## Derksen's Proof of FTA ${ }^{1}$

We present a proof of Fundamental Theorem of Algebra through a sequence of easily do-able exercises. The proof uses only elementary linear algebra and of course the intermediate value theorem.

1. Show that every odd degree polynomial $p(t) \in \mathbb{R}[t]$ has a real root. (This is where IVT is used. From now onwards we only use linear algebra.)
2. Companion Matrix Let $p(t)=t^{n}+a_{1} t^{n-1}+\cdots+a_{n}$ be a monic polynominal of degree $n$. Its companian matrix $C_{p}$ is defined to be the $n \times n$ matrix

$$
C_{p}=\left[\begin{array}{cccccc}
0 & 1 & 0 & \cdots & 0 & 0 \\
0 & 0 & 1 & \cdots & 0 & 0 \\
\vdots & \vdots & & & \vdots & \vdots \\
0 & \cdots & & \cdots & 0 & 1 \\
-a_{n} & -a_{n-1} & & \cdots & \cdots & -a_{1}
\end{array}\right]
$$

Show that $\operatorname{det}\left(t I-C_{p}\right)=p(t)$.
3. Show that every non constant polynomial $p(t) \in \mathbb{K}[t]$ of degree $n$ has a root in $\mathbb{K}$ iff every linear map $\mathbb{K}^{n} \rightarrow \mathbb{K}^{n}$ has an eigen value in $\mathbb{K}$.
4. Every $\mathbb{R}$-linear map $f: \mathbb{R}^{2 n+1} \rightarrow \mathbb{R}^{2 n+1}$ has real eigen value.
5. Show that the space $\operatorname{HERM}_{n}(\mathbb{C})$ of all complex Hermitian $n \times n$ matrices is a $\mathbb{R}$ vector space of dimension $n^{2}$.
6. Given $A \in M_{n}(\mathbb{C})$, the mappings

$$
\alpha_{A}(B)=\frac{1}{2}\left(A B+B A^{*}\right) ; \quad \beta_{A}(B)=\frac{1}{2 \imath}\left(A B-B A^{*}\right)
$$

define $\mathbb{R}$-linear maps $\operatorname{HERM}_{n}(\mathbb{C}) \rightarrow \operatorname{HERM}_{n}(\mathbb{C})$. Show that $\alpha, \beta$ commute with each other.

[^0]7. If $\alpha_{A}$ and $\beta_{A}$ have a common eigen vector then $A$ has an eigen value in $\mathbb{C}$.
8. Show that any two commuting linear maps $\alpha, \beta: \mathbb{R}^{2 n+1} \rightarrow \mathbb{R}^{2 n+1}$ have a common eigen vector.(Use induction and subspaces kernel and image of $\alpha-\lambda I_{n}$ where $\lambda$ is an eigen value of $\alpha$.)
9. Every $\mathbb{C}$-linear map $\mathbb{C}^{2 n+1} \rightarrow \mathbb{C}^{2 n+1}$ has an eigen value.
10. Show that the space $\operatorname{SKEW}_{n}(\mathbb{K})$ of skew symmetric $n \times n$ matrices forms a subspace of dimension $n(n-1) / 2$ of $M_{n}(\mathbb{K})$.
11. Given $A \in M_{n}(\mathbb{K})$, show that
$$
\phi_{A}: B \mapsto \frac{1}{2}\left(A B+B A^{t}\right) ; \quad \psi_{A}: B \mapsto A B A^{t}
$$
define endomorhisms of $\operatorname{SKEW}_{n}(\mathbb{K})$. Show that if $B$ is a common eigen vector of $\phi_{A}, \psi_{A}$ then $\left(A^{2}+a A+b\right) B=0$ for some $a, b \in \mathbb{K}$. Further if $\mathbb{K}=\mathbb{C}$, conlude that $A$ has an eigen value.
Let $E(\mathbb{K}, k, r)$ denote the following statememt: Any mutually commuting endomorphisms $A_{1}, \ldots, A_{r}: \mathbb{K}^{n} \rightarrow \mathbb{K}^{n}$ have a common eigen vector for all $n$ not divisible by $2^{k}$.
12. Prove that $E(\mathbb{K}, k, 1) \Longrightarrow E(\mathbb{K}, k, 2)$.
13. Prove that $E(\mathbb{C}, k, 1) \Longrightarrow E(\mathbb{C}, k+1,1)$. Hence conclude $E(\mathbb{C}, k, 1)$ is true for all $k \geq 1$.
14. Conclude that every non constant polynomial over complex numbers has a root.


[^0]:    ${ }^{1}$ From Amer. Math. Monthly- 110,(2003), pp. 620-623. (Presented by Anant Shastri at ATML-2006, on 13th June 2006)

