INDIAN INSTITUTE OF TECHNOLOGY BOMBAY

MA205 Complex Analysis Autumn 2012

Anant R. Shastri

August 17, 2012

Lecture 8: Cauchy's theorem Simply connected domains Intergal formula

Jordan curve Theorem

Definition

By a Jordan curve Jordan path we mean a continuous function $\gamma:[a, b] \rightarrow \mathbb{C}$ such that $\gamma\left(t_{1}\right) \neq \gamma\left(t_{2}\right)$ for any two $t_{1} \neq t_{2}$ except when they are end points of the interval. If in addition $\gamma(a)=\gamma(b)$ then we call it a Jordan loop. This is also known as simple closed curve. Especially in this context, it is beneficial to 'confuse' the path with its image.

Jordan curve theorem

This celebrated theorem says that:

Jordan curve theorem

This celebrated theorem says that:
Theorem
Any simple closed curve in \mathbb{C} separates \mathbb{C} into two components one bounded and another unbounded.

Jordan curve theorem

This celebrated theorem says that:
Theorem
Any simple closed curve in \mathbb{C} separates \mathbb{C} into two components one bounded and another unbounded.
This just means that if C is a simple closed curve then

$$
\mathbb{C} \backslash C=U_{1} \sqcup U_{2}
$$

where each U_{i} is path connected and moreover, there is NO (continuous) path starting from a point in U_{1} and ending in a point in U_{2}.

Jordan curve theorem

It further implies that one of the U_{j} is bounded set (called the inside of C and and the other is unbounded called outside of C.

Jordan curve theorem

It further implies that one of the U_{j} is bounded set (called the inside of C and and the other is unbounded called outside of C.
This is also intuitively clear. But rigorous proofs of these facts are not easily obtained.

Simply connected domains

Let $U \subset \mathbb{C}$ be a path connected open set. Suppose it has the following property:

Simply connected domains

Let $U \subset \mathbb{C}$ be a path connected open set. Suppose it has the following property:
For every simple closed curve C in U if U_{1} is the bounded component of $\mathbb{C} \backslash C$ then $U_{1} \subset U$.

Simply connected domains

Let $U \subset \mathbb{C}$ be a path connected open set. Suppose it has the following property:
For every simple closed curve C in U if U_{1} is the bounded component of $\mathbb{C} \backslash C$ then $U_{1} \subset U$. We then say U is simply connected.

Simply connected domains

Let $U \subset \mathbb{C}$ be a path connected open set. Suppose it has the following property:
For every simple closed curve C in U if U_{1} is the bounded component of $\mathbb{C} \backslash C$ then $U_{1} \subset U$. We then say U is simply connected. We can take the following slightly different wording as the definition:

Jordan curve theorem

Definition

Let U be a domain (open connected set) in \mathbb{C}. We say U is simply connected, if the following property holds: no simple closed curve γ in U encloses any point of \mathbb{C} which is not in U.

Examples

- Any convex domain in \mathbb{C} is simply connected.

Examples

- Any convex domain in \mathbb{C} is simply connected.
- The inside of a simple close curve in \mathbb{C} is simply connected.

Non-examples:

- Start with any domain U. Throw away a point $a \in U$.

Non-examples:

- Start with any domain U. Throw away a point $a \in U$.
- Then for any circle C with center a and contained U, the condition in definition of simply connectivity is violated.

Non-examples:

- Start with any domain U. Throw away a point $a \in U$.
- Then for any circle C with center a and contained U, the condition in definition of simply connectivity is violated.
- So, $U \backslash\{a\}$ is not simply connected.

Non-examples:

- Start with any domain U. Throw away a point $a \in U$.
- Then for any circle C with center a and contained U, the condition in definition of simply connectivity is violated.
- So, $U \backslash\{a\}$ is not simply connected.
- Of course we can even punch larger round holes also to make a domain not simply connected.

Non-examples:

- Start with any domain U. Throw away a point $a \in U$.
- Then for any circle C with center a and contained U, the condition in definition of simply connectivity is violated.
- So, $U \backslash\{a\}$ is not simply connected.
- Of course we can even punch larger round holes also to make a domain not simply connected.
- On the other hand, by filling all 'holes' in a domain you can make it simply connected.

Simply connected domains

Remark

An alternative and modern description of a simply connected domain is that every closed curve in it can be continuously shrunk to a single point. We have no time to discuss this property deeper.
Next we need to recall Green's theorem which relates an area integral to a line integral on the boundary, that you have learnt in your calculus course.

Green's Theorem

Green's Theorem for Multi-Connected Domains: Let R be a closed and bounded domain in xy-plane whose boundary ∂R consists of finitely many piecewise smooth curves.

Green's Theorem

Green's Theorem for Multi-Connected

Domains: Let R be a closed and bounded domain in $x y$-plane whose boundary ∂R consists of finitely many piecewise smooth curves. Let $f(x, y)$ and $g(x, y)$ be functions which are continuous and have continuous partial derivatives f_{y} and g_{x} everywhere in some domain containing R. Then

$$
\iint\left(g_{x}-f_{y}\right) d x d y=\int_{\partial R}(f d x+g d y)
$$

Green's Theorem

Remember that the integration on the right is being taken along the entire boundary curve C of R, parametrerised in such a way that the area of R lies on the left as one traces the curve in the in positve direction.

Cauchy's Theorem on a Simply Connected Domain

Theorem
Cauchy's Theorem (Version-I) Let U be a simply connected domain in \mathbb{C} and f be a holomorphic function on it. Then for any simple closed curve γ in U, we have,

$$
\int_{\gamma} f(z) d z=0
$$

Proof of Cauchy's Theorem

- Let S be the domain bounded by γ. Since U is simply connected, it follows $S \subset U$.

Proof of Cauchy's Theorem

- Let S be the domain bounded by γ. Since U is simply connected, it follows $S \subset U$.
- Therefore, $f=u+\imath v$ is complex differentiable at every point of S and hence its real and imaginary parts u, v satisfy CR-equations.

Proof of Cauchy's Theorem

- Let S be the domain bounded by γ. Since U is simply connected, it follows $S \subset U$.
- Therefore, $f=u+\imath v$ is complex differentiable at every point of S and hence its real and imaginary parts u, v satisfy CR-equations.
- Also $f(z) d z=(u+\imath v)(d x+\imath d y)$
$=(u d x-v d y)+\imath(v d x+u d y)$.

Proof of Cauchy's Theorem continued

By Green's theorem, we have,

$$
\begin{aligned}
& \int_{\gamma} f(z) d z=\int_{\partial S} f(z) d z \\
= & \iint_{S}\left(u_{y}+v_{x}\right) d x d y+\imath \iint_{R}\left(v_{y}-u_{x}\right) d x d y=0 .
\end{aligned}
$$

Cauchy's Theorem

Using Green's theorem for multi-connected domains, allowing curves to be a finite union of simple closed curves, and arguing as before, we obtain the following:

Cauchy's theorem version-II

Theorem
Cauchy's Theorem: version-II Let R be a domain in \mathbb{C} bounded by the oriented path ∂R, (the boundary not necessarily connected). Suppose f is holomorphic on an open set U containing $R \cup \partial R$.
Then

$$
\int_{\partial R} f(z) d z=0
$$

Cauchy's Theorem

- Next we slacken the condition on the function f slightly, which allows us to take a ' BIG' step forward.

Cauchy's Theorem

- Next we slacken the condition on the function f slightly, which allows us to take a ' BIG' step forward.
- Cauchy's Theorem III-version

Cauchy's Theorem

- Next we slacken the condition on the function f slightly, which allows us to take a ' BIG' step forward.
- Cauchy's Theorem III-version
- Let U be a simply connected domain, $A \subset U$, a finite subset and $f: U \rightarrow \mathbb{C}$ be a continuous function such that $f: U \backslash A \rightarrow \mathbb{C}$ is holomorphic.

Cauchy's Theorem

- Next we slacken the condition on the function f slightly, which allows us to take a ' BIG' step forward.
- Cauchy's Theorem III-version
- Let U be a simply connected domain, $A \subset U$, a finite subset and $f: U \rightarrow \mathbb{C}$ be a continuous
function such that $f: U \backslash A \rightarrow \mathbb{C}$ is holomorphic.
- Then for any closed contour γ in U, we have

$$
\begin{equation*}
\int_{\gamma} f(z) d z=0 \tag{1}
\end{equation*}
$$

Proof of III-version

- Observe that as seen before in Primitive Existence Theorem, it is enough to prove (1) for simple closed contours γ.

Proof of III-version

- Observe that as seen before in Primitive Existence Theorem, it is enough to prove (1) for simple closed contours γ.
- We shall first prove this for the case when γ is a simple closed contour not passing through any points of A.

Proof of III-version

- Observe that as seen before in Primitive Existence Theorem, it is enough to prove (1) for simple closed contours γ.
- We shall first prove this for the case when γ is a simple closed contour not passing through any points of A.
- Let R be the domain enclosed by γ. Then $R \subset U$. This is precisely where simple connectivity of U is used.

Proof of Cauchy's III- version

- Let $A \cap R=\left\{a_{1}, \ldots, a_{k}\right\}$. Given $\epsilon>0$, we must show that $\left|\int_{\gamma} f(z) d z\right| \leq \epsilon$.

Proof of Cauchy's III- version

- Let $A \cap R=\left\{a_{1}, \ldots, a_{k}\right\}$. Given $\epsilon>0$, we must show that $\left|\int_{\gamma} f(z) d z\right| \leq \epsilon$.
- Choose sufficiently small $r>0$ such that $B_{r}\left(a_{j}\right) \cap \gamma=\emptyset, 1 \leq j \leq k$ and such that $r|f(z)|<\epsilon / 2 \pi k$ for all z on the boundary of $B_{r}\left(a_{i}\right)$ and for $i=1,2, \ldots, k$.

Proof of Cauchy's III- version

- Let $A \cap R=\left\{a_{1}, \ldots, a_{k}\right\}$. Given $\epsilon>0$, we must show that $\left|\int_{\gamma} f(z) d z\right| \leq \epsilon$.
- Choose sufficiently small $r>0$ such that $B_{r}\left(a_{j}\right) \cap \gamma=\emptyset, 1 \leq j \leq k$ and such that $r|f(z)|<\epsilon / 2 \pi k$ for all z on the boundary of $B_{r}\left(a_{i}\right)$ and for $i=1,2, \ldots, k$.
- (This is possible by the continuity of f at a_{j} 's.)

Proof of III-version

- Put $S=R \backslash \cup_{i=1}^{k} B_{r}\left(a_{i}\right)$.

Proof of III-version

- Put $S=R \backslash \cup_{i=1}^{k} B_{r}\left(a_{i}\right)$.
- By the II-version of Cauchy's theorem applied to f on the domain S, we obtain

$$
\int_{\partial S} f(z) d z=0 .
$$

Proof of III-version

- Put $S=R \backslash \cup_{i=1}^{k} B_{r}\left(a_{i}\right)$.
- By the II-version of Cauchy's theorem applied to f on the domain S, we obtain

$$
\int_{\partial S} f(z) d z=0 .
$$

- Since $\partial S=\gamma \cup\left(C_{1}\right)^{-1} \cup\left(C_{2}\right)^{-1} \cup \cdots \cup\left(C_{k}\right)^{-1}$, we get

$$
\begin{equation*}
\int_{\gamma} f(z) d z=\sum_{i=1}^{k} \int_{C_{i}} f(z) d z \tag{2}
\end{equation*}
$$

Proof III-version

- Let C_{j} be the oriented boundary of $B_{r}\left(a_{j}\right)$ and $M_{j}=\sup \left\{|f(z)|: z \in C_{j}\right\}$. Then $r M_{j} \leq \epsilon / 2 \pi k$.

Proof III-version

- Let C_{j} be the oriented boundary of $B_{r}\left(a_{j}\right)$ and $M_{j}=\sup \left\{|f(z)|: z \in C_{j}\right\}$. Then $r M_{j} \leq \epsilon / 2 \pi k$.
- Now by M-L inequality, it follows that

$$
\begin{aligned}
\left|\int_{\gamma} f(z) d z\right| & =\left|\sum_{j=1}^{k} \int_{C_{j}} f(z) d z\right| \\
& \leq \sum_{j=1}^{k} M_{j} L\left(C_{j}\right)=2 \pi r \sum_{j=1}^{k} M_{j} \leq \epsilon
\end{aligned}
$$

That completes the proof when $\gamma \cap A=\emptyset$.

Proof of III-version

- Next, we can generalize this to the case when γ is a simple closed contour which may pass through any of the points of A.

Proof of III-version

- Next, we can generalize this to the case when γ is a simple closed contour which may pass through any of the points of A.
- Given $\epsilon>0$ we can find a curve γ_{ϵ} in U, not passing through any point in A and such that

$$
\left|\int_{\gamma_{\epsilon}} f(z) d z-\int_{\gamma} f(z) d z\right|<\epsilon .
$$

Proof of III-version

- Next, we can generalize this to the case when γ is a simple closed contour which may pass through any of the points of A.
- Given $\epsilon>0$ we can find a curve γ_{ϵ} in U, not passing through any point in A and such that

$$
\left|\int_{\gamma_{\epsilon}} f(z) d z-\int_{\gamma} f(z) d z\right|<\epsilon
$$

- This is a direct consequence of M-L inequality, the details are left to you as an exercise. By the first part, the first integral vanishes and hence the second one also should vanish.

An Example

- Let γ be a simple closed curve in \mathbb{C}, oriented anticlockwise, and enclosing a domain S.

An Example

- Let γ be a simple closed curve in \mathbb{C}, oriented anticlockwise, and enclosing a domain S.
- Then for any point $z_{0} \in S$, we have

$$
\begin{equation*}
\int_{\gamma} \frac{d z}{z-z_{0}}=2 \pi \imath \tag{3}
\end{equation*}
$$

An Example

- Let γ be a simple closed curve in \mathbb{C}, oriented anticlockwise, and enclosing a domain S.
- Then for any point $z_{0} \in S$, we have

$$
\begin{equation*}
\int_{\gamma} \frac{d z}{z-z_{0}}=2 \pi \imath \tag{3}
\end{equation*}
$$

- To see this, choose a disc D with center z_{0} and contained in S.

An Example

Apply Cauchy's theorem (Version-II) to $f(z)=\frac{1}{z-z_{0}}$ in $R=S \backslash D$. Since

$$
\begin{gathered}
\partial R=\gamma \cdot(\partial D)^{-1}, \text { we get } \\
\int_{\gamma} \frac{d z}{z-z_{0}}=\int_{\partial D} \frac{d z}{z-z_{0}}=2 \pi \imath
\end{gathered}
$$

Cauchy Integral Formula:

- Let $f: U \rightarrow \mathbb{C}$ be a holomorphic function on a simply connected domain U and γ be any closed contour in U.

Cauchy Integral Formula:

- Let $f: U \rightarrow \mathbb{C}$ be a holomorphic function on a simply connected domain U and γ be any closed contour in U.
- Then for every point $w \in U$, not lying on γ, we have

$$
\begin{equation*}
\int_{\gamma} \frac{f(z)}{z-w} d z .=f(w) \int_{\gamma} \frac{d z}{z-w} \tag{4}
\end{equation*}
$$

Cauchy Integral Formula:

In particular, if γ is a simple closed curve enclosing a domain R in U then every point $w \in R$ we have

$$
\begin{equation*}
f(w)=\frac{1}{2 \pi i} \int_{\gamma} \frac{f(z)}{z-w} d z \tag{5}
\end{equation*}
$$

Cauchy's Integral Formula

- Consider the function

$$
F(z)=\frac{f(z)-f(w)}{z-w}, \quad z \neq w
$$

Then F is holomorphic in $U \backslash\{w\}$.

Cauchy's Integral Formula

- Consider the function

$$
F(z)=\frac{f(z)-f(w)}{z-w}, \quad z \neq w
$$

Then F is holomorphic in $U \backslash\{w\}$.

- Also, since f is holomorphic at $w, \lim _{z \rightarrow w} F(z)$ exists and is equal to $f^{\prime}(w)$.

Cauchy's Integral Formula

- Consider the function

$$
F(z)=\frac{f(z)-f(w)}{z-w}, \quad z \neq w
$$

Then F is holomorphic in $U \backslash\{w\}$.

- Also, since f is holomorphic at $w, \lim _{z \rightarrow w} F(z)$ exists and is equal to $f^{\prime}(w)$.
- Therefore by taking $F(w)=f^{\prime}(w), F$ will be continuous at w.

Integral formula

Therefore, we can apply Cauchy's theorem (III version) to F, to conclude that

$$
\int_{\gamma} F(z) d z=0
$$

Integral formula

Therefore, we can apply Cauchy's theorem (III version) to F, to conclude that

$$
\int_{\gamma} F(z) d z=0
$$

This means that

$$
\int_{\gamma} \frac{f(z)}{z-w} d z=f(w) \int_{\gamma} \frac{d z}{z-w}=2 \pi \imath f(w)
$$

The latter part follows easy, from the previous example.

Integral formula for derivatives

Remark

In (5), observe that the integrand is a function of two complex variables, where w varies over the interior of R and z varies over the boundary. It is a continuous function of these variable and for each fixed z, it is a holomorphic function. Therefore, differentiation under the integral sign wrt to w is valid and we have

$$
f^{\prime}(w)=\frac{1}{2 \pi i} \int_{\gamma} \frac{f(z) d z}{(z-w)^{2}}
$$

Integral formula for derivatives

By repeated application of this theme we obtain:
Theorem
Cauchy's Integral formula for Derivatives: Let
f be holomorphic in a domain U. Then f has derivatives of all order in U. Moreover, if C is a circle in U and z is a point inside the circle C then for all integers $n \geq 0$, we have,

$$
\begin{equation*}
f^{(n)}(w)=\frac{n!}{2 \pi i} \int_{C} \frac{f(z) d z}{(z-w)^{n+1}} \tag{6}
\end{equation*}
$$

