
Third Week Lectures 7-9

Lecture 7

Series

Given two numbers, we can add them to get another number. Re-

peatedly carrying out this operation allows us to talk about sums of

any finitely many numbers. We would like to talk about ‘sum’ of in-

finitely many numbers as well. A natural way to do this is to label the

given numbers, take sums of first n of them and look at the ‘limit’ of

the sequence of numbers so obtained.

Thus given a (countable) collection of numbers, the first step is to

label them to get a sequence {sn}. In the second step, we form another

sequence: the sequence of partial sums tn =
∑n

k=1 sk. Observe that

the first sequence {sn} can be recovered completely from the second

one {tn}. The third step is to assign a limit to the second sequence

provided the limit exists. This entire process is coined under a single

term ‘series’. However, below, we shall stick to the popular definition

of a series.

Definition 14 By a series of real or complex numbers we mean a

formal infinite sum:

∑

n

sn := s0 + z1 + · · · + sn + · · ·
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Of course, it is possible that there are only finitely many non zero

terms here. The sequence of partial sums associated to the above series

is defined to be tn :=
n
∑

k=1

zk. We say the series
∑

n sn is convergent to

the sum s if the associated sequence {tn} of partial sums is convergent

to s. In that case, if s is the limit of this sequence, then we say s is the

sum of the series and write

∑

n

zn := s.

It should be noted that that even if s is finite, it is not obtained via an

arithmentic operation of taking sums of members of {sn} but by taking

the limit of the associated sequence {tn} of partial sums. Since display-

ing all elements of {tn} allows us to recover the original sequence {sn}
by the formula sn = tn+1 − tn results that we formulate for sequences

have their counterpart for series and vice versa and hence in principle

we need to do this only for one of them. For example, we can talk a

series which is the sum of two series
∑

n an,
∑

n bn viz.
∑

n(an + bn)

and if both
∑

n an,
∑

n bn are convergent to finite sums then the sum

series
∑

n(an + bn) is convergent to the sum of the their sums.

Nevertheless, it is good to go through these notions. For example

the Cauchy’s criterion for the convergence of the sequence {tn} can be

converted into

Theorem 14 A series
∑

n sn is convergent to a finite sum iff for every

ǫ > 0 there exists n0 such that |
∑m

k=n sn| < ǫ, for all m, n ≥ n0.

As a corollary we obtain

Corollary 1 If
∑

sn is convergent to a finite sum then sn → 0.

Of course the converse does not hold as seen by the harmonic series
∑

n
1
n
.
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Once again it is immediate that if
∑

n zn and
∑

n wn are convergent

series then for any complex number λ, we have,
∑

n λzn and
∑

n(zn +

wn) are convergent and

∑

n λzn = λ
∑

n zn;
∑

n(zn + wn) =
∑

n zn +
∑

n wn. (5)

Theorem 15 A series of positive terms
∑

n an is convergent iff the

sequence of parial sums is bounded.

Theorem 16 Comparison Test

(a) If |an| ≤ cn for all n ≥ n0 for some n0, and
∑

n cc is cgt then
∑

n an

is convergent.

(b) If an ≥ bn ≥ 0 for all n ≥ n0 for some n0 and
∑

n bn diverges

implies
∑

n an diverges.

The geometric series is the mother of all series:

Theorem 17 Geometric Series If 0 ≤ |x| < 1 then sumnx
n = 1

1−x
.

If |x| > 1, then the series diverges.

Here the partial sum sequence is given by tn = 1−xn+1

1−x
→ 1

1−x
.

Theorem 18 The series
∑

n
1
n!

is cgt and its sum is denoted by e. We

have, 2 < e < 3.

Proof: For n ≥ 2, we have,

2 < tn = 1+1+
1

2!
+ · · ·+ 1

n!
< 1+1+

1

2
+ · · ·+ 1

2n−1
< 1+

1

1 − 1/2
= 3.

Theorem 19 limn

(

1 + 1
n

)n
= e.

Proof: Put tn =
∑n

k=0
1
k!

, rn =
(

1 + 1
n

)n
. Then

rn = 1 + 1 +
n − 1

2!n
+ + · · ·+ (n − 1)!

n!nn−1
< tn.
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Therefore lim sup rn ≤ e. On the other hand, for a fixed m if n ≥ m,

we have

rn ≥ 1 + 1 +
1

2!

(

1 − 1

n

)

+ · · ·+ 1

m!

(

1 − 1

n

)

· · ·
(

1 − m − 1

n

)

.

Therefore

lim inf
n

rn ≥ tm.

Since this true for all m, we get lim infn rn ≥ 3. ♠

Remark 15 The rapidity with which this sequence converges is esti-

mated by considering:

e−tn =
1

(n + 1)!
+

1

(n + 2)!
+· · · <

1

(n + 1)!
[1+

1

n + 1
+

1

(n + 1)2
+· · · ] =

1

n!n
.

Thus

0 < e − tn <
1

n!n
.

Corollary 2 e is irrational.

Proof: Assume on the contrary that e = p

q
. Then q!e and q!tq are both

integers. On the other hand 0 < q!e − q!tq < 1
q

which is absurd. ♠

Definition 15 A series
∑

n an is said to be absolutely convergent if

the series
∑

n |an| is convergent to a finite limit.

Theorem 20 Suppose {an} is a decreasing sequence of positive terms,

then
∑∞

n=0 an is cgt iff
∑

k 2ka2k is cgt.

Proof: Put tn =
∑n

k=1 ak, Tn =
∑n

k=1 2ka2k . Check that tn ≤ t2n ≤
Tn + a0 and 2a0 + a1 + Tn ≤ 2t2n−1.

Theorem 21
∑

n
1
np < ∞ iff p > 1.

Corollary 3 The harmonic series is divergent.
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Theorem 22 The series
∑∞

n=2
1

(n ln n)p is convergent iff p > 1.

Theorem 23 Ratio Test: If {an} is a sequence of positive terms such

that

lim sup
n

an+1

an

= r < 1,

then
∑

n an is convergent. If an+1

an
≥ 1 for all n ≥ n0 for some n0, then

∑

n an is divergent.

Proof: To see the first part, choose s so that r < s < 1. Then there ex-

ists N such that an+1

an
< s for all n ≥ N. This implies aN+k < aNsk, k ≥

1. Since the geometric series
∑

k sk is convergent, the convergence of
∑

n an follows. The second part is obvious since an cannot converge to

0. ♠

Theorem 24 Root Test For sequence {an} of positive terms, put

l = lim supn
n
√

an. Then

(a) l < 1 =⇒
∑

n an < ∞.

(b) l > 1 =⇒
∑

n an = ∞.

(c)l = 1 the series
∑

n an can be finite or infinite.

Proof: Choose l < r < 1 and then an integer N such that n
√

an < r

for all n ≥ N. Therefore an < rn and we can now compare with the

geometric series. The proof of (b) is also similar. (c) is demostrated

by the series
∑

n
1
n

and
∑

n
1
n2 . ♠

Remark 16 As compared to ratio test, root test is more powerful, in

the sense, whereever ratio test is conclusive so is root test. Also there

are cases when ration test fails but root test holds. However, ratio test

is easier to apply.

Example 3 Put a2n+1 = 1
2n+1 , a2n = 1

3n . Then

lim infn
an+1

an
= limn

2n

3n = 0; lim infn
n
√

an = limn
2n

√

1
3n =

√

1
3
.
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lim supn
an+1

an
= limn

(

3
2

)n
= ∞; lim supn

n
√

an = limn
2n+1

√

1
2n = 1√

2
.

The ratio test cannot be applied. The root test gives the convergence.

The following theorem proves the claim that we have made in the above

remark.

Theorem 25 For any sequence {an} of positive terms,

lim inf
n

an+1

an

≤ lim inf
n

n
√

an ≤ lim sup
n

n
√

an ≤ lim sup
n

an+1

an

.

Lecture 8

Example 4

1. Let zn = xn + ıyn, n ≥ 1. Show that zn → z = x + ıy iff xn → x

and yn → y.

2. Telescoping: Given a sequence {xn} define the difference se-

quence an := xn − xn+1. Then show that the series
∑

n an is

convergent iff the sequence {xn} is convergent and in that case,
∑

n

an = x0 − lim
n−→∞

xn.

Definition 16 A series
∑

n zn is said to be absolutely convergent if

the series
∑

n |zn| is convergent.

Again, it is easily seen that an absolutely convergent series is con-

vergent, whereas the converse is not true as seen with the standard

example
∑

n

(−1)n 1

n
. The notion of absolute convergence plays a very

important role throughout the study of convergence of series.

Theorem 26 Let
∑

n zn be an absolutely convergent series. Then ev-

ery rearrangement
∑

n zσn
of the series is also absolutely convergent,

and hence convergent. Moreover, each such rearrangement converges

to the same sum.
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Proof: Recall that a rearrangement
∑

n zσn
of
∑

n zn is obtained by

taking a bijection σ : N −→ N.) Let
∑

n zn = z. The only thing that

needs a proof at this stage is that
∑

n zσ(n) = z. Let us denote the

partial sums sn =
∑n

k=0 ak tn =
∑n

k=0 aσ(k). Since
∑

n an is absolutely

convergent given ǫ > 0 there is a N such that
∑m

k=n |ak| < ǫ for all

m ≥ n ≥ N. Pick up N1 large enough so that

{1, 2, . . . , N} ⊂ {σ(1), σ(2), . . . σ(N1)}.

Then for n ≥ N1, we have |sn − tn| ≤
∑n

k=N+1 |an| < ǫ. Therefore,

limn sn = limn tn. ♠
Riemann’s rearrangment Theorem: Let

∑

an be a convergent

series of real numbers which is not absolutely convergent. Given −∞ ≤
α ≤ β ≤ ∞, there exists a rearrangements

∑

n aτ(n) of
∑

n an with

partial sums tn such that

lim inf
n

tn = α; lim sup
n

tn = β.

We are not going to prove this. See [R] for a proof.

Example 5 1. Let {zn} be a bounded sequence and
∑

n wn is an

absolutely convergent series. Show that
∑

n znwn is absolutely

convergent.

2. Abel’s Test: For any sequence of complex numbers {an}, define

S0 = 0 and Sn =
∑n

k=1 ak, n ≥ 1. Let {bn} be any sequence of

complex numbers.

(i) Prove Abels’ Identity:

n
∑

k=m

akbk =
n−1
∑

k=m

Sk(bk − bk+1) − Sm−1bm + Snbn, 1 ≤ m ≤ n.

(LHS =
∑

(Sk − Sk−1)bk =
∑n

m Skbk −
∑n−1

m−1 Skbk+1 = RHS.)

(ii) Show that
∑

n anbn is convergent if the series
∑

k Sk(bk−bk+1)
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is convergent and lim
n−→∞

Snbn exits.(Put m = 1.)

(iii) Abel’s Test: Let
∑

n an be a convergent series and {bn} be

a bounded monotonic sequence of real numbers. Then show that
∑

n anbn is convergent.

(Solution:
∑

n(bn − bn+1) is convergent by Telescoping and abso-

lutely, since {bn} is monotonic. The series
∑

n an is convergent

and hence {Sn} is bounded. By the previous exercise, the product

series is convergent. Since both Sn and bn are convergent Snbn is

convergent. Therefore, (ii) applies.

3. Dirichlet’s Test: Let
∑

n an be such that the partial sums are

bounded and let {bn} be a monotonic sequence tending to zero.

Then show that
∑

n anbn is convergent.

(Arguements are already there in above eaxmple)

4. Derive the following Leibniz’s test from Dirichlet’s Test: If {cn}
is a monotonic sequence converging to 0 then the alternating series
∑

n(−1)ncn is convergent.

(Take an = (−1)n and bn = cn in Dirichlet’s test.)

5. Generalize the Leibniz’s test as follows: If {cn} is a monotonic

sequence converging to 0 and ζ is complex number such that |ζ | =

1, ζ 6= 1, then
∑

n ζnan is convergent.

Exercise 8 Show that if
∑

n an is convergent then the following se-

quences are all convergent.

(a)
∑

n

an

np
, p > 0; (b)

∑

n

an

logpn
; (c)

∑

n
n
√

nan; (d)
∑

n

(

1 +
1

n

)n

an;

Show that for any p > 0, and for every real number x,
∑

n

sin nx

np
is

convergent.
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Lecture 9

Definition 17 Given two series
∑

n an,
∑

n bn, the Cauchy product of

these two series is defined to be
∑

n cn, where cn =
∑n

k=0 akbn−k.

Theorem 27 If
∑

n an,
∑

n bn are two absolutely convergent series then

their Cauchy product series is absolutely convergent and its sum is equal

to the product of the sums of the two series:

∑

n

cn =

(

∑

n

an

)(

∑

n

bn

)

. (6)

Proof: Consider the remainder after n− 1 terms of the corresponding

absolute series:

Rn =
∑

k≥n

|ak|; R′
n =

∑

k≥n

|bk|.

Clearly,
∑

0≥k≤n

|ck| ≤ (
∑

k≤n

|ak|)(
∑

l≤n

|bl|) ≤ R0T0.

Thus the partial sums of the series
∑

n |c|kk forms a monotonically

increasing sequence which is bounded above. Therefore the series
∑

n cn

is absolutely convergent. Further,
∣

∣

∣

∣

∣

∑

k≤2n

ck −
(

∑

k≤n

ak

)(

∑

k≤n

bk

)
∣

∣

∣

∣

∣

≤ R0Tn+1 + T0Rn+1,

since the terms that remain on the LHS after cancellation are of the

form akbl where either k ≥ n + 1 or l ≥ n + 1. Upon taking the limit

as n −→ ∞, we obtain (6). ♠

Remark 17 This theorem is true even if one of the two series is abso-

lutely convergent and the other is convergent. For a proof of this, see

[R].
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Definition 18 By a formal power series in one variable t over K, we

mean a sum of the form

∞
∑

n=0

antn, an ∈ K.

Note that for this definition to make sense, the sequence {an} can

be inside any set. However, we shall restrict this and assume that

the sequences are taken inside field K. Let K[[t]] denote the set of all

formal power series
∑

n ant
n in t with coefficients an ∈ K. Observe that

when at most a finite number of an are non zero the above sum gives

a polynomial. Thus, all polynomials in t are power series in t, i.e.,

K[t] ⊂ K[[t]].

Just like polynomials, we can add two power series ‘term-by-term’

and we can also multiply them by scalars, viz.,

∑

n

ant
n +

∑

n

bntn :=
∑

n

(an + bn)tn; α(
∑

n

ant
n) :=

∑

n

αant
n.

Verified that the above two operations make K[[t]] into a vector

space over K.

Further, we can even multiply two formal power series:
(

∑

n

antn

)(

∑

n

bntn

)

:=
∑

n

cntn,

where, cn =
∑n

k=0 akbn−k. This product is called the Cauchy product.

One can directly check that K[[t]] is then a commutative ring with the multi-

plicative identity being the power series

1 :=
∑

n

ant
n

where, a0 = 1 and an = 0, n ≥ 1. Together with the vector space structure, K[[t]]

is actually a K-algebra.) Observe that the ring of polynomials in t forms a subring

of K[[t]]. What we are now interested in is to get nice functions out of power series.
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Observe that, if p(t) is a polynomial over K then by the method

of substitution, it defines a function a 7→ p(a), from K to K. It

is customary to denote this map by p(t) itself. However, due to the

infinite nature of the sum involved, given a power series P and a point

a ∈ K, the substitution P (a) may not make sense in general. This is

the reason why we have to treat power series with a little more care,

via the notion of convergence.

Definition 19 A formal power series P (t) =
∑

n anz
n is said to be

convergent at z0 ∈ C if the sequence {sn}, where, sn =
n
∑

k=0

akz
k
0 is con-

vergent. In that case we write P (z0) = lim
n→∞

sn for this limit. Putting

tn = anzn
0 , this just means that the series of complex numbers

∑

n tn

is convergent.

Remark 18 Observe that every power series is convergent at 0.

Definition 20 A power series is said to be a convergent power series,

if it is convergent at some point z0 6= 0.

The following few theorems, which are attributed to Cauchy-Hadamard1

and Abel2, are most fundamental in the theory of convergent power se-

ries.

Theorem 28 Cauchy-Hadamard Formula: Let P =
∑

n≥0 ant
n be

a power series over C. Put L = lim supn
n
√

|an| and R = 1
L

with the

1Jacques Hadamard(1865-1963) was a French Mathematician who was the most influ-

ential mathematician of his days, worked in several areas of mathematics such as complex

analysis, analytic number theory, partial differential equations, hydrodynamics and logic.
2Niels Henrik Abel (1802-1829) was a Norwegian, who died young under deprivation.

At the age of 21, he proved the impossibility of solving a general quintic by radicals. He

did not get any recognition during his life time for his now famous works on convergence,

on so called abelian integrals, and on elliptic functions.
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convention 1
0

= ∞; 1
∞ = 0. Then

(a) for all 0 < r < R, the series P (t) is absolutely and uniformly

convergent in |z| ≤ r and

(b) for all |z| > R the series is divergent.

Proof: (a) Let 0 < r < R. Choose r < s < R. Then 1/s > 1/R = L

and hence by property (Limsup-I), we must have n0 such that for all

n ≥ n0,
n
√

|an| < 1/s. Therefore, for all |z| ≤ r, |anzn| < (r/s)n, n ≥
n0. Since r/s < 1, by Weierstrass majorant criterion, (Theorem ??), it

follows that P (z) is absolutely and uniformly convergent.

(b) Suppose |z| > R. We fix s such that |z| > s > R. Then 1/s < 1/R =

L, and hence by property (Limsup-II), there exist infinitely many nj ,

for which nj

√

|anj
| > 1/s. This means that |anj

znj | > (|z|/s)nj > 1. It

follows that the nth term of the series
∑

n anz
n does not converge to 0

and hence the series is divergent. ♠

Definition 21 Given a power series
∑

n antn,

R = sup {|z| :
∑

n

anzn < ∞}

is called the radius of convergence of the series. The above theorem

gives you the formula for R.

Remark 19 Observe that if P (t) is convergent for some z, then the

radius of convergence of P is at least |z|. The second part of the theorem

gives you the formula for it. This is called the Cauchy-Hadamard

formula. It is implicit in this theorem that the the collection of all

points at which a given power series converges consists of an open disc

centered at the origin and perhaps some points on the boundary of

the disc. This disc is called the disc of convergence of the power series.

Observe that the theorem does not say anything about the convergence

of the series at points on the boundary |z| = R. The examples below

will tell you that any thing can happen.
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Example 6 The series
∑

n

tn,
∑

n

tn

n
,
∑

n

tn

n2
all have radius of conver-

gence 1. The first one is not convergent at any point of the boundary

of the disc of convergence |z| = 1. The second is convergent at all

the points of the boundary except at z = 1 (Dirichlet’s test) and the

last one is convergent at all the points of the boundary (compare with
∑

n
1
n2 ). These examples clearly illustrate that the boundary behavior

of a power series needs to be studied more carefully.

Assignement 3

Solutions to be submitted on 1st Sept. Wednesday morning.

1. Let
∑

n zn be a convergent series of complex numbers such that

the real part ℜ(zn) ≥ 0 for all n. If
∑

n z2
n is also convergent, show

that
∑

n |zn|2 is convergent.

2. For 0 ≤ θ < 2π and for any α ∈ R, define the closed sector S(α, θ)

with span θ by

S(α, θ) = {rE(β) : r ≥ 0 & α ≤ β ≤ α + θ}.

Let
∑

n zn be a convergent series. If zn ∈ S(α, θ), n ≥ 1, where

θ < π, then show that
∑

n |zn| is convergent.

3. Give a direct proof of the fact that
∑

n≥0
zn

n!
is convergent for all

z ∈ C. Use this to prove that

lim sup
n

n
√

n! = ∞.

4. If P (t), Q(t) are two convergent power series with radius of con-

vergence r and s respectively, show that the radius of convergence

of (P (t) + Q(t) is at least min{r, s}.
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5. Let p(t) = a0 +a1t+ · · · be a formal power series with coefficients

in C. Show that there exists another power series q(t) = b0 +b1t+

· · · such that p(t)q(1) = 1 iff a0 6= 0. In this case, show that q is

unique. (q is called the multiplicative inverse of p.) Write down

formula for bn in terms of a0, a1, · · ·

6. Hemachandra Numbers For any positive integer n, let Hn de-

note the number of patterns you may be able to produce on a

drum in a fixed duration of n beats. For instance, Dha− dhin−
dhin the first Dha− takes two syllables whereas the following

two Dhin’s take one syllable each. Clearly H1 = 1 and H2 = 2.

Hemachandra 3 noted that since the last syllable is either of one

beat or two beats it follows that Hn = Hn−1 +Hn−2 for all n ≥ 3.

These numbers were known to Indian poets, musicians and per-

cussionists as Hemachandra numbers.

Define F0 = 0, F1 = 1 and Fn = Fn−1 + Fn−2, n ≥ 2. Note that

Fn = Hn−1, n ≥ 2. These Fn are called Fibonacci numbers. 4

(Thus the first few Fibonacci numbers are 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, . . . .)

Form the formal power series

F (z) =

∞
∑

n=0

Fnz
n (7)

(a) Show thaT (1 − t − t2)F (t) = t.

(b) Put Sw(t) := 1 + wt + w2t2 + · · · . Find α, β ∈ R such that

F (t) = Sα(t)Sβ(t)t.

3Hemachandra Suri (1089-1175) was born in Dhandhuka, Gujarat. He was a Jain monk

and was an adviser to king Kumarapala. His work in early 11 century is already based on

even earlier works of Gopala.
4Leonardo Pisano (Fibonacci) was born in Pisa, Italy (1175-1250) whose book Liber

abbaci introduced the Hindu-Arabic decimal system to the western world. He discovered

these numbers at least 50 years later than Hemachandra’s record.
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(c) Show that

Fn+1 =
n
∑

j=0

αjβn−j =
αn+1 − βn+1

α − β
=

1√
5
(αn+1 − βn+1)

7. Summability Let

F = {Pα(t) =
∑

n

aα,ntn, : α ∈ Λ} ⊂ C[[t]]

be a family of formal power series in one variable with complex

coefficients. We say F is summable if for every n ≥ 0 the set

Λn = {α ∈ Lambda : Aα,n 6= 0} is finite. In this case, we define

the sum of this family to be the element

p(t) =
∑

n

(

∑

α∈Λ

aα,n

)

tn.

Let now A(t) =
∑

n antn, B(t) =
∑

n bnt
n be any two power series.

Prove or disprove the following statements.

(a) The Cauchy product AB is the sum of the family

{anbmtm+n : m, n ≥ 0}.
(b) If {Aj(t)} is a summable family then for any B the family

{AjB} is summable.

(c) If b0 6= 0 then the family {anBn} is summable.
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