
Fourth Week: Lectures 10-12

Lecture 10

The fact that a power series p of positive radius of convergence defines a

function inside its disc of convergence via substitution is something that

we cannot ignore any longer. Let us take the study of such functions.

The sequence of partial sums of p, each being a polynomial, defines a

function on the whole of the complex plane. (If all the coefficients of p

are real we can view each of the partial sums as a real valued functions

defined on R.) However, the limit makes sense only inside the disc of

convergence. More generally, we can talk about a sequence {fn} of

functions defined on some subset of A ⊂ C such that at each point

z ∈ A the sequence is convergent. We then get a function f : A → C

as the limit function viz.,

f(z) = lim
n

fn(z), z ∈ A.

Remember that this means for each ǫ > 0 there exists n0(z) such

that n ≥ n0 implies |fn(z)−f(z)| < ǫ. The number n0(z) may well vary

drastically as we vary the point z ∈ A. In order that the limit function

f retains some properties of the members of the sequence {fn} it is

anticipated that there must be some control over the possible n0(z).

This leads us to the notion of uniform convergence.

Definition 22 Let {fn} be a sequence of complex valued functions on
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a set A. We say that it is uniformly convergent on A to a function f

if for every ǫ > 0 there exists n0, such that for all n ≥ n0, we have,

|fn(x) − f(x)| < ǫ, for all x ∈ A.

Remark 20 Clearly, Uniform convergence implies pointwise conver-

gence. The converse is easily seen to be false, by considering the se-

quence fn(x) = 1

1+nx2 . However, it is fairly easy to see that this is so

if A is a finite set. Thus the interesting case of uniform convergence

occurs only when A is an infinite set. The terminology is also adopted

in an obvious way for series of functions via the associated sequences of

partial sums. As in the case of ordinary convergence, we have Cauchy’s

criterion here also.

Theorem 29 A sequence of complex valued functions {fn} is uni-

formly convergent iff it is uniformly Cauchy i.e., given ǫ > 0, there

exists n0 such that for all n ≥ n0, p ≥ 0 and for all x ∈ A, we have,

|fn+p(x) − fn(x)| < ǫ.

Example 7 The mother of all convergent series is the geometric series

1 + z + z2 + · · ·

The sequence of partial sums is given by

1 + z + · · · + zn−1 =
1 − zn

1 − z
.

For |z| < 1 upon taking the limit we obtain

1+z+z2+· · ·+zn+· · · =
1

1 − z
. (8)
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In fact, if we take 0 < r < 1, then in the disc Br(0), the series

is uniformly convergent. For, given ǫ > 0, choose n0 such that rn0 <

ǫ(1 − r). Then for all |z| < r and n ≥ n0, we have,
∣

∣

∣

∣

1 − zn

1 − z
−

1

1 − z

∣

∣

∣

∣

=

∣

∣

∣

∣

zn

1 − z

∣

∣

∣

∣

≤
|zn0 |

1 − |z|
< ǫ

There is a pattern in what we saw in the above example. This is

extremely useful in determining uniform convergence:

Theorem 30 Weierstrass5M-test: Let
∑

n an be a convergent series

of positive terms. Suppose there exists M > 0 and an integer N such

that |fn(x)| < Man for all n ≥ N and for all x ∈ A. Then
∑

n fn is

uniformly and absolutely convergent in A.

Proof: Given ǫ > 0 choose n0 > N such that an + an+1 + · · ·+ an+p <

ǫ/M, for all n ≥ n0. This is possible by Cauchy’s criterion, since
∑

n an

is convergent. Then it follows that

|fn(x)| + · · ·+ |fn+p(x)| ≤ M(an + · · · + an+p) < ǫ,

for all n ≥ n0 and for all x ∈ A. Again, by Cauchy’s criterion, this

means that
∑

fn is uniformly and absolutely convergent. ♠

Remark 21 The series
∑

n an in the above theorem is called a ‘majo-

rant’ for the series
∑

n fn. Here is an illustration of the importance of

uniform convergence.

Theorem 31 Let {fn} be a sequence of continuous functions defined

and uniformly convergent on a subset A of R or C. Then the limit

function f(x) = lim
n−→∞

fn(x) is continuous on A.

5Karl Weierstrass (1815-1897) a German mathematician is well known for his perfect

rigor. He clarified any remaining ambiguities in the notion of a function, of derivatives, of

minimum etc., prevalent in his time.
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Proof: Let x ∈ A be any point. In order to prove the continuity of

f at x, given ǫ > 0 we should find δ > 0 such that for all y ∈ A with

|y−x| < δ, we have, |f(y)−f(x)| < ǫ. So, by the uniform convergence,

first we get n0 such that |fn0
(y) − f(y)| < ǫ/3 for all y ∈ A. Since

fn0
is continuous at x, we also get δ > 0 such that for all y ∈ A

with |y − x| < δ, we have |fn0
(y) − fn0

(x)| < ǫ/3. Now, using triangle

inequality, we get,

|f(y)− f(x)| ≤ |f(y)− fn0
(y)|+ |fn0

(y)− fn0
(x)|+ |fn0

(x)− f(x)| < ǫ,

whenever y ∈ A is such that |y − x| < δ. ♠

Exercise 9 Put fn(z) = zn

1−zn . Determine the domain on which the

sum
∑

n fn(z) defines a continuous function.

Definition 23 Given a power series P (t) =
∑

n≥0
ant

n, the derived

series P ′(t) is defined by taking term-by-term differentiation: P ′(t) =
∑

n≥1
nant

n−1. The series
∑

n≥0

an

n+1
tn+1 is called the integrated series.

As an application of Cauchy-Hadamard formula, we derive:

Theorem 32 A power series P (t), its derived series P ′(t) and any

series obtained by integrating P (t) all have the same radius of conver-

gence.

Proof: Let the radius of convergence of P (t) =
∑

n antn, and P ′(t) be

r, r′ respectively. It is enough to prove that r = r′.

We will first show that r ≥ r′. For this we may assume without loss

of generality that r′ > 0. Let 0 < r1 < r′. Then

∑

n≥1

|an|r
n
1 = r1

(

∑

n≥1

n|an|r
n−1
1

)

< ∞.
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It follows that r ≥ r1. Since this is true for all 0 < r1 < r′ this

means r ≥ r′.

Now to show that r ≤ r′, we can assume that r > 0 and let 0 <

r1 < r. Choose r2 such that r1 < r2 < r. Then for each n ≥ 1

nrn−1
1 ≤

n

r1

(

r1

r2

)n

rn
2 ≤

M

r1

rn
2

where M =
∑

k≥1
k
(

r1

r2

)k

< ∞, since the radius of convergence of
∑

k ktk is at least 1 (See Example ??.) Therefore,

∑

n≥1

n|an|r
n−1
1 ≤

M

r1

∑

n≥1

|an|r
n
2 < ∞.

We conclude that r′ ≥ r1 and since this holds for all r1 < r, it follows

that r′ ≥ r. ♠

Remark 22

(i) For any sequence {bn} of non negative real numbers, one can directly

try to establish

lim sup
n

n

√

(n + 1)bn+1 = lim sup
n

n

√

bn

which is equivalent to proving theorem ??. However, the full details

of such a proof are no simpler than the above proof. In any case, this

way, we would not have got the limit of these derived series.

(ii) A power series with radius of convergence 0 is apparently ‘useless

for us’, for it only defines a function at a point. It should noted that

in other areas of mathematics, there are many interesting applications

of formal power series which need be convergent,

(iii) A power series P (t) with a positive radius of convergence R defines

a continuous function z 7→ p(z) in the disc of convergence BR(0), by

theorem 31. Also, by shifting the origin, we can even get continuous

functions defined in BR(z0), viz., by substituting t = z − z0.
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(iv) One expects that functions which agree with a convergent power

series in a small neighborhood of every point will have properties akin

to those of polynomials. So, the first step towards this is to see that

a power series indeed defines a C-differentiable function in the disc of

convergence.

(The material below this was not actually discussed in the

class)

Theorem 33 Abel: Let
∑

n≥0
antn be a power series of radius of con-

vergence R > 0. Then the function defined by

f(z) =
∑

n

an(z − z0)
n

is complex differentiable in Br(z0). Moreover the derivative of f is given

by the derived series

f ′(z) =
∑

n≥1

nan(z − z0)
n−1

inside |z − z0| < R.

Proof: Without loss of generality, we may assume that z0 = 0. We

already know that the derived series is convergent in BR(0) and hence

defines a continuous function g on it. We have to show that this func-

tion g is the derivative of f at each point of BR(0). So, fix a point

z ∈ BR(0). Let |z| < r < R and let 0 6= |h| ≤ r−|z| so that |z +h| ≤ r.

Consider the difference quotient

f(z + h) − f(z)

h
− g(z) =

∑

n≥1

un(h) (9)

where, we have put un(h) :=
an[(z + h)n − zn]

h
− nanzn−1. We must

show that given ǫ > 0, there exists δ > 0 such that for all 0 < |h| < δ,
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we have,
∣

∣

∣

∣

f(z + h) − f(z)

h
− g(z)

∣

∣

∣

∣

< ǫ. (10)

The idea here is that the sum of first few terms can be controlled

by continuity whereas the remainder term can be controlled by the

convergence of the derived series. Using the algebraic formula

αn − βn

α − β
=

n−1
∑

k=0

αn−1−kβk,

putting α = z + h, β = z we get

un(h) = an[(z + h)n−1 + (z + h)n−2z + · · · + (z + h)zn−2 + zn−1 − nzn−1].(11)

Since |z| < r and |z + h| < r, it follows that

|un(h)| ≤ 2n|an|r
n−1. (12)

Since the derived series has radius of convergence R > r, it follows that

we can find n0 such that

2
∑

n≥n0

|an|nrn−1 < ǫ/2. (13)

On the other hand, again using (11), each un(h) is a polynomial in h

which vanishes at h = 0. Therefore so does the finite sum
∑

n<n0
un(h)

. Hence by continuity, there exists δ′ > 0 such that for |h| < δ′ we

have,

∑

0<n<n0

2|an|nrn−1 < ǫ/2. (14)

Taking δ = min{δ′, r − |z|} and combining (13) and (14) yields (10).

♠
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The exponential function

The exponential function plays a central role in analysis, more so in

the case of complex analysis and is going to be our first example using

the power series method. We define

exp z := ez :=
∑

n≥0

zn

n!
= 1 + z +

z2

2!
+

z3

3!
+

· · · .

(15)

By comparison test it follows that for any real number r > 0, the series

exp (r) is convergent. Therefore, the radius of convergence of (15) is

∞. Hence from theorem 33, we have, exp is differentiable throughout

C and its derivative is given by

exp′ (z) =
∑

n≥1

n

n!
zn−1 = exp (z) (16)

for all z. It may be worth recalling some elementary facts about the

exponential function that you probably know already. Let us denote

by

e := exp (1) = 1 + 1 +
1

2!
+ · · ·+

1

n!
+ · · ·

Clearly, exp(0) = 1 and 2 < e. By comparing with the geometric series
∑

n

1

2n
, it can be shown easily that e < 3. Also we have,

e = lim
n−→∞

(

1 +
1

n

)n

. (17)

To see this, put tn =
∑n

k=0

1

k!
, sn =

(

1 +
1

n

)n

, use binomial expansion

to see that

limsupnsn ≤ e ≤ lim inf
n

sn.
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Since
∑n

0

zk

k!
=
∑n

0

z̄k

k!
, by continuity of the conjugation, it follows

that

exp z = exp z̄, (18)

Formula (16) together with the property exp (0) = 1, tells us that exp

is a solution of the initial value problem:

f ′(z) = f(z); f(0) = 1. (19)

It can be easily seen that any analytic function which is a solution

of (19) has to be equal to exp . (Ex. Prove this.)

We can verify that

exp (a + b) = exp (a)exp (b), ∀a, b ∈ C (20)

directly by using the product formula for power series. (Use binomial

expansion of (a+b)n.) This can also be proved by using the uniqueness

of the solution of (19) which we shall leave it you as an entertaining

exercise. (See ex. ??)

Thus, we have shown that exp defines a homomorphism from the

additive group C to the multiplicative group C
⋆ := C\{0}. As a simple

consequence of this rule we have, exp (nz) = exp (z)n for all integers n.

In particular, we have, exp (n) = en. This is the justification to have

the notation

ez := exp (z).

Combining (18) and (20), we obtain,

|eıy|2 = eıyeıy = eıye−ıy = e01.

Hence,

|eıy| = 1, y ∈ R. (21)
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Example 8 Trigonometric Functions. Recall the Taylor series

sin x = x −
x3

3!
+

x5

5!
− + · · · ;

cos x = 1 −
x2

2!
+

x4

4!
− + · · · ,

valid on the entire of R, since the radii of convergence of the two series

are ∞. Motivated by this, we can define the complex trigonometric

functions by

sin z = z−
z3

3!
+

z5

5!
−+ · · · ; cos z = 1−

z2

2!
+

z4

4!
−+ · · · . (22)

Check that

sin z =
eız − e−ız

2ı
; cos z =

eız + e−ız

2
. (23)

It turns out that these complex trigonometric functions also have

differentiability properties similar to the real case, viz., (sin z)′ = cos z; (cos z)′ =

− sin z, etc.. Also, from (23) additive properties of sin and cos can be

derived.

Other trigonometric functions are defined in terms of sin and cos as

usual. For example, we have tan z =
sin z

cos z
and its domain of definition

is all points in C at which cos z 6= 0.

In what follows, we shall obtain other properties of the exponential

function by the formula

eız = cos z + ı sin z. (24)

In particular,

ex+ıy = exeıy = ex(cos y + ı sin y). (25)
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It follows that e2πı = 1. Indeed, we shall prove that ez = 1 iff z = 2nπı,

for some integer n. Observe that ex ≥ 0 for all x ∈ R and that if x > 0

then ex > 1. Hence for all x < 0, we have, ex = 1/e−x < 1. It follows

that ex = 1 iff x = 0. Let now z = x + ıy and ez = 1. This means that

ex cos y = 1 and ex sin y = 0. Since ex 6= 0 for any x, we must have,

sin y = 0. Hence, y = mπ, for some integer m. Therefore ex cos mπ = 1.

Since cos mπ = ±1 and ex > 0 for all x ∈ R, it follows that cos mπ = 1

and ex = 1. Therefore x = 0 and m = 2n, as desired.

Finally, let us prove:

exp (C) = C
⋆. (26)

Write 0 6= w = r(cos θ + ı sin θ), r 6= 0. Since ex is a monotonically

increasing function and has the property ex −→ 0, as x −→ −∞ and

ex −→ ∞ as x −→ ∞, it follows from Intermediate Value Theorem that

there exist x such that ex = r. (Here x is nothing but ln r.) Now take

y = θ, z = x + ıθ and use (25) to verify that ez = w. This is one place,

where we are heavily depending on the intuitive properties of the angle

and the corresponding properties of the real sin and cos functions. We

remark that it is possible to avoid this by defining sin and cos by the

formula (23) in terms of exp and derive all these properties rigorously

from the properties of exp alone.

Remark 23 One of the most beautiful equations:

eπı + 1 = 0 (27)

which relates in a simple arithmetic way, five of the most fundamental

numbers, made Euler6 believe in the existence of God!

Example 9 Let us study the mapping properties of tan function. Since

tan z = sin z
cos z

, it follows that tan is defined and complex differentiable at

6See E.T. Bell’s book for some juicy stories
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all points where cos z 6= 0. Also, tan(z + nπı) = tan z. In order to de-

termine the range of this function, we have to take an arbitrary w ∈ C

and try to solve the equation tan z = w for z. Putting eız = X, tem-

porarily, this equation reduces to
X2 − 1

ı(X2 + 1)
= w. Hence X2 =

1 + ıw

1 − ıw
.

This latter equation makes sense, iff w 6= −ı and then it has, in general

two solutions. The solutions are 6= 0 iff w 6= ı. Once we pick such a non

zero X we can then use the ontoness of exp : C −→ C \ {0}, to get a

z such that that eız = ±X. It then follows that tan z = w as required.

Therefore we have proved that the range of tan is equal to C \ {±ı}.

From this analysis, it also follows that tan z1 = tan z2 iff z1 = z2 +nπı.

Likewise, the hyperbolic functions are defined by

sinh z =
ez − e−z

2
; cosh z =

ez + e−z

2
. (28)

It is easy to see that these functions are C-differentiable. Moreover,

all the usual identities which hold in the real case amongst these func-

tions also hold in the complex case and can be verified directly. One

can study the mapping properties of these functions as well, which have

wide range of applications.

Remark 24 Before we proceed onto another example, we would like

to draw your attention to some special properties of the exponential

and trigonometric functions. You are familiar with the real limit

lim
x→∞

exp (x) = ∞.

However, such a result is not true when we replace the real x by a

complex z. In fact, given any complex number w 6= 0, we have seen

that there exists z such that exp (z) = w. But then exp (z +2nπı) = w
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for all n. Hence we can get z′ having arbitrarily large modulus such

that exp (z′) = w. As a consequence, it follows that limz−→∞ exp (z)

does not exist. Using the formula for sin and cos in terms of exp , it

can be easily shown that sin and cos are both surjective mappings of

C onto C. In particular, remember that they are not bounded unlike

their real counter parts.
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Lecture 11

Mainly devoted to the discussion of the Assignment 3 problems.

Lecture 12

Definition 24 By a metric or a distance function on a set X we mean

a function d : X × X → R such that

(a) d(x, y) ≥ 0 for all (x, y) and = 0 iff x = y.

(b) d(x, y) = d(y, x);

(c) d(x, y) ≤ d(x, z) + d(z, y). A set X together with a chosen metric

on it is called a metric space.

Example 10

1. The simplest and most important examples of metric spaces are the

Euclidean spaces R
n with d(x, y) =

√
∑n

i=1
(xi − yi)2. In case of n = 1

this also takes the form d(x, y) = |x− y|. So, we also use this notation

in the general case.

2. A metric on X automatically restricts to a metric on any subset of

X and thus, it makes sense to talk about subspaces of metric spaces.

For instance, if we consider R
n ×{0} ⊂ R

n+1 then the standard metric

on R
n is seen to be the restriction of that on R

n+1.

3. For any set X consider the function

d(x, y) =

{

0, x = y

1, x 6= y.

Verify that this is a distance function. It is called the discrete metric.

4. On R
n define

dmax(x, y) = max{|x1 − y1|, . . . , |xn − yn|}
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5. On R
n define

d1(x, y) =

n
∑

i=1

|xi − yi|.

6. On the set of square summable sequences of real numbers, define

d2(x, y) =

√

∑

i

(xi − yi)2

7. On the set of bounded continuous real valued functions on an interval

J, define

ds(f, g) = sup{|f(x) − f(y)|, x ∈ J}.

Definition 25 Let (X, d) be a metric space, x ∈ X, δ > 0. We shall

denote

Bδ(x) := {y ∈ X : d(x, y) < δ}

and call it the open ball of radius δ and center x.

Exercise 10 Draw a picture of the unit ball in the R
n in each of the

various metrics that we have seen above.

Definition 26 Let (X, d) be a metric space.

1. By an open subset in X we mean a subset U ⊂ X which is the union

of some open balls in X.

2. A set U ⊂ X is called a neighbourhood of x ∈ X if xıU and U is

open.

3. A subset F in X is closed in X if X \ F is open in X.

4. A point x ∈ X is called a limit point A ⊂ X if every nbd U of x

contains a point of A not equal to x i.e., (A \ {x}) ∩U 6= ∅. The set of

all limit points of A is denoted by l(A).

6. The set A∪ l(A) is calld teh clsouse of A and is denoted by Ā. (Ex.

prove that Ā is a closed set in X for any subset A ⊂ X. 7. If x ∈ A is

not a limit point of A then it is called an isolated point of A.
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8. x ∈ A is called an interior point if there exists an open set U in X

such that x ∈ U ⊂ A. The set of all interior points of A is called the

interior of A and is denoted by int A. 9. A ⊂ X is called bounded if

there exists M > 0 and p ∈ X such that such that A ⊂ BM(p).

10. A ⊂ X is called dense in X if every point of X \A is a limit point

of X. This is the same as saying Ā = X.

Theorem 34 Let {Uj} be a family of open sets in X. Then the union

U = ∪jUj is open. Also intersection of any two open sets is open.

Remark 25 The empty set and the whole set X are open.

Theorem 35 A set is closed iff it contains all its limit points.

Definition 27 The closure Ā of a set A is defined to be the union of

A with all its limit points.

Definition 28 Let X be a set and T be a family of subsets of X.

We say T is a topology on X and (X, T ) a topological space, if the

following condtions are satisfied.

(i) ∅ ∈ T .

(ii) If Ui ∈ T , then ∪iUi ∈ T , i.e., union of a family of memebrs of T

is again a member of T .

(iii) If U1, U2 ∈ T then U1 ∩ U2 ∈ T .

(iv) X ∈ T .

In this situations, members of T are called open subsets in the

topologicval space (X < T ).

Example 11 Given a metric space (X, d) if we take T to be the set of

all open sets in this metric space then T satisifies the conditions of the

above defintion and hence is a topology on X. This topology is called

the topology induced by the metric d. We shall be studying only such

topologies in this course.
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Assigment 4 (1) Put fn(z) = zn

1−zn . Determine the domain on

which the sum
∑

n fn(z) defines a continuous function. (2) Draw a

picture of the unit ball in the R
2, R3 in the euclidean metric, the supre-

mum metrc dmax and l1-metric d1 as defined in the example 10.(1,4,

and 5 respectively) above.

(3) Let F be a closed subset of a metric space. Consider f(x) =

d(x, F ) = inf{d(x, y) : y ∈ F}. Show that f is continuous.

(4) Let f : X → Y be any function, x0 ∈ X. Prove that the FAE:

(a) f is continuous at x0.

(b) For every sequence {xn} in X which converges to x0 the sequence

{f(xn)} converges to f(x0).

(5) Let f, g : X → R be any two continuous functions. Define Max{f, g}, min{f, g}

by the formulae:

Max{f, g}(x) = max{f(x), g(x)}; Min{f, g}(x) = min{f(x), g(x)}.

Show that Max{f, g}, Min{f, g} are both continuous.
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