
INDIAN INSTITUTE OF TECHNOLOGY BOMBAY
MA205 Complex Analysis Autumn 2012

Anant R. Shastri

Department of Mathematics
Indian Institute of Technology, Bombay

August 3, 2012



ARS (IITB) IITB MA205 Complex Analysis August 3, 2012 2 / 27



—————————

Some linear Algebra

Writing z = x + ıy as a coulumn
(
x
y

)
so that C is

identified with R2.

In particular, the complex numbers 1 and ι are represented
by
(

1
0

)
are
(

0
1

)
respectively.

Exercise: Show that the linear map R2 → R2 defined by
the matrix (

a b
c d

)
is multiplication by a complex number iff a = d and
c = −b.

ARS (IITB) IITB MA205 Complex Analysis August 3, 2012 2 / 27



Some linear Algebra

Writing z = x + ıy as a coulumn
(
x
y

)
so that C is

identified with R2.

In particular, the complex numbers 1 and ι are represented
by
(

1
0

)
are
(

0
1

)
respectively.

Exercise: Show that the linear map R2 → R2 defined by
the matrix (

a b
c d

)
is multiplication by a complex number iff a = d and
c = −b.

ARS (IITB) IITB MA205 Complex Analysis August 3, 2012 2 / 27



Some linear Algebra

Solution:

(
a b
c d

)(
1
0

)
=

(
a
c

)

Thereofore put w = a + ıc and check that
wz = (ax − cy) + ı(ay + cx) is the same as(

a −c
c a

)(
x
y

)
=

(
ax − cy
ay + cx

)
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Recall Calculus of 2-variables

I Let U be an open subset of C, z0 = (x0, y0) ∈ U and
f : U → C, f (x , y) = u(x , y) + ıv(x , y) be a given
function where u and v are real valued functions of
two real variables x , y .

I Saying that f has continuous partial derivatives is the
same saying that u, v have continuous partial
derivatives and in that case,

fx = ux + ıvx , fy = uy + ıvy .

I We also write ∇f =

(
ux uy

vx vy

)

ARS (IITB) IITB MA205 Complex Analysis August 3, 2012 4 / 27



Recall Calculus of 2-variables

I Let U be an open subset of C, z0 = (x0, y0) ∈ U and
f : U → C, f (x , y) = u(x , y) + ıv(x , y) be a given
function where u and v are real valued functions of
two real variables x , y .

I Saying that f has continuous partial derivatives is the
same saying that u, v have continuous partial
derivatives and in that case,

fx = ux + ıvx , fy = uy + ıvy .

I We also write ∇f =

(
ux uy

vx vy

)

ARS (IITB) IITB MA205 Complex Analysis August 3, 2012 4 / 27



Recall Calculus of 2-variables

I Let U be an open subset of C, z0 = (x0, y0) ∈ U and
f : U → C, f (x , y) = u(x , y) + ıv(x , y) be a given
function where u and v are real valued functions of
two real variables x , y .

I Saying that f has continuous partial derivatives is the
same saying that u, v have continuous partial
derivatives and in that case,

fx = ux + ıvx , fy = uy + ıvy .

I We also write ∇f =

(
ux uy

vx vy

)
ARS (IITB) IITB MA205 Complex Analysis August 3, 2012 4 / 27



Cauchy-Riemann Equation

Let us assume that f is complex differentiable at z0. Thus
we have:

f ′(z0) :=
df

dz
(z0) := lim

h→0

f (z0 + h)− f (z0)

h
. (1)

Taking the limit along the lines parellel to the x-axis or
y -axis, i.e., putting h = t, OR h = ıt, respectively, t ∈ R
under the limit, we get the two partial derivative of f at z0.
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Cauchy-Riemann Equation

Therefore,

f ′(z0) = lim
t→0

f (x0 + t, y0)− f (x0, y0)

t
= fx(x0, y0) = fx(z0) (2)

Similarly,
f ′(z0) = limt→0

f (x0,y0+t)−f (x0,y0)
ıt

=
1

ı
lim
t→0

f (x0, y0 + t)− f (x0, y0)

t
=

fy(z0)

ı
. (3)
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Cauchy-Riemann Equation

Combining the above two, we get

f ′(z0) = fx(z0) =
fy (z0)
ı

(4)

Equating the real and imaginary parts, we get
Cauchy Riemann Equations:

ux = vy ; uy = −vx (5)
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Cauchy-Riemann Equation

I Moreover we have

|f ′(z0)|2 = u2
x + v 2

x = u2
y + v 2

y = u2
x + u2

y =
v 2
x + v 2

y = uxvy − uyvx .
(6)

I The last expression above, which is the determinant of
the matrix [

ux uy

vx vy

]
(7)

is called the jacobian of the mapping f = (u, v), with
respect to the variables (x , y) and is denoted by

J(x ,y)(u, v) := uxvy − uyvx . (8)
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An Application

A simple minded application of CR-equations is that it
helps us to detect easily when a function is not
C-differentiable.

For example, <(z),=(z) etc are not complex differentiable
anywhere.
The function z 7→ |z |2 is not complex differentiable for
any point except at z = 0. It satisfies the CR-equations at
0. That of course does not mean that it is C-differentiable
at 0. You have to prove the differentiability directly.
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An Example

Example

If f (z) = z2

z , z 6= 0 and f (0) = 0, show that
Cauchy-Riemann equations are satisfied at z = 0, but
f ′(0) does not exist.

Sol: Put f = u + ıv . Then
u(x , y) = x3−3xy2

x2+y2 ; v(x , y) = −x2y+y3

x2+y2 . Direct computation
shows that
ux(0, 0) = 1; uy(0, 0) = 0; vx(0, 0) = 0, vy(0, 0) = 1.
Hence CR equations are satisfied.
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Solution continued

However, for z = re iθ, we have

lim
r→0

f (z)− f (0)

z
= lim

r→0

z̄2

z2
= e−4iθ.

This means that the limit taken along different lines is
different. Hence f ′(0) = limz→0

z̄2

z2 does not exist.
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Holomorphic functions

Definition

Let U be an open subset of R2 and f : U → R2 be a
function such that f = u + ıv . Suppose u, v have
continuous partial derivatives throughout U and u, v
satisfy CR equations. Then we say f is a homolorphic
function. (Cauchy called them ‘Synectic functions’)
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Holomorphic functions

Theorem

Let f be a complex valued function of a complex variable
defined on an open subset U . Then f is complex
differentiable in U iff f is holomorphic on U .
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Holomorphic functions

I If f is complex differentiable in U , we have seen that it
has partial derivatives in U which satify CR.

I The fact that these partial derivatives are continuous is
not easy to derive and will not be done in this course.

I The converse part is not difficult. Indeed using MVT
of 1-variable calculus, one can first show that the real
total derivative Df of f exists. Since the CR equations
are satisfied, this means that Df is multiplication by a
complex number. That is enough to conclude that the
complex derivative f ′ exists and is equal to Df . Again,
we shall skip the details of the proof of this.
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Cauchy-Riemann equations under orthogonal
transformations

Theorem

If f (z) = u + ıv is differentiable at a point z0 = z0 + ıy0 in
an open set G , then

∂u

∂s
=
∂v

∂n
,

∂u

∂n
= −∂v

∂s
(∗)

at (x0, y0) where ∂
∂s and ∂

∂n denote directional
differentiation in two orthogonal directions s and n at
(x0, y0), such that n is obtained from s by making a
counterclockwise rotation.
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I Solution: Put s = cos θi + sin θj,n = − sin θi + cos θj.

I Then

us =
∂u

∂s
= ∇u · s = ux cos θ + uy sin θ;

vs =
∂v

∂s
= ∇v · s = vx cos θ + vy sin θ.

I Similarly,

un =
∂u

∂n
= ∇u · n = −ux sin θ + uy cos θ;

vn =
∂v

∂n
= ∇v · n = −vx sin θ + vy cos θ.
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These quantities can be expressed in matrix form as:(
us un

vs vn

)
=

(
ux uy

vx vy

)(
cos θ − sin θ
sin θ cos θ

)
=

(
ux uy

vx vy

)
Rθ

where Rθ is rotation through an angle θ which is a
multiplication by a non zero complex number. Therefore
the first matrix is a multiplication by a complex number iff
the second one is. From the little bit of linear algebra that
we saw, in the begining, this establishes (*).
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CR equations in polar coordinates

Take a point other than the origin. (At the origin polar
coordinate is singular.) Say, z0 = (x0, y0) 6= (0, 0) and let
f = u + ıv . Then the equations

rur = vθ; rvr = −uθ. (9)

are equivalent to CR-equations and obtain the formula:

f ′(z0) = e−iθ0(ur + ivr) = − i
z0

(uθ + ivθ) (10)
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CR equations in polar coordinates

I Sol: Since x = r cos θ; y = r sin θ, we have

I xr = cos θ; xθ = −r sin θ; yr = sin θ; yθ = r cos θ.
Therefore, by the chain rule:

I ur = ux cos θ + uy sin θ; vr = vx cos θ + vy sin θ;
uθ = −uxr sin θ + uy r cos θ; vθ = −vxr sin θ + vy r cos θ.

I This can be expressed in the matrix form as:

r

(
cos θ sin θ
sinθ cos θ

)(
ux vy
uy −vx

)
=

(
rur vθ
uθ −rvr

)
.

I Note that r 6= 0, and the left most matrix is invertible.
Therefore the two columns vectors of the second
matrix are equal (CR equations in cartesian
cooridnates) iff the two columns of the matrix on the
RHS are equal (CR equations in polar coordiantes)
This proves (9)
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CR equations in polar coordinates

To prove (10):

Rewrite the above matrix equation in the form(
ux vy
uy −vx

)
=

(
cos θ − sin θ
sin θ cos θ

)(
ur vθ/r
uθ/r −vr

)
and substituting in f ′(z) = ux − ıuy , gives

f ′(z) = ur cos θ − uθ
r

sin θ − ı
(

ur sin θ +
uθ
r

cos θ
)

= ur cos θ + vr sin θ − ıur sin θ + ıvr cos θ
= e−ıθ(ur + ıvr)

=
e−ıθ

r
(vθ − ıuθ) =

−ı
z

(uθ + ıvθ).
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Harmonic functions

Let u : U → R be a twice continuously differentiable
function on an open subset U of R2. We say u is
Harmonic if it satisfies the Laplace equation

uxx + uyy = 0.

Theorem

If f = u + ıv is a holomorphic function then u and v are
harmonic.

In this situation, we say v is a harmonic conjugate of u.
For instance x3 − 3xy 2 is a Harmonic function. Its
harmonic conjugates are 3x2y − y 3) + c where c is any
constant.
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Harmonic functions

Theorem

Every harmonic funtion u on an open disc in R2 is the real
part of a holomorphic function.

Proof: We want to find a function v such that f = u + ıv
is holomorphic.

It such a v exists then it follows that vy = ux and
vx = −uy . So we set up v =

∫
uxdy . Then vy = ux alright.
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Harmonic functions

Moreover, vx =
∫

uxxdy = −
∫

uyydy = −uy . Therefore,
u, v satisfy CR equations. Since u is twice continuously
differentiable, so is v . Therefore ux , uy , vx , vy are
continuous also. This implies f is complex differentiable.
♠
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Formal derivatives

We introduce the following differential operators:

∂

∂z
:=

1

2

(
∂

∂x
− ı ∂

∂y

)
;

∂

∂z̄
:=

1

2

(
∂

∂x
+ ı

∂

∂y

)
.

They can be operated on any function f of two variables
which has partial derivatives.
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Formal derivatives

Note that

∂

∂z
z = 1,

∂

∂z̄
z = 0;

∂

∂z
(z̄) = 0,

∂

∂z̄
(z̄) = 1.

For composite functions, we also have formal chain rule:
Suppose g is a function of w = f (z) then

∂

∂z
(g ◦ f (z0) =

∂g

∂w
(f (z0))

∂

∂z
f (z0) +

∂g

∂w̄
(f (z0))

∂

∂z
f̄ (z0).

etc.
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Formal derivatives

Theorem

Suppose f is a holomorphic function. Then ∂
∂z f = f ′(z)

and ∂
∂z̄ f = 0.

Remark: Converse is is also true provided we assume f has
continuous partial derivatives in an open set.

Definition

We say f is anti-holomorphic if ∂
∂z (f ) = 0.

Theorem

f is holomorphic iff f̄ is antiholomorphic.
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Formal derivatives

The formal derivative approach allows to interpret a
holomorphic function as something which independent of
z̄ . Such an interpretation can be fully justified later as we
advance in our study of holomorphic functions. However
at this stage, let us make use of this interpretation.
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Finding Harmonic conjugates without integration

Let consider a harmonic function u defined on a disc
around the origin and such that u(0, 0) = 0.

Suppose f is such that f = u + ıv is holomorphic. Put
g = f̄ . Then g is an anti-holomorphic function. Using
x = z + z̄/2 and y = z − z̄/2ı we consider u as a function
of z and z̄ .
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Finding Harmonic conjugates without integration

Since u = f +g
2 , we have

u

(
z + z̄

2
,

z − z̄

2i

)
=

f (z) + g(z)

2
.

Since g is anti-holomorphic it is independent of z or
equivalently a function of z̄ alone and g(0) = 0.
Therefore, upon putting z̄ = 0 we obtain

u
(z

2
,

z

2ı

)
=

1

2
f (z).

We have the magic formula:

f (z) = 2u
(z

2
,

z

2i

)
.
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Magic formula

Example

(1) Take u = x2 − y 2. Then
u(z/2, z/2i) = (z/2)2 − (z/2i)2 = z2/2. Therefore
f (z) = z2.

(2) Take u = x3 − 3xy 2. Then 2u(z/2, z/2i) =
2(z/2)3 − 3(z/2)(z/2i)2 = z3/4 + 3z3/4 = z3.
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