MA-205 Autumn 2012 Final Examination
 QUESTION-CUM-ANSWER SHEET

11-00 am - $1.00 \mathrm{pm} \quad$ Sept 15, $2012 \quad$ Total marks - 80
Q. 1 Let $f(z)=a \bar{z}+b$ denote the reflection in a line perpendicular to the unit vector $0 P$ where the point P is represented by $w \in \mathbb{C}$. Then the value of a is equal to $=-w^{2}(=-w / \bar{w}=$ $(\imath w)^{2}$.)
Q. 2 Define the radius of convergence of a power series.

Answer: $\operatorname{Sup}\left\{\left\{|z|: \sum_{n} a_{n} z^{n}\right.\right.$ is convergent $\}$.
OR $\operatorname{Sup}\left\{\left\{|z|: \sum_{n}\left|a_{n} z^{n}\right|\right.\right.$ is convergent $\}$.
OR $\operatorname{Sup}\left\{r: \sum_{n}\left|a_{n}\right| r^{n}\right.$ is convergent $\}$.
Partial marking:
(i) One mark awarded if the answer is like: 'maximum value of z (instead supremum of $-\mathrm{Z}-)$ such that $\sum a_{n} z^{n}$ is cgt.
(ii) No makrs id fo the answer is like:(a) radius of the largest disc in which the function has no singularity ...
(b) R is the value above which it diverges and below which it converges...
Q. 3 Give a formula which relates the radius of convergence R of a power series $\sum_{n} a_{n} z^{n}$ with the coefficients a_{n}.
Answer: Put $L=\lim \sup _{n}\left|a_{n}\right|^{1 / n}$. Then $R=1 / L$.
No marks if
(i) modulus sign missing in the formula
(ii) lim instead of limsup
(iii) Ratios instead of $n^{\text {th }}$ roots.

Partial marking: Writing limsum=lim will get atmost 1 mark.
Q. 4 Define an essential singularity.

Answer: An isolated singularity which is neither a removable singularity nor a pole is called an essantial singularity.

Or Principal part of the Laurent series has infinitely many nonzero terms.

Penalty of one mark for anwers such as
(a) $f(z)$ is infinite at z_{0}
(b) Limit is infinite from one side and finite from other side.
(c) pole of infinite order.
(d) wrong excample included for illustration.
Q. 5 Let R be the radius of convergence of the series $P(z)=\sum_{n} a_{n} z^{2 n+1}$, where $\lim _{n \rightarrow \infty}\left|a_{n}\right|^{1 / n}=$ 5. Then $R=\frac{1}{\sqrt{5}}$
Q. 6 Show that there is no $z \in \mathbb{C}$ such that $\tan z= \pm \imath$.

Answer: $\tan z=\frac{e^{\imath z}-e^{-\imath z}}{\imath\left(e^{2 z}+e^{-2 z}\right)}= \pm \imath$
iff $e^{\imath z}-e^{-\imath z}=\mp\left(e^{\imath z}+e^{-\imath z}\right)$
iff $2 e^{ \pm z z}=0$. which is impossible.
Q. 7 Answer the following three questions by first selecting the correct choice (True/False) and justifying it briefly.
(i) If the map $f(z)=a z+b$ represents a rotation then $|a|=1$ and $a \neq 1$. (TRUE/)

- 1 mark
because $|f(z)-f(0)|=|z-0|$ for every z implies that $|a z|=|z|$ for every z implies that $|a|=1$
......(1 mark)
and $a=1$ implies $f(z)=z+b$ is a translation and not a rotation
f has unique fixed point implies $a z+b=z$ has a unique solution implies $(a-1) z=-b$ has a unique solution implies $a \neq 1$.
(ii) Every fractional linear transformation preserves the cross-ratio.
(TRUE)
because every FLT is the composite of some translations, multiplications and the inversion map $z \mapsto 1 / z$, and since each of these maps preserve the cross ratio.
(iii) Every entire function with a removable singularity at infinity is a constant. (TRUE) function is a constant.
Q. 8 State Cauchy's integral formula for a holomorphic function f defined on the open disc $B_{R}(a)$.
Answer: $f(z)=\frac{1}{2 \pi \imath} \int_{|z-a|=r} \frac{f(w)}{w-z} d w$, for all $|z-a|<r<R$.
Deduct one mark if the contour of integration is incorrect, or the factor $2 \pi \imath$ is missing, or the range of z is incorrect. If all these are incorrect then award 0 mark.
Q. 9 Evaluate the integrals $I_{j}=\int_{\gamma_{j}} \frac{e^{z}-e^{-z}}{z^{4}} d z$ along the four contours drawn in the following picture.

$\left[I_{j}=\frac{\eta\left(\gamma_{j}, 0\right) 2 \pi \imath f^{(3)}(0)}{3!}\right.$, where $f(z)=e^{z}-e^{-z} . f^{(3)}(0)=2$. The values of $\eta\left(\gamma_{j}, 0\right)$ are $1,-1,2$ and 0 respectively.]
Answer $I_{1}=\frac{2 \pi}{3} l ; \quad I_{2}=-\frac{2 \pi}{3} l ; \quad I_{3}=\frac{4 \pi}{3} i ; \quad I_{4}=0$.
Q. 10 Make a list of all the singularities of $\frac{z}{\sin z}$ and the respective residues at these points. [4]

Answer: $z=0$ a removable singularity Residue $=0$
$z=n \pi$ are all (simple) poles and residue $=(-1)^{n} n \pi$.
Partial Marking
Deduct one mark if the sign is not correct.
Deduct one mark if the second answer is $2 n \pi$.
Award one mark if ∞ is mentioned as an essential singularity with residue equal to 0 .
Q. 11 Show that $f(z)=\sin z$ defines a conformal mapping on
$U=\{x+\imath y: 0<x<\pi / 2\}$ and describe its image $f(U)$.
Answer:Put $z=x+\imath y, f(z)=u+v v$
Then $u=\sin x \cosh y ; v=\cos x \sinh y$. Dedice from this or otherwise that CR equations are satisfied.
(1 mark)
$\sin z_{1}=\sin z_{2}$ iff $z_{1}=z_{2}+2 n \pi$ or $(2 n+1) \pi-z_{2}$.
Therefore in $U, f(z)=\sin z$ is one-one.
(Ignore the CR eqaution part if this step is correct.)
(Award one mark if instead $f^{\prime}(z) \neq 0$ is claimed.)
The line $x=0$ is mapped onto the line $u=0$.
$x>0$ implies $u>0$. Therefore $f(U)$ is contained in the half plane $u>0$.
The line $x=\pi_{2}$ is mapped onto $u=\cosh y \geq 1$ and $v=0$. Therefore $f(U)$ does not intersect this line which means
$f(U)=\{u+v: u>0\} \backslash\{u+v v: u \geq 1, v=0\}$.
Q. 12 Complete the following sentence: A subset A of a domain Ω in \mathbb{C} is called an isolated set iff
for every $z \in \Omega$, there is $\delta>0$ such that $B_{\delta}(z) \cap A \subset\{z\}$.
Q. 13 State Cauchy's estimate for the $n^{\text {th }}$ derivative of a holomorphic function defined on an open disc $B_{r}(a)$.

Answer: Let $M_{r}=\operatorname{Sup}\{|f(z)|:|z-a|=r\}$
OR let $M_{r} \geq|f(z)|$ on $B_{r}(a)$.
Then $\left|f^{(n)}(a)\right| \leq \frac{n!M_{r}}{r^{n}}$.
No mark for writing Cauchy's integral formula for the $n^{\text {th }}$ derivative is written.
Q. 14 Suppose f is a holomorphic function on \mathbb{C} such that its $2012^{\text {th }}$ derivative $f^{(2012)}(z)=0$ on the portion of the y-axis lying between \imath and $-\imath$ and such that $f(1)=10, f(2)=15$. Show that for any $w \in \mathbb{C}$ there is $z \in \mathbb{C}$ such that $f(z)=w$.
Answer: The first condition implies that f is a polynomial.
The second condition tells you that f is non constant.
By Fundamental Theorme of Algebra, f takes all the complex values.
Q. 15 State the following theorems:
(i) Identity theorem: Let f and g be holomorphic functions on a region Ω. Suppose K is such that for every $z \in K, f(z)=g(z)$ and K has a limit point in Ω. (Alt: K is not an isolated subset of Ω.) Then $f \equiv g$ on Ω.

Full marks for taking $g=0$ in the above answer.
Only one mark if K is assumed to be a non empty open set.
No mark for writing something about flts, even if the statement is correct.
(ii) Gauss Mean Value theorem: If f is a holomorphic (or a harmonic) function on $B_{R}\left(z_{0}\right)$ then for every $0<r<R$, we have

$$
f\left(z_{0}\right)=\frac{1}{2 \pi} \int_{0}^{2 \pi} f\left(z_{0}+r^{2 \theta}\right) d \theta
$$

If the factor $\frac{1}{2 \pi \imath}$ appears instead of $\frac{1}{2 \pi}$ deduct 1 mark.
Q. 16 Let $f(z)=\frac{z+b}{c z+d}$ be such that $f(5)=-1 / 3 ; f(-5)=-3$
and $f(100)=9 / 11$. Then
$b=-10 ; c=1 ; d=10$.
Q. 17 Evaluate the integral $\int_{0}^{2 \pi} \frac{d \theta}{5+4 \cos \theta}$,

Answer: Put $\cos \theta=\frac{z+z^{-1}}{2}$.
Then the given integral is equal to
$I=\frac{1}{2 \imath} \int_{|z|=1} \frac{d z}{(z+1 / 2)(z+2)}=\frac{1}{2 \imath} \int_{|z|=1} f(z) d z$.
The only singularity inside $|z|<1$ is at $z_{0}=-1 / 2$.
The residue at this point is $\frac{2}{3}$.
Therefore $I=\frac{1}{2 \imath} 2 \pi \imath \frac{2}{3}=\frac{2 \pi}{3}$.
Using directly substitution $t=\theta$ (as in Pre-Jee) and obtaining correct answer carries full mark No parila markings in this method.
Using the class work for the integral $\int_{0}^{2 \pi} \frac{d \theta}{1+a \sin \theta} d \theta$ and deriving the correct answer carries full mark. No partial marking in this method.
Q. 18 Prove or disprove the following statement.

Let C_{R} be the semicircle lying in the upper half plane with center 0 and radius R. Let $f(z)=\frac{z e^{z z}}{z^{2}+z+1}$. Then

$$
\lim _{R \rightarrow \infty} \int_{C_{R}} f(z) d z=0
$$

Answer: The statment is true
Put $g(z)=\frac{z}{z^{2}+z+1}=\frac{z}{(z-a)(z-b)}$
Then for $|z|>R \gg 0$ we have $|g(z)| \leq \frac{R}{(R-|a|)(R-|b|)}=M_{R}$.
By Jordan's inequality $\int_{0}^{\pi} e^{-R \sin \theta} d \theta<\pi / R$.
Therefore $\left|\int_{C_{R}} f(z) d z\right| \leq M_{R}\left|\int_{0}^{\pi} e^{\imath R e^{\imath \theta}}{ }^{2} R e^{\imath \theta} d \theta\right|$
$\leq M_{R} R \int_{0}^{\pi} e^{-R \sin \theta} d \theta<M_{R} \pi \rightarrow 0$
as $R \rightarrow \infty$.

