INDIAN INSTITUTE OF TECHNOLOGY BOMBAY MA205 Complex Analysis Autumn 2012

Anant R. Shastri
Department of Mathematics
Indian Institute of Technology, Bombay

July 20, 2012

INDIAN INSTITUTE OF TECHNOLOGY BOMBAY MA205 Complex Analysis Autumn 2012

Anant R. Shastri
Department of Mathematics
Indian Institute of Technology, Bombay

July 20, 2012

Course Name MA205 Complex Analysis Instructor: Anant R Shastri
Office Location: Math Building I Floor 102C:
Phone: 7477
Consultation Time: 6-00pm to $7-00 \mathrm{pm}$ on TUESDAYS
(1) 1. Basics of Complex Numbers; Arithmetic and Geometric Aspect

- The Field \mathbb{R} of Real numbers
- Complex Numbers
- Conjugation and Absolute Value
- Basic Identities and Inequalities
- Represention of complex numbers in the plane
(2) 2. Geometric Aspects-Continued
- Equation of a line and a circle
- ISOMTRIES; Rigid Motions
- STORY TIME

The Field \mathbb{R} of Real numbers

- I The law of commutativity: $a+b=b+a ; a b=b a$, for all $a, b \in \mathbb{R}$.

The Field \mathbb{R} of Real numbers

- I The law of commutativity: $a+b=b+a ; a b=b a$, for all $a, b \in \mathbb{R}$.
- II The law of associativity: $(a+b)+c=$ $a+(b+c) ; \quad(a b) c=a(b c)$, for all $a, b, c \in \mathbb{R}$.

The Field \mathbb{R} of Real numbers

- I The law of commutativity: $a+b=b+a ; a b=b a$, for all $a, b \in \mathbb{R}$.
- II The law of associativity: $(a+b)+c=$ $a+(b+c) ; \quad(a b) c=a(b c)$, for all $a, b, c \in \mathbb{R}$.
- III The law of distributivity: $(a+b) c=a c+b c$, for all $a, b, c \in \mathbb{R}$.

The Field \mathbb{R} of Real numbers

- I The law of commutativity: $a+b=b+a ; a b=b a$, for all $a, b \in \mathbb{R}$.
- II The law of associativity: $(a+b)+c=$

$$
a+(b+c) ; \quad(a b) c=a(b c), \text { for all } a, b, c \in \mathbb{R} .
$$

- III The law of distributivity: $(a+b) c=a c+b c$, for all $a, b, c \in \mathbb{R}$.
- IV The law of identity: $a+0=a ; a 1=a$, for all $a \in \mathbb{R}$.

The Field \mathbb{R} of Real numbers

- I The law of commutativity: $a+b=b+a ; a b=b a$, for all $a, b \in \mathbb{R}$.
- II The law of associativity: $(a+b)+c=$

$$
a+(b+c) ; \quad(a b) c=a(b c), \text { for all } a, b, c \in \mathbb{R} .
$$

- III The law of distributivity: $(a+b) c=a c+b c$, for all $a, b, c \in \mathbb{R}$.
- IV The law of identity: $a+0=a ; a 1=a$, for all $a \in \mathbb{R}$.
- V The law of additive inverse: Given any $a \in \mathbb{R}$, there exists a unique $x \in \mathbb{R}$ such that $a+x=0$.

The Field \mathbb{R} of Real numbers

- I The law of commutativity: $a+b=b+a ; a b=b a$, for all $a, b \in \mathbb{R}$.
- II The law of associativity: $(a+b)+c=$

$$
a+(b+c) ; \quad(a b) c=a(b c), \text { for all } a, b, c \in \mathbb{R} .
$$

- III The law of distributivity: $(a+b) c=a c+b c$, for all $a, b, c \in \mathbb{R}$.
- IV The law of identity: $a+0=a ; a 1=a$, for all $a \in \mathbb{R}$.
- V The law of additive inverse: Given any $a \in \mathbb{R}$, there exists a unique $x \in \mathbb{R}$ such that $a+x=0$.
- VI The law of multiplicative inverse: Given $a \in \mathbb{R}, a \neq 0$, there exists a unique $x \in \mathbb{R}$ such that $a x=1$.

Furthermore, there is a total ordering ' $<$ ' on \mathbb{R}, compatible with the above arithmetic operations, which makes \mathbb{R} into an ordered field. Recall that $<$ is a total ordering means that:

- VII given any two real numbers a, b, either $a=b$ or $a<b$ or $b<a$.

The ordering $<$ is compatible with the arithmetic operations means the following:

Furthermore, there is a total ordering ' $<$ ' on \mathbb{R}, compatible with the above arithmetic operations, which makes \mathbb{R} into an ordered field. Recall that $<$ is a total ordering means that:

- VII given any two real numbers a, b, either $a=b$ or $a<b$ or $b<a$.

The ordering $<$ is compatible with the arithmetic operations means the following:

- VIII $a<b \Longrightarrow a+c<b+c$ and $a d<b d$ for all $a, b, c \in \mathbb{R}$ and $d>0$.

Definition of Complex Numbers

We define the algebra of complex numbers \mathbb{C} to be the set of formal symbols $x+\imath y, \quad x, y \in \mathbb{R}$ together with the addition and multiplication defined as follows:

$$
\begin{gathered}
\left(x_{1}+\imath y_{1}\right)+\left(x_{2}+\imath y_{2}\right)=\left(x_{1}+x_{2}\right)+\imath\left(y_{1}+y_{2}\right) \\
\left(x_{1}+\imath y_{1}\right)\left(x_{2}+\imath y_{2}\right)=\left(x_{1} x_{2}-y_{1} y_{2}\right)+\imath\left(x_{1} y_{2}+y_{1} x_{2}\right) .
\end{gathered}
$$

$$
\imath^{2}+1=0 ; \quad \text { i.e., } \imath^{2}=-1 .
$$

Observe that a complex number is well-determined by the two real numbers, x, y viz., $z:=x+\imath y$. These are respectively called the real part and imaginary part of z. We write:

$$
\begin{equation*}
\Re z=x ; \quad \Im z=y \text {. } \tag{1}
\end{equation*}
$$

If $\Re(z)=0$, we say z is (purely) imaginary and similarly if $\Im(z)=0$, then we say z is real. The only complex number which is both real and purely imaginary is 0 . Observe that, according to our definition, every real number is also a complex number.
equating the real and the imaginary parts of the two sides of an equation
is indeed a part of the definition of complex numbers and will play a very important role.

Theorem

There is no total ordering $<$ on \mathbb{C} such that

$$
a<b \Longrightarrow a+c<b+c, a, b, c \in \mathbb{C}
$$

and

$$
a<b, 0<c \Longrightarrow a c<b c, a, b, c \in \mathbb{C} .
$$

Proof: If so, either $0<\imath$ or $\imath<0$. Consider the first case. By multiplying both sides by \imath, we get $0<-1$. Therefore, upon multiplying both sides of this inequality by -1 , we get $0<1$. Now adding the two inequalities we get $0<0$, which is absurd. Similarly, you can verify that the assumption $\imath<0$ would lead to a contradiction.

Conjugation

Definition

Following common practice, for $z=x+\imath y$ we denote by $\bar{z}=x-\imath y$ and call it the (complex) conjugate of z. and call it the conjugate of z.

$$
\begin{equation*}
\Re(z)=\frac{z+\bar{z}}{2} ; \quad \Im(z)=\frac{z-\bar{z}}{2 \imath} . \tag{2}
\end{equation*}
$$

$$
\begin{equation*}
\overline{z_{1}+z_{2}}=\overline{z_{1}}+\overline{z_{2}}, \quad \overline{z_{1} z_{2}}=\overline{z_{1}} \overline{z_{2}}, \quad \overline{\bar{z}}=z . \tag{3}
\end{equation*}
$$

The Absolute Value

Definition

Given $z \in \mathbb{C}, \quad z=a+\imath b$, we define its absolute value (length) $|z|$ to be the non-negative square root of $a^{2}+b^{2}$, i.e.,

$$
|z|:=\sqrt{ }\left(a^{2}+b^{2}\right) .
$$

Remark

$|z|^{2}=z \bar{z}$. Therefore
$z \in \mathbb{C}, \quad|z| \neq 0 \Longleftrightarrow z \neq 0$.
Also, for $z \neq 0$,

$$
z^{-1}=\bar{z}|z|^{-2} .
$$

Basic Identities and Inequalities

-(B1) $|\bar{z}|=|z|$.

Basic Identities and Inequalities

- (B1) $|\bar{z}|=|z|$.
-(B2) $\left|z_{1} z_{2}\right|=\left|z_{1}\right|\left|z_{2}\right|$.

Basic Identities and Inequalities

- (B1) $|\bar{z}|=|z|$.
-(B2) $\left|z_{1} z_{2}\right|=\left|z_{1}\right|\left|z_{2}\right|$.
- (B3) $|\Re(z)| \leq|z|$ (resp. $|\Im(z)| \leq|z|$); equality holds iff $\Im(z)=0$ (resp. $\Re(z)=0)$.

Basic Identities and Inequalities

- (B1) $|\bar{z}|=|z|$.
-(B2) $\quad\left|z_{1} z_{2}\right|=\left|z_{1}\right|\left|z_{2}\right|$.
- (B3) $|\Re(z)| \leq|z|$ (resp. $|\Im(z)| \leq|z|$); equality holds iff $\Im(z)=0$ (resp. $\Re(z)=0)$.
- (B4) Cosine Rule:

$$
\left|z_{1}+z_{2}\right|^{2}=\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}+2 \Re\left(z_{1} \overline{z_{2}}\right)
$$

Basic Identities: Continued

- (B5) Parallelogram Law :

$$
\left|z_{1}+z_{2}\right|^{2}+\left|z_{1}-z_{2}\right|^{2}=2\left(\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}\right) .
$$

Basic Identities: Continued

- (B5) Parallelogram Law :

$$
\left|z_{1}+z_{2}\right|^{2}+\left|z_{1}-z_{2}\right|^{2}=2\left(\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}\right) .
$$

- (B6) Triangle inequality: $\left|z_{1}+z_{2}\right| \leq\left|z_{1}\right|+\left|z_{2}\right|$ and equality holds iff one of the z_{j} is a non-negative multiple of the other.

Basic Identities: Continued

- (B5) Parallelogram Law :

$$
\left|z_{1}+z_{2}\right|^{2}+\left|z_{1}-z_{2}\right|^{2}=2\left(\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}\right) .
$$

-(B6) Triangle inequality: $\left|z_{1}+z_{2}\right| \leq\left|z_{1}\right|+\left|z_{2}\right|$ and equality holds iff one of the z_{j} is a non-negative multiple of the other.

- (B7) Cauchy-Scwartz Inequality

$$
\left|\sum_{j=1}^{n} z_{j} w_{j}\right|^{2} \leq\left(\sum_{j=1}^{n}\left|z_{j}\right|^{2}\right)\left(\sum_{j=1}^{n}\left|w_{j}\right|^{2}\right) .
$$

- Cartesian Coordinate Form
- Cartesian Coordinate Form
- Polar form

How to add Complex numbers Geometrically

The picture below illustrates how to add two complex numbers geometrically.

The 'parallelogram law' (B5) now becomes:

The sum of the squares of the lengths of the diagonals of a parallelogram is equal to the sum of the squares of the lengths of the sides.

Given $(x, y)=z \neq 0$, the angle θ, measured in counter-clockwise sense, made by the line segment $[0, z]$ with the positive real axis is called the argument or amplitude of z :

$$
\theta=\arg z .
$$

$$
\begin{equation*}
x=r \cos \theta ; \quad y=r \sin \theta \tag{4}
\end{equation*}
$$

Let us temporarily set-up the notation

$$
\begin{equation*}
E(\theta):=\cos \theta+\imath \sin \theta \text {. } \tag{5}
\end{equation*}
$$

Then the complex number $z=x+\imath y$ takes the form

$$
z=r(\cos \theta+\imath \sin \theta)=: r E(\theta)
$$

Observe $|z|=r$. Now let $z_{1}=r_{1} E\left(\theta_{1}\right), \quad z_{2}=r_{2} E\left(\theta_{2}\right)$. Using additive identities for sine and cosine viz.,

$$
\begin{align*}
& \sin \left(\theta_{1}+\theta_{2}\right)=\sin \theta_{1} \cos \theta_{2}+\cos \theta_{1} \sin \theta_{2}, \\
& \cos \left(\theta_{1}+\theta_{2}\right)=\cos \theta_{1} \cos \theta_{2}-\sin \theta_{1} \sin \theta_{2}, \tag{6}
\end{align*}
$$

we obtain

$$
\begin{equation*}
z_{1} z_{2}=r_{1} r_{2} E\left(\theta_{1}+\theta_{2}\right) . \tag{7}
\end{equation*}
$$

Geometric Multiplication of complex numbers:

In the picture above, various triagles are similar. It tells you how to multiply two complex numbers. For instance triangles $01 P$ and $0 Q R$ are similar

If we further remind ourselves that the argument can take values (in radians) between 0 and 2π, then the above identity tells us that $\arg \left(z_{1} z_{2}\right)=\arg z_{1}+\arg z_{2}$ $(\bmod 2 \pi)$ provided $z_{1} \neq 0, \quad z_{2} \neq 0$.
Put $z_{j}=r_{j} E\left(\theta_{j}\right)$ for $j=1,2$, and let θ be the angle between the vectors represented by these points. Then $z_{1} \overline{z_{2}}=r_{1} r_{2} E\left(\theta_{1}-\theta_{2}\right)$ and hence $\Re\left(z_{1} \overline{z_{2}}\right)=r_{1} r_{2} \cos \theta$. Thus,

$$
\begin{equation*}
\cos \theta=\frac{\Re\left(z_{1} \bar{z}_{2}\right)}{\left|z_{1} z_{2}\right|} \tag{8}
\end{equation*}
$$

Now, we can rewrite the cosine rule as:

$$
\begin{equation*}
\left|z_{1}+z_{2}\right|^{2}=r_{1}^{2}+r_{2}^{2}+2 r_{1} r_{2} \cos \theta . \tag{9}
\end{equation*}
$$

Note that by putting $\theta=\pi / 2$ in (9), we get Pythagoras theorem.

Remark

Observe that given $z \neq 0, \arg z$ is a multi-valued function. Indeed, if θ is one such value then all other values are given by $\theta+2 \pi n$, where $n \in \mathbb{Z}$. Thus to be precise, we have

$$
\arg z=\{\theta+2 \pi n: n \in \mathbb{Z}\}
$$

This is the first natural example of a ' multi-valued function'. We shall come across many multi-valued functions in complex analysis, all due to this nature of $\arg z$. However, while carrying out arithmetic operations we must 'select' a suitable value for \arg from this set. One of these values of $\arg z$ which satisfies $-\pi<\arg z \leq \pi$ is singled out and is called the principal value of $\arg z$ and is denoted by $\operatorname{Arg} z$.

Equation of a line:

- Let $a x+b y+c=0$ represent a line in cartesian coordinates, $a, b, c \in \mathbb{R}, \quad(a, b) \neq(0,0)$.

Equation of a line:

- Let $a x+b y+c=0$ represent a line in cartesian coordinates, $a, b, c \in \mathbb{R}, \quad(a, b) \neq(0,0)$.
- WLOG we may assume that $a^{2}+b^{2}=1$. Put $w=a+\imath b ; z=x+\imath y$.

Equation of a line:

- Let $a x+b y+c=0$ represent a line in cartesian coordinates, $a, b, c \in \mathbb{R}, \quad(a, b) \neq(0,0)$.
- WLOG we may assume that $a^{2}+b^{2}=1$. Put $w=a+\imath b ; z=x+\imath y$.
- Then $a x+b y=\operatorname{Re}(w \bar{z})=\frac{w \bar{z}+\bar{w} z}{2}$.

Equation of a line:

- Let $a x+b y+c=0$ represent a line in cartesian coordinates, $a, b, c \in \mathbb{R}, \quad(a, b) \neq(0,0)$.
- WLOG we may assume that $a^{2}+b^{2}=1$. Put $w=a+\imath b ; z=x+\imath y$.
- Then $a x+b y=\operatorname{Re}(w \bar{z})=\frac{w \bar{z}+\bar{w} z}{2}$.
- Thus, we see that the general equation of a line in the plane can be given by complex numbers as:

$$
\begin{equation*}
w \bar{z}+\bar{w} z=t, t \in \mathbb{R} . \tag{10}
\end{equation*}
$$

Equation of a line:

- Let $a x+b y+c=0$ represent a line in cartesian coordinates, $a, b, c \in \mathbb{R}, \quad(a, b) \neq(0,0)$.
- WLOG we may assume that $a^{2}+b^{2}=1$. Put $w=a+\imath b ; z=x+\imath y$.
- Then $a x+b y=\operatorname{Re}(w \bar{z})=\frac{w \bar{z}+\bar{w} z}{2}$.
- Thus, we see that the general equation of a line in the plane can be given by complex numbers as:

$$
\begin{equation*}
w \bar{z}+\bar{w} z=t, t \in \mathbb{R} . \tag{10}
\end{equation*}
$$

- This line is perpendicular to w.

Equation of a circle:

$(z-w)(\overline{z-w})=r^{2}, r \in \mathbb{R}$

Equation of a circle:

$$
\begin{equation*}
(z-w)(\overline{z-w})=r^{2}, r \in \mathbb{R} \text {. } \tag{11}
\end{equation*}
$$

- Equivalently

$$
\begin{equation*}
|z-w|=r \tag{12}
\end{equation*}
$$

Rigid Motions

Definition

By a rigid motion or an isometry of the plane, we mean a mapping $f: \mathbb{C} \rightarrow \mathbb{C}$ which preserves distances, i.e.,

$$
|f(z)-f(w)|=|z-w| \text { for all } z, w \in \mathbb{C}
$$

Rigid Motions

Examples:

- (i) Identity $: z \mapsto z$

Rigid Motions

Examples:

- (i) Identity $: z \mapsto z$
- (ii) translation: $\quad z \mapsto z+w$

Rigid Motions

Examples:

- (i) Identity $: z \mapsto z$
- (ii) translation: $\quad z \mapsto z+w$
- (iii) rotation about a point $: z \mapsto a(z-w)+w,|a|=1$

Rigid Motions

Examples:

- (i) Identity $\quad: z \mapsto z$
- (ii) translation: $\quad z \mapsto z+w$
- (iii) rotation about a point $: z \mapsto a(z-w)+w,|a|=1$
- (i) all points fixed. (ii) has no fixed points (iii) fixes exactly one point.

Rigid Motions

Examples:

- (i) Identity $\quad: z \mapsto z$
- (ii) translation: $\quad z \mapsto z+w$
- (iii) rotation about a point $: z \mapsto a(z-w)+w,|a|=1$
- (i) all points fixed. (ii) has no fixed points (iii) fixes exactly one point.
- All the three of them preserve orientation.

Rigid Motions

Examples:

- (i) Identity $\quad: z \mapsto z$
- (ii) translation: $\quad z \mapsto z+w$
- (iii) rotation about a point $: z \mapsto a(z-w)+w,|a|=1$
- (iv) reflection in a line: ???
- (i) all points fixed. (ii) has no fixed points (iii) fixes exactly one point.
- All the three of them preserve orientation.

Rigid Motions

Examples:

- (i) Identity $\quad: z \mapsto z$
- (ii) translation: $\quad z \mapsto z+w$
- (iii) rotation about a point $: z \mapsto a(z-w)+w,|a|=1$
- (iv) reflection in a line: ???
- (i) all points fixed. (ii) has no fixed points (iii) fixes exactly one point.
- All the three of them preserve orientation.
- The last one changes orientation and fixes precisely a line.
- Are there other rigid motions such as those which fix no points and change the orientation? We shall investigate this right now.
- Are there other rigid motions such as those which fix no points and change the orientation? We shall investigate this right now.
- Composite two rigid motions is again a rigid motion.

Reflection in a Line

- Let $w \bar{z}+\bar{w} z=t$ represent a line L.

Reflection in a Line

- Let $w \bar{z}+\bar{w} z=t$ represent a line L.
- If z^{*} denotes the image of z under the reflection in L, then $z^{*}-z$ is parallel to w and is bisected by L i.e., $\left(z+z^{*}\right) / 2$ is a point on the line L.

Reflection in a Line

- Let $w \bar{z}+\bar{w} z=t$ represent a line L.
- If z^{*} denotes the image of z under the reflection in L, then $z^{*}-z$ is parallel to w and is bisected by L i.e., $\left(z+z^{*}\right) / 2$ is a point on the line L.
- Therefore, we obtain,

$$
z^{*}-z=s w, s \in \mathbb{R} ; \quad \& \quad w\left(\overline{z^{*}+z}\right)+\bar{w}\left(z^{*}+z\right)=2 t
$$

Reflection in a Line

- Let $w \bar{z}+\bar{w} z=t$ represent a line L.
- If z^{*} denotes the image of z under the reflection in L, then $z^{*}-z$ is parallel to w and is bisected by L i.e., $\left(z+z^{*}\right) / 2$ is a point on the line L.
- Therefore, we obtain,

$$
z^{*}-z=s w, s \in \mathbb{R} ; \quad \& \quad w\left(\overline{z^{*}+z}\right)+\bar{w}\left(z^{*}+z\right)=2 t
$$

- Substitute $z^{*}=z+s w$ in the latter and use the fact $w \bar{w}=1$ to obtain $s=t-(w \bar{z}+\bar{w} z)$. Simply to get

$$
\begin{equation*}
z^{*}=w t-w^{2} \bar{z} \tag{13}
\end{equation*}
$$

Equivalently

$$
\begin{equation*}
w \bar{z}+\bar{w} z^{*}=t \tag{14}
\end{equation*}
$$

How does any rigid motion look like?

- In other words, what are all the rigid motions?

How does any rigid motion look like?

- In other words, what are all the rigid motions?
- Let $f: \mathbb{C} \rightarrow \mathbb{C}$ be a RM.

How does any rigid motion look like?

- In other words, what are all the rigid motions?
- Let $f: \mathbb{C} \rightarrow \mathbb{C}$ be a RM.
- Put $b=-f(0)$ and define $g(z)=f(z)+b$. Then g is also a RM. and $g(0)=0$.

How does any rigid motion look like?

- In other words, what are all the rigid motions?
- Let $f: \mathbb{C} \rightarrow \mathbb{C}$ be a RM.
- Put $b=-f(0)$ and define $g(z)=f(z)+b$. Then g is also a RM. and $g(0)=0$.
- Now $|g(1)|=1$. So, put $a=g(1)$ and define $h(z)=a^{-1} g(z)$. Then h is RM and $h(0)=0, h(1)=1$, and $h(\imath)= \pm \imath$.

What are all Rigid Motions of the plane?

- Case 1: Assume $h(\imath)=\imath$. Then we claim that $f(z)=z$ for all z.

What are all Rigid Motions of the plane?

- Case 1: Assume $h(\imath)=\imath$. Then we claim that $f(z)=z$ for all z.
- Case 2: Assume that $h(\imath)=-\imath$. Put $\bar{h}(z)=\overline{h(z)}$. Then \bar{h} is a RM and $\bar{h}(0)=0, \bar{h}(1)=1, \bar{h}(\imath)=\imath$. So, we are in case 1 .

We know all of them

Theorem

Let $f: \mathbb{C} \rightarrow \mathbb{C}$ be a rigid motion such that $f(0)=0$. Then there exist unique $a, b \in \mathbb{C}$ with $|a|=1$ such that

$$
f(z)=a z+b, \forall z \in \mathbb{C}
$$

We know all of them

Theorem

Let $f: \mathbb{C} \rightarrow \mathbb{C}$ be a rigid motion such that $f(0)=0$. Then there exist unique $a, b \in \mathbb{C}$ with $|a|=1$ such that

$$
f(z)=a z+b, \forall z \in \mathbb{C}
$$

- OR

We know all of them

Theorem

Let $f: \mathbb{C} \rightarrow \mathbb{C}$ be a rigid motion such that $f(0)=0$. Then there exist unique $a, b \in \mathbb{C}$ with $|a|=1$ such that

$$
f(z)=a z+b, \forall z \in \mathbb{C}
$$

- OR

$$
f(z)=a \bar{z}+b, \forall z \in \mathbb{C} .
$$

Can we name each of them?

- We still do not know whether there are other types of RM other than Identity, translation, rotation and reflection.

Can we name each of them?

- We still do not know whether there are other types of RM other than Identity, translation, rotation and reflection.

Theorem

Let $f: \mathbb{C} \rightarrow C$ be a rigid motion.

Can we name each of them?

- We still do not know whether there are other types of RM other than Identity, translation, rotation and reflection.

Theorem

Let $f: \mathbb{C} \rightarrow C$ be a rigid motion.

- (i) Suppose f fixes two distinct points. Then all points on the line passing through these two points are also fixed by f.

Can we name each of them?

- We still do not know whether there are other types of RM other than Identity, translation, rotation and reflection.

Theorem

Let $f: \mathbb{C} \rightarrow C$ be a rigid motion.

- (i) Suppose f fixes two distinct points. Then all points on the line passing through these two points are also fixed by f.
(ii) Suppose f fixes three non collinear points. Then $f=I d$.

Can we name each of them?

- We still do not know whether there are other types of RM other than Identity, translation, rotation and reflection.

Theorem

Let $f: \mathbb{C} \rightarrow C$ be a rigid motion.

- (i) Suppose f fixes two distinct points. Then all points on the line passing through these two points are also fixed by f.
(ii) Suppose f fixes three non collinear points. Then $f=I d$.
(iii) Suppose f fixes an entire line L. Then it is either Id or the reflection in that line.

Can we name each of them?

- We still do not know whether there are other types of RM other than Identity, translation, rotation and reflection.

Theorem

Let $f: \mathbb{C} \rightarrow C$ be a rigid motion.

- (i) Suppose f fixes two distinct points. Then all points on the line passing through these two points are also fixed by f.
(ii) Suppose f fixes three non collinear points. Then $f=I d$.
(iii) Suppose f fixes an entire line L. Then it is either Id or the reflection in that line. (iv) Suppose f fixes exactly one point. Then it is a rotation around that point.
- (v) Let us now understand the case : Suppose f fixes no points.
- (v) Let us now understand the case : Suppose f fixes no points.
- Take $b=-f(0)$ and consider $g(z)=f(z)+b$. Then $g(0)=0$. Therefore, g is either Id, a rotation, or a reflection.
- (v) Let us now understand the case : Suppose f fixes no points.
- Take $b=-f(0)$ and consider $g(z)=f(z)+b$. Then $g(0)=0$. Therefore, g is either Id, a rotation, or a reflection.
- If $g(z)=z$ this means $f(z)=z+b$ and hence f is a translation.
- (v) Let us now understand the case : Suppose f fixes no points.
- Take $b=-f(0)$ and consider $g(z)=f(z)+b$. Then $g(0)=0$. Therefore, g is either Id, a rotation, or a reflection.
- If $g(z)=z$ this means $f(z)=z+b$ and hence f is a translation.
- If $g(z)=a z,|a|=1, a \neq 1$ then $f(z)=a z+b$ and we can solve for $a z+b=z$ which means f has a fixed point. So, this case does not occur.
- Finally if g is a reflection in a line passing through the origin, then $g(z)=a \bar{z}$ which can be expressed as

$$
w \bar{z}+\bar{w} z^{*}=0
$$

where $z^{*}=g(z)=a \bar{z}$. Here $w^{2}=-a$.

- Finally if g is a reflection in a line passing through the origin, then $g(z)=a \bar{z}$ which can be expressed as

$$
w \bar{z}+\bar{w} z^{*}=0
$$

where $z^{*}=g(z)=a \bar{z}$. Here $w^{2}=-a$.

- Now let us resolve $b=b_{1}+b_{2}$ in the direction of w and perpedicular to it. It follows that adding b_{1} to g is the same as taking reflection in the line parallel to L and passing through b_{1}. Whereas adding b_{2} moves the point parellel to L. Since f has no fixed points, it follows that $b_{2} \neq 0$.
- Finally if g is a reflection in a line passing through the origin, then $g(z)=a \bar{z}$ which can be expressed as

$$
w \bar{z}+\bar{w} z^{*}=0
$$

where $z^{*}=g(z)=a \bar{z}$. Here $w^{2}=-a$.

- Now let us resolve $b=b_{1}+b_{2}$ in the direction of w and perpedicular to it. It follows that adding b_{1} to g is the same as taking reflection in the line parallel to L and passing through b_{1}. Whereas adding b_{2} moves the point parellel to L. Since f has no fixed points, it follows that $b_{2} \neq 0$.
- This is the same as saying $b \neq i s \sqrt{a}$, for some $s \in \mathbb{R}$ i.e., $\Re(b / \sqrt{a}) \neq 0$.

Glide Reflection

Definition

By a glide-reflection we mean a RM which is a reflection in a line followed by a translation by a non zero vector in the direction of L.

It is easy to see that a glide-reflection does not have any fixed point and does not preserve the orientation. The converse follows from what we have seen above.

Glide Reflection

Theorem

Let f be RM of the plane. If it fixes one point then it a rotation about that point (and hence preserves orientation). If it fixes no points then f is a glide reflection (and reverses orientation).

STORY TIME

- This story is due to George Gamow, the well-known physicist and an ingenious story-teller. We quote from his book:
ONE TWO THREE ... INFINITY (pp. 44-45).

STORY TIME

- This story is due to George Gamow, the well-known physicist and an ingenious story-teller. We quote from his book:
ONE TWO THREE ... INFINITY (pp. 44-45).
- There was a young and adventurous man who found among his great-grand father's papers a piece of parchment that revealed the location of a hidden treasure. The instructions read:

STORY TIME

- This story is due to George Gamow, the well-known physicist and an ingenious story-teller. We quote from his book:
ONE TWO THREE ... INFINITY (pp. 44-45).
- There was a young and adventurous man who found among his great-grand father's papers a piece of parchment that revealed the location of a hidden treasure. The instructions read:
- " Sail to ... North latitude and ... West longitude where thou wilt find a deserted island. There lieth a large medow, not pent, on the north shore of the island where standeth a lonely oak and a lonely pine.

STORY TIME

- There thou wilt see also an old gallows on which we once were wont to hang traitors. Start thou from the gallows and walk to the oak counting thy steps. At the oak thou must turn right by a right angle and take the same number of steps. Put here a spike in the ground.

STORY TIME

- There thou wilt see also an old gallows on which we once were wont to hang traitors. Start thou from the gallows and walk to the oak counting thy steps. At the oak thou must turn right by a right angle and take the same number of steps. Put here a spike in the ground.
- Now must thou return to the gallows and walk to the pine counting thy steps. At the pine thou must turn left by a right angle and see that thou takest the same number of steps, and put another spike into the ground.

STORY TIME

- There thou wilt see also an old gallows on which we once were wont to hang traitors. Start thou from the gallows and walk to the oak counting thy steps. At the oak thou must turn right by a right angle and take the same number of steps. Put here a spike in the ground.
- Now must thou return to the gallows and walk to the pine counting thy steps. At the pine thou must turn left by a right angle and see that thou takest the same number of steps, and put another spike into the ground.
- Dig half-way between the spikes; the treasure is there."

