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Jordan curve Theorem

Definition

By a Jordan curve Jordan path we mean a
continuous function γ : [a, b]→ C such that
γ(t1) 6= γ(t2) for any two t1 6= t2 except when they
are end points of the interval. If in addition
γ(a) = γ(b) then we call it a Jordan loop. This is
also known as simple closed curve. Especially in
this context, it is beneficial to ‘confuse’ the path
with its image.
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Jordan curve theorem

This celebrated theorem says that:

Theorem

Any simple closed curve in C separates C into two
components one bounded and another unbounded.

This just means that if C is a simple closed curve
then

C \ C = U1 t U2

where each Ui is path connected and moreover,
there is NO (continuous) path starting from a point
in U1 and ending in a point in U2.
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Jordan curve theorem

It further implies that one of the Uj is bounded set
(called the inside of C and and the other is
unbounded called outside of C .

This is also intuitively clear. But rigorous proofs of
these facts are not easily obtained.
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Simply connected domains

Let U ⊂ C be a path connected open set. Suppose
it has the following property:

For every simple closed curve C in U if U1 is the
bounded component of C \ C then U1 ⊂ U .
We then say U is simply connected.
We can take the following slightly different wording
as the definition:
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Jordan curve theorem

Definition

Let U be a domain (open connected set) in C. We
say U is simply connected, if the following
property holds: no simple closed curve γ in U
encloses any point of C which is not in U .
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Examples

I Any convex domain in C is simply connected.

I The inside of a simple close curve in C is simply
connected.
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Non-examples:

I Start with any domain U . Throw away a point
a ∈ U .

I Then for any circle C with center a and
contained U , the condition in definition of
simply connectivity is violated.

I So, U \ {a} is not simply connected.

I Of course we can even punch larger round holes
also to make a domain not simply connected.

I On the other hand, by filling all ‘holes’ in a
domain you can make it simply connected.
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Simply connected domains

Remark

An alternative and modern description of a simply
connected domain is that every closed curve in it
can be continuously shrunk to a single point. We
have no time to discuss this property deeper.

Next we need to recall Green’s theorem which
relates an area integral to a line integral on the
boundary, that you have learnt in your calculus
course.
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Green’s Theorem

Green’s Theorem for Multi-Connected
Domains: Let R be a closed and bounded domain
in xy -plane whose boundary ∂R consists of finitely
many piecewise smooth curves.

Let f (x , y) and
g(x , y) be functions which are continuous and have
continuous partial derivatives fy and gx everywhere
in some domain containing R . Then∫ ∫

(gx − fy)dxdy =

∫
∂R

(fdx + gdy)
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Green’s Theorem

Remember that the integration on the right is being
taken along the entire boundary curve C of R ,
parametrerised in such a way that the area of R lies
on the left as one traces the curve in the in positve
direction.
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Cauchy’s Theorem on a Simply Connected Domain

Theorem

Cauchy’s Theorem (Version-I) Let U be a
simply connected domain in C and f be a
holomorphic function on it. Then for any simple
closed curve γ in U , we have,∫

γ

f (z)dz = 0.
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Proof of Cauchy’s Theorem

I Let S be the domain bounded by γ. Since U is
simply connected, it follows S ⊂ U .

I Therefore, f = u + ıv is complex differentiable
at every point of S and hence its real and
imaginary parts u, v satisfy CR-equations.

I Also f (z)dz = (u + ıv)(dx + ıdy)
= (udx − vdy) + ı(vdx + udy).
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Proof of Cauchy’s Theorem continued

By Green’s theorem, we have,∫
γ f (z)dz =

∫
∂S

f (z)dz

=

∫ ∫
S

(uy + vx)dxdy + ı

∫ ∫
R

(vy − ux)dxdy = 0.
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Cauchy’s Theorem

Using Green’s theorem for multi-connected domains,
allowing curves to be a finite union of simple closed
curves, and arguing as before, we obtain the
following:
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Cauchy’s theorem version-II

Theorem

Cauchy’s Theorem: version-II Let R be a
domain in C bounded by the oriented path ∂R , (the
boundary not necessarily connected). Suppose f is
holomorphic on an open set U containing R ∪ ∂R .
Then ∫

∂R

f (z)dz = 0.
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Cauchy’s Theorem

I Next we slacken the condition on the function f
slightly, which allows us to take a ‘ BIG’ step
forward.

I Cauchy’s Theorem III-version
I Let U be a simply connected domain, A ⊂ U , a

finite subset and f : U → C be a continuous
function such that f : U \A→ C is holomorphic.

I Then for any closed contour γ in U , we have∫
γ

f (z)dz = 0. (1)
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Proof of III-version

I Observe that as seen before in Primitive
Existence Theorem, it is enough to prove (1) for
simple closed contours γ.

I We shall first prove this for the case when γ is a
simple closed contour not passing through any
points of A.

I Let R be the domain enclosed by γ. Then
R ⊂ U . This is precisely where simple
connectivity of U is used.
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Proof of Cauchy’s III- version

I Let A ∩ R = {a1, . . . , ak}. Given ε > 0, we must

show that

∣∣∣∣∫
γ

f (z)dz

∣∣∣∣ ≤ ε.

I Choose sufficiently small r > 0 such that
Br(aj) ∩ γ = ∅, 1 ≤ j ≤ k and such that
r |f (z)| < ε/2πk for all z on the boundary of
Br(ai) and for i = 1, 2, . . . , k .

I (This is possible by the continuity of f at aj ’s.)
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Proof of III-version

I Put S = R \ ∪ki=1Br(ai).

I By the II-version of Cauchy’s theorem applied to
f on the domain S , we obtain∫

∂S

f (z)dz = 0.

I Since ∂S = γ ∪ (C1)−1 ∪ (C2)−1 ∪ · · · ∪ (Ck)−1,
we get ∫

γ

f (z)dz =
k∑

i=1

∫
Ci

f (z)dz . (2)
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Proof III-version

I Let Cj be the oriented boundary of Br(aj) and
Mj = sup{|f (z)| : z ∈ Cj}. Then
rMj ≤ ε/2πk .

I Now by M-L inequality, it follows that∣∣∣∣∫
γ

f (z)dz

∣∣∣∣ =

∣∣∣∣∣∣
k∑

j=1

∫
Cj

f (z)dz

∣∣∣∣∣∣
≤

k∑
j=1

MjL(Cj) = 2πr
k∑

j=1

Mj ≤ ε.

That completes the proof when γ ∩ A = ∅.
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Proof of III-version

I Next, we can generalize this to the case when γ
is a simple closed contour which may pass
through any of the points of A.

I Given ε > 0 we can find a curve γε in U , not
passing through any point in A and such that∣∣∣∣∫

γε

f (z)dz −
∫
γ

f (z)dz

∣∣∣∣ < ε.

I This is a direct consequence of M-L inequality,
the details are left to you as an exercise. By the
first part, the first integral vanishes and hence
the second one also should vanish. ♠
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An Example

I Let γ be a simple closed curve in C, oriented
anticlockwise, and enclosing a domain S .

I Then for any point z0 ∈ S , we have∫
γ

dz

z − z0
= 2πı. (3)

I To see this, choose a disc D with center z0 and
contained in S.
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An Example

Apply Cauchy’s theorem (Version-II) to f (z) = 1
z−z0

in R = S \ D. Since

∂R = γ · (∂D)−1, we get∫
γ

dz

z − z0
=

∫
∂D

dz

z − z0
= 2πı.
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Cauchy Integral Formula:

I Let f : U → C be a holomorphic function on a
simply connected domain U and γ be any closed
contour in U .

I Then for every point w ∈ U , not lying on γ, we
have∫

γ

f (z)

z − w
dz . = f (w)

∫
γ

dz

z − w
(4)
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Cauchy Integral Formula:

In particular, if γ is a simple closed curve enclosing
a domain R in U then every point w ∈ R we have

f (w) =
1

2πi

∫
γ

f (z)

z − w
dz . (5)
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Cauchy’s Integral Formula

I Consider the function

F (z) =
f (z)− f (w)

z − w
, z 6= w .

Then F is holomorphic in U \ {w}.

I Also, since f is holomorphic at w , limz→w F (z)
exists and is equal to f ′(w).

I Therefore by taking F (w) = f ′(w), F will be
continuous at w .
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Integral formula

Therefore, we can apply Cauchy’s theorem (III
version) to F , to conclude that∫

γ

F (z)dz = 0.

This means that∫
γ

f (z)

z − w
dz = f (w)

∫
γ

dz

z − w
= 2πıf (w).

The latter part follows easy, from the previous
example.
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Integral formula for derivatives

Remark

In (5), observe that the integrand is a function of
two complex variables, where w varies over the
interior of R and z varies over the boundary. It is a
continuous function of these variable and for each
fixed z , it is a holomorphic function. Therefore,
differentiation under the integral sign wrt to w is
valid and we have

f ′(w) =
1

2πi

∫
γ

f (z)dz

(z − w)2
.
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Integral formula for derivatives

By repeated application of this theme we obtain:

Theorem

Cauchy’s Integral formula for Derivatives: Let
f be holomorphic in a domain U . Then f has
derivatives of all order in U . Moreover, if C is a
circle in U and z is a point inside the circle C then
for all integers n ≥ 0, we have,

f (n)(w) =
n!

2πi

∫
C

f (z) dz

(z − w)n+1
. (6)
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