
Week 11 Lectures 31-34

Lecture 31: Initial Value Problem

Solution– a la Picard

The existence and unique of the solution of an Initial Value Problem(IVP)

y′ = f(x, y), y(x0) = y0 (19)

is of fundamental importance in several branches of mathematics, not just

in the theory of Differential equations. However, it is not taught in any first

course in differential equations, since the students do not have the required

analysis background and then a student may never take a formal course in

differential equations thereby totally ‘missing’ this beautiful theorem.

Observe that f is a given real valued function defined in a (rectangular)

neighbourhood of the point (x0, y0) ∈ R
2. By a solution of (19), we mean a

once differentiable function φ defined in some neighbourhood of the point x0

say (x0 − δ, x0 + δ) satisfying,

φ(x0) = y0, & φ′(x) = f(x, φ(x)), x ∈ (x0 + δ, x0 + δ). (20)

By Fundamental Theorem of Riemann Integration, we can convert (19) into

an integral equation:

y(x) = y0 +

∫ x

x0

f(t, y(t))dt (21)

and it is in this form Picard came up with his classical solution of this prob-

lem, via the so called iteration method. Here we give a simple version of this
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great theorem. Before that, we would like to present the modern avatar of

iteration principle:

Definition 6 Let X be a metric space. By a contraction map onX we mean

a function T : X → X such that there exists a constant 0 < c < 1 such that

for x, y ∈ X we have

d(T (x), T (y)) ≤ c d(x, y).

Remark 10 It is easy to see that every contraction mapping is continuous.

The map f(x) = λx on R
n is a contraction iff |λ| < 1. The most important

property of contraction mapping is:

Theorem 18 Contraction Mapping Principle On a complete metric

space, every contraction mapping T has precisely one fixed point, i.e., there

exists exactly one point t0 ∈ X such that T (t0) = t0.

Proof: First let us prove the uniqueness. If T (t1) = t1 and T (t2) = t2 then

we have

d(T (t1), T (t2)) ≤ c d(t1, t2) = Dd(T (t1), T (t2))

which is absurd unles t1 = t2. Now starting with any point t ∈ X define

t1 = T (t), t2 = T (t1), . . . , tn = T (tn−1.

Verfiy that {tn} is a Cauchy’s sequence. Since X is a complete metric space,

it follows that tn → t0 say. Then

T (t0) = T (lim
n

tn) = lim
n

T (tn) = lim
n

tn+1 = t0.

This completes the proof of the theorem. ♠

Remark 11 This principle has the following wonderful interpretation. Take

a map of a country which is ‘to the scale’ and throw it inside the country.
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Then there is (exactly) one point on the map which lies exactly on the point

in the country which it represents. You may wonder why it should be true

for countries like USA which has several connected components but this is

true!

Theorem 19 Let R = [a, b]×[c, d] and f : R → R be a continuous real valued

valued function and let M be a constant such that f satisfies the following

Lipschitz condition of first order:

|f(x, y1)− f(x, y2)| ≤ M |y1 − y2|, (x, yj) ∈ [a, b]× [c, d]. (22)

Given a < x0 < b, c < y0 < d there exists a δ > and a unique function φ

which satisfies (20).

Proof: Put K = sup{|f(x, y)|, (x, y) ∈ R}. Choose δ > 0 so that

Mδ < 1; a < x0 − δ < x0 + δ < b and c < y0 −Kδ < y0 +Kδ < d.

Consider the space A = C[x0−δ, x0+δ] of all continuous real valued functions

on the closed interval. We know that this is a complete metric space. Now

consider the subspace B of those φ ∈ A such that

|φ(x)− y0| ≤ Kδ.

Then B is a closed subspace of A and hence is a complete metric space.

It is important to note that B is nonempty. (Why?)

We consider the map T : B → B defined by

T (φ)(x) = y0 +

∫ x

x0

f(t, φ(t))dt. (23)

By theory of Riemann integration, it follows that T (φ) is continuous. For

x ∈ [x0 − δ, x0 + δ], we have,

|T (φ)(x)− y0)| ≤ |
∫ x

x0

f(t, φ(t))dt| ≤ K|x− x0| ≤ Kδ.
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This implies that T (φ) ∈ B.

Observe that φ ∈ B is a solution of (20) iff T (φ) = φ. Therefore, our aim

is to prove that T is a contraction mapping. Given φj ∈ B consider

|T (φ1)(x)− T (φ2)(x)| = |
∫ x

x0

(f(t, φ1(t))− f(t, φ2(t)))dt|
≤ M

∫ x

x0

|φ1(t)− φ2(t)|dt
≤ Mδd(φ1, φ2).

and since this is true for all x ∈ [x0 − δ, x0 + δ] we have

d(T (φ1), T (φ2)) = sup{|T (φ1)(x)− T (φ2)(x)| : x ∈ [x0 − δ, x0 + δ]}
≤ Mδd(φ1, φ2). This completes the proof of the theorem. ♠.

Lecture 32. Cantor set

Here we shall define an operator ||∞ on the class of all closed intervals

[a, b], a < b ∈ R to the class of compact subsets of R. Given any closed

interval J = [a, b], let us define φ(J) to be the set obtained by deleting the

middle-1/3 open interval of J from J. That is,

φ(J) := J \ (a+ b− a

3
, a+ 2

b− a

3
).

For any set A which is the finite union of disjoint closed interval A =

∪k
i [ai, bi], define

φ(A) = ∪iφ([ai, bi])

Put I0 = [a, b] and inductively put In = φ(In−1), n ≥ 1. We then have a

decreasing sequence of closed subsets

I0 ⊃ I1 ⊃ · · · ⊃ In ⊃ · · ·

Put

||∞[a, b] := ∩nIn.

The function ||∞ is called the Cantor’s construction. The set C = ||∞[0, 1]

is called the Cantor set.
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The sets ||∞[a, b] have some wonderful properties:

(a) ||∞[a, b] is a non empty compact subset of [a, b], a < b

(b) If J is one of the connected components of In for some n, then ||∞(J) ⊂
||∞[a, b].

(c) a, b ∈ ||∞[a, b].

(d) Let f(x) = a + (b − a)x. Then f induces a continuous bijection of

C = ||∞[0, 1] with ||∞[a, b].

From now onward we shall specialize to C = ||∞[0, 1]. Each of the proper-

ties of C which we list below is carried over to an identical or similar property

of ||∞[a, b] by the similarity map f above.

(e) The end points of every component of In, n ≥ 0 is in C.

(f) The set of all rationals of the form
∑n

1
ak
3k
, where ak = 0 or 2 is contained

in C.

(g) C contains no open intervals.

(h) Every point of C is a limit point of C. (Such closed subset of Rn are

called perfect sets.)

(i) C is uncountable.

(j) C is totally disconnected.

(k) C is of length zero.

Proof: (a)-(d) Obvious.

(e) This is an easy consequence of (b) and (c).

(f) This is just the restatement of (e).

(g) Let J = (c, d) be any open interval contained in [0, 1]. Choose n so that

d − c > 1/3n. Then for some i such that 0 ≤ i < 3n, J1 := [ i
3n
, i+1

3n
] ⊂ J It

follows that In+1 does not contain the middle 1/3 of J1 and hence J 6⊂ In+1.

(h) Let x ∈ C and J be an interval around x. If n is chosen as above, there

is a unique i such that 0 ≤ i < 3n such that x ∈ [ i
3n
, i+1

3n
] = J1. Now both the

33



end points of J1 are in C. One of them is not equal to x and has to be inside

J. Hence J ∩ C 6= ∅.
(i) This can be deduced from the fact that C is a perfect set. Here is an easier

way. From (f), since C is closed it follows that every number represented as

an infinite sum
∞
∑

1

ak
3k

belongs to C. Let A be the set of all sequences α : N → {0, 2}. We know that

A is uncountable. The assignment

(ak) 7→
∞
∑

k

ak
3k

defines an injective mapping of A into C.

(j) Given any two points x < y ∈ C, since the interval [x, y] is not contained

in C, there exists z 6∈ C, such that x < z < y. Then {[0, z] ∩ C, [z, 1] ∩ C}
defines a separation of C.

(k) This follows by the fact that
∑

∞

1
2n−1

3n
= 1.

Lecture 33

Definition 7 By a box R in R
n we mean a product of intervals

R = Πn
i=1[ai, bi] (24)

The volume of the box R is defined to be µ(R) := Π(bi − ai).

Definition 8 Let A ⊂ R
n. We say A has measure zero if for every ǫ >

0, there exists a countable cover {R1, . . . , Rk, . . .} of A by boxes such that
∑

i µ(Ri) < ǫ.

Remark 12

(a) If B ⊂ A then A has measure zero implies so has B.

(b) Any countable subset of Rn has measure zero. More generally, a countable
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union of measure zero sets has measure zero.

(c) In the definition, we can use open boxes instead of closed ones. We can

even use closed balls or open balls instead of rectangles. All these give the

same notion of measure zero.

(d) If A is a compact subset of measure zero, then for every ǫ > 0, there exists

a finite cover of A by closed boxes {R1, . . . , Rk} such that
∑

i µ(Ri) < ǫ.

(e) For any finite cover of [a, b] by closed intervals [ai, bi], we have
∑

i(bi−ai) ≥
b − a. Thus we are happy that the interval [a, b] for a < b is not of measure

zero.

(f) The following lemma tells you that being ‘measure-zero’ is a kind of local

property of sets.

Theorem 20 The cantor set is of measure zero in R.

Lemma 5 A ⊂ R
n is of measure zero in R

n iff A ∩ U is of measure zero for

every open subset in R
n.

Proof: Cover A by a family of open sets in R
n. Then by Lindelöff property

for subsets of Rn, there exists a countable subcover {Ui} for A. Now each

A∩Ui is of measure zero and hence for each ǫ > 0, there is a countable cover

of A ∩ Ui such that the total measure is < ǫ/2i. The collection of all these

open sets forms a cover for A with the property that the total measure is

<
∑

ǫ/2i = ǫ. The converse is obvious from remark 12(a). ♠

Theorem 21 Let A ⊂ R
n be of measure zero and f : A −→ R

n be any

smooth function. Then f(A) is of measure zero.

Proof: Given a point x ∈ A, choose a ball B around x so that f |B̄ ∩ A is

the restriction of a smooth function f̂ : B̄ −→ R
n. Since A can be covered

by a countable union of such balls, we may as well assume that A ⊂ B ⊂ B̄

and f : B̄ −→ R
n is a smooth map. By continuity and compactness of B̄
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we can now choose M > 0 such that ‖Dfx‖ ≤ M for all x ∈ B̄. A simple

application of weak mean value theorem ?? now yields that

‖f(x)− f(y)‖ ≤ M‖x− y‖, ∀ x, y ∈ B̄.

Therefore, if D is a disc of radius r in B̄, it follows that f(D) is contained

in a disc of radius rM. Now given ǫ > 0 cover A by balls Di of radius ri

such that
∑

voln(Di) < ǫ. It follows that f(A) is contained in a countable

collection of balls of total volume < Mǫ. ♠
Lecture 34

Theorem 22 Every non constant polynomial in one variable with coeffi-

cients in C has at least one root in C.

This theorem is usually stated immediately after introducing complex

numbers and is taken for granted and is heavily used. Most probably the

first time a student comes across a proof of this is in a first course is complex

analysis. Here is a proof of FTA which can be taught to any student who

has taken a first course in real analysis. All the student needs to know

is the Intermediate Value Theorem and Weierstrass’s theorem that every

continuous real valued function on a closed and bounded subset of R2 attains

its infimum.

Consider the following statement:

Theorem 23 A polynomial in 1-variable of odd degree and having all real

coefficients has a real root.

If you ask any school student to supply reason for this, it is most likely

that you will get an answer similar to the following: ‘Since the roots occur

in pairs such that one is the complex conjugate of the other and since there

are odd number of roots there must be one which is real’ The trouble with

this reasoning is that it uses the FTA and many proofs of FTA use 23 which
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amounts to a circular argument. Even in the proof of FTA that you learn

in complex analysis, the so called Intermediate Value Property is implicitly

used, even though the above result 23 is not directly used.

Theorem 23 can be proved directly by using Intermediate Value Theorem:

Theorem 24 Let f : [a, b] → R be a continuous and let f(a) < t < f(b).

Then there exists a < c < b such that f(c) = t.

If p(x) is an odd degree polynomial with its leading coefficient positive,

we first observe that

lim
t→±∞

p(t) = ±∞

respectively. Thus there exist a < 0 and b > 0 such that p(a) < 0 and

p(b) > 0. Now p(a) < 0 < p(b) and from IVP, we conclude that there is

a < t < b such that p(t) = 0.

In this talk, we shall see how to prove FTA directly using IVP and the

fundamental result due to Weierstrass:

Theorem 25 Every continuous real valued function on a closed and bounded

subset of R2 attains it infimum.

Toward the proof of FTA, let us fix a polynomial p(z) = a0 + a1z + · · ·+
anz

n, aj ∈ C, an 6= 0, n ≥ 1.

Lemma 6 |p(z)| → ∞ as |z| → ∞.

Proof:

|p(z)| = |anzn|
∣

∣

∣

∣

1 +
an−1

anzn
+ · · ·+ a0

anzn

∣

∣

∣

∣

≥ |anzn|
∣

∣

∣

∣

(

1−
∣

∣

∣

∣

an−1

anz

∣

∣

∣

∣

· · · −
∣

∣

∣

∣

a0
anzn

∣

∣

∣

∣

)
∣

∣

∣

∣

.

Now take the limit as |z| −→ ∞. ♠

Lemma 7 |p| : C → R attains its infimum.
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Proof: We have to show that there exists z0 ∈ C such that |p(z0)| ≤ |p(z)|
for all z ∈ C.

In the above lemma we have seen that |p(z)| −→ ∞ as |z| −→ ∞. This

means that there exists R > 0 such that |p(z)| > |p(0)| for all |z| > R. It

follows that

Inf {|p(z)| : z ∈ C} = Inf {|p(z)| : |z| ≤ R} ≤ |p(0)|.

But the disc {z : |z| ≤ R} is closed and bounded. Since the function z 7→
|p(z)| is continuous, it attains its infimum on this disc. This completes the

proof of the lemma. ♠
Slowly but surely, now an idea of the proof of FTA emerges: Observe that

FTA is true iff the infimum z0 obtained in the above lemma is a zero of p,

i.e., p(z0) = 0. Therefore in order to complete a proof of FTA, it is enough to

assume that p(z0) 6= 0 and arrive at a contradiction. (This idea is essentially

due to Argand.)

Consider the polynomial q(z) = p(z+z0). Both the polynomials, p, q have

the same value set and hence minimum of |q(z)| is equal to minimum of |p(z)|
which is equal to |p(z0)| = |q(0)|.

We shall assume that q(0) 6= 0 and arrive a contradiction.

Write q(z) = q(0)φ(z). Then φ(0) = 1 and hence we can write

φ(z) = 1 + wzk + zk+1f(z)

for some w ∈ C\{0}, some integer k ≥ 1 and some polynomial f(z). Observe

that |q(0)| is the minimum of |q(z)| iff 1 is the minimum of |φ(z)|. It is enough
to prove that

Lemma 8 Argand’s Inequality For any polynomial f, positive integer k,

and any w ∈ C \ {0},

Min{|1 + wzk + zk+1f(z)| : z ∈ C} < 1. (25)
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Choose r > 0 such that rk = |w|. (By IVP, there is such a real number

and indeed a unique one.) Now replace z by z/rk in (25). Thus, we may

assume |w| = 1 in (25).

At this stage, Argand’s proof uses de Moivre’s theorem, viz., for every

complex number α of modulus 1 and every positive integer k, the equation

zk = α has a solution. Strictly speaking this is cannot be allowed, since the

proof of de Moivre’s theorem uses measurement of an angle, which needs to

be establised rigorously first. We shall see how to avoid this in a easy way.

However, first we continue with Argand’s proof of this lemma , because of

its simplicity.

Choose λ such that λk = −w−1. Replace z by λz in (25) to reduce it to

proving

Min{|1− zk + zk+1g(z)| : z ∈ C} < 1. (26)

Now restrict z to positive real numbers, z = t > 0. Since g(t) is a polynomial,

tg(t) → 0 as t → 0. So there exists 0 < t < 1 for which |tg(t)| < 1/2. But

then

|1− tk + tk+1g(t)| < |1− tk|+ tk

2
= 1− tk +

tk

2
< 1

thereby completing the proof of (25). This also completes a proof of FTA.

Why do we want to avoid using de Moivre’s Theorem? As I have pointed

out earlier, the answer is that it depends heavily upon the intuitive concept

of the angle which needs to be established rigorously. (It should also be

noted that during Argand’s time, one could not expect a rigorous proof of

lemma 7, which Argand simply assumed.2 There are several ways to make

this rigorous. For instance, we can introduce the notion of arc-length and

then define the angle to be the length of the arc in the unit circle with center

2For more learned comments, see R. Remmert’s article on ‘Fundamental Theorem of

Algebra’ in the book Numbers edited by H.-D. Ebbinghaus et al, and published by GTM-

RIM 123, Springer-Verlag, 1990.
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at the point of intersection of given two lines. We can then develop all the

required basic properties of the ‘angle’ and the real trigonometric functions

leading to a proof of De Moivre’s theorem.

Instead, we now follow an idea due to Littlewood in which one proves a

weaker form of De Moivre’s theorem:

Lemma 9 For any integer n ≥ 1, the four equations

zn = ±1; zn = ±ı; (27)

have all solutions in C.

The proof of this is achieved by two simple observations:

Lemma 10 Given any complex number w of modulus 1, one of the four

numbers ±w,±ıw has its real part less than −1/2.

Proof: [This is seen easily as illustrated in the Fig. 1. The four shaded

regions which cover the whole of the boundary are got by rotating the region

ℜ(z) < −1/2. However, it is important to note that the following proof

is completely independent of the picture.] Since |w| = 1, either |ℜ(w)| or
|ℑ(w)| has to be bigger than 1/2. In the former case, one of ±w will have

the required property. In the latter case, one of ±ıw will do. ♠

Re(z)<−1/2

The second observation is:
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Lemma 11 Given any complex number α+ ıβ there exists z ∈ C such that

z2 = α + ıβ.

[Proof: Write z = x+ ıy. We must find real numbers x, y such that

x2 − y2 = α; 2xy = β.

Consider the case when β = 0. If α ≥ 0 take x =
√
α and y = 0. If α < 0

then take x = 0 and y =
√−α. Now consider the case β 6= 0. It follows that

y 6= 0 and we hence can eliminate y to obtain 4x4 − 4x2α− β2 = 0. This can

be solved for x2 by method of completing the square: (2x2 − α)2 = α2 + β2

If c = +
√

α2 + β2, then c + α > 0. and so, we take x =
√
c+ α. Finally we

put y = β/2x to complete the solution.]

Now we can complete the proof of lemma 9.

Proof: of 9 Write n = 2km, where m = 4l+ 1 or 4l+ 3. For k ≥ 0, since

we can take successive square-roots let αk, βk, γk be such that

α2k

k = −1, β2k

k = ı, γ2k

k = −ı.

(For k = 0, this just means α0 = −1; β0 = ı, γ0 = −ı.)

Now let us take the four equations one by one:

(a) For zn = 1, we can always take z = 1.

(b) For equation zn = −1, take z = αk. Then (αk)
n = (−1)m = −1.

(c) For the equation zn = ı : Take z = βk, if m = 4l+1. Then (βk)
n = (ı)m =

ı. If m = 4l + 3 then take z = γk so that (γk)
n = (−ı)m = (−ı)3 = ı.

(d) This case follows easily from (b) and (c). Choose z1, z2 such that zn1 = −1

and zn2 = ı. Then (z1z2)
n = −ı. ♠

[At this stage, the proof given in literature first establishes de Moivre’s

theorem and then follows the arguments given above. Here, we shall directly

derive Argand’s inequality.]

Returning to the proof of lemma , choose τ = ±1,±ı so that ℜ(τw) < −1

2
(Lemma 10). Choose α ∈ C such that αk = τ (Lemma 9).

41



Now, replace z by αz, so that we may assume that w = a + ıb, where

a ≤ −1/2 and a2 + b2 = 1.

Since f is continuous, it follows that tf(t) → 0 as t → 0. Restricting to

just the real values of t, we can choose 0 < δ < 1 such that |tf(t)| < 1/3 for

all 0 < t < δ. For such a choice of t, we have

|1 + wtk + tk+1f(t)| ≤ |1 + wtk|+ tk

3
= [(1 + atk)2 + b2t2k]1/2 +

tk

3
.

We want to choose 0 < t < δ such that this quantity is less than 1. For

a2 + b2 = 1 and t > 0 we have

[(1 + atk)2 + b2t2k]1/2 + tk/3 < 1 iff [(1 + atk)2 + b2t2k]1/2 < 1− tk

3

iff (1 + atk)2 + b2t2k <

(

1− tk

3

)2

= 1− 2tk

3
+

t2k

9

iff 1 + 2atk + t2k < 1− 2tk

3
+

t2k

9
iff

8

9
tk < −

(

2a+
2

3

)

, t > 0.

This last condition can be fulfilled by choosing t > 0 such that tk < 3/8, for

then,
8

9
tk <

1

3
< −

(

2a+
2

3

)

.

Thus, for any t > 0 which is such that tk < min {3/8, δ} (IVP again), we

have

|1 + wtk + tk+1f(t)| < 1.

This completes the proof of the lemma and thereby that of FTA. ♠
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