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1 1. Basics of Complex Numbers; Arithmetic and Geometric Aspect

The Field R of Real numbers
Complex Numbers
Conjugation and Absolute Value
Basic Identities and Inequalities
Represention of complex numbers in the plane

2 2. Geometric Aspects-Continued
Equation of a line and a circle
ISOMTRIES; Rigid Motions
STORY TIME
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The Field R of Real numbers

I I The law of commutativity: a + b = b + a; ab = ba, for all a, b ∈ R.

I II The law of associativity: (a + b) + c =
a + (b + c); (ab)c = a(bc), for all a, b, c ∈ R.

I III The law of distributivity: (a + b)c = ac + bc, for all a, b, c ∈ R.
I IV The law of identity: a + 0 = a; a1 = a, for all a ∈ R.
I V The law of additive inverse: Given any a ∈ R, there exists a unique x ∈ R

such that a + x = 0.

I VI The law of multiplicative inverse: Given a ∈ R, a 6= 0, there exists a
unique x ∈ R such that ax = 1.
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Furthermore, there is a total ordering ‘<’ on R, compatible with the above
arithmetic operations, which makes R into an ordered field. Recall that < is a
total ordering means that:

I VII given any two real numbers a, b, either a = b or a < b or b < a.
The ordering < is compatible with the arithmetic operations means the
following:

I VIII a < b =⇒ a + c < b + c and ad < bd for all a, b, c ∈ R and d > 0.

ARS (IITB) IITB MA205 Complex Analysis July 20, 2012 6 / 38



Furthermore, there is a total ordering ‘<’ on R, compatible with the above
arithmetic operations, which makes R into an ordered field. Recall that < is a
total ordering means that:

I VII given any two real numbers a, b, either a = b or a < b or b < a.
The ordering < is compatible with the arithmetic operations means the
following:

I VIII a < b =⇒ a + c < b + c and ad < bd for all a, b, c ∈ R and d > 0.

ARS (IITB) IITB MA205 Complex Analysis July 20, 2012 6 / 38



Definition of Complex Numbers

We define the algebra of complex numbers C to be the set of formal symbols
x + ıy , x , y ∈ R together with the addition and multiplication defined as follows:

(x1 + ıy1) + (x2 + ıy2) = (x1 + x2) + ı(y1 + y2);

(x1 + ıy1)(x2 + ıy2) = (x1x2 − y1y2) + ı(x1y2 + y1x2).

ı2 + 1 = 0; i.e., ı2 = −1.
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Observe that a complex number is well-determined by the two real numbers, x , y
viz., z := x + ıy . These are respectively called the real part and imaginary part of
z . We write:

<z = x ; =z = y . (1)

If <(z) = 0, we say z is (purely) imaginary and similarly if =(z) = 0, then we say
z is real. The only complex number which is both real and purely imaginary is 0.
Observe that, according to our definition, every real number is also a complex
number.
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equating the real and the imaginary parts of the two sides

of an equation

is indeed a part of the definition of complex numbers and will play a very
important role.

ARS (IITB) IITB MA205 Complex Analysis July 20, 2012 9 / 38



Theorem

There is no total ordering < on C such that

a < b =⇒ a + c < b + c , a, b, c ∈ C

and
a < b, 0 < c =⇒ ac < bc, a, b, c ∈ C.

Proof: If so, either 0 < ı or ı < 0. Consider the first case. By multiplying both
sides by ı, we get 0 < −1. Therefore, upon multiplying both sides of this
inequality by −1, we get 0 < 1. Now adding the two inequalities we get 0 < 0,
which is absurd. Similarly, you can verify that the assumption ı < 0 would lead to
a contradiction.
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Conjugation

Definition
Following common practice, for z = x + ıy we denote by z = x − ıy and call it
the (complex) conjugate of z . and call it
the conjugate of z .

<(z) =
z + z

2
; =(z) =

z − z

2ı
. (2)

z1 + z2 = z1 + z2, z1z2 = z1 z2, z = z . (3)
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The Absolute Value

Definition

Given z ∈ C, z = a + ıb, we define its absolute value (length ) |z | to be the
non-negative square root of a2 + b2, i.e.,

|z | :=
√

(a2 + b2).

Remark

|z |2 = zz . Therefore
z ∈ C, |z | 6= 0⇐⇒ z 6= 0.
Also, for z 6= 0,

z−1 = z |z |−2.
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Basic Identities and Inequalities

I (B1) |z | = |z |.

I (B2) |z1z2| = |z1||z2|.
I (B3) |<(z)| ≤ |z | ( resp. |=(z)| ≤ |z |); equality holds iff =(z) = 0 (resp.
<(z) = 0).

I (B4) Cosine Rule:

|z1 + z2|2 = |z1|2 + |z2|2 + 2<(z1z2).
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Basic Identities: Continued

I (B5) Parallelogram Law :

|z1 + z2|2 + |z1 − z2|2 = 2(|z1|2 + |z2|2).

I (B6) Triangle inequality : |z1 + z2| ≤ |z1|+ |z2| and equality holds iff one
of the zj is a non-negative multiple of the other.

I (B7) Cauchy-Scwartz Inequality∣∣∣∣∣∣
n∑

j=1

zjwj

∣∣∣∣∣∣
2

≤

 n∑
j=1

|zj |2
 n∑

j=1

|wj |2
 .

ARS (IITB) IITB MA205 Complex Analysis July 20, 2012 14 / 38



Basic Identities: Continued

I (B5) Parallelogram Law :

|z1 + z2|2 + |z1 − z2|2 = 2(|z1|2 + |z2|2).

I (B6) Triangle inequality : |z1 + z2| ≤ |z1|+ |z2| and equality holds iff one
of the zj is a non-negative multiple of the other.

I (B7) Cauchy-Scwartz Inequality∣∣∣∣∣∣
n∑

j=1

zjwj

∣∣∣∣∣∣
2

≤

 n∑
j=1

|zj |2
 n∑

j=1

|wj |2
 .

ARS (IITB) IITB MA205 Complex Analysis July 20, 2012 14 / 38



Basic Identities: Continued

I (B5) Parallelogram Law :

|z1 + z2|2 + |z1 − z2|2 = 2(|z1|2 + |z2|2).

I (B6) Triangle inequality : |z1 + z2| ≤ |z1|+ |z2| and equality holds iff one
of the zj is a non-negative multiple of the other.

I (B7) Cauchy-Scwartz Inequality∣∣∣∣∣∣
n∑

j=1

zjwj

∣∣∣∣∣∣
2

≤

 n∑
j=1

|zj |2
 n∑

j=1

|wj |2
 .

ARS (IITB) IITB MA205 Complex Analysis July 20, 2012 14 / 38



I Cartesian Coordinate Form

I Polar form
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How to add Complex numbers Geometrically

The picture below illustrates how to add two complex numbers geometrically.

O

z

z1 + z2

1

z2
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The ‘parallelogram law’ (B5) now becomes:

The sum of the squares of the lengths of the diagonals of

a parallelogram is equal to the sum of the squares of the

lengths of the sides.
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Given (x , y) = z 6= 0, the angle θ, measured in counter-clockwise sense, made by
the line segment [0, z ] with the positive real axis is called the argument or
amplitude of z :

θ = arg z .

x = r cos θ; y = r sin θ (4)
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Let us temporarily set-up the notation

E (θ) := cos θ + ı sin θ. (5)

Then the complex number z = x + ıy takes the form

z = r(cos θ + ı sin θ) =: rE (θ).

Observe |z | = r . Now let z1 = r1E (θ1), z2 = r2E (θ2). Using additive identities
for sine and cosine viz.,

sin(θ1 + θ2) = sin θ1 cos θ2 + cos θ1 sin θ2,
cos(θ1 + θ2) = cos θ1 cos θ2 − sin θ1 sin θ2,

(6)

we obtain

z1z2 = r1r2E (θ1 + θ2). (7)
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Geometric Multiplication of complex numbers:

0

P
Q

R

TS (zw
−1

)

1

(z)
(w)

(zw)

(w−1)

In the picture above, various triagles are similar. It tells you how to multiply two
complex numbers. For instance triangles 01P and 0QR are similar
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If we further remind ourselves that the argument can take values (in radians)
between 0 and 2π, then the above identity tells us that arg(z1z2) = arg z1 + arg z2

(mod 2π) provided z1 6= 0, z2 6= 0.
Put zj = rjE (θj) for j = 1, 2, and let θ be the angle between the vectors
represented by these points. Then z1z̄2 = r1r2E (θ1 − θ2) and hence
<(z1z̄2) = r1r2 cos θ. Thus,

cos θ =
<(z1z̄2)

|z1z2|
. (8)

Now, we can rewrite the cosine rule as:

|z1 + z2|2 = r 2
1 + r 2

2 + 2r1r2 cos θ. (9)

Note that by putting θ = π/2 in (9), we get Pythagoras theorem.
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Remark
Observe that given z 6= 0, arg z is a multi-valued function. Indeed, if θ is one such
value then all other values are given by θ + 2πn, where n ∈ Z. Thus to be precise,
we have

arg z = {θ + 2πn : n ∈ Z}
This is the first natural example of a ‘ multi-valued function’. We shall come
across many multi-valued functions in complex analysis, all due to this nature of
arg z . However, while carrying out arithmetic operations we must ‘select’ a
suitable value for arg from this set. One of these values of arg z which satisfies
−π < arg z ≤ π is singled out and is called the principal value of arg z and is
denoted by Arg z .
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Equation of a line:

I Let ax + by + c = 0 represent a line in cartesian coordinates,
a, b, c ∈ R, (a, b) 6= (0, 0).

I WLOG we may assume that a2 + b2 = 1. Put w = a + ıb; z = x + ıy .

I Then ax + by = Re(wz̄) = wz̄+w̄z
2 .

I Thus, we see that the general equation of a line in the plane can be given by
complex numbers as:

wz̄ + w̄z = t, t ∈ R. (10)

I This line is perpendicular to w .
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Equation of a circle:

I

(z − w)(z − w) = r 2, r ∈ R. (11)

I Equivalently

|z − w | = r . (12)
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Rigid Motions

Definition

By a rigid motion or an isometry of the plane, we mean a mapping f : C→ C
which preserves distances, i.e.,

|f (z)− f (w)| = |z − w | for all z ,w ∈ C.
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Rigid Motions

Examples:

I (i) Identity :z 7→ z

I (ii) translation: z 7→ z + w

I (iii) rotation about a point :z 7→ a(z − w) + w , |a| = 1
——————————————————————–

I (iv) reflection in a line: ???
——————————————————————–

I (i) all points fixed. (ii) has no fixed points (iii) fixes exactly one point.

I All the three of them preserve orientation.

I The last one changes orientation and fixes precisely a line.
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I Are there other rigid motions such as those which fix no points and change
the orientation? We shall investigate this right now.

I Composite two rigid motions is again a rigid motion.
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Reflection in a Line

I Let wz̄ + w̄z = t represent a line L.

I If z∗ denotes the image of z under the reflection in L, then z∗ − z is parallel
to w and is bisected by L i.e., (z + z∗)/2 is a point on the line L.

I Therefore, we obtain,

z∗ − z = sw , s ∈ R; & w(z∗ + z) + w̄(z∗ + z) = 2t.

I Substitute z∗ = z + sw in the latter and use the fact ww̄ = 1 to obtain
s = t − (wz̄ + w̄z). Simply to get

z∗ = wt − w 2z̄ . (13)

Equivalently

wz̄ + w̄z∗ = t. (14)
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How does any rigid motion look like?

I In other words, what are all the rigid motions?

I Let f : C→ C be a RM.

I Put b = −f (0) and define g(z) = f (z) + b. Then g is also a RM. and
g(0) = 0.

I Now |g(1)| = 1. So, put a = g(1) and define h(z) = a−1g(z). Then h is RM
and h(0) = 0, h(1) = 1, and h(ı) = ±ı.
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What are all Rigid Motions of the plane?

I Case 1: Assume h(ı) = ı.
Then we claim that f (z) = z for all z .

I Case 2: Assume that h(ı) = −ı. Put h̄(z) = h(z). Then h̄ is a RM and
h̄(0) = 0, h̄(1) = 1, h̄(ı) = ı. So, we are in case 1. ♠.
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We know all of them

Theorem

Let f : C→ C be a rigid motion such that f (0) = 0. Then there exist unique
a, b ∈ C with |a| = 1 such that

I

f (z) = az + b,∀z ∈ C

I OR
I

f (z) = az̄ + b,∀z ∈ C.
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Can we name each of them?

I We still do not know whether there are other types of RM other than
Identity, translation, rotation and reflection.

Theorem

Let f : C→ C be a rigid motion.

I I (i) Suppose f fixes two distinct points. Then all points on the line passing through
these two points are also fixed by f .
(ii) Suppose f fixes three non collinear points. Then f = Id .
(iii) Suppose f fixes an entire line L. Then it is either Id or the reflection in that line.
(iv) Suppose f fixes exactly one point. Then it is a rotation around that point.
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I I II (v) Let us now understand the case :
Suppose f fixes no points.

I Take b = −f (0) and consider g(z) = f (z) + b. Then g(0) = 0. Therefore, g
is either Id, a rotation, or a reflection.

I If g(z) = z this means f (z) = z + b and hence f is a translation.

I If g(z) = az , |a| = 1, a 6= 1 then f (z) = az + b and we can solve for
az + b = z which means f has a fixed point. So, this case does not occur.
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I Finally if g is a reflection in a line passing through the origin, then g(z) = az̄
which can be expressed as

wz̄ + w̄z∗ = 0

where z∗ = g(z) = az̄ . Here w 2 = −a.

I Now let us resolve b = b1 + b2 in the direction of w and perpedicular to it. It
follows that adding b1 to g is the same as taking reflection in the line parallel
to L and passing through b1. Whereas adding b2 moves the point parellel to
L. Since f has no fixed points, it follows that b2 6= 0.

I This is the same as saying b 6= ıs
√

a, for some s ∈ R i.e., <(b/
√

a) 6= 0.
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Glide Reflection

w z L

R(z)
T(z)

Definition
By a glide-reflection we mean a RM which is a reflection in a line followed by a
translation by a non zero vector in the direction of L.

It is easy to see that a glide-reflection does not have any fixed point and does
not preserve the orientation. The converse follows from what we have seen
above.
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Glide Reflection

Theorem
Let f be RM of the plane. If it fixes one point then it a rotation about that point
(and hence preserves orientation). If it fixes no points then f is a glide reflection
(and reverses orientation).
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STORY TIME

I This story is due to George Gamow, the well-known physicist and an
ingenious story-teller. We quote from his book:
ONE TWO THREE · · · INFINITY (pp. 44-45).

I There was a young and adventurous man who found among his great-grand
father’s papers a piece of parchment that revealed the location of a hidden
treasure. The instructions read:

I “ Sail to · · · North latitude and · · · West longitude where thou wilt find a
deserted island. There lieth a large medow, not pent, on the north shore of
the island where standeth a lonely oak and a lonely pine.
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STORY TIME

I There thou wilt see also an old gallows on which we once were wont to hang
traitors. Start thou from the gallows and walk to the oak counting thy steps.
At the oak thou must turn right by a right angle and take the same number
of steps. Put here a spike in the ground.

I Now must thou return to the gallows and walk to the pine counting thy
steps. At the pine thou must turn left by a right angle and see that thou
takest the same number of steps, and put another spike into the ground.

I Dig half-way between the spikes; the treasure is there.”
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