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Differentiation Under Integral Sign: An application

In the last lecture, we have computed the integral∫
|z |=r

dz

z
= 2πı. (1)

The same computation goes through to give you
the formula ∫

|z−a|=r

dz

z − a
= 2πı

also. We shall now go a step furhter and generalize
this identity.

Anant R. Shastri IITB MA205 Complex Analysis



Lecture 7: Line integrals
Path Connectivity
Path Independence
Simply connected domains

Differentiation Under Integral Sign: An application

Theorem

For all points w such that |w − a| < r we have∫
|z−a|=r

dz

z − w
= 2πı. (2)
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Differentiation Under Integral Sign

I Consider the function F (z ,w) = 1
z−w and put

h(w) =

∫
|z−a|=r

dz

z − w
.

I We can differentiate this under the integral sign
and get h′(w) =

−
∫
|z−a|=r

dz

(z − w)2
=

∫
|z−a|=r

d

dz

(
1

z − w

)
dz = 0.

I This is true for all points w in the open disc
|z − a| < r which is convex. Therefore, h is a
constant. ♠
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Paths

The convexity is too fragile as we have seen and
does not take us very far. So, we need to have a
little more robust notion viz., path connectivity.

Definition

By a path in U we mean a continuous function
γ : [a, b]→ U .

The two points γ(a), γ(b) are called initial point
and terminal point respectively or together called
end points.
Often people confuse a path for its image but so far
as this confusion is good let us use it.
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Paths

Definition

We say a subset A ⊂ C is path connected if every
pair of points in A are end-points of a path in A.

Definition

A path connected open subset U of C is called a
domain
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Paths

Example

(1) Clearly every convex set is path connected.

(2) C \ {0} is path connected. It is a domain.
More generally of A is a finite subset of C then
C \ A is path connected.
(3) Let [z1, z2] be a line segment. Then C \ [z1, z2]
is path connected.
pause
(4) C \ L where L is an entire line, is not path
connected.
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Paths

Remark

It can be shown that in any domain, every pair of
points can be joined by a smooth parameterised
curve. As an immediate consequence we have:

Theorem

Let U be a domain. If f : U → C is C-differentiable
and f ′(z) = 0 for all z ∈ U . Then f is a constant on
U .
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Existence of Primitives

Recall from calculus of two real variables that a
differential pdx + qdy is called exact if there exist a
function u with continuous partial derivatives such
that ux = p and uy = q; i.e.,

du = pdx + qdy .

In that case, u is a primitive of pdx + qdy .
[More generally, we say a function g is a primitive of
another function f if g ′ = f . ]
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Existence of Primitives

Theorem

(Path Independence) Let U be a domain in C,
and p, q be continuous maps on U taking real or
complex values. Then the following two conditions
are equivalent.
(a) The differential pdx + qdy is exact on U .
(b) For all closed continuous contours γ in U we
have, ∫

γ

pdx + qdy = 0. (3)
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Path Independence

Proof: [By taking real and imaginary parts
separately, the statement of the theorem for
complex valued functions follows from that for real
valued functions. Therefore, you can assume that
only real valued functions appear in the proof below.
However, such an assumption is not a logical
necessity.]

Let γ : [a, b] −→ U be a contour joining z0 and z
say, given by γ(t) = (x(t), y(t)). Suppose
du = pdx + qdy and that (a) holds.
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Path Independence

Then by definition,

=

∫
γ

(pdx + qdy)

=

∫ b

a

[p(γ(t))x ′(t) + q(γ(t))y ′(t)] dt

=

∫ b

a

(uxx ′(t) + uuy ′(t)) dt

=

∫ b

a

d

dt
u(x(t), y(t)) dt

= u(x(b), y(b))− u(x(a), y(a))
= u(γ(b))− u(γ(a)) = u(z)− u(z0).
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Path Independence

Observe that we have used the fundamental
theorem of integral calculus of 1-variable above.
Now, if γ is closed, then z0 = z and hence∫
γ

(pdx + qdy) = 0. This proves (a) =⇒ (b).

To prove (b) =⇒(a), fix any point z0 ∈ U . Then for
every point z ∈ U , choose a contour γz from z0 to z
in U .
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Path Independence

Define

u(z) :=

∫
γz

(pdx + qdy). (4)

Let us proceed to prove that du = pdx + qdy , i.e.,
∂u

∂x
= p,

∂u

∂y
= q. Given z = (x , y) ∈ U , choose

sufficiently small ε > 0, so that (x + h, y) ∈ U for
all |h| < ε.
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Path Independence

Now restrict h further, to be a real number. We
have two specific ways of approaching the point
z + h from z0. One is along the chosen path γz+h.
The other one is to first trace γz and then trace the
line segment [z , z + h]. Condition (b) implies that

u(z + h) :=
∫
γz+h

pdx + qdy

=

∫
γz

pdx + qdy +

∫
[z ,z+h]

pdx + qdy .
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Path Independence

Therefore,

u(z + h)− u(z) =

∫
[z ,z+h]

(pdx + qdy). (5)

Now recall that the segment [z , z + h] is
parameterized by

t 7→ (x + th, y), 0 ≤ t ≤ 1.

Therefore, dx = hdt and dy = 0.
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Path Independence

Thus

u(z + h)− u(z)

=
∫
[z ,z+h](pdx + qdy) =

∫ 1

0 p(x + th, y)hdt

= p(x + t0h, y)h

for some 0 ≤ t0 ≤ 1, by the mean value theorem of
integral calculus of 1-real variable.

Thereore

lim
h→0

u(z + h)− u(z)

h
= lim

h→0
p(x + t0h, y) = p(x , y).
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Path Independence
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Path Independence

The proof that
∂u

∂y
= q is similar, by taking ıh in

place of h. ♠
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Path Independence

Corollary

In the situation of theorem 3, assume further that U
is a convex domain. Then (a), (b) are equivalent to
the following:
(c) For all triangles T contained in U∫

∂T

pdx + qdy = 0. (6)
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Path Independence

Proof: The implication (b) =⇒ (c) is obvious. To
prove (c) =⇒ (a) we imitate the proof of (b) =⇒
(a) except that we now take γz to be the line
segment [z0, z ] from z0 to z . (This is where
convexity of U is used.) Then the hypothesis (c) is
enough to arrive at (5) since the closed path
γz · [z , z + h] · γ−1z+h = ∂T is the boundary of a
triangle T = ∆(z0, z , z + h) contained in U . The
rest of the proof is as before. ♠
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Path Independence

Remark

The function u in theorem 3, if it exists, is unique up
to an additive constant. (Why?) The ambiguity in
the additive constant is a cheap price we pay for the
freedom we enjoy in the choice of the base point z0.
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Primitive Existence

Corollary

Primitive existence theorem: For a continuous
complex valued function f defined in a domain U ,

the integral

∫
ω

f dz = 0 for all closed contours ω iff

f is the derivative of a holomorphic function on U .
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Primitive Existence

Proof: Suppose there is a holomorphic function g
such that g ′ = f . By CR equations, we have
f = g ′ = gx = gy/ı and hence

f (z)dz = f (z)(dx + ıdy) = gxdx + gydy .

Therefore, from theorem 3, it follows that∫
ω

f dz = 0 for all closed contours in U .
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Primitive Existence

Conversely, suppose

∫
ω

f dz = 0 for all closed

contours in U , then by taking p = f and q = ıf in
the above theorem, it follows that there exists
F : U −→ C, such that Fx = p = f ; Fy = q = ıf .

This implies that F satisfies the CR equations:
Fx + ıFy = 0. Since, f is continuous, the partial
derivatives of F are continuous. Therefore F is
complex differentiable and F ′(z) = Fx = f . This
completes the proof of the corollary. ♠
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Primitive Existence

Example

As seen in the example 1, in the previous section,∫
|z−a|=r

dz

(z − a)
6= 0. It follows that

1

z − a
does not

have a primitive in any punctured neighbourhood of
z = a. Equivalently, this means that we cannot
define log (z − a) in any punctured neighbourhood
of z = a, as a single valued function. (Of course, in
a small neighbourhood of any other point, it is the
derivative of a holomorphic function.
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Path Independence

Remark

The function u in the above theorem is indeed
obtained by definite integrals along arbitrarily fixed
contours starting at an arbitrarily fixed initial point.
The value of the integral depends only on the
choice of this initial point. Hence or otherwise, the
function u is unique up to any additive constant.
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An Example

I Consider function f (z) = the principle value of√
z . Let us integrate this on the upper

semi-circle:

C1 : e iθ, 0 ≤ θ ≤ π.

I By definition, we have∫
C1

f (z)dz =

∫ π

0

e ıθ/2d(e ıθ) = −2(ı + 1)/3.
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An Example

I But on the lower semi-circle
C2 : e−ıθ, 0 ≤ θ ≤ π, observe that f (z) has a
discontinuity at end point of the circle.

I Therefore∫
C2

f (z)dz = lim
s→π

∫ s

0

e−ıθ/2d(e−ıθ)

= −ı lim
s→π

∫ s

0

e−3ıθ/2dθ

= lim
s→π

2

3
(e−3ıs/2 − 1) =

2

3
(ı− 1).
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An Example

Thus the two integrals are different which shows
that the integral is path-dependant. This
phenomenon is explained by the fact there is no
continuously defined anti-derivative of

√
z in a

domain which ‘encircles’ the origin.
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Jordan curves

Definition

By a Jordan curve Jordan path we mean a
continuous function γ : [a, b]→ C such that
γ(t1) 6= γ(t2) for any two t1 6= t2 except when they
are end points of the interval. If in addition
γ(a) = γ(b) then we call it a Jordan loop. This is
also known as simple closed curve. Especially in
this context, it is beneficial to ‘confuse’ the path
with its image.
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Jordan curve theorem

This celebrated theorem says that:

Theorem

Any simple closed curve in C separates C into two
components one bounded and another unbounded.

This just means that if C is a simple closed curve
then

C \ C = U1 t U2

where each Ui is path connected and moreover,
there is NO (continuous) path starting from a point
in U1 and ending in a point in U2.
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Jordan curve theorem

It further implies that one of the Uj is bounded set
(called the inside of C and and the other is
unbounded called outside of C .

This is also intuitively clear. But rigorous proofs of
these facts are not easily obtained.
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