Derksen's Proof of FTA¹

We present a proof of Fundamental Theorem of Algebra through a sequence of easily do-able exercises. The proof uses only elementary linear algebra and of course the intermediate value theorem.

- 1. Show that every odd degree polynomial $p(t) \in \mathbb{R}[t]$ has a real root. (This is where IVT is used. From now onwards we only use linear algebra.)
- 2. Companion Matrix Let $p(t) = t^n + a_1 t^{n-1} + \dots + a_n$ be a monic polynomial of degree n. Its companian matrix C_p is defined to be the $n \times n$ matrix

$$C_p = \begin{bmatrix} 0 & 1 & 0 & \cdots & 0 & 0 \\ 0 & 0 & 1 & \cdots & 0 & 0 \\ \vdots & \vdots & & \vdots & \vdots \\ 0 & \cdots & \cdots & 0 & 1 \\ -a_n & -a_{n-1} & & \cdots & \cdots & -a_1 \end{bmatrix}$$

Show that $\det(tI - C_p) = p(t)$.

- 3. Show that every non constant polynomial $p(t) \in \mathbb{K}[t]$ of degree *n* has a root in \mathbb{K} iff every linear map $\mathbb{K}^n \to \mathbb{K}^n$ has an eigen value in \mathbb{K} .
- 4. Every \mathbb{R} -linear map $f : \mathbb{R}^{2n+1} \to \mathbb{R}^{2n+1}$ has real eigen value.
- 5. Show that the space $\operatorname{HERM}_n(\mathbb{C})$ of all complex Hermitian $n \times n$ matrices is a \mathbb{R} vector space of dimension n^2 .
- 6. Given $A \in M_n(\mathbb{C})$, the mappings

$$\alpha_A(B) = \frac{1}{2}(AB + BA^*); \quad \beta_A(B) = \frac{1}{2i}(AB - BA^*)$$

define \mathbb{R} -linear maps $\operatorname{HERM}_n(\mathbb{C}) \to \operatorname{HERM}_n(\mathbb{C})$. Show that α, β commute with each other.

 $^{-1}$ From Amer. Math. Monthly- 110,(2003), pp. 620-623. (Presented by Anant Shastri at ATML-2006, on 13th June 2006)

- 7. If α_A and β_A have a common eigen vector then A has an eigen value in \mathbb{C} .
- 8. Show that any two commuting linear maps $\alpha, \beta : \mathbb{R}^{2n+1} \to \mathbb{R}^{2n+1}$ have a common eigen vector.(Use induction and subspaces kernel and image of $\alpha - \lambda I_n$ where λ is an eigen value of α .)
- 9. Every \mathbb{C} -linear map $\mathbb{C}^{2n+1} \to \mathbb{C}^{2n+1}$ has an eigen value.
- 10. Show that the space $\text{SKEW}_n(\mathbb{K})$ of skew symmetric $n \times n$ matrices forms a subspace of dimension n(n-1)/2 of $M_n(\mathbb{K})$.
- 11. Given $A \in M_n(\mathbb{K})$, show that

$$\phi_A : B \mapsto \frac{1}{2}(AB + BA^t); \quad \psi_A : B \mapsto ABA^t$$

define endomorhisms of SKEW_n(\mathbb{K}). Show that if *B* is a common eigen vector of ϕ_A, ψ_A then $(A^2 + aA + b)B = 0$ for some $a, b \in \mathbb{K}$. Further if $\mathbb{K} = \mathbb{C}$, conclude that *A* has an eigen value.

Let $E(\mathbb{K}, k, r)$ denote the following statement: Any mutually commuting endomorphisms $A_1, \ldots, A_r : \mathbb{K}^n \to \mathbb{K}^n$ have a common eigen vector for all n not divisible by 2^k .

- 12. Prove that $E(\mathbb{K}, k, 1) \Longrightarrow E(\mathbb{K}, k, 2)$.
- 13. Prove that $E(\mathbb{C}, k, 1) \Longrightarrow E(\mathbb{C}, k+1, 1)$. Hence conclude $E(\mathbb{C}, k, 1)$ is true for all $k \ge 1$.
- 14. Conclude that every non constant polynomial over complex numbers has a root.