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Lecture 1

Basic requirements for this Seminar Series: Familiarity with the notion of

differential manifold, submersion, vector bundles.

1 Some Examples

Let us begin with some examples:

(1) Write Rm = Rd × Rm−d. As we know this is one of the several cartesian product

decomposition of Rm. Via the second projection, this can also be thought of as a ‘trivial

vector bundle’ of rank d over Rm−d. This also gives the trivial example of a codim. d-

foliation of Rn, as a decomposition into d-dimensional leaves Rd × {y} as y varies over

Rm−d.

(2) A little more generally, we may consider any two manifolds M,N and a submersion

f : M → N. Here M can be written as a disjoint union of fibres of f each one is a

submanifold of dimension equal to dim M − dim N = d. We say f is a submersion

of M of codimension d. The manifold structure for the fibres comes from an atlas for

M via the surjective form of implicit function theorem since dfp : TpM → Tf(p)N is

surjective at every point of M. We would like to consider this description also as a

codim d foliation. However, this is also too simple minded one and hence we would call

them simple foliations. If the fibres of the submersion are connected as well, then we

call it strictly simple.

(3) Kronecker Foliation of a Torus Let us now consider something non trivial. Fix

an irrational number a. To each λ ∈ S1 consider the map fλ : R → S1 × S1 given by

t 7→ (e2πıt, λe2πıat).

Clearly, fλ is an injective immersion. Call he image fλ(R) a leaf. Each leaf is dense in

S1 × S1 (exercise). As λ varies over S1 these curves cover S1 × S1. For λ1 6= λ2, either

fλ1(R) ∩ fλ2(R) = ∅ or they are equal. Indeed fλ1(R) = fλ2(R) iff λ1λ
−1
2 ∈< e2πıa > .

Thus the leaves are parameterised by the quotient group S1/ < e2πıa > . This group has

very poor topological structure: the closure of the identity element is the whole group.

In fact this foliation is induced via the covering projection p : R2 → S1 × S1 from

the foliation of R2 given by the lines of irrational slope a. On R2 this is a simple foliation.

The induced one on S1 × S1 is not a simple one.

1These lectures were part of the Year Long Programme in Geometry and Topology 2008
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Later we shall see that if p : M → N is a covering projection then giving a foliation

on M is equivalent to giving a foliation on N.

(4) Möbius Band Think of Möbius band M as a quotient of R2 by the relation

(x, y) ∼ (x′, y′) iff x − x′ is an integer and y′ = (−1)x−x′y. Then the product folia-

tion R2 = R×R induces a foliation on M. All lines R× {y} are mapped to circles, the

ones with y = n+ 1
2

being mapped onto the central circle. Note that this is a non simple

foliation, in the sense, it does not correspond to any submersion. If you interchange

the (x, y) coordinates, then you get another foliation which makes M, the twisted line

bundle over S1.

(5) The Reeb Foliation of S3. Think of S3 as a union of two solid tori S1 × D2 and

D2 × S1 glued along their boundary via the identity map.

S3 = {(z1, z2) ∈ C× C : |z1|2 + |z2|2 = 1}.

M1 = {(z1, z2) ∈ S3 : |z1|2 ≤ 1/2}; M2 = {(z1, z2) ∈ S3 : |z2|2 ≤ 1/2}

S3 = M1 ∪M2; M1 ∩M2 = {(z1, z2) : |z1|2 =
1

2
= |z2|2}.

We shall construct a foliation of S3 by constructing one on each of the solid tori Mj

in which the boundary surface occurs as a leaf and glue them together to get a foliation

on S3.

Consider φ : int D2 × R → R given by

φ(x, y, t) = e
1

1−x2−y2 − t.

This map is clearly a submersion and hence defines a simple foliation on int D2×R. For

each s ∈ R, we get a leaf which is the the graph of the function (x, y) 7→ e
1

1−x2−y2 − s.

Each leaf is diffeomorphic to int D2 ( diffeomorphic to R2). Every point on the boundary

of D2 × R is the limit point of the leaves and each leaf is ‘tangential at infinity’ to the

boundary. By adding the boundary also as a leaf, we get a foliation of D2 × R. The

covering map D2 ×R → D2 × S1 then induces a foliation on D2 × S1. Note that except

the boundary piece, every other leaf is diffeomorphic to R2. As subspaces of D2 × S1,

they are submanifolds but not closed.

Two copies of these are then put together to get a foliation of S3.

We can consider the space of leaves as a quotient space of S3. Here too, this space

has a single point whose closure is the whole space.

So far, we have not defined a number of terms here such as foliation, leaves etc..

The idea was to motivate appropriate definitions by looking at these examples.

2 Basic Definitions

Throughout these notes, M will denote a m-dimensional smooth manifold.
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Definition 2.1 Let 1 ≤ d ≤ m − 1. By a foliation-atlas U = {(Ui, φi)} on M of

codimension m− d (or equivalently, ... of dimension d) we mean an open covering {Ui}
of M and diffeomorphisms φi : Ui → Rd × Rm−d satisfying the compatibility condition

(FA) for every pair (i, j) the change of charts

φij = φj ◦ φ−1
i : φi(Ui ∩ Uj) → φj(Ui ∩ Uj)

is of the form

φij(x, y) = (gij(x, y), hij(y)), (x, y) ∈ Rd × Rm−d.

Two foliation-atlases U1,U2 are said to be compatible with each other, if the change

of chart from any member of U1 to any member of U2 satisfies (FA). In that case, it follows

that U1 ∪ U2 itself is a foliation-atlas. Therefore every foliation-atlas is contained in a

unique maximal one.

Definition 2.2 A maximal foliation-atlas F on M is called a foliation on M. Members

(Ui, φi) of a foliation F will be called local product structures for M.

Example 2.1 Let us verify that any submersion f : M → N defines a foliation in a

natural way. By surjective form of implicit function theorem, to each point p ∈ m we

have a nbd Ui of p and diffeomorphisms ψi : Rn → Ui and αi : Rn−d → f(Ui) such that

ψi(0) = p and f ◦ ψi(x1, . . . , xn) = α(xd+1, . . . , xn). Therefore we can take φi = ψ−1
i and

then hij = α−1
j ◦ αi will fit the condition (FA). Thus the collection {(Ui, ψ

−1
i )} forms

an atlas of submersions on M. The important point to note here is that the class of F
obtained this way is independent of the choices of Ui and ψi.

Exercise 2.1 Verify that each of the examples discussed above fits the above definition

of a foliation.

Remark 2.1

(i) We may allow d = 0. Thus a differentiable structure on M is nothing but a 0-

foliation.

(ii) Given a foliation F , we take any foliation atlas U belonging to F to study its

geometric aspects. Thus, if p ∈ Ui, put φ(p) = (x, y) ∈ Rd × Rm−d. Then φ−1
i (Rd × y)

is a submanifold of Ui diffeomorphic to Rd and contains the point p. We call this a

slice of F through p. Observe that any two slices of F through p coincide in a nbd of p

(i.e., independent of the index i chosen). Each open set Ui is a disjoint union of slices.

Whenever two slices belonging to different charts meet, they will meet in an open set in

the slice and hence their union is a submanifold of dimension d. This is then true for any

finite union of slices. However, when we take infinite union something breaks down. We

shall come back to these objected which are going to be called leaves of the foliation, a

little later.
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3 Vector fields

Let now TM denote the tangent bundle of M, C(M) denote the ring of all smooth

functions on M and X(M) denote the space of all smooth sections of M i.e., smooth

vector fields on M. Observe that X(M) is a C(M)-module.

Definition 3.1 A family of vector fields {Xj} on M is said to be locally finite if for

every point p ∈M, there is a nbd U of p in M such that for all but finitely many j, we

have Xj|U ≡ 0. A submodule V of X(M) is said to be complete if for each locally finite

family {Xj} in V, we have
∑

j X
j ∈ V.

Example 3.1 (i) Let M be a non compact manifold and Xc(M) be the submodule of

X(M) consisting of those fields with compact support. Then Xc(M) is not a complete

submodule. For, there are definitely vector fields X whose support is non compact and

we can write X =
∑

j ηjX where {ηj} is a smooth partition of unity associated to a

relatively compact, locally finite atlas.

(ii) On the other hand if M is compact, then every submodule V of X(M) is complete.

For, if {Xj} is a locally finite subfamily of V we can find a finite cover {Uk} of M such

that restricted to each Uk the family is finite, which in turn implies that the family itself

is finite.

Given a vector subspace V of X(M), as such we are not interested in the rank

(dimension) of V as a vector space. But we are interested in another number which we

shall call dimension of V.

Definition 3.2 Let V be a vector subspace of X(M). Given any point p ∈M consider

the mapping V → Tp(M) given by X 7→ X(p), which is clearly a linear map of vector

spaces. Let us denote the image of this map by E(V )p. Suppose V is such that for each

p, dim E(V )p = d. Then we call this common number d the dimension of V. We also

call a rank d-subbundle of tangent bundle TM a d-field on M.

We are interested in the question when does the collection {E(V )p} define a sub-

bundle of TM.

Theorem 3.1 Let E be a d-field on M and V (E) denote the set of all vector fields X

such that X(p) ∈ Ep for all p. Then V (E) is a complete submodule of X(M) and is of

dimension d. Moreover, the assignment

E 7→ V (E)

defines a one-to-one correspondence between d-fields on M and d-dimensional complete

submodules of X(M).

Proof: Check that V (E) is a complete submodule. To see that V (E) is of dimension

d, it is enough to check that V (E)p = Ep. Again, clearly V (E)p ⊂ Ep. To see the other
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way inclusion, given v ∈ Ep, it is enough to produce a vector field X such that Xp = v

and Xq ∈ Eq for each q ∈ M. Since E is locally trivial, we can find a vector field Y in

a nbd U of p such that Yq ∈ Eq, q ∈ U and Yp = v. Now choose a bump function η at p

on M and consider X = ηY. Then outside U, η = 0 and hence it follows that Xq ∈ Eq

for all q ∈M. Also η(p) = 1 and hence Xp = v as required.

Now let V be a d-dim. complete submodule of X(M). We shall show that E(V )

is a subbundle of TM. Given any point p ∈ M, let X1, . . . , Xd ∈ V be such that

{X1
p , . . . , X

d
p} forms a basis for E(V )p. Fix a product structure to the tangent bundle

TM over a nbd U of p and let us write TU = U × Rm. In this product structure, the

vector fields Xj are nothing but smooth maps Xj : U → Rm which are independent

at p. We may complete {X1
p , . . . , X

d
p} to a basis {X1

p , . . . , X
d
p ,v1, . . . ,vm−d} of Rm. By

continuity, there is a nbd W of p on which {X1
q , . . . , X

d
q ,v1, . . . ,vm−d} will form a basis

for Rm. This then gives subbundle structure to E(V ) over W. Thus E(V ) is a d-field.

It remains to verify that E(V (E)) = E and V (E(V )) = V. The first one is verified

since the same holds point-wise, i.e, E(V (E))p = V (E)p = Ep. For the second equality,

it is clear that V ⊂ V (E(V )). On the other hand, let X ∈ V (E(V )), i.e., a vector field

X such that Xp ∈ E(V )p for each p.

Pick up an open covering {Uα} for M and for each i, vector fields Xα,1, . . . , Xα,d ∈
V which span E(V )q for all q ∈ Uα. Write

X(q) =
∑

j

tα,j(q)X
α,j(q), q ∈ Uα

where tα,j are smooth function on Uα. Choose a partition of unity {ηα} subordinate to

{Uα} and put

Y α(q) = ηα(q)

(
d∑

j=1

tα,j(q)X
α,j(q)

)
, q ∈ Uα.

Then each Y α ∈ V and this is a locally finite family. Therefore X =
∑

α Y
α ∈ V, since

V is complete. ♠

Corollary 3.1 A d-dimensional submodule V of X(M) is complete iff it satisfies the

following condition: ” X ∈ X(M) is in V iff Xp ∈ Vp for every p ∈M.

Lecture 2

Remark 3.1 Given a submersion φ : M → N, ker (Dφ) defines a d-field on M where

d = dim M − dim N. However, a d-field need not define a submersion. On the other

hand locally, it does precisely the same. This motivates the following definition.

Definition 3.3 By an atlas S of submersions of codim d on a manifold M, we mean a

family fi : Ui → Rm−d of submersions, where {Ui} is an open covering of M, satisfying

the following compatibility condition:

(AS) For each point p ∈ Ui ∩Uj, there exists a nbd W of fi(p) in Rm−d and a diffeomor-

phism h of W onto a nbd of fj(p) such that fj(q) = h ◦ fi(q), q ∈ (fi)
−1(W ) ∩ Uj = V.

5



V
fi

||yy
yy

yy
yy

y
fj

$$IIIIIIIII

W
h // h(W )

Fig.1

Remark 3.2 Given two atlases of codim d submersions the union will be an atlas, if

members of one are compatible with the members of the other. As usual, every atlas of

submersions is contained in a unique maximal atlas.

Remark 3.3 Given a foliation-atlas U ∈ F , put fi = π2 ◦ φi where π2 : Rd × Rm−d →
Rm−d is the second projection.
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Then {(Ui, fi)} becomes an atlas of submersions. We can then take the maximal

atlas of submersions containing this and call this and denote it by Fs. Observe that if

we had chosen a different atlas belonging to F , we still get the same maximal atlas of

submersions.

Conversely given a maximal atlas of submersions S, we can take a refinement

{(Ui, fi)} of it for which there exist diffeomorphisms φi : Ui → Rd × Rm−d such that

π2 ◦ φi = fi. (In the above diagram, given one of the two horizontal maps, the other one

can be constructed.) It then follows that {(Ui, φ)} is a foliation-atlas. We can now take

the maximal one containing this and denote this by Sa. It is easy to check that that

((F)s)a = F and (Sa)s = S once you observe that a refinement of an atlas (in either

situation) is compatible with the given atlas. Thus we have an alternative definition of

foliation in the form of the following theorem.

Theorem 3.2 The assignments F  Fs and S  Sa are inverses of each other and

so define a 1-1 correspondence of foliations on M with the class of maximal atlases of

submersions.

Remark 3.4 Given a d-foliation F , we associate a d-field E(F) as follows. For each

p ∈ Uα, take E(F)p = Ker D(fα)p. Because of the compatibility condition (AS), this

is independent of α chosen so that p ∈ Uα. Therefore each E(F)p is a well defined d-

dimensional subspace of TpM. On the other hand, the subspaces being kernel of local

submersions, the local triviality of the subbundle follows. Thus E(F) is a d-field on M.

We consider the problem of when and how to construct a foliation out of a given d-field.
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The following lemma plays the key role in the next result. It can be proved as a direct

application of implicit function theorem.

Lemma 3.1 Let U be an open subset of Rm, f, g : U → Rm−d be two submersions

such that Ker D(f)q = Ker D(g)q for all q ∈ U. Then for every p ∈ U, there is an open

nbd W of f(p) and a diffeomorphism h : W → h(W ) onto an open nbd of g(p) such

that h ◦ f = g in a nbd of p.

As an immediate consequence we have:

Theorem 3.3 Let E be a d-field on a manifold M, {Uα} be an open covering of M and

fα : Uα → Rm−d such that Ker D(fα)q = Eq, q ∈ Uα. Then {(Uα, fα)} is an atlas of

submersions.

Theorem 3.4 The association F 7→ E(F) is one-one.

Proof: Suppose E(F1) = E(F2). Then the hypothesis in the above theorem is satisfied

for the atlas F1 ∪ F2. Therefore, F1 ∪ F2 is as atlas of submersions. Since both Fi are

maximal, F1 = F1 ∪ F2 = F2. ♠

Definition 3.4 A d-field E on M is called completely integrable(CI), if there exists a

d-foliation F such that E(F) = E.

Remark 3.5 Thus d-foliations on M are in 1-1 correspondence with completely inte-

grable d-fields on M. This result however does not really give us a new definition of a

foliation since complete integrability is not defined independent of the foliation. This

we shall take up soon.

It turns out that not all d-fields are CI. However, it is not so difficult to see this

to be true for d = 1.

Theorem 3.5 Every 1-field is completely integrable.

Proof: By lemma 3.1, the problem becomes a local one. So, consider a point p ∈ M

and a nbd U of p in which the line bundle is trivial. This then gives us a vector field X

on U which is non zero on U. We may assume that p = 0 and that X0 = en. The Initial

value problem

f(q, 0) = q,
∂f

∂t
(q, t) = X(f(q, t)) (1)

has a unique solution f : W × (−ε, ε) → U, where W is some nbd of 0 in Rn and ε > 0.

Put V ′ = W ∩Rn−1×{0}× (−ε, ε) and h = f |V ′. Since h(x, 0, 0) = (x, 0), it follows that
∂h
∂xi

(0) = ei, i = 1, 2, . . . , n − 1. Also ∂h
∂t

(0) = X0 = en. Therefore h is of maximal rank

at (0, 0) and hence there exist a nbd V of 0 in V ′ on which h is a diffeomorphism. Now

look at η = π ◦h−1 on h(V ), where π : V ′ → Rn−1 is the natural projection. Clearly η is

a submersion. From (1) it follows that D(h)(x,0,t)(∂t) = Xh(x,0,t). Since D(π)(∂t) = 0, it

follows that Xq ∈ Ker D(η)q, q ∈ h(V ). Since Ker D(η) is 1-dimensional, it is spanned

by X. ♠
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4 Frobenius Theorem

Let us recall some more basic facts about vector fields.

Given a smooth vector field X on a smooth manifold M and a smooth function

f : M → R, let us define the function Xf by the formula

(Xf)p = Xp(f),

where the rhs represents the directional derivative of f in the direction of Xp (up to

scalar). Indeed, here we are using the definition of a tangent vector Xp at p ∈ M to be

a map defined on the set of all smooth real valued functions in a nbd of p to the real

numbers with the properties:

(a) If f and g agree on a nbd of p then Xp(f) = Xp(g)

(b) Xp(αf + βg) = αXp(f) + βXp(g).

(c) Xp(fg) = Xp(f)g(p) + f(p)Xp(g).

Verification that p 7→ Xpf is smooth as a function of p (since X is smooth) is straight

forward once you convert the whole thing in local coordinates. And the same argument

shows that X also satisfies (b) and (c). Thus

Theorem 4.1 Every smooth vector field X defines a derivation on the ring C∞(M),

i.e., a linear map of the vector spaces C(M) → C(M) which satisfies the Leibniz rule:

X(fg) = X(f)g + fX(g).

What we are now interested in is the converse of this.

Theorem 4.2 Every derivation on C∞(M) corresponds to a smooth vector field on M.

Proof: Given a derivation χ on C(M), for each p ∈ M, define Xp(f) = χ(f)(p). Then

Xp satisfies (b) and (c). To prove (a) we shall simply show that if f vanishes in a nbd

U of p, then chi(f)(p) = 0. By smooth Urysohn’s lemma, there exists a smooth map λ

on M which is 1 outside U and is λ(p) = 0. Thus f = λf. Now χ(f)(p) = χ(λ(p) =

λ(p)χ(f)(p) + χ(λ)(p)f(p) = 0. ♠

Remark 4.1 The partial derivatives ∂j w.r.t. to the variable xj on Rm are simple

examples of vector fields on Rm. One of the important properties of these vector fields

is that successive operations by several of them can be performed in any order without

affecting the end result, i.e., ∂j denotes the partial derivative w.r.t xj then we know that

∂j∂k(f) = ∂k∂j(f), f ∈ C(Rm). This is no longer true of arbitrary elements of X(M)

(even when M = Rm). In order to capture this non commutativeness of vector fields,

we consider the operation

(X, Y ) 7→ [X, Y ] := XY − Y X

called the Lie-bracket of X with Y. The following properties are easily verified.
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Lemma 4.1 The binary operation bracket

[ , ] : X(M)× X(M) → X(M)

satisfies the following properties.

(i) [X, Y ] is bilinear.

(ii) Anti-symmetric:[Y,X] = −[X, Y ].

(iii) [[X, Y ], Z] + [[Y, Z], X] + [[Z,X], Y ] = 0.

(iv) [fX, gY ] = fg[X, Y ] + fX(g)Y − gY (f)X.

Exercise Verify (iv).

Remark 4.2 Observe that [ , ] need not be even associative. Property (iii) is a

replacement for non associativity and is called Jacobi Identity. In the abstract set up

properties (i),(ii),(iii) make a vector space with an binary operation [ , ] into a Lie

Algebra. Any vector subspace which is closed under [ , ] will then be called a Lie

subalgebra. The special property (iv) in the case of X(M), gives the relation between

the C(M)-module structure and the bracket operation, which comes handy when we

want to study C(M)-submodules of X(M) which are Lie subalgebras. Our study of

these objects begins with:

Lemma 4.2 Any 1-dimensional complete submodule of X(M) is a subalgebra.

Proof: If V is a 1-dimensional submodule, then Vp is 1-dimensional for every p ∈ M.

Let X, Y ∈ V. From cor 3.1, it is enough to prove that [X, Y ]p ∈ Vp,∀ p ∈M. If Xp 6= 0,

we can write Yq = λXq in a nbd Up of p. Then [X, Y ]q = [X,λX]q = Xq(λ)X ∈ V.

In particular, [X, Y ]p = Xp(λ)Xp ∈ Vp. Similarly we can show that if Yp 6= 0, then

[X, Y ]p ∈ V. If both Xp = 0 = Yp then clearly [X, Y ]p = inVp. ♠

Remark 4.3 Observe that a 1-dimensional submodule need not be cyclic.

We are now ready for the celebrated theorem:

Theorem 4.3 Frobenius A d-field E is completely integrable iff V (E) is a subalgebra

of X(M).

Proof: . We have proved that V (E) is a complete submodule. We have also proved that

every line field is completely integrable and every 1-dimensional complete submodule is

a subalgebra. Combining these together gives the proof of the above theorem for d = 1.

Suppose E is CI. Let X, Y ∈ V (E). Then to each point p ∈ M there is a nbd Up

and a submersion fp : Up → Rm−d such that Eq = Ker D(fp)q for all q ∈ Up. Therefore

D(fp)q(X) = 0 = D(fp)q(Y ). This implies that D(fp)q([X, Y ]) = 0. This just means

that [X, Y ]p ∈ Ep. Therefore, [X, Y ] ∈ V (E).

The converse part is proved by induction on d. Thus we assume d ≥ 2 and for

every (d− 1)-dimensional field E ′, such that V (E ′) is a subalgebra, E ′ is CI. Let now E

be a d− field and V (E) be a subalgebra of X(M).
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It is enough to find to each p ∈ M a nbd U of p and a submersion f : U → Rm−d

such that Ker (Df)q = Eq for all q ∈ U. (See theorem 3.3).

The problem is thus completely local in nature and so, we may assume that p =

0 ∈ Rm and we have vector fields {X1, . . . , Xd} which form a basis for Eq at all points

q in a nbd W of 0. We may further assume that X1 = ∂1. By subtracting a suitable

multiple of X1 from j, j ≥ 0, we assume that Xj =
∑m

i=2 α
j
i∂i. Put S = W ∩ 0× Rm−1.

Consider the vector fields Y j = Xj|S, j = 2, . . . , d. Since they are linearly indepen-

dent, they define a d − 1 field E ′ on S. The complete module V (E ′) on S is generated

by {Y 2, . . . , Y d}. Therefore, in order to see that V (E ′) is a subalgebra, it is enough to

know that [Y j, Y k] ∈ V (E). This follows from the fact that [∂j, ∂k] = 0 and the property

(iv) in lemma 4.1.

By induction hypothesis, cutting down to a nbd of 0 in S we have assume that

there is a submersion f ′ : S → Rm−d such that Ker D(f ′)q = E ′
q for all q ∈ S.

Let π : U → S be the projection π(x1, . . . , xm) = (x2, . . . , xm). We claim f = f ′ ◦π
is the required submersion. That f is a submersion is obvious. We have to show that

Ker D(f)(x,q) = E(x1,q) for all q ∈ S, (x1, q) ∈ U.
This is where we need the hypothesis that V (E) is a subalgebra. And we need the

uniqueness of solutions of initial value problems of systems of first order linear differential

equations.

By dimensional considerations, it is enough to show that (Df)Xj = 0, j = 1, . . . , d.

For j = 1 this is obvious. Put f = (f1, . . . , fm−d). Then (Df)Xj = (Xjf1, . . . , X
jfm−d).

Therefore, we have to show that Xjfi = 0 for 2 ≤ j ≤ d, 1 ≤ i ≤ m− d.

Fix 1 ≤ i ≤ m−d. Clearly X1fi = 0 (because fi are independent of x1). Therefore,

X1Xjfi = X1Xjfi −XjX1fi = [X1, Xj]fi =
d∑

k=1

cj,kX
kfi =

d∑
k=2

ck,jX
kfi.

Then the above can be expressed as a solution φj = Xjfi to the system of linear first

order differential equation:
∂

∂x1

φj =
∑

k

cj,kφk.

Moreover these solutions satisfy the initial condition

φj(0, q) = Y jfi = D(fi)(Y
j) = D(π) ◦D(f ′)(Y j) = 0.

By the uniqueness of the solution, it follows that φj = 0 for all j on U as required. ♠
Lecture 3

5 Foliation as a differential ideal of Ω(M).

Let us now consider another major tool in Differential Geometry viz., the De’Rham

complex Ω(M) = ⊕m
k=0Ω

k(M) of (smooth) differential forms on M. A 1-form ω ∈ Ω1(M)

on M can be thought of as a linear map ω : X(M) → C(M)

ω(X)(p) = ωp(Xp).

10



Similarly, we can think of k-form ω on Ω as a C(M)-valued alternating k-tensor X(M)

by the formula

ω(X1, . . . , Xk)(p) = ωp(X
1
p , . . . , X

k
p ).

Proposition 5.1 For any vector Xp ∈ Tp(M) and a smooth map f : M → R we have

df(Xp) = Xp(f).

This gives rise a very interesting relation between exterior derivative and the Lie

brackets:

Lemma 5.1 Let ω be a 1−form on M and X and Y be two vector fields on M. Then

dω(X, Y ) = X(ω(Y ))− Y (ω(X))− ω([X, Y ]). (2)

Proof: By the linearity of the equation (2), it suffices to verify this for 1-forms of the

form fdg. Now we have

LHS = (df ∧ dg)(X, Y ) = df(X)dg(Y )− df(Y )dg(X)

= X(f)Y (g)− Y (f)X(g).

and

RHS = X(fdg(Y )− Y (fdg(X)− fdg([X, Y ])

= X(fY (g))− Y (fX(g))− f [X, Y ](g)

= X(f)Y (g) + fXY (g)− Y (f)X(g)− fY X(g)− fXY (g)− fY X(g)

= X(f)Y (g)− Y (f)X(g).

Exercise 5.1 Show that for any p-form ω and any (p + 1)-tuple (X0, X1, . . . , Xp) of

vector fields, we have

dω(X1, . . . , Xp)

=
∑

0≤i≤p

(−1)iX i(ω(X0, . . . , X̂ i, . . . , Xp)

+
∑

0≤i<j≤p(−1)i+j(ω([X i, Xj], X0, . . . , X̂ i, . . . , X̂j, . . . , Xp).

(3)

Definition 5.1 A graded submodule A of Ω(M) is called locally trivial of rank q if there

is an open covering {Uj} of M such that A|Uj is generated by some linearly independent

1−forms {ω1, . . . , ωk} on Uj.

Definition 5.2 Given a submodule V of X(M) we can consider the submodule A =

ann (V ) of Ω(M) defined as follows:

Ak = {ω ∈ Ωk(M) : ω(X1, . . . , Xk) = 0, ∀ Xj ∈ V }.

Proposition 5.2 If V is a complete submodule of X(M) of dimension d then ann (V )

is locally trivial of rank m− d.

11



Proof: Recall that V is complete submodule then there is an open covering {Uj} and

vector fields {X1, . . . , Xd} which form a basis for Vx at each x ∈ Uj. We can complete

this to a basis of TxM over Uj and take the dual basis of 1−forms {ω1, . . . , ωm} for

Ω1(Uj). Now it is clear that A1|Uj
is spanned by {ωd+1, . . . , ωm}. A little bit of usual

multi-linear algebra tells you that Ak|Uj
is also generated by them. ♠

Definition 5.3 A graded submodule of A of Ω(M) is called a (differential) ideal if it is

closed under the external derivation, i.e., d(A) ⊂ A.

The following theorem, which is an immediate consequence of (2) and (3), gives

you one more definition of a foliation.

Theorem 5.1 A complete submodule V of X(M) is a Lie subalgebra iff ann (V ) is a

locally trivial (differential) ideal of Ω(M).

Lecture 5

6 Some Constructions

We shall discuss a few standard constructions now.

Product of foliations Given two foliated manifolds (Mj,Fj), j = 1, 2 there is an

obvious way to foliate the product manifold M1×M2 which we shall denote by F1×F2 :

If Fi = {(Ui, φi)} and F2 = {(Vj, ψj)} then take F1 × F2 = {(Ui × Vj, T ◦ (φi × ψj)}
where T : Rd1 × Rm1−d1 × Rd2 × Rm2−d2 → Rd1+d2 × Rm1+m2−d1−d2 is given by

(x,y, z,w) 7→ (−1)(m1−d1)d2((x, z),y,w))

Pull-Back Foliation A smooth map f : N → (M,F) is said to be transversal to F if

f is transversal to every leaf of F i.e., for every q ∈ N we have

dfq(TqN) + Tf(q)L(q) = Tf(q)M

where Lq denotes the leaf of F through f(q). We can then get a foliation f ∗F on N of

codimension equal to codimension of F as follows: Let now the foliation F be represented

by a family {(Ui, φi)} of compatible submersions φ : Ui → Rm−d. Take Vi = f−1(Ui) and

ψ = φi ◦ f. Then {(Vi, ψi)} will be a compatible family of submersions on N.

Quotient Foliation Let G be a group acting properly discontinuously on a manifold M

so that M/G is a Hausdorff manifold. (In other words, the quotient map q : M →M/G

is a covering projection.) Suppose F is a foliation and the group action maps leaves of

F to leaves. Such an action is said to preserve the foliation structure of M. Start with

an open cover {Ui} of M/G which is evenly covered by the covering projection, i.e., for

each i, q−1(Ui) is a disjoint union of open sets {Vi,g} of M such that q : Vi,g → Ui is a

homeomorphism. Now refine this cover if necessary and assume that {(Vi,g, φi,g)} is an

12



atlas of compatible submersions defining F . That the action of G preserves leaves of F
just means that we have commutative diagrams:

Vi,gh //

φi,g

��

Vi,gh

φi,gh

��

Rd
fh

// Rd

where the vertical arrows indicate the submersions and the top horizontal arrow is the

action of h ∈ G and the bottom horizontal on is some diffeomorphism. Now, by taking

{(Ui, ψi,g)} where ψi,g = φi,g ◦ q−1 : Ui → Rd we get a compatible atlas of submersions

on M/G.

Suspension of a Diffeomorphism This is another example of quotient foliation. For

any manifold consider the 1-dim. foliation on R ×M by the leaves R × {x}. Now let

f : M →M be a diffeomorphism. Define an action of Z on M by the rule:

(k, t, x) 7→ (t+ x, fk(x)).

Then Z acts properly discontinuously and maps leaves onto leaves. This induces a

foliation denoted by Sf on the quotient manifold R ×Z M. This foliation is called the

suspension of the diffeomorphism f.

Lie Group Action More generally, suppose a Lie group G acts on a manifold M

smoothly. Consider orbit decomposition M =
∐
Gx. The isotropy subgroup Gx = {g ∈

G : gx = x} is a closed subgroup of G and we have G/Gx diffeomorphic to Gx and

each orbit is a manifold. We say the action of G on M is foliated if all the orbits Gx

are of the same dimension. In this case, it follows that (???) the subspace of all vector

fields tangent to the orbits forms a Lie subalgebra of X(M) and hence we have a foliation

structure on M with its leaves being connected components of the orbits of the G-action.

7 Orientability

Definition 7.1 Let (E, p,M) be any rank d vector bundle over M. Recall that we say

E is orientable, if the transition functions are orientable, i.e., if {Ui} is an open cover for

M and φi : p−1(Ui) → Ui × Rd are local trivializations, then φi ◦ φ−1
j : {x} → reald →

{x} × Rd are orientation preserving for all x ∈ Ui ∩ Uj for all i, j.

Definition 7.2 Let (M,F) be a d-foliated manifold and E = E(F) be the associated

subbundle of TM. We say F is orientable of E is orientable. Similarly, we say F is

transverse orientable, if the quotient bundle TM/E is orientable.

Remark 7.1 (i) If M is orientable, it follows that F is orientable iff it is transverse

orientable.

(ii) On a simply connected manifold, every vector bundle is orientable and hence every

foliation is both orientable and transverse orientable.
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(iii) It is possible to have a foliation on an orientable manifold, which is neither orientable

nor transverse orientable. Begin with M = S1 × S1. Any rank 1 sub-bundle of TM is

integrable and hence gives 1-foliation. We have only to choose it so that it is not

orientable. Therefore at each point (eıθ1 , eıθ2) ∈ S1 × S1 consider the line spanned

by (ıeıθ1 sin(θ2/2), ıeıθ2 cos(θ2/2)). This line field defines a non orientable sub-bundle

of T (S1 × S1). (iv) For any vector bundle (E, π,M) over a manifold M, there is the

orientable double cover constructed as follows: Let (Ui, φ) be an atlas for E, i.e., {Ui}
is an open covering of M and φi : π−1(Ui) → UiRd diffeomorphisms etc. For each i, let

Vi,± denote two copies of Ui × Rd. On
∐

i(Vi,+ ∪ Vi,−) introduce an equivalence relation

as follows. For each i, j, and x ∈ Ui ∩ Uj suppose αi,j = φi ◦ φ−1
j : {x} ×Rd → {x} ×Rd

is orientation preserving: then identify (x, v) ∈ Vi,± with αi,j(x, v) ∈ Vj,±. Otherwise

identify (x, v) ∈ Vi,± with αij(x, v) ∈ Vj,∓. Let Ẽ denote the quotient space. Verify that

the first projection factors to give a rank d-vector bundle projection π̃ : Ẽ → M̃, where

M̃ →M itself is a double covering. (This double covering may be a trivial one.)

In particular, given a foliation (M,F), the orientation double cover Ẽ(F) of the

d-dim. bundle (F) is a foliation on M̃. This is called the orientable double cover of

(M,F) and is denoted by (M̃, F̃ ).

For instance, if (M,F) is orientable, then this orientation double cover will be just

the disjoint union of two copies of (M,F).

Likewise one can talk about the transverse orientation double cover of (M,F) also,

viz., the orientation double cover of the quotient bundle TM/E(F). However, one has

to check that the bundle so obtained actually corresponds to a foliation viz., it is the

normal bundle of a transverse orientable foliation (M ′,F ′). So, suppose (E ′, π′,M ′) is

the orientation double cover of the normal bundle TM/E(F). One first shows that this

is the quotient bundle of TM ′, η : TM ′ → E ′ be the quotient map, and the take ker η.

It follows that ker η is completely integrable and hence defines a foliation on M ′ which

is obviously transverse orientable.

8 Integral Manifolds: Leaves

Definition 8.1 Let F be a d-foliation of a manifold X. By an integral manifold of F
we mean a pair (Y, f), where Y is a smooth manifold and f : Y → X is an injective

immersion such that Dfy(TyY ) ⊂ Ef(y)(F). If dim Y = 1 then (Y, f) called an integral

curve for the foliation.

On the collection of all connected integral manifolds of F , there is an obvious

partial ordering viz., (Y1, f1) ≤ (Y2, f2) iff Y1 ⊂ Y2 and f1 = f2|Y1 . A connected integral

manifold of dimension d, maximal w.r.t. this ordering is called a leaf of F .

Remark 8.1

(i) Often we allow ourselves to confuse image f(Y ) of f with the leaf (Y, f). In general

the image of a leaf need not be a submanifold of the foliated manifold M.

(ii) If F is the foliation of a fibration then of course the leaves are submanifolds and every
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submanifold of the fibre is an integral manifold. For any foliation F , if (U, f) ∈ F then

any connected component of f−1(f(x)) ⊂ U passing through x is an integral manifold

which is also a submanifold called a a slice of F at x.

(iii) It is not difficult to see that every leaf is a union of slices. Also, note that the

dimension of a slice is always equal to d. (where F is a d−foliation) Therefore, it follows

that through every point p ∈ M, there exists a leaf of F of dimension d. Indeed, there

a unique leaf and its dimension has to be necessarily d. But that need to be proved

carefully.

Lemma 8.1 Let (U, f) ∈ F and S be a slice in U.

(a) Let (Y, g) be a connected integral manifold of F such that g(Y ) ⊂ U and g(Y )∩S 6= ∅.
Then g(Y ) ⊂ S.

(b) For any (V, h) ∈ F , at most countably many slices of V will intersect S.

Proof: Since D(f ◦ g) = D(f) ◦D(g) = 0, it follows that f ◦ g is locally constant. Since

Y is connected, this implies f ◦ g is a constant. This implies (a).

Let S ′ be another slice of F . Let W be a connected component of S ∩ S ′. Then

ι : W → S is an immersion and since both have same dimension, it follows that W is

open in S. We conclude that S ∩ S ′ is open in both S and S ′.

Therefore, {S ∩ S ′}S′ forms a disjoint family Ω of open sets in S as S ′ varies.

Now let S ′ vary over all slices of (V, h). Clearly, two distinct slices of V do not intersect.

Therefore, by II-countability of S, Ω has only countably many members. Therefore, only

countably many of S ′ could intersect S. ♠

Lemma 8.2 Every slice is contained in a d−dimensional leaf.

Proof: Let L be a slice and L be the family of all d-dimensional connected integral

manifolds (Y ′, f ′) which contain L. If {(Yk, fk)} is a chain in L, then we can take Y =

∪kYk and f : Y → X to be such that f |Yk = fk. Being a countable union of an increasing

family of smooth manifolds, Y is a smooth manifold, in which each Yk is open. It follows

easily that f is an injective immersion also. Therefore, every chain in L has an upper

bound. Apply Zorn’s lemma to conclude that L has a maximal element, (Y, f), which

is easily seen to be a leaf. ♠

Theorem 8.1 Let F be a d−foliation on X. Then X is the disjoint union of d−dimensional

leaves of F .

Proof: The only thing that we need to see is that any two distinct d-dimensional leaves

are disjoint which follows easily from lemma 8.1. ♠

Remark 8.2
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1. The existence of leaves is used in the theory of Lie groups, in the proof of the

fact that to each subalgebra of the Lie algebra of a Lie group, there corresponds a

‘virtual subgroup’ of G.

2. The leaves of a foliated manifold (M,F) define a partition on M. Let π : M →
M/ ∼ denote the quotient map and the space. A central problem in Foliation

Theory is to understand the topology of this quotient space.

3. Suppose S is a subset of M which is the union of leaves of F . Then its closure

in M, S̄ is also a union of leaves. To see this, we take any leaf L of F and show

that L∩ S̄ is open in L. Since L is connected this will imply that either L∩ S̄ = ∅
or = L and thereby prove our claim. So, choose p ∈ L ∩ S̄ and choose a product

nbd U = Rd × realm−d around p from F . It follows that S = Rd × A for some

A ⊂ Rm−d. Now p ∈ S̄ implies that there is a sequence (xn, yn) ∈ S converging

to p = (x, y). This implies that yn → y. Therefore for each z ∈ Rd the sequence

(z, yn) ∈ S converges to the point (z, y). This means that the slice reald × y is

in the closure of S. But this slice is contained in L since L is a leaf through p.

Therefore L ∩ barS is open as claimed.

4. If S is a union of leaves then int(S) is also so. This follows from the the above

observation: M \ S is a union of leaves and hence M \ S is also so. Therefore

int(S) = M \M \ S is also so.

5. If U is any open set in M then the union of all leaves intersecting U is an open set.

For, if S is this set, then by the above observation int(S) is the union of leaves.

Since U ⊂ S is open U ⊂ int(S). Therefore S ⊂ int(S).

6. The projection map π : M →M/ ∼ is an open mapping. This follows immediately

from the previous observation.

7. The Hausdorffness is the most misbehaved property under quotients. Here is a

simple example to illustrate that the leaf-topology can be easily non-Hausdorff.

Example 8.1 Let M = R2 \ {(0, 0)} and π : M → R be the first projection. Then π is

a submersion and the leaves of the corresponding foliation are vertical line x = c, c 6= 0

and the positive and the negative y-axis. The quotient topology on M/ ∼ is nothing

but the real line with the double origin.

Remark 8.3 Of course, under stringent conditions, we can make sure that the quotient

topology is Hausdorff. For instance, first prove that if a leaf L is compact, then show

that the nbds of L which are unions of leaves form a fundamental system of nbds for L.

Using this we can show that if all leaves are compact then M/ ∼ is Hausdorff.

Our next task will be to see under what suitable condition the leaf space M/ ∼ is

a manifold. This brings us to another interesting concept in Foliation Theory which we

shall take up in the next section.
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Remark 8.4 Given any codim. q immersion f : X → Y of smooth manifolds, we can

define the normal bundle to f as a vector bundle on X of rank q as follows: Assume Y

is embedded RN for large N. Take

ν(f) = {(x,v) ∈ X × TY : v ⊥ dfx(TxX)}.

Then it is not difficult to verify that the projection to the first factor ν(f) → X defines

a vector bundle of rank q. The normal bundle apparently depends upon on the choice

of the ‘metric’ on Y, (in our case on the embedding of Y ⊂ RN . But the isomorphism

class of the bundle depends only on the immersion f.

Remark 8.5 Let (M,F) be a d-foliated manifold and L be a leaf of F . Let E be the

integrable sub-bundle of TM corresponding to the foliation. Consider the pull-back of

the quotient bundle TM/E on L is called the normal bundle to the leaf L. Verify that

the this bundle is the same as the normal bundle to the immersion L → M as defined

in the above remark.

Lecture 6

9 Leaf Holonomy

Definition 9.1 Given two manifolds M,N and points x ∈ M, y ∈ N we consider

smooth maps f : U → V where U, V are nbds of x, y respectively, such that f(x) = y.

Two such maps f1 : U1 → V1, f2 : U2 → V2 are said to be equivalent if there exists a

nbd W of x such that W ⊂ U1 ∩ U2 f1|W = f2|W. It is easily verified that this actually

an equivalence relation. The equivalence classes are classed germs of smooth functions

at x on M. Every germ is of course represented by some function f and then we write

germxf : (M,x) → (N, y).

Remark 9.1

(i) The composition of maps factors down to define composition of germs as well. Thus

germxf : (M,x) → (N, y) and germyg : (N, y) → (P, z) can be composed to yield

germx(g ◦ f |f−1dom g).

(ii) There is the germx(Id), the germ of the identity map which acts as a two sided

identity for this composition. We can speak about invertible germs, viz. germs of local

diffeomorphism at x. Each such germ has in inverse germyf
−1. Thus the set of all germs

of diffeomorphisms at (M,x) → (M,x) forms a group denoted by Diffx(M).

(iii) There is an obvious group homomorphism Diffx(M) → Aut(TxM) from Diffx(M) to

the group of linear automorphisms of the tangent space at x to M viz., germxf 7→ Dxf.

This is easily seen to be surjective. But it is far from being injective. For example, con-

sider the case when M = R and x = 0. Consider f(x) = x+ g(x) where g is any smooth

map with g′(0) = 0. Then by inverse function theorem, f is a local diffeomorphism at 0.

By choosing germs of g at 0 to be different we get different elements of Diff0(R) whereas

all of them are mapped to Id under derivation.
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Definition 9.2 A (m − d)-dimensional submanifold S passing through a point x ∈ L

is said to be transversal section to L if S intersects L transversally at x. It follows that

in a small nbd of x, S will be transversal to all the leaves near L.

Example 9.1 If (U, φ) ∈ F is a foliation chart, it follow that φ−1(x × Rm−d) is a

transversal section to all the leaves emerging from U.

Definition 9.3 We are going to take a number slow steps in the following definition:

(0) Fix a leaf L of a d-foliation (M,F). Given (Uφ) ∈ F and two points p, q belonging

to the same component of L ∩ U we define a diffeomorphism HOLq,p : Sp → Sq from

the transversal section Sp at p to Sq at q as follows: For w ∈ Sp consider the slice

Lw (plaque) through w in U at take HOLq,p(w) = Lw ∩ Sq. Under the diffeomorphism

φ : U → Rd × Rm−d this map corresponds to the map x × Rm−d → y × Rm−d given by

(x, t) 7→ (y, t) and therefore is a diffeomorphism. The germ of this diffeomorphism will

be denoted by holq,p
U .

(i) Observe that the germ is independent of the chart (U, φ) that you choose provided

both p, q belong to the same component of L∩U since it is defined purely set theoretically.

Next choose a path ω in L starting from p and ending say at q. Cover it with

a finite ‘chain’ of foliation charts (Ui, φi), 1 ≤ i ≤ r such that Ui ∩ Ui+1 6= ∅. Choose

p = p1, . . . , pr = q such that pi+1 ∈ Ui ∩ Ui+1 ∩ ω. It follows that we can compose the

diffeomorphism germs in that order and obtain a germ

holq,p
ω = holpr,pr−1

r ◦ · · · ◦ holp2,p1

1 .

(ii) The composite germ is independent of the choice of the chain that covers it. For

we can work the common refinement of the two partitions of the path ω and use (i)

repeatedly.

(iii) If ω and τ are two paths in L, one form p to q and the other from q to r, we have,

holr,qτ ◦ holq,p
ω = holr,pω∗τ . (4)

(iv) If τ is another path lying in L and passing through the same points p = p1, pr = q

and if the segments of τ from pi to pi+1 are covered by the same chart Ui for each i, then

holpi+1,pi(ω) = holpi+1,pi(τ) since the definition on either side has nothing to do with the

paths involved. (v) Standard arguments with homotopy now yield:

Proposition 9.1 If ω and τ are two paths in L path homotopic to each other then

holω = holτ .

Corollary 9.1 : There is a well defined homomorphism hol : π1(L, p) → Diffp(Sp).

(vi) If Sp and S ′p are two transversal sections through the same point, we may assume that

both are contained in a single chart U. Let hol : π1(L, p) → Diffp(Sp), hol′ : π1(L, p) →
Diffp(S

′
p) be the corresponding holonomy homomorphisms. Let fp = f(Sp, S

′
p) : Sp → S ′p
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be the be the germ of the diffeomorphism from Sp to S ′p as given by the chart U. Then

clearly

hol(α) = f−1
p hol′(α)fp. (5)

(vii) Fixing a diffeomorphism g : Sp → Rm−d such that g(p) = 0, it follows that there is

a well defined homomorphism

hol : π1(L, x) → Diff0(Rm−d) (6)

unique up to inner conjugation. By general consideration about base points, the state-

ment holds, when we change the base point of the fundamental group of L. Therefore

we conclude that up to inner conjugation, there is a well defined homomorphism

hol : π1(L) → Diff0(Rm−d) (7)

This homomorphism is called the holonomy of L.

(viii) By composing this with the derivation

d : Diff0(Rm−d) → GL(m− d,R),

we get another homomorphism

dhol : π1(L) → GL(m− d,R). (8)

Example 9.2

(i) If a loop ω is contained in a single chart, then it is easily seen that hol(ω) = 1.

(ii) Consider a simple foliation associated to a submersion f : M → N. Let ω be a loop

at p in a leaf L ⊂ f−1(q) for some q ∈ N. Now we can cover the loop by finitely many

open sets Ui such that f(Ui) = V where is a (single) open nbd of q in N and choose

diffeomorphisms φi : Ui → Rn and a (single) diffeomorphism α : V → Rm−d such that

π2 ◦ φi(z) = α ◦ f as in the example 2.1 It follows that corresponding hij are identity

maps, which in turn implies that holω = Id. Thus the holonomy of any leaf in a simple

foliation is trivial.

(iii) For the foliation of the Möbius band as given in (4) of Examples 1 the holonomy

is trivial for all circles except the central one, where it is the quotient homomorphism

Z → Z/2Z.
(iv) Consider the Reeb foliation of S3 as in (5) of Examples 1. First of all for the solid

torus, all leaves except the boundary torus are simply connected (actually diffeomorphic

to R2). On the boundary, along the latitudes the the holonomy is trivial. Along the

longitudes, the diffeomorphism f : [0,∞) → [0,∞) is of the form f(t) < t for every

t > 0. Thus we have hol : π1(S1 × S1) → Diff0[0,∞) takes one of the generator to the

trivial element and the other one to an element of infinite order.

We can now determine the holonomy of the Reeb foliation of the S3 as follows:

Let us denote the two generators of the torus S1 × S1 by α, β. Then hol : π1(S1 × S1) →

19



Diff0(R) has the property:

hol(α)(t)

{
< t, t > 0

= t t ≤ 0.
hol(β)(t)

{
= t, t ≥ 0

< t t < 0.
(9)

Thus, hol is an isomorphism onto its image. However not that dhol is trivial.

10 Some Applications

Proposition 10.1 Let (M,F) be a foliated manifold. Suppose for each point p ∈ M

there exists a transverse section T such that L ∩ T is at most a singleton for each leaf

L. Then M/ ∼ is a smooth manifold (perhaps non Hausdorff) in such a way that the

canonical projection π : M →M/ ∼ is a submersion.

Proof: Fix a point p ∈ M and choose a transverse T such that the above condition is

satisfied. Observe that T is may be assumed to be diffeomorphic to an open subset of

Rm−d. Taking a smaller T if necessary we may assume that T is contained in a product

nbd U of p. It then follows that for every open subset V of T the union of all slices

inside U which intersect V is an open set W in M and hence the union of all leaves

which intersection V is an open set W ′ in M. Therefore π(V ) = π(W ′) is open in M/ ∼
and is a nbd of π(p). Thus π|T : T → π(T ) is an open map. Already this is a one

mapping. Hence defines a homeomorphism onto a nbd of π(p). If π(p) = π(q) and if ω

is any path from p to q contained in the leaf π(p) then the holonomy map holq,p
ω is such

that π ◦ holq,p
ω = π. Since the holonomy maps are diffeomorphisms, this clearly defines

an atlas for a smooth structure for M/ ∼ and moreover for this smooth structure π is

smooth and defines a local diffeomorphism on suitably chosen transverses. ♠

Theorem 10.1 Let (M,F) be a d-foliated manifold, L be a compact leaf with trivial

holonomy. Then there exists a nbd V of L in M and a leaf preserving diffeomorphism

λ : L× S → V where S is a transversal section to L.

Proof: Not done in the lectures.

Theorem 10.2 Structure Theorem for Simple Foliations

(i) In a simple foliation every leaf has trivial holonomy.

(ii) In a strictly simple foliation, the leaf space is Hausdorff.

(iii) Conversely, if

(a) each leaf has trivial holonomy,

(b) the leaf space is Hausdorff and

(c) each leaf has finitely generated fundamental group,

then F is a simple foliation. Indeed the projection M →M/ ∼ to the leaf space itself is

a submersion.
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Remark 10.1 In particular, if each leaf is compact, both conditions (b) and (c) hold.

Also, the proof of the converse part is easier in this case.

Proof: We have seen (i).

In (ii), let (M,F) be the strictly simple foliation corresponding to a submersion f :

M → N. Then the map f factors through a homeomorphism f̄ : M/ ∼→ N.

(iii) Here we want to show that the leaf space M ∼ has a structure of a smooth Haus-

dorff manifold such that the quotient map M → M/ ∼ itself is a submersion. From

Proposition 10.1, it suffices to show that at each point p ∈ M there is a transverse

which meets at each leaf at most once. Fix a set finite set of loops ω1, . . . , ωk in L at p

whose homotopy class generate the fundamental group π1(L, p). Let T be any transverse

at p. Since the holonomy is trivial, it follows that there are transverses Tj ⊂ T such

that holomorphicomegaj
: Tj → Tj is actually represented by the identity map. Take

T0 = ∩Tj. It follows that for any loop ω at p holω : T0 → T0 is represented by the

identity map. Therefore, it follows that T0 intersects every leaf through some point of

T0 only once. This completes the proof. ♠
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