 1

x4 + 5x2 + 4
dx

I Denoting the integrand by f , we first observe
that f is an even function and hence

I =
1

2

∫ ∞
−∞

f (x)dx

which in turn is equal to its PV .
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An Example

I Thus we can hope to compute this by first
evaluating

IR :=

∫ R

−R
f (x)dx

and then taking the limit as R −→∞.

I Step I: By merely replacing the real variable by a
complex variable, we get a rational function of a
complex variable whose restriction to the real
axis is the given function.

Anant R. Shastri IITB MA205 Complex Analysis



Lecture 11 : Isolated Sungularities: continued
Application to Evaluation of Real Integrals

Trigonometric Integrals
Improper Integrals

An Example

I Thus we can hope to compute this by first
evaluating

IR :=

∫ R

−R
f (x)dx

and then taking the limit as R −→∞.
I Step I: By merely replacing the real variable by a

complex variable, we get a rational function of a
complex variable whose restriction to the real
axis is the given function.

Anant R. Shastri IITB MA205 Complex Analysis



Lecture 11 : Isolated Sungularities: continued
Application to Evaluation of Real Integrals

Trigonometric Integrals
Improper Integrals

An Example

I Step II: We join the two end points R and −R
by an arc in the upper-half space, say, the
semi-circle! So let CR denote the semi-circle
running from R to −R in the upper-half space.

I Draw a picture by yourself.
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An Example

I Step III: Let γR denote the closed contour
obtained by tracing the line segment from −R
to R and then tracing CR . We shall compute

JR :=

∫
γR

f (z)dz

using residue computation.

I Step IV: When the number of singular points of
the integrand is finite, JR is a constant for all
large R . This is the crux of the matter.
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A Lucky Example

I We then hope that in the limit, the integral on
the unwanted portions tends to zero, so that
limR−→∞ JR itself is equal to I . Are we lucky
enough?

I Step III, is precisely where we use the residue
theorem.

I The zeros of the denominator
q(z) = z4 + 5z2 + 4 are z = ±ı, ± 2ı and
luckily they do not lie on the real axis.(This is
important.)
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A Lucky Example

I They are also different from the roots of the
numerator. Also, for R > 2, two of them lie
inside γR . (We do not care about those in the
lower half-space.)

I Therefore by the Residue theorem, we have,
JR = 2πı(Rı + R2ı). The residue computation
easily shows that JR = π/2.
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A Lucky Example

I Observe that f (z) = p(z)/q(z), where
|p(z)| = |z2 − 1| ≤ R2 + 1, and similarly
|q(z)| = |(z2 + 1)(z2 + 4)| ≥ (R2− 1)(R2− 4).

I Therefore

|f (z)| ≤ R2 + 1

(R2 − 1)(R2 − 4)
=: MR .

I This is another lucky break that we have got.
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A Lucky Example

I Note that MR is a rational function of R of
degree −2. For, now we see that∣∣∣∣∫

CR

f (z)dz

∣∣∣∣ ≤ MR

∣∣∣∣∫
CR

dz

∣∣∣∣ = MRRπ.

I Since MR is of degree −2, it follows that
MRRπ −→ 0 as R −→ ∞.
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A Lucky Example

I Thus, we have successfully shown that the limit

of

∫
CR

f (z)dz vanishes at infinity.

I To sum up, we have,

I =
1

2

∫ ∞
−∞

f (x)dx =
1

2
lim

R−→∞

∫ R

−R
f (x)dx

=
1

2
lim

R−→∞
JR =

π

4
.
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A Lucky Example

We can summerise what we have done in this
example as a theorem:

Theorem

Let f be a rational function without any poles on
the real axis and of degree ≤ −2. Then∫ ∞

−∞
f (x) dx = 2πı

∑
w∈HH

Rw(f ).
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Equally-lucky-but-with-a-difference Example

I For f (x) = (cos 3x)(x2 + 1)−2, evaluate∫ ∞
−∞

f (x)dx

I Except that now the integrand is a rational
function multiplied by a trigonometric quantity;
this does not seem to cause any trouble as
compared to the example above, because the
multiplier is a bounded function.
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An Example with a difference

I For we can consider

F (z) = e3ız(z2 + 1)−2

to go with and later take only the real part of
whatever we get. The denominator has poles at
z = ±ı which are double poles but that need
not cause any concern.
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Equally-lucky-but-with-a-difference Example

I When R > 1, the contour γR encloses z = ı and
we find the residue at this point of the
integrand, and see that JR = 2π/e3.

I Yes, the bound that we can find for the
integrand now has different nature!
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An Example with a difference

I Putting z = x + ıy we know that |e3ız | = |e−3y |.
Therefore,

|f (z)| =

∣∣∣∣ e3ız

(z2 + 1)2

∣∣∣∣ ≤ ∣∣∣∣ e−3y

(R2 − 1)2

∣∣∣∣ .
Since, e−3y remains bounded by 1 for all y > 0
we are done. Thus, it follows that the given
integral is equal to 2π/e3.
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