INDIAN INSTITUTE OF TECHNOLOGY BOMBAY MA205 Complex Analysis Autumn 2012

Anant R. Shastri
Department of Mathematics
Indian Institute of Technology, Bombay

August 3, 2012

Some linear Algebra

Writing $z=x+\imath y$ as a coulumn $\binom{x}{y}$ so that \mathbb{C} is identified with \mathbb{R}^{2}.

Some linear Algebra

Writing $z=x+\imath y$ as a coulumn $\binom{x}{y}$ so that \mathbb{C} is identified with \mathbb{R}^{2}.
In particular, the complex numbers 1 and ι are represented by $\binom{1}{0}$ are $\binom{0}{1}$ respectively.
Exercise: Show that the linear map $\mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ defined by the matrix

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)
$$

is multiplication by a complex number iff $a=d$ and $c=-b$.

Some linear Algebra

$$
\text { Solution: }\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\binom{1}{0}=\binom{a}{c}
$$

Some linear Algebra

Solution: $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)\binom{1}{0}=\binom{a}{c}$
Thereofore put $w=a+\imath c$

Some linear Algebra

Solution: $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)\binom{1}{0}=\binom{a}{c}$
Thereofore put $w=a+\imath c$ and check that $w z=(a x-c y)+\imath(a y+c x)$ is the same as

$$
\left(\begin{array}{ll}
a & -c \\
c & a
\end{array}\right)\binom{x}{y}=\binom{a x-c y}{a y+c x}
$$

Recall Calculus of 2-variables

- Let U be an open subset of $\mathbb{C}, z_{0}=\left(x_{0}, y_{0}\right) \in U$ and $f: U \rightarrow \mathbb{C}, f(x, y)=u(x, y)+\imath v(x, y)$ be a given function where u and v are real valued functions of two real variables x, y.

Recall Calculus of 2-variables

- Let U be an open subset of $\mathbb{C}, z_{0}=\left(x_{0}, y_{0}\right) \in U$ and $f: U \rightarrow \mathbb{C}, f(x, y)=u(x, y)+\imath v(x, y)$ be a given function where u and v are real valued functions of two real variables x, y.
- Saying that f has continuous partial derivatives is the same saying that u, v have continuous partial derivatives and in that case,

$$
f_{x}=u_{x}+\imath v_{x}, \quad f_{y}=u_{y}+\imath v_{y} .
$$

Recall Calculus of 2-variables

- Let U be an open subset of $\mathbb{C}, z_{0}=\left(x_{0}, y_{0}\right) \in U$ and $f: U \rightarrow \mathbb{C}, f(x, y)=u(x, y)+\imath v(x, y)$ be a given function where u and v are real valued functions of two real variables x, y.
- Saying that f has continuous partial derivatives is the same saying that u, v have continuous partial derivatives and in that case,

$$
f_{x}=u_{x}+\imath v_{x}, \quad f_{y}=u_{y}+\imath v_{y} .
$$

- We also write $\nabla f=\left(\begin{array}{ll}u_{x} & u_{y} \\ v_{x} & v_{y}\end{array}\right)$

Cauchy-Riemann Equation

Let us assume that f is complex differentiable at z_{0}. Thus we have:

Cauchy-Riemann Equation

Let us assume that f is complex differentiable at z_{0}. Thus we have:

$$
\begin{equation*}
f^{\prime}\left(z_{0}\right):=\frac{d f}{d z}\left(z_{0}\right):=\lim _{h \rightarrow 0} \frac{f\left(z_{0}+h\right)-f\left(z_{0}\right)}{h} . \tag{1}
\end{equation*}
$$

Cauchy-Riemann Equation

Let us assume that f is complex differentiable at z_{0}. Thus we have:

$$
\begin{equation*}
f^{\prime}\left(z_{0}\right):=\frac{d f}{d z}\left(z_{0}\right):=\lim _{h \rightarrow 0} \frac{f\left(z_{0}+h\right)-f\left(z_{0}\right)}{h} . \tag{1}
\end{equation*}
$$

Taking the limit along the lines parellel to the x-axis or y-axis, i.e., putting $h=t$, OR $h=\imath t$, respectively, $t \in \mathbb{R}$ under the limit, we get the two partial derivative of f at z_{0}.

Cauchy-Riemann Equation

Therefore,
$f^{\prime}\left(z_{0}\right)=\lim _{t \rightarrow 0} \frac{f\left(x_{0}+t, y_{0}\right)-f\left(x_{0}, y_{0}\right)}{t}=f_{x}\left(x_{0}, y_{0}\right)=f_{x}\left(z_{0}\right)(2)$

Cauchy-Riemann Equation

Therefore,
$f^{\prime}\left(z_{0}\right)=\lim _{t \rightarrow 0} \frac{f\left(x_{0}+t, y_{0}\right)-f\left(x_{0}, y_{0}\right)}{t}=f_{x}\left(x_{0}, y_{0}\right)=f_{x}\left(z_{0}\right)(2)$

Similarly,

$$
\begin{align*}
f^{\prime}\left(z_{0}\right) & =\lim _{t \rightarrow 0} \frac{f\left(x_{0}, y_{0}+t\right)-f\left(x_{0}, y_{0}\right)}{\imath t} \\
& =\frac{1}{\imath} \lim _{t \rightarrow 0} \frac{f\left(x_{0}, y_{0}+t\right)-f\left(x_{0}, y_{0}\right)}{t}=\frac{f_{y}\left(z_{0}\right)}{\imath} \tag{3}
\end{align*}
$$

Cauchy-Riemann Equation

Combining the above two, we get

Cauchy-Riemann Equation

Combining the above two, we get

$$
\begin{equation*}
f^{\prime}\left(z_{0}\right)=f_{x}\left(z_{0}\right)=\frac{f_{y}\left(z_{0}\right)}{l} \tag{4}
\end{equation*}
$$

Cauchy-Riemann Equation

Combining the above two, we get

$$
\begin{equation*}
f^{\prime}\left(z_{0}\right)=f_{x}\left(z_{0}\right)=\frac{f_{y}\left(z_{0}\right)}{l} \tag{4}
\end{equation*}
$$

Equating the real and imaginary parts, we get Cauchy Riemann Equations:

$$
\begin{equation*}
u_{x}=v_{y} ; u_{y}=-v_{x} \tag{5}
\end{equation*}
$$

Cauchy-Riemann Equation

- Moreover we have

$$
\begin{align*}
& \left|f^{\prime}\left(z_{0}\right)\right|^{2}=u_{x}^{2}+v_{x}^{2}=u_{y}^{2}+v_{y}^{2}=u_{x}^{2}+u_{y}^{2}= \\
& v_{x}^{2}+v_{y}^{2}=u_{x} v_{y}-u_{y} v_{x} \tag{6}
\end{align*}
$$

Cauchy-Riemann Equation

- Moreover we have

$$
\begin{align*}
& \left|f^{\prime}\left(z_{0}\right)\right|^{2}=u_{x}^{2}+v_{x}^{2}=u_{y}^{2}+v_{y}^{2}=u_{x}^{2}+u_{y}^{2}= \tag{6}\\
& v_{x}^{2}+v_{y}^{2}=u_{x} v_{y}-u_{y} v_{x} .
\end{align*}
$$

- The last expression above, which is the determinant of the matrix

$$
\left[\begin{array}{ll}
u_{x} & u_{y} \tag{7}\\
v_{x} & v_{y}
\end{array}\right]
$$

is called the jacobian of the mapping $f=(u, v)$, with respect to the variables (x, y) and is denoted by

$$
\begin{equation*}
J_{(x, y)}(u, v):=u_{x} v_{y}-u_{y} v_{x} . \tag{8}
\end{equation*}
$$

An Application

A simple minded application of CR-equations is that it helps us to detect easily when a function is not \mathbb{C}-differentiable.

An Application

A simple minded application of CR-equations is that it helps us to detect easily when a function is not \mathbb{C}-differentiable.
For example, $\Re(z), \Im(z)$ etc are not complex differentiable anywhere.

An Application

A simple minded application of CR-equations is that it helps us to detect easily when a function is not \mathbb{C}-differentiable.
For example, $\Re(z), \Im(z)$ etc are not complex differentiable anywhere.
The function $z \mapsto|z|^{2}$ is not complex differentiable for any point except at $z=0$. It satisfies the CR-equations at 0 . That of course does not mean that it is \mathbb{C}-differentiable at 0 . You have to prove the differentiability directly.

An Example

Example

If $f(z)=\frac{\bar{z}^{2}}{z}, z \neq 0$ and $f(0)=0$, show that
Cauchy-Riemann equations are satisfied at $z=0$, but $f^{\prime}(0)$ does not exist.

Sol: Put $f=u+\imath v$. Then $u(x, y)=\frac{x^{3}-3 x y^{2}}{x^{2}+y^{2}} ; v(x, y)=\frac{-x^{2} y+y^{3}}{x^{2}+y^{2}}$. Direct computation shows that
$u_{x}(0,0)=1 ; u_{y}(0,0)=0 ; v_{x}(0,0)=0, v_{y}(0,0)=1$.
Hence CR equations are satisfied.

Solution continued

However, for $z=r e^{i \theta}$, we have

$$
\lim _{r \rightarrow 0} \frac{f(z)-f(0)}{z}=\lim _{r \rightarrow 0} \frac{\bar{z}^{2}}{z^{2}}=e^{-4 i \theta}
$$

This means that the limit taken along different lines is different. Hence $f^{\prime}(0)=\lim _{z \rightarrow 0} \frac{\bar{z}^{2}}{z^{2}}$ does not exist.

Holomorphic functions

Definition

Let U be an open subset of \mathbb{R}^{2} and $f: U \rightarrow \mathbb{R}^{2}$ be a function such that $f=u+\imath v$. Suppose u, v have continuous partial derivatives throughout U and u, v satisfy CR equations. Then we say f is a homolorphic function. (Cauchy called them 'Synectic functions')

Holomorphic functions

Theorem

Let f be a complex valued function of a complex variable defined on an open subset U. Then f is complex differentiable in U iff f is holomorphic on U.

Holomorphic functions

- If f is complex differentiable in U, we have seen that it has partial derivatives in U which satify CR.

Holomorphic functions

- If f is complex differentiable in U, we have seen that it has partial derivatives in U which satify CR.
- The fact that these partial derivatives are continuous is not easy to derive and will not be done in this course.

Holomorphic functions

- If f is complex differentiable in U, we have seen that it has partial derivatives in U which satify CR.
- The fact that these partial derivatives are continuous is not easy to derive and will not be done in this course.
- The converse part is not difficult. Indeed using MVT of 1-variable calculus, one can first show that the real total derivative $D f$ of f exists. Since the CR equations are satisfied, this means that $D f$ is multiplication by a complex number. That is enough to conclude that the complex derivative f^{\prime} exists and is equal to $D f$. Again, we shall skip the details of the proof of this.

Cauchy-Riemann equations under orthogonal transformations

Theorem
If $f(z)=u+\imath v$ is differentiable at a point $z_{0}=z_{0}+\imath y_{0}$ in an open set G, then

$$
\frac{\partial u}{\partial s}=\frac{\partial v}{\partial n}, \quad \frac{\partial u}{\partial n}=-\frac{\partial v}{\partial s}(*)
$$

at $\left(x_{0}, y_{0}\right)$ where $\frac{\partial}{\partial s}$ and $\frac{\partial}{\partial n}$ denote directional differentiation in two orthogonal directions s and n at $\left(x_{0}, y_{0}\right)$, such that n is obtained from s by making a counterclockwise rotation.

- Solution: Put $\mathbf{s}=\cos \theta \mathbf{i}+\sin \theta \mathbf{j}, \mathbf{n}=-\sin \theta \mathbf{i}+\cos \theta \mathbf{j}$.
- Solution: Put $\mathbf{s}=\cos \theta \mathbf{i}+\sin \theta \mathbf{j}, \mathbf{n}=-\sin \theta \mathbf{i}+\cos \theta \mathbf{j}$.
- Then

$$
\begin{aligned}
& u_{\mathbf{s}}=\frac{\partial u}{\partial \mathbf{s}}=\nabla u \cdot \mathbf{s}=u_{x} \cos \theta+u_{y} \sin \theta \\
& v_{\mathbf{s}}=\frac{\partial v}{\partial \mathbf{s}}=\nabla v \cdot \mathbf{s}=v_{x} \cos \theta+v_{y} \sin \theta
\end{aligned}
$$

- Solution: Put $\mathbf{s}=\cos \theta \mathbf{i}+\sin \theta \mathbf{j}, \mathbf{n}=-\sin \theta \mathbf{i}+\cos \theta \mathbf{j}$.
- Then

$$
\begin{aligned}
& u_{\mathbf{s}}=\frac{\partial u}{\partial \mathbf{s}}=\nabla u \cdot \mathbf{s}=u_{x} \cos \theta+u_{y} \sin \theta \\
& v_{\mathbf{s}}=\frac{\partial v}{\partial \mathbf{s}}=\nabla v \cdot \mathbf{s}=v_{x} \cos \theta+v_{y} \sin \theta .
\end{aligned}
$$

- Similarly,

$$
\begin{aligned}
u_{\mathbf{n}} & =\frac{\partial u}{\partial \mathbf{n}}=\nabla u \cdot \mathbf{n}=-u_{x} \sin \theta+u_{y} \cos \theta \\
v_{\mathbf{n}} & =\frac{\partial v}{\partial \mathbf{n}}=\nabla v \cdot \mathbf{n}=-v_{x} \sin \theta+v_{y} \cos \theta
\end{aligned}
$$

These quantities can be expressed in matrix form as: $\left(\begin{array}{ll}u_{\mathbf{s}} & u_{\mathbf{n}} \\ v_{\mathbf{s}} & v_{\mathbf{n}}\end{array}\right)=\left(\begin{array}{ll}u_{x} & u_{y} \\ v_{x} & v_{y}\end{array}\right)\left(\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right)$
$=\left(\begin{array}{ll}u_{x} & u_{y} \\ v_{x} & v_{y}\end{array}\right) R_{\theta}$

These quantities can be expressed in matrix form as: $\left(\begin{array}{ll}u_{\mathbf{s}} & u_{\mathbf{n}} \\ v_{\mathbf{s}} & v_{\mathbf{n}}\end{array}\right)=\left(\begin{array}{ll}u_{x} & u_{y} \\ v_{x} & v_{y}\end{array}\right)\left(\begin{array}{ll}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right)$
$=\left(\begin{array}{ll}u_{x} & u_{y} \\ v_{x} & v_{y}\end{array}\right) R_{\theta}$
where R_{θ} is rotation through an angle θ which is a multiplication by a non zero complex number. Therefore the first matrix is a multiplication by a complex number iff the second one is.

These quantities can be expressed in matrix form as: $\left(\begin{array}{ll}u_{\mathbf{s}} & u_{\mathbf{n}} \\ v_{\mathbf{s}} & v_{\mathbf{n}}\end{array}\right)=\left(\begin{array}{ll}u_{x} & u_{y} \\ v_{x} & v_{y}\end{array}\right)\left(\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right)$
$=\left(\begin{array}{ll}u_{x} & u_{y} \\ v_{x} & v_{y}\end{array}\right) R_{\theta}$
where R_{θ} is rotation through an angle θ which is a multiplication by a non zero complex number. Therefore the first matrix is a multiplication by a complex number iff the second one is. From the little bit of linear algebra that we saw, in the begining, this establishes $\left(^{*}\right)$.

CR equations in polar coordinates

Take a point other than the origin. (At the origin polar coordinate is singular.) Say, $z_{0}=\left(x_{0}, y_{0}\right) \neq(0,0)$ and let $f=u+\imath v$. Then the equations

$$
\begin{equation*}
r u_{r}=v_{\theta} ; \quad r v_{r}=-u_{\theta} . \tag{9}
\end{equation*}
$$

are equivalent to CR-equations and obtain the formula:

$$
\begin{equation*}
f^{\prime}\left(z_{0}\right)=e^{-i \theta_{0}}\left(u_{r}+i v_{r}\right)=-\frac{i}{z_{0}}\left(u_{\theta}+i v_{\theta}\right) \tag{10}
\end{equation*}
$$

CR equations in polar coordinates

- Sol: Since $x=r \cos \theta ; y=r \sin \theta$, we have

CR equations in polar coordinates

- Sol: Since $x=r \cos \theta ; y=r \sin \theta$, we have
- $x_{r}=\cos \theta ; x_{\theta}=-r \sin \theta ; y_{r}=\sin \theta ; y_{\theta}=r \cos \theta$.

Therefore, by the chain rule:

CR equations in polar coordinates

- Sol: Since $x=r \cos \theta ; y=r \sin \theta$, we have
- $x_{r}=\cos \theta ; x_{\theta}=-r \sin \theta ; y_{r}=\sin \theta ; y_{\theta}=r \cos \theta$.

Therefore, by the chain rule:

- $u_{r}=u_{x} \cos \theta+u_{y} \sin \theta ; v_{r}=v_{x} \cos \theta+v_{y} \sin \theta$; $u_{\theta}=-u_{x} r \sin \theta+u_{y} r \cos \theta ; v_{\theta}=-v_{x} r \sin \theta+v_{y} r \cos \theta$.

CR equations in polar coordinates

- Sol: Since $x=r \cos \theta ; y=r \sin \theta$, we have
- $x_{r}=\cos \theta ; x_{\theta}=-r \sin \theta ; y_{r}=\sin \theta ; y_{\theta}=r \cos \theta$.

Therefore, by the chain rule:

- $u_{r}=u_{x} \cos \theta+u_{y} \sin \theta ; v_{r}=v_{x} \cos \theta+v_{y} \sin \theta$; $u_{\theta}=-u_{x} r \sin \theta+u_{y} r \cos \theta ; v_{\theta}=-v_{x} r \sin \theta+v_{y} r \cos \theta$.
- This can be expressed in the matrix form as:
$r\left(\begin{array}{ll}\cos \theta & \sin \theta \\ \sin \theta & \cos \theta\end{array}\right)\left(\begin{array}{ll}u_{x} & v_{y} \\ u_{y} & -v_{x}\end{array}\right)=\left(\begin{array}{ll}r u_{r} & v_{\theta} \\ u_{\theta} & -r v_{r}\end{array}\right)$.

CR equations in polar coordinates

- Sol: Since $x=r \cos \theta ; y=r \sin \theta$, we have
- $x_{r}=\cos \theta ; x_{\theta}=-r \sin \theta ; y_{r}=\sin \theta ; y_{\theta}=r \cos \theta$.

Therefore, by the chain rule:

- $u_{r}=u_{x} \cos \theta+u_{y} \sin \theta ; v_{r}=v_{x} \cos \theta+v_{y} \sin \theta$;
$u_{\theta}=-u_{x} r \sin \theta+u_{y} r \cos \theta ; v_{\theta}=-v_{x} r \sin \theta+v_{y} r \cos \theta$.
- This can be expressed in the matrix form as:
$r\left(\begin{array}{ll}\cos \theta & \sin \theta \\ \sin \theta & \cos \theta\end{array}\right)\left(\begin{array}{ll}u_{x} & v_{y} \\ u_{y} & -v_{x}\end{array}\right)=\left(\begin{array}{ll}r u_{r} & v_{\theta} \\ u_{\theta} & -r v_{r}\end{array}\right)$.
- Note that $r \neq 0$, and the left most matrix is invertible.

Therefore the two columns vectors of the second matrix are equal (CR equations in cartesian cooridnates) iff the two columns of the matrix on the RHS are equal (CR equations in polar coordiantes)

CR equations in polar coordinates

To prove (10):

CR equations in polar coordinates

To prove (10):
Rewrite the above matrix equation in the form

$$
\left(\begin{array}{ll}
u_{x} & v_{y} \\
u_{y} & -v_{x}
\end{array}\right)=\left(\begin{array}{ll}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right)\left(\begin{array}{ll}
u_{r} & v_{\theta} / r \\
u_{\theta} / r & -v_{r}
\end{array}\right)
$$

and substituting in $f^{\prime}(z)=u_{x}-\imath u_{y}$, gives

$$
\begin{aligned}
f^{\prime}(z) & =u_{r} \cos \theta-\frac{u_{\theta}}{r} \sin \theta-\imath\left(u_{r} \sin \theta+\frac{u_{\theta}}{r} \cos \theta\right) \\
& =u_{r} \cos \theta+v_{r} \sin \theta-\imath u_{r} \sin \theta+\imath v_{r} \cos \theta \\
& =e^{-\imath \theta}\left(u_{r}+\imath v_{r}\right) \\
& =\frac{e^{-\imath \theta}}{r}\left(v_{\theta}-\imath u_{\theta}\right)=\frac{-\imath}{z}\left(u_{\theta}+\imath v_{\theta}\right) .
\end{aligned}
$$

Harmonic functions

Let $u: U \rightarrow \mathbb{R}$ be a twice continuously differentiable function on an open subset U of \mathbb{R}^{2}. We say u is
Harmonic if it satisfies the Laplace equation

$$
u_{x x}+u_{y y}=0
$$

Theorem
If $f=u+\imath v$ is a holomorphic function then u and v are harmonic.

In this situation, we say v is a harmonic conjugate of u. For instance $x^{3}-3 x y^{2}$ is a Harmonic function. Its harmonic conjugates are $3 x^{2} y-y^{3}$) $+c$ where c is any constant.

Harmonic functions

Theorem
Every harmonic funtion u on an open disc in \mathbb{R}^{2} is the real part of a holomorphic function.

Proof: We want to find a function v such that $f=u+\imath v$ is holomorphic.

Harmonic functions

Theorem

Every harmonic funtion u on an open disc in \mathbb{R}^{2} is the real part of a holomorphic function.

Proof: We want to find a function v such that $f=u+\imath v$ is holomorphic.
It such a v exists then it follows that $v_{y}=u_{x}$ and $v_{x}=-u_{y}$. So we set up $v=\int u_{x} d y$. Then $v_{y}=u_{x}$ alright.

Harmonic functions

Theorem

Every harmonic funtion u on an open disc in \mathbb{R}^{2} is the real part of a holomorphic function.

Proof: We want to find a function v such that $f=u+\imath v$ is holomorphic.
It such a v exists then it follows that $v_{y}=u_{x}$ and $v_{x}=-u_{y}$. So we set up $v=\int u_{x} d y$. Then $v_{y}=u_{x}$ alright.

Harmonic functions

Moreover, $v_{x}=\int u_{x x} d y=-\int u_{y y} d y=-u_{y}$. Therefore, u, v satisfy CR equations. Since u is twice continuously differentiable, so is v. Therefore $u_{x}, u_{y}, v_{x}, v_{y}$ are continuous also. This implies f is complex differentiable.

Formal derivatives

We introduce the following differential operators:

$$
\frac{\partial}{\partial z}:=\frac{1}{2}\left(\frac{\partial}{\partial x}-\imath \frac{\partial}{\partial y}\right) ; \quad \frac{\partial}{\partial \bar{z}}:=\frac{1}{2}\left(\frac{\partial}{\partial x}+\imath \frac{\partial}{\partial y}\right) .
$$

They can be operated on any function f of two variables which has partial derivatives.

Formal derivatives

Note that

$$
\frac{\partial}{\partial z} z=1, \frac{\partial}{\partial \bar{z}} z=0 ; \frac{\partial}{\partial z}(\bar{z})=0, \frac{\partial}{\partial \bar{z}}(\bar{z})=1 .
$$

Formal derivatives

Note that

$$
\frac{\partial}{\partial z} z=1, \frac{\partial}{\partial \bar{z}} z=0 ; \frac{\partial}{\partial z}(\bar{z})=0, \frac{\partial}{\partial \bar{z}}(\bar{z})=1 .
$$

For composite functions, we also have formal chain rule: Suppose g is a function of $w=f(z)$ then

$$
\frac{\partial}{\partial z}\left(g \circ f\left(z_{0}\right)=\frac{\partial g}{\partial w}\left(f\left(z_{0}\right)\right) \frac{\partial}{\partial z} f\left(z_{0}\right)+\frac{\partial g}{\partial \bar{w}}\left(f\left(z_{0}\right)\right) \frac{\partial}{\partial z} \bar{f}\left(z_{0}\right) .\right.
$$ etc.

Formal derivatives

Theorem

Suppose f is a holomorphic function. Then $\frac{\partial}{\partial z} f=f^{\prime}(z)$ and $\frac{\partial}{\partial \bar{z}} f=0$.

Remark: Converse is is also true provided we assume f has continuous partial derivatives in an open set.

Definition

We say f is anti-holomorphic if $\frac{\partial}{\partial z}(f)=0$.

Theorem

f is holomorphic iff \bar{f} is antiholomorphic.

Formal derivatives

The formal derivative approach allows to interpret a holomorphic function as something which independent of \bar{z}. Such an interpretation can be fully justified later as we advance in our study of holomorphic functions. However at this stage, let us make use of this interpretation.

Finding Harmonic conjugates without integration

Let consider a harmonic function u defined on a disc around the origin and such that $u(0,0)=0$.

Finding Harmonic conjugates without integration

Let consider a harmonic function u defined on a disc around the origin and such that $u(0,0)=0$. Suppose f is such that $f=u+\imath v$ is holomorphic.

Finding Harmonic conjugates without integration

Let consider a harmonic function u defined on a disc around the origin and such that $u(0,0)=0$. Suppose f is such that $f=u+\imath v$ is holomorphic. Put $g=\bar{f}$. Then g is an anti-holomorphic function. Using $x=z+\bar{z} / 2$ and $y=z-\bar{z} / 2 \imath$ we consider u as a function of z and \bar{z}.

Finding Harmonic conjugates without integration Since $u=\frac{f+g}{2}$, we have

$$
u\left(\frac{z+\bar{z}}{2}, \frac{z-\bar{z}}{2 i}\right)=\frac{f(z)+g(z)}{2} .
$$

Finding Harmonic conjugates without integration Since $u=\frac{f+g}{2}$, we have

$$
u\left(\frac{z+\bar{z}}{2}, \frac{z-\bar{z}}{2 i}\right)=\frac{f(z)+g(z)}{2}
$$

Since g is anti-holomorphic it is independent of z or equivalently a function of \bar{z} alone and $g(0)=0$.

Finding Harmonic conjugates without integration Since $u=\frac{f+g}{2}$, we have

$$
u\left(\frac{z+\bar{z}}{2}, \frac{z-\bar{z}}{2 i}\right)=\frac{f(z)+g(z)}{2}
$$

Since g is anti-holomorphic it is independent of z or equivalently a function of \bar{z} alone and $g(0)=0$.
Therefore, upon putting $\bar{z}=0$ we obtain

$$
u\left(\frac{z}{2}, \frac{z}{2 l}\right)=\frac{1}{2} f(z)
$$

We have the magic formula:

$$
f(z)=2 u\left(\frac{z}{2}, \frac{z}{2 i}\right)
$$

Magic formula

Example

(1) Take $u=x^{2}-y^{2}$. Then
$u(z / 2, z / 2 i)=(z / 2)^{2}-(z / 2 i)^{2}=z^{2} / 2$. Therefore $f(z)=z^{2}$.

Magic formula

Example

(1) Take $u=x^{2}-y^{2}$. Then
$u(z / 2, z / 2 i)=(z / 2)^{2}-(z / 2 i)^{2}=z^{2} / 2$. Therefore $f(z)=z^{2}$.
(2) Take $u=x^{3}-3 x y^{2}$. Then $2 u(z / 2, z / 2 i)=$ $2(z / 2)^{3}-3(z / 2)(z / 2 i)^{2}=z^{3} / 4+3 z^{3} / 4=z^{3}$.

