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Integrals of complex valued functions

Definition

Given f : [a, b] −→ C a continuous. We define

∫ b

a

f (t) dt :=

∫ b

a

Re (f (t)) dt +ı

∫ b

a

Im (f (t)) dt. (1)

Standard properties of Riemann integrals of real
valued functions all hold for the above integral of a
complex valued function. For instance, linearity
properties are easy to verify.
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Integrals of complex functions

However, you have to be cautious about those
properties which involve inequalites. Here is
something which may be new for you and which is
indeed most fundamental for us now.

Let us verify

∣∣∣∣∫ b

a

f (t) dt

∣∣∣∣ ≤ ∫ b

a

|f (t)|dt (2)

Put w = re ıθ =
∫ b

a f (t)dt.
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Integrals of complex functions

Then |w | = r = e−ıθw . That is,∣∣∣∣∫ b

a

f (t) dt

∣∣∣∣ = r = e−iθ
∫ b

a

f (t) dt =

∫ b

a

e−iθf (t) dt

=

∫ b

a

Re (e−iθf (t)) dt ≤
∫ b

a

|f (t)|dt.

Anant R. Shastri IITB MA205 Complex Analysis



Lecture 6: Line Integrals
Riemann Integral of complex valued functions
Parameterized curve
Basic Properties

Parameterized curve

Let U be an open subset in C. By a smooth
parameterised curve in U , we mean function
γ : [a, b]→ U which has continuous derivative
γ̇(t) 6= 0, throughout the interval.

Here the dot on the top denotes differentiation with
respect to t. This just means that
γ(t) = (x(t), y(t)) ∈ U and ẋ , ẏ exist and are
continuous, and (ẋ(t), ẏ(t)) 6= (0, 0).
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Parameterized curve

Example

The curve γ : t 7→ (t2, t3) (OR t 7→ t + ιt3) is given
by a function which has continuous derivative.
However, at t = 0, γ̇ = (0, 0). Therefore, if the
domain of the function is allowed to include the
point 0 then it is not a smooth curve. Otherwise it
is a smooth curve.
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Parameterized curve

Example

Consider the curves

C1(t) = e2πıt , C2(t) = e4πıt , C3(t) = e−2πıt , 0 ≤ t ≤ 1.

Each of them have its image equal to the unit
circle. However, they are all different curves as
‘parametrized curves.’
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Sense in a parameterized curve

Remark

Geometrically, by a curve we often mean the image
set of a curve as given above. A parametrized curve
is much refined notion than that. For instance,
observe that the parametrization automatically
defines a sense of orientation on the curve, the
‘way’ in which the ‘geometric curve’ is being traced.
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Parameterized curve

We shall fix the following notation for certain
parameterized curves:

I Given z1, z2 ∈ C, write [z1, z2] for the curve
given by

t 7→ (1− t)z1 + tz2, 0 ≤ t ≤ 1.}

I The circle with centre w and radius r traced
exactly once in the counterclockwise sense will
be denoted by

|z − w | = r := {t 7→ w + re2πıt , 0 ≤ t ≤ 1.}
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Contour integration

Let γ be a smooth curve in U . Then for any
continuous function f : U → C we define the
contour integral, or line integral of f along γ to be

∫
γ

f dz :=

∫ b

a

f (γ(t))γ̇(t) dt. (3)

Anant R. Shastri IITB MA205 Complex Analysis



Lecture 6: Line Integrals
Riemann Integral of complex valued functions
Parameterized curve
Basic Properties

Contour Integration

Observe that γ̇(t) is a complex number for each t,
say, γ(t) = x(t) + ıy(t), then γ̇(t) = ẋ(t) + ıẏ(t).
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The expressions dx , dy etc.

I Similarly if we write f (z) = u(z) + ıv(z), then
f (γ(t)) = u(γ(t)) + ıv(γ(t)).

I Hence the of the above definition can also be
expressed as∫
γ

f (z)dz :=

∫ b

a

(u(γ(t))ẋ(t)− v(γ(t))ẏ(t)) dt

+ı

∫ b

a

(u(γ(t))ẏ(t) + v(γ(t))ẋ(t)) dt.

I =

(∫ b

a

udx − vdy ,

∫ b

a

udy + vdx

)
.
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The expressions dx , dy etc.

Therefore it follows that dx + ıdy = dz . There
expressions are called 1-forms. For us they are
good for carrying out integration: indicators of
which variable is being integrated. This is the only
justification for the name ‘complex integrals’ which
many authors use.
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Examples

I (1) Compute the value of

∫
[0,1+i ]

x dz .

I Sol: Here the curve γ is the line segment from
0 to 1 + i .

I Recall that this curve is given by:
γ(t) = (1 + ı)t, 0 ≤ t ≤ 1.

I Then γ̇(t) = 1 + i for all t and hence by
definition∫
γ

x dz =

∫ 1

0

x(γ(t))γ̇(t) dt =

∫ 1

0

t(1+ı) dt =
1 + ı

2
.
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Examples

I (2) Let us compute

∫
C

zndz , where C is any

circle with origin as centre and oriented
counter-clockwise.

I Sol: We have C : γ(t) = re ı2πt , 0 ≤ t ≤ 1.

I By definition, we have,∫
C

zndz =

∫ 1

0

r ne2nπıt(2πı)re2πıtdt

= r n+1

∫ 1

0

e2πı(n+1)tdt = 2πır n+1

∫ 1

0

e2πı(n+1)dt.
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Examples

This is easily seen to be = 0 if n 6= −1 and = 2πı if
n = −1.

Shifting the origin to z = a, taking n = −1 we
obtain

∫
|z−a|=r

dz

z − a
= 2πı. (4)
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Some basic properties of the integral:

I 1. Invariance Under Change of
Parameterization
Let τ : [α, β] −→ [a, b] be a continuously
differentiable function with
τ(α) = a, τ(β) = b, τ̇(t) > 0, ∀ t. Then∫

γ◦τ
f (z) dz

∫
γ

f (z) dz (5)

I This follows by chain rule and the Law of
substitution for Riemann integration.
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Change of parameterization:

LHS :=

∫ β

α

f (γ ◦ τ(t))
d(γ ◦ τ)

dt
(t) dt.

RHS =

∫ b

a

f (γ(s))
γ

ds
ds

Now make the substitution s = τ(t) and use the
fact ds = τ̇dt.
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Basic Properties

(2) Linearity
For all α, β ∈ C∫

γ

(αf + βg)(z) dz = α

∫
γ

f (z) dz + β

∫
γ

g(z) dz (6)
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(3) Additivity Under Sub-division or
Concatenation
If a < c < b and γ1 = γ|[a,c], γ2 = γ|[c ,b], are the
restrictions to the respective sub-intervals of a
parameterized curve γ : [a, b]→ C, then∫

γ

f (z) dz :=

∫
γ1

f (z) dz +

∫
γ2

f (z) dz (7)
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(4) Orientation Respecting
We also have,

∫
γ−1

f (z) dz = −
∫
γ

f (z) dz (8)

where γ−1 is the curve γ itself traced in the
opposite direction, viz., γ−1(t) = γ(a + b − t).
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To see this, put t = a + b − s. Then,

L.H .S . =

∫ b

a

f (γ−1(s))
dγ−1

ds
(s) ds

=

∫ a

b

f (γ(t))(−γ̇(t))(−dt)

= −
∫ b

a

f (z) dz = R .H .S .
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(5) Interchange of order of integration and
limit
If {fn} is a sequence of continuous functions
uniformly convergent to f then the limit and
integration can be interchanged viz.,

lim
n→∞

∫
γ

fn(z) dz =

∫
γ

f (z) dz . (9)

This follows from the corresponding property of
Riemann integration.
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Basic Properties

(6) Term-by-term Integration From (5) it also
follows that whenever we have a uniformly
convergent series of functions then term-by-term
integration is valid.

∫
γ

(∑
n

fn(z)

)
dz =

∑
n

(∫
γ

fn(z) dz

)
(10)
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(7)Fundamental Theorem of integral calculus
Suppose g is complex differentiable in U . Then for
all smooth curves γ : [a, b]→ U we have∫

γ

g ′(z)dz = g(γ(b))− g(γ(a)). (11)

For the composite function g ◦ γ is differentiable in
[a, b]. Therefore∫
γ

g ′(z)dz =

∫ b

a

d

dt
(g◦γ(t))dt = g(γ(b))−g(γ(a)).

♠
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Contours

I Definition

By a contour, we mean the concatenation
(composite) γ = γ1 · γ2 · · · γk of a finite number of
smooth parameterized curves γi taken in a fixed
order.

I Observe that γ is continuously differentiable
except at finitely many points of the interval,
where even the continuity also may break.
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Contours

I Property (7) comes to our help and says that
the only natural way to define the integrals over
arbitrary contours is by the formula

∫
γ

f (z) dz :=
k∑

j=1

∫
γj

f (z) dz . (12)

I Verify directly that all the basic properties
mentioned above for line integrals is valid for
contour integrals as well.
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Length of a countor

Definition

Length of a contour: Let
γ : [a, b] −→ R2, γ(t) = (x(t), y(t)) be a
continuously differentiable arc. Then the arc-length
of γ is obtained by the integral

L(γ) :=

∫ b

a

|γ̇(t)|dt =

∫ b

a

[(ẋ(t))2 + (ẏ(t))2]1/2 dt (13)
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Length of a countor

It is easily checked that L(γ) is independent of the
choice of parameterization of γ as discussed earlier.

Sometimes we use the following complex notation
for (13): If γ(t) = z(t) = x(t) + ıy(t), this
becomes

L(γ) :=

∫
γ

|dz | (14)
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Examples

As a simple exercise, let us compute the length of
the circle
Cr := z(θ) == (r cos θ, r sin θ) 0 ≤ θ ≤ 2π.

L(Cr) =

∫
Cr

|dz |

=

∫ 2π

0

(r 2 sin2 θ + r 2 cos2 θ)1/2dθ

= r

∫ 2π

0

dθ = 2πr .
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A notation and a consequence

I We now introduce the notation:∫
γ

|f (z) dz | :=

∫ b

a

|f (γ(t))γ̇(t)| dt. (15)

for any continuous function f and any contour
γ.

I Note that as a consequence of (2), it follows
that ∣∣∣∣∫

γ

f (z)dz

∣∣∣∣ ≤ ∫
γ

|f (z)dz | (16)
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M-L Inequality

Theorem

M-L Inequality Let U be an open set in C, f be a
continuous function on U and γ : [a, b] −→ U be a
contour in U . Let
M = sup{|f (γ(t))| : a ≤ t ≤ b}. Then∣∣∣∣∫

γ

f (z) dz

∣∣∣∣ ≤ ML(γ). (17)
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M-L Inequality

Proof: This is an immediate consequence of (2)∣∣∣∣∫
γ

f (z) dz

∣∣∣∣ =

∣∣∣∣∫ b

a

f (γ(t))γ̇(t) dt

∣∣∣∣
≤ M

∫ b

a

|γ̇(t)| dt = ML(γ).
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Continuity of the Integrals

Theorem

Let Ω be an open set in Rn and
g : Ω× [a, b] −→ C be a continuous function. Put

φ(P) =

∫ b

a

g(P , t) dt, P ∈ Ω.

Then φ : Ω −→ C is a continuous function.
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Continuity of Integrals

I Proof: Let B be a closed ball of radius, say
δ1 > 0, around a point P0 ∈ Ω such that B ⊂ Ω.

I Then B × [a, b], is a closed and bounded subset
of a Eucidean space. Hence, g restricted to this
set is uniformly continuous.
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Continuity of Integrals

This means that given ε > 0, we can find a δ2 > 0
such that

|g(P1, t1)− g(P2, , t2)| < ε/(b − a)

for all (Pi , ti) ∈ B × [a, b] whenever
‖(P1, t1)− (P2, t2)‖ < δ2. Now let δ = min{δ1, δ2}
and |P − P0| < δ.

Then

|φ(P)−φ(P0)| =

∣∣∣∣∫ b

a

(g(P , t)− g(P0, t)) dt

∣∣∣∣ ≤ ε.

This proves the continuity of φ at P0.
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Differentiation Under Integral Sign

Theorem

Differentiation Under the Integral Sign Let U
be an open subset of C and g : U × [a, b] −→ C be
a continuous functions such that for each t ∈ [a, b],
the function z 7→ g(z , t) is complex differentiable

and the map
∂g

∂z
: U × [a, b] −→ C is continuous.

Then f (z) =
∫ b

a g(z , t)dt is complex differentiable
in U and

f ′(z) =

∫ b

a

∂g

∂z
(z , t) dt.
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Differentiation Under Integral Sign

I Proof: Given z0 ∈ U , we need to show that

lim
z→z0

[
f (z)− f (z0)

z − z0
−
∫ b

a

∂

∂z
g(z0, t)dt

]
= 0.

I Put
h(z , t) = g(z , t)− f (z0, t))− (z − z0) ∂

∂zg(z0, t).

I Then we have to show

lim
z→z0

[
1

z − z0

∫ b

a

h(z , t)dt

]
= 0.
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Differentiation Under Integral Sign

I Let r > 0 be such that B = B̄r(z0) ⊂ U . Then

B × [a, b] is closed and bounded and hence
∂g

∂z
is uniformly continuous on it.

I Hence, given ε > 0 we can choose 0 < δ < r
such that∣∣∣∣∂g

∂z
(z1, t)− ∂g

∂z
(z2, t)

∣∣∣∣ < ε

b − a
(18)

for all t ∈ [a, b] and z1, z2 ∈ B such that
|z1 − z2| < δ.
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Differentiation Under Integral Sign

I Now, let 0 < |z − z0| < δ. Then |h(z , t)| is
equal to∣∣∣∣∫

[z0,z ]

(
∂g

∂w
(w , t)− ∂g

∂z
(z0, t)) dw

∣∣∣∣ ≤ ε|z − z0|,

by M-L inequality.

I ∣∣∣∣ 1

z − z0

∫ b

a

h(z , t)dt

∣∣∣∣ < ε.

This proves the theorem. ♠
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Vanishing derivative.

Theorem

Let U be a convex open set, f : U → C be a
C-differentiable function such that f ′(z) = 0 for all
z ∈ U . Then f is a constant function on U .

Proof: Fix z0 ∈ U and for every point z ∈ U define
g(t) = f ((1− t)z0 + tz). Then g : [0, 1]→ C is a
differentiable function and g ′(t) = 0 by chain rule.
This implies that g(1) = g(0) That is the same as
saying f (z) = f (z0). ♠
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