
Topology of Lie Groups

Lecture 1

In this seminar talks, to begin with, we plan to present some of the classical results on the

topology of Lie groups and (homogeneous spaces).

The basic assumption is that the participants are familiar with the ‘algebra’ of Lie group

theory. However, in order to take care of those who are not, most of the time, we shall concentrate

on Matrix Groups.

As a sample of the several results to come, let me begin with:

Theorem 1.1 GL(n;C) is connnected.

Proof: We shall give a completely elementary proof of that GL(n,C) path connected.

Consider the simplest case when n = 1. In order to show that GL(1,C) = C∗ is connected,

the best thing is to say that given any two points in C∗ there is a circle in C∗ passing through

these two points (rather than using straight line segments). And this is going to help us in the

general case as well.

We now appeal to Gauss Elimination Method, which reduces a given matrix A to its row-

reduced echelon form R(A). We claim that given A ∈ GL(n,C), there exists a path γ in GL(n,C)

from A to R(A). Applying this to R(A)t, given a path γ′ from R(A)t to its row-reduced echelon

form R(R(A)t) = Id. Then γ ◦ γ′ is a path in GL(n,C) joining A to Id.

GEM consists of a finite sequence of steps of row-operations of one of the three types.

(1) Interchaning kth row and lth row: For this step we can choose the path θ 7→ ω(θ)A where ω

is defined by as follows:

ω(θ)ij =



cos θ (i, j) = (k, k)

sin θ (i, j) = (k, l)

− sin θ (i, j) = (l, k)

cos θ (i, j = (l, l)

0 otherwise

(2) Dividing a row by λ 6= 0. Here we choose a circular path τ(s) in C∗ joining 1 with λ and

let γ(s) be the diagonal matrix with all the diagonal entries equal to 1 except the (k, k)th entry

which is equal to 1/τ(s). We then take the path s 7→ γ(s)A.

(3) Adding a multiple of kth row to lth row. We shall leave this step as an exercise to the reader.

♠
Let us fix up some notation. K will denote one of the (skew-)fields R,C, or H and M(n(K)

will denote the space of all n × n matrices with entries in K. There are the forgetful functors,

R : C→ R2 and Q : H→ C2, given by

R : x+ ıy  (x, y);



and

Q : a0 + a1i + a2j + a3k (a0 + a1ı, (a2 + a3ı).

We treat Kn as a right K-module and Mn(K) as the space of right endomorphisms Kn → Kn.

The above forgetful functors then yield identifications

Cn  R2n; Hn  C2n

given by

(x1 + ıy1, . . . , xn + ıyn) (x1, y1, . . . , xn, yn)

and

(z1 + w1j, . . . , zn + wnj) (z1, w1, . . . , zn, wn).

These, in turn, yield imbeding

R : Mn(C)→M2nR); Q : Mn(H)→M2n(C)

For example, when n = 1 we have

x+ ıy  

(
x y

−y x

)
; z + wj 

(
z w

−w̄ z̄

)
.

Verify that the following Cauchy-Riemann equations:

(1) R(Mn(C)) = {A ∈M2n(R) : AJ2n = J2nA} and

(2) Q(Mn(H)) = {A ∈M2n(C) : AJ2n = J2nĀ}.
Let GL(Kn) denote the space of all auotomorphisms of Kn as a right K-module. Then GL(Kn)

is a Lie group of dimension (cn)2 where c = 1, 2 or 4 according as K = R,C or H.

Theorem 1.2 Cn : GL(n,C) −→ GL(2n,R) and Qn : GL(n,H) −→ GL(2n,C) define monomor-

phisms of groups.

Definition 1.1 We define the determinant function on M(n,H) by the formula

detA = det (Qn(A)). (1)

Exercise 1.1

1. Show that A ∈ GL(n,H) iff detA 6= 0.

2. Show that detA ∈ R for all A ∈M(n,H).

3. Show that GL(n,K) is an open subspace of M(n,K).

4. Show that GL(n,K) is path connected for K = C,H and has two connected components

for K = R. (Hint: Use appropriate modifications in the proof of 1.1).

5. Prove that detA > 0 for all A ∈ GL(n,H).



The Orthogonal Groups

We fix the standard inner product 〈 , 〉K on Kn as follows:

〈a,b〉K =
∑
r

arb̄r

where a := (a1, . . . , an) ∈ Kn etc.. We define the norm on Kn by

‖a‖K =
√
〈a, a〉K.

Note that for a ∈ Cn, ‖a‖C = ‖Cn(a)‖R. Similarly, for b ∈ Hn, ‖b‖H = ‖Qn(b)‖C. Thus the

embeddings Cn and Qn are norm preserving. For this reason, we may soon drop the subscript K,
from ‖ − −‖K unless we want to draw your attention to it.

Check that 〈 , 〉K is sesqui-linear, conjugate symmetric, non degenerate and positive definite.

(In case K = R, the conjugation is identity and hence it is bi-linear and symmetric.) Orthogo-

nality, orthonormal basis etc. are taken with respect to this norm.

Theorem 1.3 C\ preserves the inner product. In particular, {x1, . . . ,xn} ⊂ Cn is an orthonor-

mal basis for Cn iff

{Cn(x1), Cn(ιx1), . . . , Cn(xn), Cn(ιxn)} is an orthonormal basis for R2n.

For any A ∈M(n,K) we shall use the notation A∗ := AT = ĀT . Observe that the identity

〈xA,y〉 = 〈x,yA∗〉, x,y ∈ Kn

defines A∗.

Theorem 1.4 For A ∈M(n,K) the following conditions are equivalent:

(i) 〈xA,yA〉 = 〈x,y〉.
(ii) RA takes orthonormal sets to orthonormal sets.

(iii) The row-vectors of A form an orthonormal basis for Kn.

(iv) AA∗ = Id.

(v) A∗A = Id.

Definition 1.2 On(K) = {A ∈ Mn(K) : AA∗ = I} is called the orthogonal group of the stan-

dard inner product on Kn. For K = R,C,H, it is also denoted by O(n), U(n), Sp(n) respectively

and is known by the names orthogonal group, unitary group and symplectic group respectively.

Observe that Cn(A∗) = (Cn(A))∗ for all A ∈ M(n,C). Similarly, Qn(B∗) = (Qn(B))∗ for all

B ∈M(n,H). The following theorem is then an easy consequence.

Theorem 1.5 For each n ≥ 1, we have:

(i) Cn(U(n)) = O(2n) ∩ Cn(GL(n,C));

(ii) Qn(Sp(n)) = U(2n) ∩Qn(GL(n,H));

(iii) C2n ◦ Qn(Sp(n)) = O(4n) ∩ C2n ◦ Qn(GL(n,H)).



In other words, the two other types of orthogonal transformations of Rm (m = 2n or 4n) are

all real orthogonal transformations satisfying certain Cauchy-Riemann equations. Hence they

are closed subgroups of O(m) and hence compact.

Corollary 1.1 A ∈ On(K) iff RA is norm preserving.

Proof: For K = R, this is a consequence of the fact that the norm determines the inner product

via the polarization identity:

〈x,y〉 =
1

2
(‖x + y‖2 − ‖x‖2 − ‖y‖2).

For K = C,H we can now use the above theorem and the fact that Cn andQn are norm preserving.

♠
More generally, fix two non negative integers p, q such that p + q = n. Let Ip,q denote the

n×n diagonal matrix with p of them equal to −1 and q of them equal to 1. We can then replace

statement (v) of theorem 1.4 by A ∗ Ip,qA = Ip,q and obtain the following subgroups:

Op,q(K) = {A ∈ GL(n,K) : A∗Ip,qA = Ip,q}.

It is easily verified that these are closed subgroups ofGL(n,K).We use the notationO(p, q), U(p, q), Sp(p, q)

respectively for Op,q(K) when K = R,C,H. It is clear that

On,0(K) = On(K) = O0,n(K)

and

Cn(U(p, q)) = O(2p, 2q) ∩ Cn(GL(n,C), Qn(Sp(p, q)) = U(2p, 2q) ∩Qn(GL(n,H)).

Exercise 1.2

1. Show that |detA| = 1 for A ∈ On(K).

2. Show that On(K) is compact.

3. Show that Gram-Schmidt process is valid in a finite dimensional vector space over H.

4. Show that Sp(n,C) := {A ∈ M(2n,C) : AtJ2nA = J2n} forms a subgroup of GL(2n,C).

This is called the complex symplectic group of order n.

5. Show that Sp(n,C) ∩ U(2n) = Sp(n,C) ∩Qn(M(n,H)) = Qn(Sp(n)).

The Special Orthogonal Group

Definition 1.3 SL(n;K) = {A ∈ M(n,K) : detA = 1}. This forms a subgroup of GL(n,K).

We define SO(n) = SL(n,R) ∩ O(n);SU(n) = SL(n,C) ∩ U(n). These are called special or-

thogonal and special unitary group respectively. Likewise, we have the definitions of the groups

SO(p, q) = SO(n) ∩O(p, q), SU(p, q) = SO(2n) ∩ U(p, q) etc.



Remarks 1.1 We do not need to define the special symplectic groups. Why?

Exercise 1.3

1. O(1) = {±1} ≈ Z2 and SO(1) = (1) is the trivial group. It is not difficult to see that

SO(2) =

{(
cos θ sin θ

− sin θ cos θ

)
: θ ∈ [0, 2π)

}
and

0(2) =

{(
cos θ sin θ

± sin θ ∓ cos θ

)
: θ ∈ [0, 2π)

}
Thus SO(2) can be identified with the group of unit complex numbers under multiplication.

Topologically this is just the circle. Similarly, O(2) just looks like disjoint union of two

circles. However, the emphasis is on the group structure rather than just the underlying

topological space.

2. Again, it is easy to see that U(1) is just the group of complex numbers of unit length and

hence is isomorphic to SO(2). Indeed, it is not hard to see that C1 defines this isomorphism.

Clearly, SU(1) = (1).

3. The group Sp(1), is nothing but the group of unit quaternions that we have met. As

a topological space, it is S3. Thus, we have now got three unit spheres viz., S0,S1,S3

endowed with a group multiplication. A very deep result in topology says that spheres of

other dimensions have no such group operations on them.

4. We also have Q1 : Sp(1) −→ SU(2) is an isomorphism. It is easily seen that Q1(Sp(1)) ⊂
SU(2). The surjectivity of Q1 is the only thing that we need to prove. This we shall leave

as an exercise.

Exercise 1.4 Write down the Lie algebra of each of the matrix group you have come across

above.

Exercise 1.5

1. A function f : Rn → Rn is called a rigid motion (isometry) if

d(f(x), f(y)) = d(x, y) ∀ x, y ∈ Rn.

(Recall that the Euclidean distance is defined by d(x, y) = ‖x − y‖.) Show that for A ∈
O(n), RA : Rn −→ Rn is an isometry.

2. Show that every isometry of Rn is continuous and injective. Can you also show that it is

surjective and its inverse is an isometry?



3. Show that composite of two isometries is an isometry.

4. Show that x 7→ x+ v is an isometry for any fixed v ∈ Rn.

5. Let f be an isometry of Rn. If v,u ∈ Rn are such that f(v) = v and f(u) = u then

show that f fixes the entire line L passing through v and u and keeps every hyperplane

perpendicular to L invariant.

6. Let f : Rn −→ Rn be an isometry such that f(0) = 0. If f(ei) = ei, i = 1, 2, . . . , n, where

ei are the standard orthonormal basis for Rn, then show that f = Id.

7. Given any isometry f of Rn show that there exists a vector v ∈ Rn and A ∈ O(n) such

that f(x) = xA + v,x ∈ Rn. Thus, isometries of Rn are all ‘affine transformations’. (In

particular, this answers exercise 2 completely.)

8. Show that the set of all A ∈ GL(n + 1,R) which keep the subspace Rn × {1} invariant

forms a subgroup isomorphic to the group of affine transformations of Rn. Is it a closed

subgroup?

9. Show that GL(n,K) is isomorphic to a closed subgroup of GL(n+ 1,K).

10. Show that A ∈ O(3) is an element of SO(3) iff the rows of A form a right-handed orthonor-

mal basis, i.e., RA(e3) = RA(e1)×RA(e2).

11. Show that every element of A ∈ O(n) is the product A = BC where B ∈ SO(n) and RC

is either Id or the reflection in the hyperplane xn = 0, i.e.,

RC(x1, . . . , xn−1, xn) = (x1, . . . , xn−1,−xn).

12. Show that eigenvalues of any A ∈ O(n) are of unit length.

13. Show that one of the eigen values of A ∈ SO(3) is equal to 1.

14. Given A ∈ SO(3), fix v ∈ S2 such that vA = v. Let P be the plane perpendicular to v.

(a) Show that RA(P ) = P.

(b) Choose any vector u ∈ P of norm 1. Let w = v × u. Show that every element of P

can be written as (cos θ)u + (sin θ)w, for some θ.

(c) Show that there exists ϑ such that

RA(cos θu + sin θw) = cos(θ + ϑ)u + sin(θ + ϑ)w.

Thus every element of SO(3) is a rotation about some axis.



Lecture 2

The Exponential Map and Polar Decomposition

We can endow M(n,K) with various norms. The Euclidean norm is our first choice. If we

view M(n,K) as the space of linear maps, then the so called L2-norm becomes quite handy.

There are other norms such as row-sum norm, column-sum norm, maximum norm etc.. For the

discussion that follows, you can use any one of them. But let us concentrate on the Euclidean

norm.

Lemma 2.1 For any x, y ∈M(n,K), we have ‖xy‖ ≤ ‖x‖‖y‖.

Proof: Straight forward. ♠

Definition 2.4 By a formal power series in one variable T with coefficients in K we mean a

formal sum
∑∞

r=0 arT
r, with ar ∈ K. In an obvious way, the set of all formal power series in T

forms a module over K denoted by K[[T ]]. We define the Cauchy product of two power series

p =
∑

r arT
r, q =

∑
r brT

r to be another power series s =
∑

r crT
r where cr =

∑r
l=0 albr−l. (Note

that except for being non-commutative, H[[T ]] has all other arithmetic properties of C[[T ]] or

R[[T ]].]

Theorem 2.6 Suppose for some k > 0, the series
∑

r |ar|kr is convergent. Then for all A ∈
M(n,K) with ‖A‖ < k, the series

∑
r arA

r is convergent.

Proof: The convergence of the series is the same as the convergence of each of n2 series
∑

r arA
r
ij,

formed by the entries. Since |Arij| ≤ ‖Ar‖ ≤ ‖A‖r < kr, we are through. ♠

Definition 2.5 Taking p(T ) = exp(T ) = 1 + T +
T 2

2!
+ · · · which is absolutely convergent for

all T ∈ R, we define the exponential of A ∈M(n,K) to be the value of the convergent sum

exp(A) = Id+ A+
A

2!
+ · · ·

Lemma 2.2 For any invertible B ∈M(n,K) we have B exp(A)B−1 = exp(BAB−1).

Proof: Check this first on the partial sums. ♠

Lemma 2.3 If AB = BA, then exp(A+B) = exp(A) exp(B).

Proof: In this special case, the Cauchy product becomes commutative and hence binomial

expansion holds for (A + B)n. The rest of the proof is similar to the case when the matrix is

replaced by a complex number. ♠

Corollary 2.2 For all A ∈M(n,K), exp(A) ∈ GL(n,K).

Proof: We have exp(A) exp(−A) = exp(A− A) = exp(0) = Id. ♠



Theorem 2.7 The function exp : M(n,K) −→ GL(n,K) is smooth (indeed, real analytic). The

derivative at 0 is the identity transformation.

Proof: The analyticity follows since the n2-entries are all given by convergent power series. To

compute the derivative at 0, we fix a ‘vector’ A ∈M(n,K) and take the directional derivative of

exp in the direction of A : viz.,

D(exp)0(A) = lim
t−→0

exp(tA)− exp(0)

t
= A.

Corollary 2.3 The function exp defines a diffeomorphism of a neighbourhood of 0 in M(n,K)

with an neighbourhood Id ∈ GL(n,K).

Proof: Use inverse function theorem.

Lemma 2.4 Given any A ∈ M(n,C), there exists U ∈ U(n) such that UAU−1 is a lower

triangular matrix.

Proof: If λ is a root of the characteristic polynomial of A there exists a unit vector v1 ∈ Cn such

that v1A = λv1. Gram-Schmidt process allows us to complete this vector to an orthonormal basis

{v1, . . . ,vn}. Take U to be the matrix with these as row vectors. Then e1UAU
−1 = v1AU−1 =

λe1. Hence, UAU−1 is of the form (
λ, 0

? B

)
.

Now a simple induction completes the proof. ♠

Definition 2.6 We say A is normal if AA∗ = A∗A. A square matrix A is called symmetric, (skew-

symmetric, Hermitian, skew-Hermitian, respectively) if A = AT (A = −AT ; A = A∗; A = −A∗).

Corollary 2.4 If A ∈ M(n,C) is normal, then there exists U ∈ U(n) such that UAU−1 is a

diagonal matrix.

Proof: If A is normal then so is UAU−1 for any U ∈ U(n). On the other hand a lower triangular

normal matrix is a diagonal matrix. ♠

Remarks 2.2 In particular, if A is hermitian, symmetric, skew symmetric etc., then it is di-

agonalizable. The entries on the diagonal are necessarily the characteristic roots of the original

matrix. Moreover, if A is real symmetric matrix, then all its eigenvalues are real with real eigen

vectors and hence U can be chosen to be inside O(n).

Definition 2.7 A Hermitian matrix A defines a sesqui-linear (Hermitian) form on Cn. Recall

that A∗ satisfies the property

〈uA,v〉C = 〈u,vA∗〉C.

Therefore, for a Hermitian matrix A, 〈uA,u〉C is always a real number. We say A is positive

semi-definite (positive definite) if 〈uA,u〉C ≥ 0 for all u (respectively, > 0 for all non zero u.)



Lemma 2.5 A is positive semi-definite (positive definite) iff all its eigenvalues are non negative

(positive).

Lemma 2.6 If A is Hermitian so is, exp(A).

Theorem 2.8 The space of all n × n complex Hermitian matrices is a real vector space of

dimension n2. Exponential map defines a diffeomorphism of this space onto the space of all

positive definite Hermitian matrices.

Proof: The first part is obvious. Given a positive definite Hermitian matrix B let U be a unitary

matrix such that

UBU−1 = diag (λ1, . . . , λn).

Then we know that λj > 0 and hence we can put µj := log λj. Put

A := U−1diag (µ1, . . . , µn)U.

Then exp(A) = B. This shows exp is surjective. For the injectivity of Exp on the space of

Hermitian matrices, see the exercise below. ♠

Definition 2.8 A subgroup G of GL(n,R) is said to be pseudo-algebraic if there exists a set

P of polynomials in n2 variables such that g ∈ GL(n,R) belongs to G iff the coefficients gij

of g satisfy p(gij) = 0 for all p ∈ P. A subgroup G on GL(n,C) (or GL(n,H)) is said to be

pseudo-algebraic if Cn(G) (or C2n ◦ Qn(G) is a pseudo-algebraic in GL(2n,R) (in GL(4n,R)).

Remarks 2.3

(1) All the matrix groups considered so far above, are pseudo-algebraic.

(2) If G is pseudo-algebraic, then so is uGu−1 for any invertible matrix u.

(3) Also note that each of the above subgroups G has the property that g ∈ G implies g∗ ∈ G.
This remark is going to be useful soon.

Lemma 2.7 Let G be a pseudo algebraic subgroup of GL(n,C) and H be a n × n Hermitian

matrix such that expH ∈ G. Then for all t ∈ R, exp tH ∈ G.

Proof: By spectral theorem and the remerk above, we may as well assume that

H = diag (λ1, . . . , λn).

Now, expH ∈ G implies that for all integers k, ekλ1 , . . . , ekλn satisfy a set of polynomials.

By simple application of Vander Monde, this implies that etλ1 , . . . , etλn satisfy the same set

of polynomials for all t ∈ R. This in turn implies exp tH ∈ G for all t ∈ R. ♠

Corollary 2.5 Let G be a pseudo-algebraic subgroup of GL(n,C). If H is any Hermitian matrix

such that expH ∈ G then H ∈ g, the Lie algebra of G.



Proof: We have seen that the curve t 7→ exp tH takes values in G. Taking the derivative at

t = 0 we coclude the result. ♠

Theorem 2.9 Polar Decomposition Every element A of GL(n,C) can be written in a unique

way as a product A = UH where U is unitary and H is positive definite Hermitian. The de-

composition defines a diffeomorphism of ϕ : GL(n,C) → U(n) × Pn. Furthermore, if G any

pseudo-algebraic subgroup which is closed under conjugate transpose, then ϕ restricts to a diffeo-

morphism G→ (U(n) ∩G)× (G ∩ Pn) and G ∩ Pn is diffeomorphic to Rd for some d.

In particular, ϕ restricts to a diffeomorphism ϕ : GL(n,R)→ O(n)× Rn(n+1)/2.

Proof: Consider the matrix B = A∗A which is Hermitian. Since A is invertible, so is A∗.

Therefore, for a non zero vector v, 〈vA∗A,v〉 = 〈vA∗,vA∗〉 > 0, which shows that B is

positive definite. Choose C ∈ GL(n,C) such that CBC−1 = diag(λ1, . . . , λn) and put H =

C−1diag(
√
λ1, . . . ,

√
λn)C. Then H is clearly a positive definite Hermitian matrix and H2 = B.

Put U = AH−1. Then A = UH and we can directly verify that U is unitary.

Finally, if A = U1H1 where U1 is unitary and H1 is positive definite Hermitian, then

X = U−1U1 = HH−11 is both unitary and positive definite Hermitian. Therefore, X has all

its eigenvalues of unit length, as well as, positive. Thus all its eigenvalues are 1. Since it is

diagonalizable also, it follows that X = Idn.

The construction of H from A is indeed a smooth process, though this is not clear from the

way we have done this. But we can simply write

H = exp(
1

2
log A∗A)

where log is the inverse map of Exp in the theorem 2.8. Thus ϕ(A) = (AH−1, H) where H is

given as above. It follows that ϕ is smooth. The inverse map is clearly smooth. This proves the

first part.

So far, we have kept the discussion of this proof elementary. However, to see the latter half,

we need to bring in the the exponential map and the corollary 2.5 proved above. Let h(n) denote

the real vector space of all n× n Hermitian matrices.

Now, let G be a pseudo-algebraic subgroup of GL(n,C) which is closed under transpose

conjugation. If A ∈ G then it follows that A∗A ∈ G and we have seen that there is unique

C ∈ h(n) such that expC = H, and H2 = A∗A. From the corollary above, it follows that

H ∈ g and H ∈ G. Thereofore AH−1 ∈ U(n) ∩G and H ∈ Pn ∩G. Therefore exp restricts to a

diffeomorphism G→ (G∩U(n)×G(∩Pn). It remains to see that G∩Pn is diffeomorphic to Rd.

Indeed we already know that exp : g∩h(n)→ G∩Pn is injective. As seen above the corollary

implies that this map is surjective.

♠

Exercise 2.6 Show that exp is injective on the space of Hermitian matrices by solving the

following sequence of exercises.



(1) Let D = diag (λ1Ik1 , λrIkr), where λi 6= λj, for i 6= j. If AD = DA then show that A is

also a block matrix of the form diag (Ak1 , . . . ,Akr), where each Akj is a kj × kj matrix. (2) Let

D = diag (λ1, . . . , λn), D′ = diag (λ′1, . . . , λ
′
n), where λi ≥ λi+1, λ

′
i ≥ λ′i+1, for all 1 ≤ i ≤ n − 1.

If U is an invertible matrix such that U(expD)U1 = expD′ then show that D = D′ and

UDU−1 = D.

(3) Let A,B be hermitian matrices such that expA = expB. Show that A = B.

The Fundamental Group

Here we assume that the audience is familiar with the notion of fundamental group of a

topological space. We begin with an algebraic lemma:

Lemma 2.8 Let G be a set with two binary operations ∗ and ◦ having a common tw-sided identity

element e. Suppose the two operations satisfy the following mutually distributive property:

(a ∗ b) ◦ (c ∗ d) = (a ◦ c) ∗ (b ◦ d)

for all a, b, c, d ∈ G. Then the two operations coincide and are associative and commutative.

Proof: Put b = e = c to see that a ◦ d = a ∗ d. Next put a = e = d to see the commutativity

and finally put b = e to see the associativity. ♠

Theorem 2.10 π1(G) is abelian for any connected topological group G.

Proof: Let ω1 ∗ ω2 denote the composition of loops based at the identity element e ∈ G. For

any two loops ω1, ω2 define (ω1 ◦ ω2)(t) = ω1(t)ω2(t), wherein on the RHS we have used the

multiplication in the topological group G. It is easily checked that

(ω1 ∗ ω2) ◦ (τ1 ∗ τ2) = ω1 ◦ τ1) ∗ (ω2 ◦ τ2).

Paasing onto homotopy classes of loops we still have the same mutually distributive relation.

Moreover, the class of the constant loop at e now serves as a common two-sided identity. The

lemma now completes the proof. ♠

Remarks 2.4 A more popular proof of the above theorem is via covering space theory. Every

connected Lie group G admits a universal covering p : G̃ → G, i.e., there exists connected,

simply connected Lie group G̃ and a surjective homomorphism p : G̃ → G which is a covering

projection. In particular, this implies that Ker p is a discrete subgroup of G̃ and is isomorphic to

π1(G). A standard result on topological groups now implies that Ker p is central in G̃ and hence,

in particular, is abelian. The lemma above will come handy again for us later.

By the general theory of manifolds, the fundamental group of any compact manifold is finitely

generated. By polar decomposition theorem, it follows that the fundamental group of every

matrix group is finitely gnerated.



One can strengthen the above result and the observation as follows:

Theorem 2.11 Let G be a connected Lie group and T be a maximal torus in G. Then the

inclusion induced homomorphism η# : π1(T )→ π1(G) is surjective.

Here is the sketch of the proof.

An element g ∈ G is called regular if it is a generator of a maximal torus in G. Let Greg

denote the set of all regular elements of G. Let T be a maximal torus in G and Treg = Greg ∩ T.
Consider the map φ : Treg × (G/T )→ Greg given by φ(t, gT ) = gtg−1.

Lemma 2.9 Greg is path connected.

Lemma 2.10 The map φ is a covering projection.

Lemma 2.11 There is an exact sequence of groups:

π1(T )→ π1(G)→ π1(G/T )→ (1).

Using these lemmas, the proof of theorem 2.11 is completed as follows. Note that the statement

of the theorem is equivalent to showing that π1(G/T ) = (1). Choose t0 ∈ Treg and define

f0 : G/T → G by f0(gT ) = gt0g
−1. By taking a path from t0 to e ∈ G it is clear that f0 is

homotopic to the constant map in G. On the other hand, f0 is the composite of

G/T → Treg ×G/T → Greg

gT 7→ (t0, gT ) 7→ φ(t0, gT ).

Being a coordinate inclusion, the first map induces a monomorphism on π1. Being a covering

projection the second map induces a monomorphism on π1. Therefore f0 induces a monomorphism

on π1. Being null-homotopic, it induces the trivial homomorphism. Therefore π1(G/T ) = (1).

The proofs of the above lemmas take us a little deeper into the Lie theory, viz., the root

systems.

Proof of lemma 2.10 Let W = N(T )/T denote the Weyl group. Then we know that W acts

on G/T freely, via (nT, gT ) 7→ gn−1T. Consider the action of W on Treg ×G/T given by

(nT, t, gT ) 7→ (ntn−1, gn−1T ).

It follows that the quotient map

q : Treg ×G/T )→ W\Treg ×G/T

is a covering projection with number of sheets |W |. The map φ clearly factors through q to define

a map ψ : W\Treg ×G/T → Greg. The claim is that ψ is a homeomorphism.

Since φ is surjective, so is ψ. Since φ and q are local homeomorphisms so is ψ. It can be shown

that there is a dense subset of W\Treg × G/T on which ψ is injective. Therefore, it is injective

all over. ♠



Remarks 2.5 Lemma 2.9 follows from a much stronger result:

Theorem 2.12 Greg is the complement of a finite union of closed submanifolds of G of codiemn-

sion at least 3.

Similarly, lemma 2.11 is a consequence of a much general result viz., The mapping G→ G/T is

submersion with compact fibres and hence is a locally trivial fibre bundle. We shall discuss this

in the next meeting.



Lecture 3

Throughout today’s discussion, let G denote a connected Lie group. In the previous meeting we

discussed the surjectivity of π1(T ) → π1(G) where T ⊂ G is a maximal torus. One of the fact

that we used is the exact sequence

π1(T )→ π1(G)→ π1(G/T )→ (1)

as a consequence of the fact that the quotient map G → G/T is a fibration. Today, let us take

a closer look at this, in a more general situation.

Theorem 3.13 Let G be a Lie group, H ⊂ G be a compact subgroup and q : G → G/H be

the quotient map.Then G/H is has a structure of a smooth manifold such that the quotient map

G→ G/H is a smooth (locally trivial) fibre bundle.

Proof: Let h ⊂ g denote the respective Lie algebras, and let h′ be a vector space complement,

viz., g = h⊕ h′. Consider the map Ψ : H × h′ → G given by

Ψ(h,v) = h(exp v).

Since the derivative of the product is the sum of the derivatives, it follows by inverse function

theorem, Ψ is a local diffeomorphism. Observe that Ψ|H×0 is injective. Therefore, from standard

arguments in differential topology, it follows that there is a there are disc neighbourhood of 0 ∈ h′

such that the map Ψ : H×U ′ → Ψ(H×U ′) ⊂ G is diffeomorphism onto an open neighbourhoood

of H ⊂ G which is identity on H × 0. Passing on to the quotient, we get a diffeomorphism of U ′

onto an open neighbouhood V = q(Ψ(H × U ′)) of H in G/H. Now for any gH ∈ G/H, we can

consider the translates Ψ ◦ Lg to give neighbourhoods of gH. It is easily checked that this gives

a smooth atlas {gV } for G/H and a trivialization of the quotient map over each member gV of

this atlas. ♠

Definition 3.9 A map p : E → B is said to have homotopy lifting property with to a space X

if given maps H : X × [0, 1] → B and f : X × 0 → E such that p ◦ f = H0, there exists a map

G : X × [0, 1] → E such that G0 = f and p ◦ G = H. If p has homotopy lifting property for all

spaces then it is called a fibration.

Remarks 3.6 Clearly any coordinate projection B×B′ → B is a fibration. Typical non trivial

example of a fibration is a covering projection. It is a deep theorem in algebraic topology

(see Spanier) that every locally trivial fibre bundle over a paracompact space is a fibration.

A surjective submersion of manifolds with compact fibres is a locally trivial fibre bundle and

therefore is a fibration. We shall come back to discuss the homotopy theoretic aspects of a

fibration a little later.



Recall that A subgroup T of G is called a torus if it is isomorphic to the porduct of finitely

many copies of T = S1. This is equivalent to demand that T is a connected abelian subgroup. T

is called a maximal torus in G if for all tori T ′ such that T ⊂ T ′ ⊂ G we have T = T ′. Since the

closure of a connected abelian subgroup in G is also connected abelian, it follows that a maximal

torus is also a closed subgroup. Also, a connected closed subgroup T in G is a torus iff its Lie

algbera is abelian and it is maximal iff its Lie algebra is a maximal abelian subalgebra. From

this it follows that every compact connected Lie group has a maximal torus.

An element g ∈ T is called a generator or ‘generic’ if the closure of the cyclic sugroup

generated by g is equal to T. It is well-known that each torus has plenty of generic elements.

Clearly conjugates gTg−1 of any maximal torus is maximal.

Moreover,

Theorem 3.14 Let T be a maximal torus in a connected Lie group G. Given any x ∈ G there

exists a g ∈ G such that gxg−1 ∈ T.

In other words, conjugates of any given maximal torus cover the entire group. As an easy

consequence we obtain:

Corollary 3.6 Any two maximal tori in a connected Lie group are conjugate to each other.

Proof: Taking x ∈ T ′ to be a generic element, and applying the above theorem, we get g ∈ G
such that gxg−1 ∈ T which implies that gT ′g−1 ⊂ T. Since gT ′g−1 is also maximal, equality

holds.

Toward a proof of the above theorem, consider the diffeomorphism Lx : G → G given by

g 7→ xg. This, in turn, induces a diffeomorphism Lx : G/T → G/T. Theorem above is equivalent

to show that Lx has a fixed point. This is where we are going to use some algebraic topology,

viz., we appeal to Lefschetz fixed point theorem which says:

Proposition 3.1 Any continuous map f : X → X of a compact polyhedron has fixed point if

its Lefschetz number is not zero.

So, let us show that

Theorem 3.15 The Lefschetz number of : Lx : G/T → G/T is equal to |W | where W = N(T )/T

is the Weyl group.

We observe that Letschetz number is a homological invariant and hence a homotopy invariant.

Since G is path connected, it follows easily that Lx is homotopic to Lx′ for any other x′ ∈ G.
Therefore, we can as well assume that x is a generic element of T. But then gT is a fixed point

of Lx iff Lx(gT ) = gT iff g−1Tg = T iff g ∈ N(T ) iff gT ∈ W.
Now the Lefschetz number of a map f : X → X which has finitely many fixed points is

equal to the sum of multiplicities of all the fixed points. If x ∈ X is an isolated fixed point then

f maps a punctured disc-neighbourhood D of x into a punctured neighbourhood of x and the

multiplicity of x is nothing but the winding number of f∂D around x.



In our situation, f = Lx is a diffeomorphism and hence it follows easily that the winding

number is equal to ±1. That it is actually equal to 1 follows from the fact that Lx preserves the

local orientation, being homotopic to the identity (keeping the point T fixed).

Now, for n ∈ N(T ), the right-multiplication Rn induces a diffeomorphism Rn : D → D′ via

gT 7→ gnT , where D is a disc -neighbourhood of T in G/T and D′ is a neighbouhood of nT.

Moreover, it commutes with Lx. Therefore, it follows that the multiplicity of Lx at T is the same

that at nT for all n ∈ W. Therefore, the Lefschetz number of Lx is equal to |W |. ♠

Remarks 3.7 Incidentally, we have also proved that the Euler characteristic χ(G/T ) = |W |,
since the Euler characteristic is the same as the Lefschetz numebr of the identity map.

Let us now recall a few general properties of homotopy groups. You are welcome to browse

through Chapter 10 of my book.


