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Exercise Bank

SET I

Q.1-S Prove that three distinct points z1, z2, z3 in the plane form the vertices of an equi-

lateral triangle iff z21 + z22 + z23 = z1z2 + z2z3 + z3z1. Deduce that if w1, w2, w3 are

points dividing the three sides of triangle ∆(z1, z2, z3) in the same ratio, then the

triangle ∆(w1, w2, w3) is equilateral iff the triangle ∆(z1, z2, z3) is so.

Q.2-T If z1, z2, z3 are three distinct complex numbers of equal moduli, prove that

2 arg
z2 − z1
z3 − z1

= arg
z2
z3
.

Which theorem in school geometry does this correspond to?

Q.3-S Prove that the centres of the squares described outwardly on the sides of a plane

quadtrilateral are the vertices of a quadrilateral whose diagonals are equal in length

and are perpendicular to each other.

Q.4-T Let A1, A2, . . . , An be the vertices of a regular n-gon. Assume that
1

A1A2

=
1

A1A3

+
1

A1A4

. Determine n. (JEE 1994)

Q.5-L An isometry of the complex plane is a mapping T : C −→ C which preserves

all distances. All translations, rotations and reflections (into straight lines) are

isometires. The first two preserve while the last ones reverse orientations. Prove

that:

(a) a straight line L in C has an equation of the form bz + bz = c where b is a

complex number with |b| = 1 and c is real and further that the reflection, say

z∗, of a point z into L is given by zb+ z∗b = c.

(b) every orientation preserving isometry is given by a function of the form f(z) =

az+ t where a, t are complex numbers with |a| = 1. [Hint: First consider the

case where the origin is fixed.]

(c) every orientation reversing isometry of the plane is given by a function of the

form f(z) = az + t with |a| = 1.

(d) By a glide reflection, we mean a reflection in a line followed by a non zero

translation along the line of reflection. Show that a rigid motion is a glide

reflection iff it is given by f(z) = az̄ + t with |a| = 1 and =(t/
√
a) 6= 0.
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(This gives a complete classification of all isometries of the plane and also makes

it easier to decide, for example, when the composite of two rotations is a rotation,

and when it is a translation.)

Q.6-S For every positive integer n, prove that

(i)
[
1−

(
n
3

)
+
(
n
4

)
−
(
n
6

)
+ · · ·

]2
+
[(
n
1

)
−
(
n
3

)
+
(
n
5

)
+ · · ·

]2
= 2n

(ii) 1 + cos θ + cos 2θ + · · ·+ cosnθ =
1

2
+

sin(2n+1
2

)θ

2 sin θ
2

(0 < θ < 2π)

(iii) sin θ + sin 2θ + · · ·+ sinnθ =
1

2
cos

θ

2
−

cos(2n+1
2

)θ

2 sin θ
2

(0 < θ < 2π)

(iv) (1 − z1)(1 − z2) · · · (1 − zn−1) = n where z1, z2, . . . , zn−1 are the nth roots of

unity other than 1.

(v) sin
π

n
sin

2π

n
· · · sin (n− 1)π

n
=

n

2n−1
. (JEE favourite) [Hint: Use (iv).]

Q.7-L Using |z|2 = zz̄, prove that

(i) |z1 + z2| ≤ |z1 + |z2|,
(ii) |z1w1 + z2w2| ≤

√
|z1|2 + |z2|2

√
|w1|2 + |w2|2 and

(iii) |z1 + z2|2 + |z1 − z2|2 = 2(|z1|2 + |z2|2).

Interpret (i) and (iii) geometrically.

Q.8-L By an example show that, in general, Arg z1 + Arg z2 6= Arg (z1z2) where Arg z

is the principal value of the argument of z.

Q.9-T If z1z2 6= 0, prove that Re (z1z2) = |z1| |z2| if and only if arg z2 = 2nπ for some

integer n. When this happens show further that

(i) |z1 + z2| = |z1|+ |z2| (ii) |z1 − z2| = | |z1| − |z2| |.

Q.10-L For two complex numbers z1, z2 regarded as vectors in the plane, show that the

dot and cross product are respectively given by

(i) z1 · z2 = <(z1z̄2); (ii) z1 × z2 = =(z̄1z2)k.

Q.11-L Give an example of a sequence of complex numbers {zn} which converges

to a complex number z 6= 0, yet {Arg zn} does not converge to Arg z.

However, if zn → z( 6= 0) then show that there exist θn ∈ arg zn such that

θn → θ ∈ arg z.
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Set II

1. (L) Show that the linear map R2 → R2 defined by the matrix a b

c d


is multiplication by a complex number iff a = d and c = −b.

2. (L) Establish the following generalization of Cauchy-Reimann equations. “If f(z) =

u+ iv is differentiable at a point z0 = z0 + iy0 of a domain G, then

∂u

∂s
=
∂v

∂n
,

∂u

∂n
= −∂v

∂s
(∗)

at (x0, y0) where ∂
∂s

and ∂
∂n

denote directional differentiation in two orthogonal

directions s and n at (x0, y0), such that n is obtained from s by making a counter-

clockwise rotation.”

3. (T) Let f = u + iv be a holomorphic function around z0 and suppose f ′(z0) 6= 0.

Consider the curves

C1 : u = Re (f(z0));C2 : v = =(f(z0))

passing through z0. Show that C1 and C2 are perpendicular to each other at z0.

4. (L) If f(z) = z2

z
, z 6= 0 and f(0) = 0, show that Cauchy-Riemann equations are

satisfied at z = 0, but f ′(0) does not exist.

5. (T) Determine points at which the following functions are complex differentiable.

(i) f(z) = xy + iy (ii) g(z) = eyeix.

6. (T) If f(z) is holomorphic and |f(z)| is a constant in a domain D, then show that

f(z) = c, a constant in D.

7. (S) Show that the following functions are harmonic and find a harmonic conjugate

for each of them:

(i) u1(x, y) = 2x(1− y). (ii) u2(x, y) = sinhx sin y.

8. (S) If f(z) is holomorphic in a domain D, show that |f(z)|2 is not harmonic unless

f(z) is constant.
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9. (L) Show that the Cauchy-Riemann equations ux = vy and uy = −vx at z0 =

(x0, y0) 6= (0, 0) are equivalent to ur = 1
r
vθ and vr = 1

r
uθ = −vr at x0+ iy0 = r0e

iθ0 .

Hence show that if f(z) = u+ iv

f ′(z0) = e−iθ0(ur + ivr) = − i

z0
(uθ + ivθ)

10. (T) Let f be a holomorphic function and φ : C→ R be a function with continuous

second order partial derivatives. Show that

∇2(φ ◦ f) = |f ′|2(∇2(φ) ◦ f.

11. (S) Let f be a holomorphic function and φ be a harmonic function. Show that

φ ◦ f is harmonic.

12. (T) Show that three points in the plane representing z1, z2, z3 are collinear iff∣∣∣∣∣∣∣∣
1 z1 z̄1

1 z2 z̄2

1 z3 z̄3

∣∣∣∣∣∣∣∣ = 0.

13. (S) Show that four points in the plane representing z1, z2, z3, z4 ∈ C are either

collinear or concyclic iff ∣∣∣∣∣∣∣∣∣∣∣

1 z1 z̄1 z1z̄1

1 z2 z̄2 z2z̄2

1 z3 z̄3 z3z̄3

1 z4 z̄4 z4z̄4

∣∣∣∣∣∣∣∣∣∣∣
= 0.

14. (0) (Gauss-Lucas) Show that the roots of the derivative p′(z) of a polynomial

p(z) all lie in the convex hull of the roots of p(z).

SET III

1. (L) Give an example of a sequence of complex numbers {zn} which converges to

a complex number z 6= 0, yet {Arg zn} does not converge to Arg z. However, if

zn → z( 6= 0) then show that there exist θn ∈ arg zn such that θn → θ ∈ arg z.

2. (L) Hemachandra Numbers For any positive integer n, let Hn denote the num-

ber of poetic meters (patterns) having the fixed duration n counting short syllables

as one beat and long syllables as two beats. For example, in the names ‘Amitabh’

and Gangooli’, there are a total of 5 syllables each and the patterns are 1−1−2−1
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and 2−2−1. Clearly H1 = 1 and H2 = 2. Hemachandra 1 noted that since the last

syllable is either of one beat or two beats it follows that Hn = Hn−1 +Hn−2 for all

n ≥ 3. These numbers were known to Indian poets, musicians and percussionists

as Hemachandra numbers.

Define F0 = 0, F1 = 1 and Fn = Fn−1 + Fn−2, n ≥ 2. Note that Fn = Hn−2, n ≥ 2.

These Fn are called Fibinacci numbers. 2 (Thus the first few Fibonacci numbers

are 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, . . . .)

Using power series, obtain a closed form expression for the n-th Fibonacci number

Fn. These numbers are defined recursively by the relation Fn = Fn−1 + Fn−2 for

n ≥ 2 with the initial values F0 = 0 and F1 = 1. (Thus the first few Fibonacci

numbers are 0, 1, 1, 2, 3, 5, 8, 13, .... .)

3. (S) Let r be a fixed positive integer. Suppose we have an unlimited supply of r

types of objects. For a positive integer n, let an be the number of ways to choose n

objects (repetitions being allowed freely). Show that an is precisely the coefficient

of zn in the expansion of (1− z)−r. Hence find a closed formula for an.

4. (L) Let p(z) be a polynomial of degree > 0. Show that for every M > 0 there

exists R > 0 such that for all z ∈ C with |z| > R we have |p(z)| > M. (This is

precisely what we mean by saying: p(z)→∞ as z →∞.)

5. (T) Find the behavior of ez as |z| → ∞ along arg z = 0, π/2, π. In particular,

verify that ez does not have the property mentioned in the previous exercise.

6. (T) Prove | cos z| ≥ sinh |y|, where z = x+ iy.

7. (T) Find all values of z for which (a) cos z (b) sin z are real.

8. (S) Show that all solutions of (a) cos z = 0 (b) sin z = 0 are real.

9. (S) Solve ln z = 1
2
πi.

10. Find the principal value of (i) (L) (1 + i)i; (ii) (T) 33−i.

1Hemachandra Suri (1089-1175) was born in Dhandhuka, Gujarat. He was a Jain monk and was an

adviser to king Kumarapala. His work in early 11 century is already based on even earlier works of

Gopala.
2Leonardo Pisano (Fibonacci) was born in Pisa, Italy (1175-1250) whose book Liber abbaci intro-

duced the Hindu-Arabic decimal system to the western world. He discovered these numbers at least 50

years later than Hemachandra’s record.
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11. Show that :
(i) (S) sin−1 z = −i ln(iz ±

√
1− z2); (ii) (L) cos−1 z = −i ln(z ±

√
z2 − 1);

(iii) (T) tan−1 z = i
2

ln
(
i+z
i−z

)
; (iv) (S) sinh−1 z = ln(z ±

√
z2 + 1);

(v) (S) cosh−1 z = ln(z ±
√
z2 − 1); (vi) (S) tanh−1 z = 1

2
ln
(
1+z
1−z

)
(vii) (S) 2 cot 2z = cot z + cot(z + π

2
).

Set IV

1. (T) Suppose f(t) = u(t) + iv(t) is a continuous complex-valued function on an

interval [a, b]. Prove that |
∫ b

a
f(t)dt| ≤

∫ b

a
|f(t)|dt.

2. (L) Using the last exercise, prove a stronger version of the M − L inequality, viz.

|
∫
C
f(z)dz| ≤

∫
C
|f(z)||dz|.

3. Integrate z2 along (a) (T) the line segment from 0 to i, (b) (S) the arc of the

parabola y = x2 from 0 to 2 + 4i, both directly and by finding a primitive of the

integrand.

4. (L) Let
√
z be the principal value of the square root of z. Evaluate

∫ dz√
z

along

(a) the upper semicircle |z| = 1, (b) the lower semicircle |z| = 1. Why do they

differ?

5. (S) Evaluate
∫
C
|z|z̄dz where C is the closed contour consisting of the line segment

from −1 to 1 and the semicircle |z| = 1, y ≥ 0, taken in the counterclockwise

direction.

6. (T) Suppose f(z) is holomorphic and f ′(z) is continuous in a domain containing

a closed curve C. (The hypothesis about continuity of f ′ is redundant but we are

not in a position to prove this.) Prove that
∫
C
f(z)f ′(z)dz is purely imaginary.

7. (S) Assume f(z) is holomorphic (with f ′(z) continuous) and satisfies the inequality

|f(z)−1| < 1, thropughout a domain D, Prove that
∫
C

f ′(z)

f(z)
dz = 0 for every closed

curve C in D.

8. (L) Prove that a domain D is simply connected if and only
∫
C
f(z)dz is path-

independent for every function f(z) which is holomorphic in D.
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SET-V

1. (T) For each of the following functions, examine whether Cauchy’s theorem can

be applied to evaluate the integrals around the unit circle taken counterclockwise.

Hence or otherwise evaluate the integrals.

(a) Ln (z + 2) (b)
1

|z|3
(c) |z| (d) e−z

2

(e) tanh z (f) z̄ (g)
1

z3

2. Find :

(a) (T)
∫
C

z2 − z + 2

z3 − 2z2
dz, where C is the boundary of the rectangle with vertices

3± i,−1± i traversed clockwise.

(b) (S)
∫
C

sin z

z + 3i
dz, C : |z − 2 + 3i| = 1. (counterclockwise)

3. Evaluate
∫
B
f(z)dz where f(z) is (a) (T)

z + 2

sin z
2

(b) (S)
z

1− ez
where B is

the boundary of the domain between |z| = 4 and the square with sides along

x = ±1, y = ±1, oriented in such a way that the domain always lies to its left.

4. C is the unit circle traversed counterclockwise. Integrate over C,

(a)(T)
ez − 1

z
(b)(S)

z3

2z − i
(c) (S)

cos z

z − π
(d)(S)

sin z

2z
.

5. (S) Integrate
1

z4 − 1
over (a) |z+ 1| = 1, (b) |z− i| = 1, each curve being taken

counterclockwise. [Hint: Resolve into partial fractions.]

6. (T) Let C be |z| = 3 in the counterclockwise sense. For any z with |z| 6= 3, let

g(z) =
∫
C

2w2 − w − 2

w − z
dw. Prove that g(2) = 8πi. Find g(4).

7. Let γ be any smooth closed curve, not passing through z0 ∈ C.

(a) (T) Show that the integral ω =
∫
γ

dz

z − z0
is an integer multiple of 2πi.

(The integer η(γ; z0) :=
1

2πi

∫
γ

dz

z − z0
is called the winding number of the

closed path γ around the point z0.)

(b) (T) Let C be any circle in C. Compute η(C, z) for any point not on C.

(c) (S) Let γ be any closed curve contained in the interior of the upper half plane.

Compute η(γ, 0).

(d) (S) Let γ be closed curve contained in a disc. Compute η(γ, z) for any point

z outside the disc.
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(e) (T) For any integer n, define γn : [0, 1] → C by γn(t) = e2πint. Compute

η(γn; 0). (Observe that γn actually goes around the unit circle n times.)

(f) (S) Given any closed curve γ in C show that there exist points z ∈ C such

that η(γ; z) = 0.

(g) (S) Generalize the above result to any piecewise smooth closed curve.

8. Obtain the power series expansion of the following functions around the origin and

compute their radius of convergence.

(a) Ln (1 + z) (b) arctan z

9. Let f(z) =
∑
n anz

n in |z| < r. The function f is said to be even (or (odd) if

f(−z) = f(z) (respectively, if f(−z) − f(z) for all |z| < r. Show that a2n−1 = 0

(respectively a2n = 0) for all n.

10. (a) Show that g(z) = z
ez−1 has power series representation around 0 valid in |z| <

2π. Write g(z) =
∑∞
n=0

Bn

n!
zn. The numbers Bn are called Bernoulli numbers.

(b) Verify that h(z) := g(z) + z
2

is an even function and use it to conclude that

B1 = −1/2 and B2n+1 = 0 for n ≥ 1.

(c) Comparing the coefficients of the identity

1 =
(
ez − 1

z

)(
z

ez − 1

)
=

( ∞∑
1

zn−1

n!

)( ∞∑
0

Bnz
n

n!

)

prove the identity
n−1∑
k=0

(
n

k

)
Bk = 0.

(d) Compute Bk, k ≤ 16.

(e) Compute lim supn
n

√
Bn

n!
.

(f) Obtain power series representation for tan z and zcot z around 0.

11. Taylor’s Expansion: Let f(z) be holomorphic in Ω, containing a. Show that, for

any positive integer n, we can write

f(z) = f(a) +
f (1)(a)

1!
(z − a) +

f (2)(a)

2!
(z − a)2 + · · ·

+
f (n−1)(a)

(n− 1)!
(z − a)(n−1) + fn(z)(z − a)n

where fn(z) is also holomorphic in Ω. Moreover, show that for each closed disc D

containing a in its interior and contained in Ω and for all points z in the interior

of D, fn(z) can be represented by a line integral,

8



fn(z) =
1

2πı

∫
∂D

f(w)

(w − a)n(w − z)
dw

where, ∂D is the boundary circle of D traced in the counter clockwise sense.

SET VI

1. (L) Fundamental Theorem of Algebra Let p(z) = anz
n + · · ·+ a1z + a0, ai ∈

C, an 6= 0 be a polynomial function in one variable of degree n ≥ 1 over the

complex numbers. Then show that the equation p(z) = 0 has at least one solution

in C.

2. Given a real number α not equal to a non negative integer, use Newton’s binomial

series of (1 + z)α to show that

lim sup
n−→∞

∣∣∣∣∣α(α− 1) · · · (α− n+ 1)

n!

∣∣∣∣∣
1/n

= 1

provided it exists.

3. Obtain the power series expansion of the following functions around the origin and

compute their radius of convergence.

(a) (T) 1√
1−z2 (b) (S) arcsin z.

4. (L) Identity Theorem: Let f and g be holomorphic functions on a domain Ω.

Suppose there exists a sequence of distinct points zn ∈ Ω such that zn → w ∈ Ω

and f(zn) = g(zn), n ≥ 1. Then f(z) = g(z) for all z ∈ Ω.

5. (T) Let f, g : Ω→ C be holomorphic functions on a non empty domain Ω. Suppose

fg ≡ 0. Show that f(z) = 0 for all z ∈ Ω OR g(z) = 0 for all z ∈ Ω. Give an

example to show that this property does not hold for C∞-functions.

6. Let f be an entire functon. Suppose there exist constants M,K > 0 and a pos-

itive integer n such that |f(w)| ≤ K|w|n for all |w| > M. Then show that f is a

polynomial of degree ≤ n.

7. Let f, g be entire functions g(z) being never equal to 0. Suppose |f(z)| ≤ |g(z)|
for all z ∈ C. Then show that f(z) = cg(z) for all z ∈ C where c is some constant.
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8. (L) Let now z = a be an isolated singularity of f . We say a is a pole of f if

lim
z→a
|f(z)| =∞.

Show that if z = a is a pole of f then there exists a positive integer k such that in

a disc around a, limz→a(z − a)k+1f(z) = 0. The least such integer k satisfying the

above condition is called the order of the pole of f at z = a. If the order k = 1

then the pole is called a simple pole. If k > 1, then the pole is called a multiple

pole.

9. (S) Let f have a simple pole at z0 and g be holomorphic. Then Rz0(fg) =

g(z0)Rz0(f).

10. Determine all the singularities, type of singularities, order of poles and residues at

such poles, if any, for the following functions.

(a)(L) tan z (b)(L) cot z (c)(S) 3
2−z (d)(T) z

z3−1

(e)(S) 1
(z2−1)2 (f)(T) 1

(1−cos z)2 (g)(S) sinh z
z4

(h)(T) z sin
(
1
z

)
.

11. The discussion of isolated singularity can be carried out for the point z = ∞ as

well. To begin with we need that the function is defined and holomorphic in a

neighborhood of infinity, i.e., f(z) is holomorphic in |z| > M for some sufficiently

large M. We say that ∞ is a removable singularity or a pole of f iff

lim
z→∞

∣∣∣∣∣f(z)

zn+1

∣∣∣∣∣ = 0

for some integer n ≥ 0.

(a)(L) Show that ∞ is a removable singularity or a pole of f iff 0 is a removable

singularity or a pole for g(z) = f(1/z). Accordingly, we shall assign the order of

the pole at infinity also, viz., the order of the pole at ∞ for f is the order of the

pole of g(w) = f(1/w) at 0.

(b)(L) What value(s) of n will tell you that ∞ is a removable singularity?

(c)(L) Show that for a polynomial function of degree d, ∞ is a pole of order d.

(d)(T) Show that an entire function has a pole of order d at∞ iff it is a polynomial

of degree d.

(e)(T) Show that a meromorphic function has a removable singularity or a pole at

∞ iff it is a rational function.

12. Determine the location and type of singularities of the following functions in the

extended complex plane. Also find their principal parts near the singularities and

residue at the singularity.

(a) (T) 1
(z+a)3

(b) z2 + z−1 (c) cos z (d) sin z
z
. (e) exp

(
1
z−1

)
.
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13. (S) Try compute the residue of exp(1/z − 1)/ exp z − 1 at z = 1; try computing

the principal part. Why the methods employed in the previous exercise fail?

SET VII

Q.1-L Show that
∫ 2π

0

dθ

1 + a sin θ
=

2π√
1− a2

where −1 < a < 1. Do the problem both

without and with the method of residues. Can the method of residues be used to

evaluate
∫ π

0

dθ

1 + a sin θ
?

Q.2-S A similar problem about the integrals
∫ 2π

0

dθ

1 + a cos θ
and

∫ π

0

dθ

1 + a cos θ
.

Q.3-S Prove that
∫ π

0
sin2n θ dθ =

(2n)!π

22n(n!)2
. Do the problem without and with the method

of residues. [Hint: For the latter, first obtain a reduction formula for the integral,

in terms of the discrete parameter n.]

Q.4-L Evaluate
∫ ∞
−∞

dx

x2 + a2
both with and without residues. Compare the two methods.

Q.5-T Evaluate
∫ ∞
0

dx

x4 + 1
using residues.

Q.6-S Evaluate
∫ ∞
0

x2 dx

(x2 + 9)(x2 + 4)2
using residues.

Q.7-T What difficulty do you encounter in evaluating
∫ ∞
0

dx

x3 + 1
by the method of the

last two problems? Prove that this integral can be evaluated by applying the

residue theorem to an integral over the boundary of a sector bounded by the

circle {z : |z| = R} where R > 1 and the the rays {z : z = t, t ≥ 0} and

{z : z = tω, t ≥ 0} and then letting R→∞. (Here ω denotes a cube root of unity

6= 1.)

Q.8-L Evaluate
∫ ∞
∞

cosx dx

x2 + 1
.

Q.9 Prove that :

(i) (T)
∫ ∞
−∞

cosx dx

(x2 + a2)(x2 + b2)
=

π

a2 − b2
(
e−b

b
− e−a

a
), (a > b > 0)

(ii) (S)
∫ ∞
−∞

cos ax dx

(x2 + b2)2
=

π

2b3
(1 + ab)e−ab where a > 0 and b > 0. Can this be

obtained from (i)?
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Q.10-L Prove Jordan’s inequality
∫ π

0
e−R sin θ dθ <

π

R
for R > 0 and use it to evaluate∫ ∞

0

sinx

x
dx. Also obtain the same result without Jordan’s inequality by in-

tegrating along the suitably indented boundary of a rectangle with vertices at

−X1, X2,−X1 + iY and X2 + iY where X1, X2, Y tend to∞ independently of each

other.

Q.11-S Use Jordan’s inequality to show that the Cauchy principal value of the improper

integral
∫ ∞
−∞

x sinx dx

x2 + 2x+ 2
is
π

e
(sin 1 + cos 1).

Q.12 Some improper integrals can be evaluated by combining the method of residues

with some other known improper integrals (which may have been obtained by very

different methods). For example, using the well-known result
∫ ∞
0

e−x
2

dx =

√
π

2
prove that:

(i)-T
∫ ∞
0

e−x
2

cos(2bx) dx =

√
π

2
e−b

2

(b > 0) by integrating the function e−z
2

around

the boundary of the rectangle with vertices at ±a and ib ± a where a > 0

and then letting a tend to ∞. Also derive it without residues by treating the

integral as a function of the continuous parameter b and obtaining a differen-

tial equation for it by differentiating (w.r.t. b) under the integral sign. Note

the conceptual similarity with the alternate solution to Q.3.

(ii)-S
∫ ∞
0

sin(x2) dx =
∫ ∞
0

cos(x2) dx =

√
π

2
√

2
(Fresnel’s integrals) by integrating

eiz
2

along the boundary of the sector {(x, y) : x ≥ 0, 0 ≤ y ≤ x, x2 +y2 ≤ R2}
and then letting R→∞.

SET VIII

Q.1-S Let a ≥ 0, b ≥ 0. Following the same contour as used in the evaluation of∫ ∞
0

sinx

x
dx, evaluate

∫ ∞
0

cos(ax)− cos(bx)

x2
dx and deduce that

∫ ∞
0

sin2 x

x2
dx =

π

2
.

Can the first integral be evaluated by separately evaluating
∫ ∞
0

cos(ax)

x2
dx and∫ ∞

0

cos(bx)

x2
dx?

Q.2-T Let a > 0, b > 0. Using the formula∫ ∞
0

e−ax − e−bx

x
dx = ln(b/a)

(which can be obtained by reversing the order of integration in the double integral∫ b

a

∫ ∞
0

e−xydx dy) evaluate
∫ ∞
0

cos(ax)− cos(bx)

x
dx. Why can’t this be done by

taking the same contour as in the last problem?
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Q.3-S Prove that
∫ π

0
ln(sin θ) dθ = −π ln 2 by integrating the principal logarithm of 1−

e2iz = −2ieiz sin z along the boundary of a square with vertices at 0, π, iR and

π + iR (suitably indented at the corners 0 and π) and letting R → ∞. (The

integral can also be evaluated by observing that∫ π

0
ln(sin θ)dθ = 2

∫ π/2

0
ln(sin θ)dθ =

∫ π/2

0
ln(sin θ)dθ + +

∫ π/2

0
ln(cos θ)dθ

= =
∫ π/2

0
ln(sin 2θ)dθ − π

2
ln 2 =

1

2

∫ π

0
ln(sin θ)dθ − π

2
ln 2

if we assume that certain formulas for definite integrals continue to hold even for

improper integrals.)

Q.4-L A keyhole contour is the boundary of the portion of an annulus (with the inner

circle having a very small radius) obtained by deleting the part lying between two

radii which are inclined at a very small angle to each other. (As a result, these

two radii are often replaced by line segments parallel to the acute angle bisector

between them.) Evaluate the integral
∫ ∞
0

dx

1 + x+ x2
by integrating the function

f(z) =
log z

1 + z + z2
along a keyhole contour around the origin, where log z is to

have an argument lying between 0 and 2π.

Q.5-S Evaluate
∫ ∞
0

(lnx)2

1 + x2
dx by integrating f(z) =

(log z)3

1 + z2
around a keyhole contour

around the origin.

Q.6-L Prove that conformality (along with continuity of the partial derivatives implies

holomorphicity). Prove, in fact, that prservation of angles between curves alone

is sufficient, while constancy of the scaling factor in all directions is almost suf-

ficient in that, a function with this property is either holomorphic or conjugate

holomorphic.

Q.7-S Determine the angle through which the tangents to all curves passing through the

point 2 + i are rotated under the transformation w = z2.

Q.8-T Under the transformation w = z2, determine (i) the image of a sector of a circle

of radius r centred at 0, (ii) the image of the semi-infinite strip {x+ iy : 0 ≤ x ≤
k, y ≥ 0} and (iii) the inverse image of the rectangle {u+iv : a ≤ u ≤ b, c ≤ v ≤ d}.
Sketch.

Q.9-S Find the image of the strip {x + iy : x > 0, 0 < y < 2} under w = iz + 1. Sketch

the strip and the image.

13



Q.10-S Prove that the transformation w = 1/z maps a straight line or a circle depending

upon whether the line passes through 0 or not. What about the image of a circle?

Find and sketch the images of the discs of unit radii centred at (i) 0, (ii) 1 and

(iii) 1 + i.

SET IX

Q.1-L Prove that every fractional linear transformation (FLT) is a composite of a trans-

lation, a rotation, a dilation (or a contraction) and an inversion.

Q.2-L Let z1, z2, z3, z4 be four distinct, extended complex numbers. Define their cross

ratio to be [z1, z2, z3, z4] =
z1 − z3
z1 − z4

z2 − z4
z2 − z3

. Modify this definition suitably if any

of the points is∞. Note that the order of the points matters. Prove that the cross

ratio is preserved under fractional linear transformations.

Q.3-S For every complex number w other than 1, 0, and ∞, prove that w = (w, 1, 0,∞).

Hence show that given any three distinct complex numbers z2, z3, z4, the unique

L.F.T. which takes them to 1, 0 and∞ respectively is given by T (z) = (z1, z2, z3, z4).

View Theorem 2 on p. 694 in Kreyszig in this light.

Q.4-T Prove that every F.L.T. maps a circle onto a circle, where a ’circle’ means either a

straight line or a circle. [Hint: Use Problem 1 above with Problem 10 in Tutorial

8.]

Q.5-S Prove that four distinct complex numbers z1, z2, z3, z4 lie on a ’circle’ if and only

if the cross ratio (z1, z2, z3, z4) is a real number.

Q.6-T Let z2, z3, z4 be distinct points on a ’circle’ C in Ĉ. Two points z and z∗ are said

to be symmetric w.r.t. C if (z∗, z2, z3, z4) = (z, z2, z3, z4). Prove that if C is a

straight line then z and z∗ are symmetric w.r.t. C if and only if they are reflections

of each other into C while if C is an (ordinary) circle with centre M and radius

r and P,Q are points represented by z, z∗ respectively then z, z∗ are symmetric

w.r.t. C if and only if P,Q lie on the same ray from M and MP.MQ = r2. (As

a consequence, it follows that symmetry is independent of the choice of the three

points z2, z3, z4 on the ’circle’.)

Q.7-S Prove that symmetry is preserved under F.L.T.’s.

Q.8-L Prove that every F.L.T. which maps the (open) unit disc onto itself is of the form

T (z) = c
z − a
1− az

for some complex numbers a, c with |a| < 1 and |c| = 1.
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Q.9-T Map the region between the circles |z| = 1 and |z − 1
2
| = 1

2
conformally onto an

infinite strip and then onto a half plane.

Q.10-S Prove that an entire function whose real part is bounded below is a constant

function. How will you generalise this result?

Q.11-S Map the region in the first quadrant bounded by the coordinate axes and the

hyperbola y = 1/x conformally onto the upper half plane.

Q.12-O Besides the Riemann sphere, there is another interpretation of the extended com-

plex plane ˆcomx called the complex projective line. It makes it easier to see

what is really ’linear’ in an L.F.T. Consider an ordered pair (z1, z2) of (ordinary)

complex numbers z1, z2 at least one of which is non-zero. If z2 6= 0, we associate

the complex number z1/z2 to this pair. Otherwise we associate ∞. Note that the

same complex number may be associated to many different pairs. Now suppose

an extended complex number z corresponds to the pair (z1, z2). Then for any

complex numbers a, b, c, d with ad 6= bc, we have
az + b

cz + d
=
az1 + bz2
cz1 + dz2

=
w1

w2

where w1

w2

 =

 a b

c d

  z1

z2

. This is a well-defined, non-singular linear transforma-

tion of the complex two dimensional vector space into itself.

Q.13-O Let D be a domain, w 6∈ D be any point. Suppose that f(z) =
√
z − w is a well

defined holomorphic function. Put f(D) = D1.

(i) Show that f : D → D1 is a biholomorphic mapping. (ii) Show that if z ∈ D1

then −z 6∈ D1.

(iii) Show that there is an open ball Br(w) such that Br(w) ∩D1 = ∅.
(iv) Put f2(z) = 1

z−w . and f2(D1) = D2. Show that f2 : D1 → D2 is a biholomor-

phic mapping.

(v) Show that D2 ⊂ B1/r(0).

(vi) Conclude that D is biholomorphic to a bounded domain. (vi) Obtain a gen-

eralization of the statement in Exercise 10 based on this.

Indeed, it can be proved that any domain such as D above is biholomorphic with

the unit disc itself. But the proof is not easy and beyond the present course.

SET X

Q.2-T Prove that the transformation w = sin z maps the semi-infinite strip −π/2 ≤ x ≤
π/2 bijectively onto the upper half plane v ≥ 0. Identify the points where this

transformation is conformal. Show that the images of the horizontal segments lie
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along confocal ellipses. Similarly study the transformations w = cos z, w = sinh z

and w = ez.

Q.3-S Obtain transformations that are bijective and conformal (except possibly at the

boundary points) which map the upper half plane to (i) the unit disc, (ii) an infinite

strip (iii) a semi-infinite strip, (iv) an infinite sector of a given angular width and

(v) the region {(u, v) : u > 0, v > 0, uv ≥ 1}.

Q.4-S Example 7 on p. 801 along with Problem 9 on p. 803 of Kreyszig.

Q.5-L Find the steady state temperature T (x, y) in a thin semi-infinite plate y ≥ 0

whose faces are insulated and whose edge y = 0 is kept at temperature 0 except

the segment −1 < x < 1 which is kept at temperature 1.

Q.6-T A similar problem for the semi-infinite strip y ≥ 0,−π/2 ≤ x ≤ π/2 whose vertical

sides are kept at a constant temperature 0 and the horizontal side at a constant

temperature 1.

Q.7-S Same problem for a plate in the form of an infinite quadrant if the segment of

unit length at the end of one edge is insulated, the rest of that edge is kept at a

temperature T1 and the other edge is kept at a temperature T2.

Q.8-T Prove the Mean Value Property for harmonic functions which says that if u(z)

is harmonic in a domain D containing the closed disc {z : |z − z0| ≤ R}, then

u(z0) =
1

2π

∫ 2π

0
u(z0 +Reiα)dα. Deduce the maximum principle for harmonic

functions which says that unless u is a constant, it has neither a maximum nor a

minimum in D.

Q.9-L The formula in Problem 8 is a very special case of Poisson’s formula. Prove,

however, that Poisson’s formula can be derived from it.

Q.10-S If f(z) is holomorphic and non-constant in a domain D, prove that max{|f(z)| :

z ∈ D} does not exist while min{|f(z)| : z ∈ D}, if it exists, must be 0. (The first

part is called the maximum modulus principle for holomorphic functions.)

Q.11-T If f(z) is holomorphic in |z| < 1 with f(0) = 0 and |f(z)| ≤ 1 for all |z| < 1, prove

that |f(z)| ≤ |z| for all |z| < 1. (Schwarz’s Lemma)
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