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—————————

Uniform Convergence

RECALL

Definition

Let {fn} be sequence of complex valued functions on a set A. We say that it is
uniformly convergent on A to a function f (x) if for every ε > 0 there exists n0,
independent of x ∈ A such that for all n ≥ n0, we have, |fn(x)− f (x)| < ε, for all
x ∈ A.
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Uniform Convergence

RECALL
I Uniform convergence iff uniformly Cauchy.

I Uniform convergence implies pointwise convergence.

I Pointwise convergence does not imply uniform convergence when the domain
is infinite.

I Uniform limit of continuous functions is continuous.
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Uniform Convergence: Geometric Series

Example

The most useful series is the geometric series

1 + z + z2 + · · ·

The sequence of partial sums is given by

sn−1 := 1 + z + · · ·+ zn−1 =
1− zn

1− z
.

As zn −→ 0 if |z | < 1, it follows that the geometric series point-wise converges to
1/(1− z) for all |z | < 1.
In fact, if we take 0 < r < 1, then in the disc Br (0), the series is uniformly
convergent. For, given ε > 0, choose n0 such that rn0 < ε(1− r).
Then for all |z | < r and n ≥ n0, we have,∣∣∣∣1− zn

1− z
− 1

1− z

∣∣∣∣ =

∣∣∣∣ zn

1− z

∣∣∣∣ ≤ |zn0 |
1− |z |

≤ rn0

1− r
< ε.
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Uniform Convergence: M-Test

There is a pattern in what we saw in the above example. This is extremely useful
in determining uniform convergence:

Theorem

Weierstrassa M-test: Let
∑

n mn be a convergent series of non negative terms.
Suppose there exists K > 0 and an integer N such that |fn(x)| ≤ Kmn for all
n ≥ N and for all x ∈ A. Then

∑
n fn is uniformly and absolutely convergent in A.

aKarl Weierstrass (1815-1897) a German mathematician is well known for his perfect rigor.
He clarified any remaining ambiguities in the notion of a function, of derivatives, of minimum
etc..
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Uniform Convergence:M-Test

Proof: Given ε > 0 choose n0 > N such that mn + mn+1 + · · ·+ mn+p < ε/K , for
all n ≥ n0.

This is possible by Cauchy’s criterion, since
∑

n mn is convergent.
Then it follows that

|fn(x)|+ · · ·+ |fn+p(x)| ≤ K (mn + · · ·mn+p) < ε,

for all n ≥ n0 and for all x ∈ A.
Again, by Cauchy’s criterion, this means that

∑
fn is uniformly and absolutely

convergent. ♠

Remark

The series
∑

n mn in the above theorem is called a ‘majorant’ for the series
∑

n fn.
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Complex Differentiation

I The notions of continuity and differentiability of functions are discussed
pointwise. Nevertheless, they require that the function be defined in a
‘neighborhood’ of the point under discussion. Therefore, in the case of real
1-variable functions, the domain of definition of functions are intervals. In the
case of complex 1-variable, we have ‘more’ choices.

I Notation: Br (z) = {w ∈ C : |w − z | < r}
Open ball of radius r center z .

Definition

A ⊂ C is said to be an open set if it is the union of open balls.

II Thus if A is open and z ∈ A then it follows that there is r > 0 such that
Br (z) ⊂ A.
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Definition And Basic Properties

Definition

Let z0 ∈ Ω ⊂ C, such that there exists r > 0 with Br (z0) ⊂ Ω. Let f : Ω −→ C
be a map. Then f is said to be complex differentiable (written
C−differentiable at z0) if the limit on the right hand side of the following formula
exists, and in that case we call this limit, the (Cauchy) derivative of f at z0 :

I

f ′(z0) :=
df

dz
(z0) := lim

h→0

f (z0 + h)− f (z0)

h
. (1)
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Definition And Basic Properties

Definition

For an open subset Ω of C, if f is complex differentiable at each z0 ∈ Ω then we
say f is complex differentiable on Ω.

Basic Properties

I Sum of two C−differentiable function is C-differentiable,... etc..
Indeed, we have,

(αf + βg)′(z0) = αf ′(z0) + βg ′(z0), α, β ∈ C. (2)

I Moreover, just like in the real case, it is also a derivation, i.e.,

Leibniz: (fg)′(z0) = f ′(z0)g(z0) + f (z0)g ′(z0). (3)
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Basic Properties

I We even have the same formula for the derivative of a quotient:

(
f

g

)′
(z0) =

f ′(z0)g(z0)− f (z0)g ′(z0)

(g(z0))2
; if g(z0) 6= 0. (4)

Of course, we have to consider only points where f and g are complex
differentiable and g(z) 6= 0.

I (Chain Rule :) Let f : A→ C, g : B → C, f (A) ⊂ B and z0 ∈ A.
Suppose that f ′(z0) and g ′(f (z0)) exist. Then (g ◦ f )′(z0) exists and
(g ◦ f )′(z0) = g ′(f (z0))f ′(z0).

Theorem

If f is differentiable at a point then it is continuous at that point.
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Examples

II For f (z) = zn, n ≥ 0, f ′(z) = nzn−1, as in the case of real variable. (Use
binomial expansion).

I For n < 0, the function f (z) = zn is not defined at z = 0. The formula is
valid except at z = 0.

I Using the sum and product rules, we get
Every polynomial function p(z) = a0zn + a1zn−1 + · · ·+ an is complex
differentiable throughout the complex plane.

I A function which is complex differentiable throughout the plane is called
entire function.

I Using the quotient rule we then get:

Every rational function, i.e., a function of the form
p(z)

q(z)
, where p and q are

polynomials, is complex differentiable where-ever, q(z) 6= 0.

I Are there more examples?
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Power series

K = R, or C.

Definition

By a formal power series in one variable t over K, we mean a sum of the form

∞∑
n=0

antn, an ∈K.

(1) Observe that when at most a finite number of an are non zero the above
sum gives a polynomial.
(2) Thus, all polynomials in t are power series in t.
(3) The geometric series is a genuine example of a power series.
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Power series

I We can add two power series, by ‘term-by-term’ addition and we can also
multiply them by scalars, just like polynomials, viz.,∑

n

antn +
∑
n

bntn :=
∑
n

(an + bn)tn; α(
∑
n

antn) :=
∑
n

αantn.

I Let K[[t]] denote the set of all formal power series in t over K. The set of
polynomials is contained in K[[t]] and is closed under each of these
operations.

Definition

A formal power series P(t) =
∑

n antn is said to be convergent if there exists a
non zero number z (real or complex) such that the series of complex numbers∑

n anzn is convergent.
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Convergent Power series

Theorem

Let P(t) be a power series which is absolutely convergent for t = z0 6= 0. Then for
all |z | ≤ |z0|, P(z) is absolutely and uniformly convergent.

Proof: Appeal to (Weierstrass’ Majorant Criterion) M-test with mn = |anzn
0 | and

K = 1. ♠
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Radius of Convergence:

Definition

Let P(t) be a power series. Let

r(P) = sup{|z | : P(z) is convergent }

Then r(P) is called radius of convergence of P. If r(P) > 0 we say P is a
convergent power series.
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Radius of Convergence:

II Note that r can be infinite.

I r(P) = 0 is same as saying P is convergent only at z = 0.

I If |z | < r(P) the P(z) is absolutely convergent.

I If |z | > r(P) then P(z) is not absolutely convergent. Thus the collection of
all points at which a given power series converges consists of an open disc
centered at the origin and perhaps some points on the boundary of the disc.
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Radius of Convergence:

Example

I The series
∑
n

tn,
∑
n

tn

n
,
∑
n

tn

n2
all have radius of convergence 1.

I The first one is not convergent at any point of the boundary of the disc of
convergence |z | = 1.

(nth term does not tend to zero).

I The second is convergent at all the points of the boundary except at
z = 1 (Use Dirichlet’s test.)

I and the last one is convergent at all the point of the boundary. (Compare
with

∑
n

1
n2 .)

I These examples clearly illustrate that the boundary behavior of a power
series needs to be studied more carefully.
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Term-by-Term Differentiation

Definition

Given a power series P(t) =
∑

n≥0 antn, the derived series P ′(t) is defined by

taking term-by-term differentiation: P ′(t) =
∑

n≥1 nantn−1. The series∑
n≥0

an
n+1 tn+1 is called the integrated series.

Theorem

Any given power series, its derived series and its integrated series all have the
same radius of convergence.
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Analytic Functions

We shall call the sum function given by a convergent power series
An analytic function.
As seen above it follows that an analytic function is complex differentiable any
number of times in the disc of convergence of the power series. Therefore, the
derivative of an analytic function is also an analytic function.

I It is fairly obvious that the sum of two formal power series is convergent with
radius of convergence at least the minimum of the two radii of convergence.

I Therefore sum of two analytic functions is analytic. Similarly, the product of
two analytic functions is also analytic.

I The identity function written f (z) = z is clearly analytic in the entire plane
(take P(t) = z0 + t to see that f is analytic at z0). Starting from this and
using the above two observations we can deduce that any polynomial
function is analytic throughout the plane.

ARS (IITB) IITB MA205 Complex Analysis July 27, 2012 19 / 26



Analytic Functions

We shall call the sum function given by a convergent power series
An analytic function.
As seen above it follows that an analytic function is complex differentiable any
number of times in the disc of convergence of the power series. Therefore, the
derivative of an analytic function is also an analytic function.

I It is fairly obvious that the sum of two formal power series is convergent with
radius of convergence at least the minimum of the two radii of convergence.

I Therefore sum of two analytic functions is analytic. Similarly, the product of
two analytic functions is also analytic.

I The identity function written f (z) = z is clearly analytic in the entire plane
(take P(t) = z0 + t to see that f is analytic at z0). Starting from this and
using the above two observations we can deduce that any polynomial
function is analytic throughout the plane.

ARS (IITB) IITB MA205 Complex Analysis July 27, 2012 19 / 26



Analytic Functions

We shall call the sum function given by a convergent power series
An analytic function.
As seen above it follows that an analytic function is complex differentiable any
number of times in the disc of convergence of the power series. Therefore, the
derivative of an analytic function is also an analytic function.

I It is fairly obvious that the sum of two formal power series is convergent with
radius of convergence at least the minimum of the two radii of convergence.

I Therefore sum of two analytic functions is analytic. Similarly, the product of
two analytic functions is also analytic.

I The identity function written f (z) = z is clearly analytic in the entire plane
(take P(t) = z0 + t to see that f is analytic at z0). Starting from this and
using the above two observations we can deduce that any polynomial
function is analytic throughout the plane.

ARS (IITB) IITB MA205 Complex Analysis July 27, 2012 19 / 26



Exponential Function

I Due to Euler

I Plays a central role in analysis, more so in the case of complex analysis and is
going to be our first example using the power series method.

I We define

exp z := ez :=
∑
n≥0

zn

n!
= 1 + z +

z2

2!
+

z3

3!
+ · · · . (5)
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Exponential Function

I If we denote by un = zn

n! the nth term of the series, then∣∣∣∣un+1

un

∣∣∣∣ =
|z |

n + 1
<

1

2

as soon as n + 1 > 2|z |.

I By comparison with the geometric series (Ratio Test), this means that the
series is absolutely convergent for all z .

I Therefore the function exp makes sense in the entire of C and is
differentiable throughout C.

I Its derivative is given by

exp′(z) =
∑
n≥1

n

n!
zn−1 = exp(z) (6)

for all z .

ARS (IITB) IITB MA205 Complex Analysis July 27, 2012 21 / 26



Exponential Function

I If we denote by un = zn

n! the nth term of the series, then∣∣∣∣un+1

un

∣∣∣∣ =
|z |

n + 1
<

1

2

as soon as n + 1 > 2|z |.
I By comparison with the geometric series (Ratio Test), this means that the

series is absolutely convergent for all z .

I Therefore the function exp makes sense in the entire of C and is
differentiable throughout C.

I Its derivative is given by

exp′(z) =
∑
n≥1

n

n!
zn−1 = exp(z) (6)

for all z .

ARS (IITB) IITB MA205 Complex Analysis July 27, 2012 21 / 26



Exponential Function

I If we denote by un = zn

n! the nth term of the series, then∣∣∣∣un+1

un

∣∣∣∣ =
|z |

n + 1
<

1

2

as soon as n + 1 > 2|z |.
I By comparison with the geometric series (Ratio Test), this means that the

series is absolutely convergent for all z .

I Therefore the function exp makes sense in the entire of C and is
differentiable throughout C.

I Its derivative is given by

exp′(z) =
∑
n≥1

n

n!
zn−1 = exp(z) (6)

for all z .

ARS (IITB) IITB MA205 Complex Analysis July 27, 2012 21 / 26



Exponential Function

I If we denote by un = zn

n! the nth term of the series, then∣∣∣∣un+1

un

∣∣∣∣ =
|z |

n + 1
<

1

2

as soon as n + 1 > 2|z |.
I By comparison with the geometric series (Ratio Test), this means that the

series is absolutely convergent for all z .

I Therefore the function exp makes sense in the entire of C and is
differentiable throughout C.

I Its derivative is given by

exp′(z) =
∑
n≥1

n

n!
zn−1 = exp(z) (6)

for all z .

ARS (IITB) IITB MA205 Complex Analysis July 27, 2012 21 / 26



Solution of a Differential Equation

I Also, exp(0) = 1. Thus we see that exp is a solution of the initial value
problem:

f ′(z) = f (z); f (0) = 1. (7)

I We can verify that

exp(a + b) = exp(a) exp(b), a, b ∈ C (8)

directly by using the product formula for power series. (Use binomial
expansion of (a + b)n, and write down the details by yourself.)

I This can also be proved by using the fact that any analytic solution of (7)
has to be exp. This method is quite typical and educative and let us take this
opportunity to learn this.
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Solution of a Differential Equation

I First, let us show that exp(z) exp(−z) = 1, for all z .

I For this consider the function g(z) = exp(z) exp(−z) and see that its
derivative is identically zero and g(0) = 1. Therefore g(z) = 1 for all z , as
required.

I As an easy consequence, it follows that exp(z) 6= 0 for any z .

I Now fix w ∈ C and consider the function h(z) = exp(z + w) exp(−w).
Clearly, h is analytic, h(0) = 1 and h′(z) = h(z).

I Therefore by the uniqueness of solution of (7), h(z) = exp(z) for all z , i.e.,
exp(z + w) exp(−w) = exp(z). This is nothing but the same as saying
exp(z + w) = exp(z) exp(w).
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Exp is a homomorphism

Thus, we have shown that exp defines a homomorphism from the additive group
C to the multiplicative group C?

:= C \ {0}.
I As a simple consequence of this rule we have,

exp(nz) = exp(z)n

for all integers n ≥ 0.

I Following Euler, let us denote exp(1) by e. Then we have, exp(n) = en.

I This is the justification to have the notation ez for exp(z).

ARS (IITB) IITB MA205 Complex Analysis July 27, 2012 24 / 26



Exp is a homomorphism

Thus, we have shown that exp defines a homomorphism from the additive group
C to the multiplicative group C?

:= C \ {0}.
I As a simple consequence of this rule we have,

exp(nz) = exp(z)n

for all integers n ≥ 0.

I Following Euler, let us denote exp(1) by e. Then we have, exp(n) = en.

I This is the justification to have the notation ez for exp(z).

ARS (IITB) IITB MA205 Complex Analysis July 27, 2012 24 / 26



Exp is a homomorphism

Thus, we have shown that exp defines a homomorphism from the additive group
C to the multiplicative group C?

:= C \ {0}.
I As a simple consequence of this rule we have,

exp(nz) = exp(z)n

for all integers n ≥ 0.

I Following Euler, let us denote exp(1) by e. Then we have, exp(n) = en.

I This is the justification to have the notation ez for exp(z).

ARS (IITB) IITB MA205 Complex Analysis July 27, 2012 24 / 26



The Exponential Function

It may be worth recalling some elementary facts about e that you know already.

I For instance, clearly 2 < e.

I By comparing with the geometric series
∑
n

2−n, it can be shown easily that

e < 3.

I Also we have,

e = lim
n−→∞

(
1 +

1

n

)n

. (9)
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The Exponential Function

I Also we have:

(ez) = e z̄ . (10)

directly from the power series definition and continuity of the conjugation.

I This, in particular, implies that for a real number y ,

|eıy |2 = eıyeıy = eıye−ıy = 1.

I Hence,

|eıy | = 1, y ∈ R. (11)
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