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—————————

Properties of Exp

I We have seen that

exp(a + b) = exp(a) exp(b), a, b ∈ C (1)

and exp(0) = 1.

I Therefore exp(z) is never zero.

Thus, we have shown that exp defines a
homomorphism from the additive group C to the
multiplicative group C? := C \ {0}.

I Also
exp(nz) = exp(z)n

for all integers n ≥ 0.
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Properties of Exp

I Following Euler, let us denote exp(1) by e. Then we
have, exp(n) = en.

I This is the justification to have the notation ez for
exp(z) for all z .
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The Exponential Function

It may be worth recalling some elementary facts about e
that you know already.

I For instance, clearly 2 < e.

I By comparing with the geometric series
∑
n

2−n, it can

be shown easily that e < 3.

I Also we have,

e = lim
n−→∞

(
1 +

1

n

)n

. (2)
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The Exponential Function

I Also we have:

(ez) = e z̄ . (3)

directly from the power series definition and continuity
of the conjugation.

I This, in particular, implies that for a real number y ,

|e ıy |2 = e ıye ıy = e ıye−ıy = 1.

I Hence,

|e ıy | = 1, y ∈ R. (4)
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Trigonometric Functions.

I Writing e ıy = u + ıv = rE (θ) it follows that r = 1 and
u2 + v 2 = 1. Therefore u = cos θ and v = sin θ.

I On the other hand, by taking term-by-term real and
imaginary parts of the series

∑
n

(ıy)n

n! , we obtain

cos θ = 1− y 2

2!
+

y 4

4!
−+ · · · ;

sin θ = y − y 3

3!
+

y 5

5!
−+ · · ·

I This resolves the mystery about the ‘angle’ θ which
can now be identified with the real number y .

I The power series on the RHS have radius of
convergence ∞.
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Trigonometric Functions.

I Motivated by this, we can define the complex
trigonometric functions by

cos z = 1− z2

2!
+

z4

4!
−+ · · · (5)

sin z = z − z3

3!
+

z5

5!
−+ · · · . (6)

I Check that

sin z =
e ız − e−ız

2ı
; cos z =

e ız + e−ız

2
. (7)

I All standard properties of sin and cos can be derived
using the above power series definitions.

ARS (IITB) IITB MA205 Complex Analysis August 1, 2012 7 / 31



Trigonometric Functions.

I Motivated by this, we can define the complex
trigonometric functions by

cos z = 1− z2

2!
+

z4

4!
−+ · · · (5)

sin z = z − z3

3!
+

z5

5!
−+ · · · . (6)

I Check that

sin z =
e ız − e−ız

2ı
; cos z =

e ız + e−ız

2
. (7)

I All standard properties of sin and cos can be derived
using the above power series definitions.

ARS (IITB) IITB MA205 Complex Analysis August 1, 2012 7 / 31



Trigonometric Functions.

I Motivated by this, we can define the complex
trigonometric functions by

cos z = 1− z2

2!
+

z4

4!
−+ · · · (5)

sin z = z − z3

3!
+

z5

5!
−+ · · · . (6)

I Check that

sin z =
e ız − e−ız

2ı
; cos z =

e ız + e−ız

2
. (7)

I All standard properties of sin and cos can be derived
using the above power series definitions.

ARS (IITB) IITB MA205 Complex Analysis August 1, 2012 7 / 31



Relation between Exp and Trigonometry

I Other trigonometric functions are defined in terms of
sin and cos as usual. For example, we have
tan z = sin z/ cos z and its domain of definition is all
points in C at which cos z 6= 0.

I We have,

e ız = cos z + ı sin z . (8)

I In particular,

ex+ıy = exe ıy = ex(cos y + ı sin y). (9)

I It follows that e2πı = 1. (For a rigorous definition of π
you may refer to the optional problem 13 in set III of
your tutorial sheets.)
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Relation between Exp and Trigonometry

I Indeed, we shall prove that

ez = 1 iff z = 2nπı, n ∈ Z (10)

I Let z = x + ıy and ez = 1, i.e., ex(cos y + ı sin y) = 1.

I Equating real and imaginary parts on either side, we
have ex cos y = 1 and ex sin y = 0.

I Since ex 6= 0 for any x ∈ R, we must have, sin y = 0.
Hence, y = mπ, for some integer m. Therefore
ex cos mπ = 1.

I Since ex ≥ 0 for all x ∈ R, and cos mπ = ±1, it
follows that cos mπ = 1 and ex = 1. Therefore x = 0
and m = 2n, as desired.
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Exponential Function

Finally, we shall state the following without proof.

exp(C) = C?. (11)
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Exponential Function

Remark

One of the most beautiful equations:

Euler: eπı + 1 = 0 (12)

which relates in a simple arithmetic way, five of the most
fundamental numbers, made Eulera believe in the
existence of God!

aSee E.T. Bell’s book ‘Men of Mathematics’, for some juicy stories
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Mapping Properties of Exp and Trigonometric functions

You are familiar with the real limit

lim
x−→∞

exp(x) =∞.

However, such a result is not true when we replace the
real x by a complex z . In fact, given any complex number
w 6= 0, we have seen that there exists z such that
exp(z) = w . But then exp(z + 2nπı) = w for all n. Hence
we can get z ′ having arbitrarily large modulus such that
exp(z ′) = w .
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Mapping Properties of Exp and Trigonometric functions

As a consequence, it follows that limz−→∞ exp(z) does not
exist. Indeed we know

ex →∞ as x →∞

ex → 0 as x → −∞
and

|e ıy | = 1, y ∈ R.

The last formula means that under exp the imaginary axis
is mapped over the unit circle.
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Mapping Properties

Using the formula for sin and cos in terms of exp, it can
be easily shown that sin and cos are both surjective
mappings of C onto C. In particular, remember that they
are not bounded unlike their real counter parts.

I Let us see how to solve the equation sin z = w where
w ∈ C is arbitrary.

I Putting exp(ız) = T we have sin z = T−T−1

2ı = w . This
gives a quadratic equation in T :

T 2 − 2ıwT − 1 = 0.

I If T1 is a solution then T1 6= 0.
I There are many z such that exp ız = T1. If z1 is one

such then sin z1 = w .
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Hyperbolic Functions

Likewise, the complex hyperbolic functions are defined by

sinh z =
ez − e−z

2
; cosh z =

ez + e−z

2
. (13)

It is easy to see that these functions are all analytic.
Moreover, all the usual identities which hold in the real
case amongst these functions also hold in the complex
case and can be verified directly. One can study the
mapping properties of these functions as well, which have
wide range of applications.
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The Logarithm:

I This leads us to take up the study of solutions of
ez = w more seriously.

I In the real case, this was very easy since the mapping
exp : R→ R+ is a one-one and onto mapping and
therefore has a well defined inverse viz. the logarithm
ln .

I However, as we have observed, unlike in the real case,
the complex exponential function ez is not one-one,
and hence its inverse is going to be a multi-valued
function, or rather a set valued function.
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The Logarithm:

I This should not discourage us too much and we shall
still proceed to define the logarithm ‘ ln′ in the complex
case also similarly.

I Pick up any w 6= 0. ( this is needed!) Let us define
log w (or ln w) to be equal to the set of all z ∈ C
satisfying the equation ez = w .

I Thus
ln w := ln |w |+ ı arg w .

Observe that the multi-valuedness of ln w is caused by
that of arg w :

arg w = {θ + 2nπ : n ∈ Z}
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The Logarithm:

If θ is chosen such that −π < θ ≤ π (some authors
choose 0 ≤ θ < 2π) then we call it Principle value of
arg w and denote it by Arg w . Accordingly we get
Principle value of log and denote it by Log w .

The notation Ln z is also in use.
It follows that

log w = {Log w + 2πnı, n ∈ Z}.
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The Logarithm:

I We have the identity

ln(w1w2) = ln w1 + ln w2, (14)

[which directly follows from ez1+z2 = ez1ez2].

I Here, we have to interpret this identity
‘set-theoretically’.

I Caution: When z is a positive real number, ln z has
two meanings! Unless mentioned otherwise one should
stick to the older meaning, viz., ln z = Ln z in that
case.
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Exponents of complex numbers

I Recall that defining exponents was somewhat involved
process, even with positive real numbers. Now, we
want to deal with this concept with complex numbers.
Here the idea is to use the logarithm function which
converts multiplication into addition and hence the
‘exponent into multiplication.

I For any two complex numbers z ,w ∈ C \ {0}, define

zw := ew ln z . (15)
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Complex exponents

I Observe that on the rhs the term ln z is a multi-valued
function. Therefore, in general, this makes zw a set of
complex numbers rather than a single number. For
instance, 21/2 is a two element set viz., {

√
2,−
√

2}.

I First, let us take the simplest case, viz., w = n ≥ 1.
Then irrespective of the value of z (15) gives the single
value which is equal to z multiplied with itself n times.
For negative integer exponents also, the story is the
same except that, we need to have z 6= 0. But as soon
as w is not an integer, we can no longer say that this
is single-valued.
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√
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√

2}.
I First, let us take the simplest case, viz., w = n ≥ 1.
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Complex exponents

I Does this definition follow the familiar laws of
exponents:

zw1+w2 = zw1zw2; (z1z2)w = zw
1 zw

2 ? (16)

I Yes indeed. The only caution is that these formulae
tell you that the two terms on either side of the
equality sign are equal as sets. This is essentially a
consequence of the property (14):

ln(ab) = ln(a) + ln(b)
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The Logarithm as a single valued function:

I The logarithmic function is all too important to be left
as a mere set-valued function.

We would like to get
hold of some single valued function which can be
differentiated etc. and represents the logarithm
function.

I Such a function should be continuous to begin with.

I If we restrict the domain suitably, then we see that the
‘argument’ can be defined continuously.

I In fact for this to hold, we must be careful about a few
things.
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The Logarithm as a function:

I First of all, in our domain of definition of ln, 0 should
never be there.

I Secondly, in the domain of l , we should not able to
‘go around’ the origin.

I One way to ensure this is to throw away an entire ray
emerging from the origin, from the complex plane,
then for each point of the remaining domain a
continuous value of the argument can be chosen. This
in turn, defines a continuous value of the logarithmic
function also. We make a formal definition.
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The Logarithm as a function:

Definition

Given a multi-valued function f , on an open set Ω, by a
branch of f we mean a specific continuous function
g : Ω −→ C such that g(z) ∈ f (z) for all z ∈ Ω.

For instance, if h is a function which is not one-one,
then its inverse is a multi-valued function. Then any
continuous function g such that g ◦ h = Id over a
suitable domain will be called a branch of h−1.
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Branch of a Multi-valued Function

In particular, branches of the inverse of the exponential
function are called branches of the logarithmic function.

Over domains such as C \ L where L is an infinite half-ray
from the origin, we easily see that ln has countably infinite
number of branches.
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Branch Lemma

Here is the justification for the definition of ‘branch’.

Lemma

Let h : Ω1 −→ Ω2 be a complex differentiable function.
g : Ω2 −→ Ω1 be a continuous function such that
h ◦ g(w) = w , ∀ w ∈ Ω2. Suppose w0 ∈ Ω2 is such that
h′(z0) 6= 0, where z0 = g(w0). Then g is C-differentiable
at w0, with g ′(w0) = (h′(z0))−1.
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Branches of Multi-values functions

I Observe that as a corollary, we have obtained complex
differentiable branches of the logarithmic function. For
instance, Ln(z) := ln r + ıθ, − π < θ < 2π, is one
such branch defined over the entire of C minus the
negative real axis. The question of the nature of
domains on which ln has well defined branches will be
discussed later on.

I The hypothesis that h′(z0) 6= 0 is indeed unnecessary in
the above lemma. This stronger version of the above
lemma will be perhaps taken up later in the course.
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The real case

In contrast, in the real case, consider the function x 7→ x3

which defines a continuous bijection of the real line onto
itself. Its inverse is also continuous but not differentiable
at 0 as can be seen easily in different ways.
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Derivative of Ln

Example

Let us find out the derivative of a branch η(z) of the

logarithm. We shall show that
d

dz
(ηz) =

1

z
. Since,

exp ◦η = Id , it follows from the chain rule that
(exp)′(η(z))η′(z) = 1. Therefore, we have, zη′(z) = 1 and
hence, η′(z) = 1/z , as claimed.
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Discontinuity of Ln

The principle branch logarithm Ln does not have additive
property in the full: For instance Ln(−1) = π whereas
0 = Ln(1) = Ln[(−1)(−1)] 6= Ln(−1) + Ln(−1) = 2πı.

For similar reason, Ln (as well as Arg) fail to be
continuous, if you include the negative real axis in the
domain. e.g. Ln(e−ı/n) = ı(2π − 1/n)→ 2πı whereas
e−ı/n → e0 = 1.
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