INDIAN INSTITUTE OF TECHNOLOGY BOMBAY MA205 Complex Analysis Autumn 2012

Anant R. Shastri
Department of Mathematics
Indian Institute of Technology, Bombay

August 1, 2012

Properties of Exp

- We have seen that

$$
\begin{equation*}
\exp (a+b)=\exp (a) \exp (b), a, b \in \mathbb{C} \tag{1}
\end{equation*}
$$

and $\exp (0)=1$.

Properties of Exp

- We have seen that

$$
\begin{equation*}
\exp (a+b)=\exp (a) \exp (b), a, b \in \mathbb{C} \tag{1}
\end{equation*}
$$

and $\exp (0)=1$.

- Therefore $\exp (z)$ is never zero.

Thus, we have shown that exp defines a homomorphism from the additive group \mathbb{C} to the multiplicative group $\mathbb{C}^{\star}:=\mathbb{C} \backslash\{0\}$.

Properties of Exp

- We have seen that

$$
\begin{equation*}
\exp (a+b)=\exp (a) \exp (b), a, b \in \mathbb{C} \tag{1}
\end{equation*}
$$

and $\exp (0)=1$.

- Therefore $\exp (z)$ is never zero.

Thus, we have shown that exp defines a homomorphism from the additive group \mathbb{C} to the multiplicative group $\mathbb{C}^{\star}:=\mathbb{C} \backslash\{0\}$.

- Also

$$
\exp (n z)=\exp (z)^{n}
$$

for all integers $n \geq 0$.

Properties of Exp

- Following Euler, let us denote $\exp (1)$ by e. Then we have, $\exp (n)=e^{n}$.

Properties of Exp

- Following Euler, let us denote $\exp (1)$ by e. Then we have, $\exp (n)=e^{n}$.
- This is the justification to have the notation e^{z} for $\exp (z)$ for all z.

The Exponential Function

It may be worth recalling some elementary facts about e that you know already.

- For instance, clearly $2<e$.

The Exponential Function

It may be worth recalling some elementary facts about e that you know already.

- For instance, clearly $2<e$.
- By comparing with the geometric series $\sum_{n} 2^{-n}$, it can be shown easily that $e<3$.

The Exponential Function

It may be worth recalling some elementary facts about e that you know already.

- For instance, clearly $2<e$.
- By comparing with the geometric series $\sum_{n} 2^{-n}$, it can be shown easily that $e<3$.
- Also we have,

$$
\begin{equation*}
e=\lim _{n \longrightarrow \infty}\left(1+\frac{1}{n}\right)^{n} \tag{2}
\end{equation*}
$$

The Exponential Function

- Also we have:

$$
\begin{equation*}
\overline{\left(e^{z}\right)}=e^{\bar{z}} . \tag{3}
\end{equation*}
$$

directly from the power series definition and continuity of the conjugation.

The Exponential Function

- Also we have:

$$
\begin{equation*}
\overline{\left(e^{z}\right)}=e^{\bar{z}} . \tag{3}
\end{equation*}
$$

directly from the power series definition and continuity of the conjugation.

- This, in particular, implies that for a real number y,

$$
\left|e^{\imath y}\right|^{2}=e^{\imath y} \overline{e^{\imath y}}=e^{\imath y} e^{-\imath y}=1 .
$$

The Exponential Function

- Also we have:

$$
\begin{equation*}
\overline{\left(e^{z}\right)}=e^{\bar{z}} . \tag{3}
\end{equation*}
$$

directly from the power series definition and continuity of the conjugation.

- This, in particular, implies that for a real number y,

$$
\left|e^{\imath y}\right|^{2}=e^{\imath y} \overline{e^{\imath y}}=e^{\imath y} e^{-\imath y}=1 .
$$

- Hence,

$$
\begin{equation*}
\left|e^{\imath y}\right|=1, \quad y \in \mathbb{R} \tag{4}
\end{equation*}
$$

Trigonometric Functions.

- Writing $e^{\imath y}=u+\imath v=r E(\theta)$ it follows that $r=1$ and $u^{2}+v^{2}=1$. Therefore $u=\cos \theta$ and $v=\sin \theta$.

Trigonometric Functions.

- Writing $e^{\imath y}=u+\imath v=r E(\theta)$ it follows that $r=1$ and $u^{2}+v^{2}=1$. Therefore $u=\cos \theta$ and $v=\sin \theta$.
- On the other hand, by taking term-by-term real and imaginary parts of the series $\sum_{n} \frac{(z y)^{n}}{n!}$, we obtain

$$
\begin{aligned}
& \cos \theta=1-\frac{y^{2}}{2!}+\frac{y^{4}}{4!}-+\cdots \\
& \sin \theta=y-\frac{y^{3}}{3!}+\frac{y^{5}}{5!}-+\cdots
\end{aligned}
$$

Trigonometric Functions.

- Writing $e^{\imath y}=u+\imath v=r E(\theta)$ it follows that $r=1$ and $u^{2}+v^{2}=1$. Therefore $u=\cos \theta$ and $v=\sin \theta$.
- On the other hand, by taking term-by-term real and imaginary parts of the series $\sum_{n} \frac{(z y)^{n}}{n!}$, we obtain

$$
\begin{aligned}
& \cos \theta=1-\frac{y^{2}}{2!}+\frac{y^{4}}{4!}-+\cdots \\
& \sin \theta=y-\frac{y^{3}}{3!}+\frac{y^{5}}{5!}-+\cdots
\end{aligned}
$$

- This resolves the mystery about the 'angle' θ which can now be identified with the real number y.

Trigonometric Functions.

- Writing $e^{\imath y}=u+\imath v=r E(\theta)$ it follows that $r=1$ and $u^{2}+v^{2}=1$. Therefore $u=\cos \theta$ and $v=\sin \theta$.
- On the other hand, by taking term-by-term real and imaginary parts of the series $\sum_{n} \frac{(2 y)^{n}}{n!}$, we obtain

$$
\begin{aligned}
& \cos \theta=1-\frac{y^{2}}{2!}+\frac{y^{4}}{4!}-+\cdots \\
& \sin \theta=y-\frac{y^{3}}{3!}+\frac{y^{5}}{5!}-+\cdots
\end{aligned}
$$

- This resolves the mystery about the 'angle' θ which can now be identified with the real number y.
- The power series on the RHS have radius of convergence ∞.

Trigonometric Functions.

- Motivated by this, we can define the complex trigonometric functions by

$$
\begin{align*}
& \cos z=1-\frac{z^{2}}{2!}+\frac{z^{4}}{4!}-+\cdots \tag{5}\\
& \sin z=z-\frac{z^{3}}{3!}+\frac{z^{5}}{5!}-+\cdots \tag{6}
\end{align*}
$$

Trigonometric Functions.

- Motivated by this, we can define the complex trigonometric functions by

$$
\begin{align*}
& \cos z=1-\frac{z^{2}}{2!}+\frac{z^{4}}{4!}-+\cdots \tag{5}\\
& \sin z=z-\frac{z^{3}}{3!}+\frac{z^{5}}{5!}-+\cdots \tag{6}
\end{align*}
$$

- Check that

$$
\begin{equation*}
\sin z=\frac{e^{\imath z}-e^{-\imath z}}{2 \imath} ; \quad \cos z=\frac{e^{\imath z}+e^{-\imath z}}{2} \tag{7}
\end{equation*}
$$

Trigonometric Functions.

- Motivated by this, we can define the complex trigonometric functions by

$$
\begin{align*}
& \cos z=1-\frac{z^{2}}{2!}+\frac{z^{4}}{4!}-+\cdots \tag{5}\\
& \sin z=z-\frac{z^{3}}{3!}+\frac{z^{5}}{5!}-+\cdots \tag{6}
\end{align*}
$$

- Check that

$$
\begin{equation*}
\sin z=\frac{e^{\imath z}-e^{-\imath z}}{2 \imath} ; \quad \cos z=\frac{e^{\imath z}+e^{-\imath z}}{2} \tag{7}
\end{equation*}
$$

- All standard properties of sin and cos can be derived using the above power series definitions.

Relation between Exp and Trigonometry

- Other trigonometric functions are defined in terms of sin and cos as usual. For example, we have $\tan z=\sin z / \cos z$ and its domain of definition is all points in \mathbb{C} at which $\cos z \neq 0$.

Relation between Exp and Trigonometry

- Other trigonometric functions are defined in terms of \sin and \cos as usual. For example, we have $\tan z=\sin z / \cos z$ and its domain of definition is all points in \mathbb{C} at which $\cos z \neq 0$.
- We have,

$$
\begin{equation*}
e^{\imath z}=\cos z+\imath \sin z \tag{8}
\end{equation*}
$$

- In particular,

$$
\begin{equation*}
e^{x+\imath y}=e^{x} e^{\imath y}=e^{x}(\cos y+\imath \sin y) \tag{9}
\end{equation*}
$$

Relation between Exp and Trigonometry

- Other trigonometric functions are defined in terms of \sin and \cos as usual. For example, we have $\tan z=\sin z / \cos z$ and its domain of definition is all points in \mathbb{C} at which $\cos z \neq 0$.
- We have,

$$
\begin{equation*}
e^{\imath z}=\cos z+\imath \sin z \tag{8}
\end{equation*}
$$

- In particular,

$$
\begin{equation*}
e^{x+\imath y}=e^{x} e^{\imath y}=e^{x}(\cos y+\imath \sin y) \tag{9}
\end{equation*}
$$

- It follows that $e^{2 \pi \imath}=1$. (For a rigorous definition of π you may refer to the optional problem 13 in set III of your tutorial sheets.)

Relation between Exp and Trigonometry

- Indeed, we shall prove that

$$
\begin{equation*}
e^{z}=1 \quad \text { iff } z=2 n \pi \imath, \quad n \in \mathbb{Z} \tag{10}
\end{equation*}
$$

- Let $z=x+\imath y$ and $e^{z}=1$, i.e., $e^{x}(\cos y+\imath \sin y)=1$.

Relation between Exp and Trigonometry

- Indeed, we shall prove that

$$
\begin{equation*}
e^{z}=1 \quad \text { iff } z=2 n \pi \imath, \quad n \in \mathbb{Z} \tag{10}
\end{equation*}
$$

- Let $z=x+\imath y$ and $e^{z}=1$, i.e., $e^{x}(\cos y+\imath \sin y)=1$.
- Equating real and imaginary parts on either side, we have $e^{x} \cos y=1$ and $e^{x} \sin y=0$.

Relation between Exp and Trigonometry

- Indeed, we shall prove that

$$
\begin{equation*}
e^{z}=1 \quad \text { iff } z=2 n \pi \imath, \quad n \in \mathbb{Z} \tag{10}
\end{equation*}
$$

- Let $z=x+\imath y$ and $e^{z}=1$, i.e., $e^{x}(\cos y+\imath \sin y)=1$.
- Equating real and imaginary parts on either side, we have $e^{x} \cos y=1$ and $e^{x} \sin y=0$.
- Since $e^{x} \neq 0$ for any $x \in \mathbb{R}$, we must have, $\sin y=0$. Hence, $y=m \pi$, for some integer m. Therefore $e^{x} \cos m \pi=1$.

Relation between Exp and Trigonometry

- Indeed, we shall prove that

$$
\begin{equation*}
e^{z}=1 \quad \text { iff } z=2 n \pi \imath, \quad n \in \mathbb{Z} \tag{10}
\end{equation*}
$$

- Let $z=x+\imath y$ and $e^{z}=1$, i.e., $e^{x}(\cos y+\imath \sin y)=1$.
- Equating real and imaginary parts on either side, we have $e^{x} \cos y=1$ and $e^{x} \sin y=0$.
- Since $e^{x} \neq 0$ for any $x \in \mathbb{R}$, we must have, $\sin y=0$. Hence, $y=m \pi$, for some integer m. Therefore $e^{x} \cos m \pi=1$.
- Since $e^{x} \geq 0$ for all $x \in \mathbb{R}$, and $\cos m \pi= \pm 1$, it follows that $\cos m \pi=1$ and $e^{x}=1$. Therefore $x=0$ and $m=2 n$, as desired.

Exponential Function

Finally, we shall state the following without proof.

$$
\begin{equation*}
\exp (\mathbb{C})=\mathbb{C}^{\star} \tag{11}
\end{equation*}
$$

Exponential Function

Remark

One of the most beautiful equations:

$$
\text { Euler: } \quad e^{\pi \imath}+1=0
$$

which relates in a simple arithmetic way, five of the most fundamental numbers, made Euler ${ }^{a}$ believe in the existence of God!

a See E.T. Bell's book 'Men of Mathematics', for some juicy stories

Mapping Properties of Exp and Trigonometric functions

You are familiar with the real limit

$$
\lim _{x \longrightarrow \infty} \exp (x)=\infty
$$

However, such a result is not true when we replace the real x by a complex z. In fact, given any complex number $w \neq 0$, we have seen that there exists z such that $\exp (z)=w$. But then $\exp (z+2 n \pi \imath)=w$ for all n. Hence we can get z^{\prime} having arbitrarily large modulus such that $\exp \left(z^{\prime}\right)=w$.

Mapping Properties of Exp and Trigonometric functions

As a consequence, it follows that $\lim _{z \longrightarrow \infty} \exp (z)$ does not exist. Indeed we know

$$
\begin{aligned}
& e^{x} \rightarrow \infty \text { as } x \rightarrow \infty \\
& e^{x} \rightarrow 0 \text { as } x \rightarrow-\infty
\end{aligned}
$$

and

$$
\left|e^{\imath y}\right|=1, y \in \mathbb{R}
$$

The last formula means that under exp the imaginary axis is mapped over the unit circle.

Mapping Properties

Using the formula for sin and cos in terms of exp, it can be easily shown that sin and cos are both surjective mappings of \mathbb{C} onto \mathbb{C}. In particular, remember that they are not bounded unlike their real counter parts.

Mapping Properties

Using the formula for sin and cos in terms of exp, it can be easily shown that sin and cos are both surjective mappings of \mathbb{C} onto \mathbb{C}. In particular, remember that they are not bounded unlike their real counter parts.

- Let us see how to solve the equation $\sin z=w$ where $w \in \mathbb{C}$ is arbitrary.

Mapping Properties

Using the formula for sin and cos in terms of exp, it can be easily shown that sin and cos are both surjective mappings of \mathbb{C} onto \mathbb{C}. In particular, remember that they are not bounded unlike their real counter parts.

- Let us see how to solve the equation $\sin z=w$ where $w \in \mathbb{C}$ is arbitrary.
- Putting $\exp (\imath z)=T$ we have $\sin z=\frac{T-T^{-1}}{2 \imath}=w$. This gives a quadratic equation in T :

$$
T^{2}-2 \imath w T-1=0
$$

Mapping Properties

Using the formula for sin and cos in terms of exp, it can be easily shown that sin and cos are both surjective mappings of \mathbb{C} onto \mathbb{C}. In particular, remember that they are not bounded unlike their real counter parts.

- Let us see how to solve the equation $\sin z=w$ where $w \in \mathbb{C}$ is arbitrary.
- Putting $\exp (\imath z)=T$ we have $\sin z=\frac{T-T^{-1}}{2 \imath}=w$. This gives a quadratic equation in T :

$$
T^{2}-2 \imath w T-1=0
$$

- If T_{1} is a solution then $T_{1} \neq 0$.

Mapping Properties

Using the formula for sin and cos in terms of exp, it can be easily shown that sin and cos are both surjective mappings of \mathbb{C} onto \mathbb{C}. In particular, remember that they are not bounded unlike their real counter parts.

- Let us see how to solve the equation $\sin z=w$ where $w \in \mathbb{C}$ is arbitrary.
- Putting $\exp (\imath z)=T$ we have $\sin z=\frac{T-T^{-1}}{2 \imath}=w$. This gives a quadratic equation in T :

$$
T^{2}-2 \imath w T-1=0
$$

- If T_{1} is a solution then $T_{1} \neq 0$.
- There are many z such that $\exp \imath z=T_{1}$. If z_{1} is one such then $\sin z_{1}=w$.

Hyperbolic Functions

Likewise, the complex hyperbolic functions are defined by

$$
\begin{equation*}
\sinh z=\frac{e^{z}-e^{-z}}{2} ; \quad \cosh z=\frac{e^{z}+e^{-z}}{2} \tag{13}
\end{equation*}
$$

It is easy to see that these functions are all analytic. Moreover, all the usual identities which hold in the real case amongst these functions also hold in the complex case and can be verified directly. One can study the mapping properties of these functions as well, which have wide range of applications.

The Logarithm:

- This leads us to take up the study of solutions of $e^{z}=w$ more seriously.

The Logarithm:

- This leads us to take up the study of solutions of $e^{z}=w$ more seriously.
- In the real case, this was very easy since the mapping $\exp : \mathbb{R} \rightarrow \mathbb{R}^{+}$is a one-one and onto mapping and therefore has a well defined inverse viz. the logarithm In.

The Logarithm:

- This leads us to take up the study of solutions of $e^{z}=w$ more seriously.
- In the real case, this was very easy since the mapping $\exp : \mathbb{R} \rightarrow \mathbb{R}^{+}$is a one-one and onto mapping and therefore has a well defined inverse viz. the logarithm In.
- However, as we have observed, unlike in the real case, the complex exponential function e^{z} is not one-one, and hence its inverse is going to be a multi-valued function, or rather a set valued function.

The Logarithm:

- This should not discourage us too much and we shall still proceed to define the logarithm ' In ' in the complex case also similarly.

The Logarithm:

- This should not discourage us too much and we shall still proceed to define the logarithm ' In^{\prime} in the complex case also similarly.
- Pick up any $w \neq 0$. (this is needed!) Let us define $\log w($ or $\ln w)$ to be equal to the set of all $z \in \mathbb{C}$ satisfying the equation $e^{z}=w$.

The Logarithm:

- This should not discourage us too much and we shall still proceed to define the logarithm ' \ln ' in the complex case also similarly.
- Pick up any $w \neq 0$. (this is needed!) Let us define $\log w($ or $\ln w)$ to be equal to the set of all $z \in \mathbb{C}$ satisfying the equation $e^{z}=w$.
- Thus

$$
\ln w:=\ln |w|+\imath \arg w .
$$

Observe that the multi-valuedness of $\ln w$ is caused by that of $\arg w$:

$$
\arg w=\{\theta+2 n \pi: n \in \mathbb{Z}\}
$$

The Logarithm:

If θ is chosen such that $-\pi<\theta \leq \pi$ (some authors choose $0 \leq \theta<2 \pi$) then we call it Principle value of arg w and denote it by Arg w. Accordingly we get Principle value of \log and denote it by $\log w$.

The Logarithm:

If θ is chosen such that $-\pi<\theta \leq \pi$ (some authors choose $0 \leq \theta<2 \pi$) then we call it Principle value of arg w and denote it by Arg w. Accordingly we get Principle value of \log and denote it by $\log w$. The notation Lnz is also in use.

The Logarithm:

If θ is chosen such that $-\pi<\theta \leq \pi$ (some authors choose $0 \leq \theta<2 \pi$) then we call it Principle value of arg w and denote it by Arg w. Accordingly we get Principle value of \log and denote it by $\log w$. The notation $L n z$ is also in use.
It follows that

$$
\log w=\{\log w+2 \pi n, n \in \mathbb{Z}\} .
$$

The Logarithm:

- We have the identity

$$
\begin{equation*}
\ln \left(w_{1} w_{2}\right)=\ln w_{1}+\ln w_{2}, \tag{14}
\end{equation*}
$$

[which directly follows from $e^{z_{1}+z_{2}}=e^{z_{1}} e^{z_{2}}$].

The Logarithm:

- We have the identity

$$
\begin{equation*}
\ln \left(w_{1} w_{2}\right)=\ln w_{1}+\ln w_{2}, \tag{14}
\end{equation*}
$$

[which directly follows from $e^{z_{1}+z_{2}}=e^{z_{1}} e^{z_{2}}$].

- Here, we have to interpret this identity 'set-theoretically'.

The Logarithm:

- We have the identity

$$
\begin{equation*}
\ln \left(w_{1} w_{2}\right)=\ln w_{1}+\ln w_{2}, \tag{14}
\end{equation*}
$$

[which directly follows from $e^{z_{1}+z_{2}}=e^{z_{1}} e^{z_{2}}$].

- Here, we have to interpret this identity 'set-theoretically'.
- Caution: When z is a positive real number, $\ln z$ has two meanings! Unless mentioned otherwise one should stick to the older meaning, viz., $\ln z=\operatorname{Ln} z$ in that case.

Exponents of complex numbers

- Recall that defining exponents was somewhat involved process, even with positive real numbers. Now, we want to deal with this concept with complex numbers. Here the idea is to use the logarithm function which converts multiplication into addition and hence the 'exponent into multiplication.

Exponents of complex numbers

- Recall that defining exponents was somewhat involved process, even with positive real numbers. Now, we want to deal with this concept with complex numbers. Here the idea is to use the logarithm function which converts multiplication into addition and hence the 'exponent into multiplication.
- For any two complex numbers $z, w \in \mathbb{C} \backslash\{0\}$, define

$$
\begin{equation*}
z^{w}:=e^{w \ln z} \tag{15}
\end{equation*}
$$

Complex exponents

- Observe that on the rhs the term $\ln z$ is a multi-valued function. Therefore, in general, this makes z^{w} a set of complex numbers rather than a single number. For instance, $2^{1 / 2}$ is a two element set viz., $\{\sqrt{2},-\sqrt{2}\}$.

Complex exponents

- Observe that on the rhs the term $\ln z$ is a multi-valued function. Therefore, in general, this makes z^{w} a set of complex numbers rather than a single number. For instance, $2^{1 / 2}$ is a two element set viz., $\{\sqrt{2},-\sqrt{2}\}$.
- First, let us take the simplest case, viz., $w=n \geq 1$. Then irrespective of the value of $z(15)$ gives the single value which is equal to z multiplied with itself n times. For negative integer exponents also, the story is the same except that, we need to have $z \neq 0$. But as soon as w is not an integer, we can no longer say that this is single-valued.

Complex exponents

- Does this definition follow the familiar laws of exponents:

$$
\begin{equation*}
z^{w_{1}+w_{2}}=z^{w_{1}} z^{w_{2}} ;\left(z_{1} z_{2}\right)^{w}=z_{1}^{w} z_{2}^{w} ? \tag{16}
\end{equation*}
$$

Complex exponents

- Does this definition follow the familiar laws of exponents:

$$
\begin{equation*}
z^{w_{1}+w_{2}}=z^{w_{1}} z^{w_{2}} ;\left(z_{1} z_{2}\right)^{w}=z_{1}^{w} z_{2}^{w} ? \tag{16}
\end{equation*}
$$

- Yes indeed. The only caution is that these formulae tell you that the two terms on either side of the equality sign are equal as sets. This is essentially a consequence of the property (14):

$$
\ln (a b)=\ln (a)+\ln (b)
$$

The Logarithm as a single valued function:

- The logarithmic function is all too important to be left as a mere set-valued function.

The Logarithm as a single valued function:

- The logarithmic function is all too important to be left as a mere set-valued function. We would like to get hold of some single valued function which can be differentiated etc. and represents the logarithm function.
- Such a function should be continuous to begin with.

The Logarithm as a single valued function:

- The logarithmic function is all too important to be left as a mere set-valued function. We would like to get hold of some single valued function which can be differentiated etc. and represents the logarithm function.
- Such a function should be continuous to begin with.
- If we restrict the domain suitably, then we see that the 'argument' can be defined continuously.

The Logarithm as a single valued function:

- The logarithmic function is all too important to be left as a mere set-valued function. We would like to get hold of some single valued function which can be differentiated etc. and represents the logarithm function.
- Such a function should be continuous to begin with.
- If we restrict the domain suitably, then we see that the 'argument' can be defined continuously.
- In fact for this to hold, we must be careful about a few things.

The Logarithm as a function:

- First of all, in our domain of definition of $\operatorname{In}, 0$ should never be there.

The Logarithm as a function:

- First of all, in our domain of definition of $\ln , 0$ should never be there.
- Secondly, in the domain of I, we should not able to 'go around' the origin.

The Logarithm as a function:

- First of all, in our domain of definition of $\ln , 0$ should never be there.
- Secondly, in the domain of I, we should not able to 'go around' the origin.
- One way to ensure this is to throw away an entire ray emerging from the origin, from the complex plane, then for each point of the remaining domain a continuous value of the argument can be chosen. This in turn, defines a continuous value of the logarithmic function also. We make a formal definition.

The Logarithm as a function:

Definition

Given a multi-valued function f, on an open set Ω, by a branch of f we mean a specific continuous function $g: \Omega \longrightarrow \mathbb{C}$ such that $g(z) \in f(z)$ for all $z \in \Omega$.

The Logarithm as a function:

Definition

Given a multi-valued function f, on an open set Ω, by a branch of f we mean a specific continuous function $g: \Omega \longrightarrow \mathbb{C}$ such that $g(z) \in f(z)$ for all $z \in \Omega$.

For instance, if h is a function which is not one-one, then its inverse is a multi-valued function. Then any continuous function g such that $g \circ h=l d$ over a suitable domain will be called a branch of h^{-1}.

Branch of a Multi-valued Function

In particular, branches of the inverse of the exponential function are called branches of the logarithmic function.

Branch of a Multi-valued Function

In particular, branches of the inverse of the exponential function are called branches of the logarithmic function. Over domains such as $\mathbb{C} \backslash L$ where L is an infinite half-ray from the origin, we easily see that In has countably infinite number of branches.

Branch Lemma

Here is the justification for the definition of 'branch'.

Lemma

Let $h: \Omega_{1} \longrightarrow \Omega_{2}$ be a complex differentiable function. $g: \Omega_{2} \longrightarrow \Omega_{1}$ be a continuous function such that $h \circ g(w)=w, \quad \forall w \in \Omega_{2}$. Suppose $w_{0} \in \Omega_{2}$ is such that $h^{\prime}\left(z_{0}\right) \neq 0$, where $z_{0}=g\left(w_{0}\right)$. Then g is \mathbb{C}-differentiable at w_{0}, with $g^{\prime}\left(w_{0}\right)=\left(h^{\prime}\left(z_{0}\right)\right)^{-1}$.

Branches of Multi-values functions

- Observe that as a corollary, we have obtained complex differentiable branches of the logarithmic function. For instance, $\operatorname{Ln}(z):=\ln r+\imath \theta,-\pi<\theta<2 \pi$, is one such branch defined over the entire of \mathbb{C} minus the negative real axis. The question of the nature of domains on which In has well defined branches will be discussed later on.

Branches of Multi-values functions

- Observe that as a corollary, we have obtained complex differentiable branches of the logarithmic function. For instance, $\operatorname{Ln}(z):=\ln r+\imath \theta,-\pi<\theta<2 \pi$, is one such branch defined over the entire of \mathbb{C} minus the negative real axis. The question of the nature of domains on which In has well defined branches will be discussed later on.
- The hypothesis that $h^{\prime}\left(z_{0}\right) \neq 0$ is indeed unnecessary in the above lemma. This stronger version of the above lemma will be perhaps taken up later in the course.

The real case

In contrast, in the real case, consider the function $x \mapsto x^{3}$ which defines a continuous bijection of the real line onto itself. Its inverse is also continuous but not differentiable at 0 as can be seen easily in different ways.

Derivative of Ln

Example

Let us find out the derivative of a branch $\eta(z)$ of the logarithm. We shall show that $\frac{d}{d z}(\eta z)=\frac{1}{z}$. Since, $\exp \circ \eta=I d$, it follows from the chain rule that $(\exp)^{\prime}(\eta(z)) \eta^{\prime}(z)=1$. Therefore, we have, $z \eta^{\prime}(z)=1$ and hence, $\eta^{\prime}(z)=1 / z$, as claimed.

Discontinuity of Ln

The principle branch logarithm $L n$ does not have additive property in the full: For instance $\operatorname{Ln}(-1)=\pi$ whereas $0=\operatorname{Ln}(1)=\operatorname{Ln}[(-1)(-1)] \neq \operatorname{Ln}(-1)+\operatorname{Ln}(-1)=2 \pi \imath$.

Discontinuity of Ln

The principle branch logarithm $L n$ does not have additive property in the full: For instance $\operatorname{Ln}(-1)=\pi$ whereas $0=\operatorname{Ln}(1)=\operatorname{Ln}[(-1)(-1)] \neq \operatorname{Ln}(-1)+\operatorname{Ln}(-1)=2 \pi \imath$. For similar reason, Ln (as well as Arg) fail to be continuous, if you include the negative real axis in the domain. e.g. $\operatorname{Ln}\left(e^{-\imath / n}\right)=\imath(2 \pi-1 / n) \rightarrow 2 \pi \imath$ whereas $e^{-\imath / n} \rightarrow e^{0}=1$.

