
Lecture 15

We have seen that a sequence of continuous functions which is uni-

formly convergent produces a limit function which is also continuous.

We shall strengthen this result now.

Theorem 1 Let fn : X → R or (C) be a sequence of continuous func-

tions. Let A ⊂ X on which {fn} converges uniformly. Then {fn}
converges on the closure Ā of A to a function f which is continuous.

Proof: Let us fix a point x0 ∈ Ā. We must first of all show that the

sequence {fn(x0)} is convergent. Enough to show it is Cauchy. Given

ε > 0 there exist n0 such that n,m > n0 implies

|fn(x)− fm(x)| < ε/3

for all x ∈ A. By continuity of fn and fm we can find δ > 0 such that

d(x, x0) < δ implies that

|fm(x)− fm(x0)|+ |fn(x)− fn(x0)| < 2ε/3.

Now since x0 ∈ Ā, there exists x ∈ Bδ(x0) ∩ A. With the help of this

x, we have

|fn(x0)−fm(x0)| ≤ |fm(x)−fm(x0)|+|fn(x)−fn(x0)|+|fn(x)−fm(x)| < ε.

Therefore, we have got a function f : Ā→ R which is the limit of {fn}
and the convergence is uniform on A.

We now want to show that f is continuous at x0.

|f(x)− f(x0)| ≤ |f(x)− fn(x)|+ |fn(x)− fn(x0)|+ |fn(x0)− f(x0)|

Given ε > 0 we can choose N1 such that n > N1 implies

|f(x)− fn(x)|+ |fn(x0)− f(x0)| < 2ε/3, for all x ∈ A.



Fix one such n. Then by continuity of fn we can find δ > 0 such

that d(x, x0) < δ implies |fn(x) = f(n(x0)| < ε/3. Once again since

Bδ(x0) ∩ A 6= ∅, has to be used to conclude the continuity of f at x0.

♠

Remark 1 What about differentiabilty under uniform convergence?

We should be careful here as illustrated by the example: fn(x) = x
1+nx2

on [0, 1]. This sequence converges uniformly to the function which is

identically 0. However the derived sequence f ′n(x) = 1−nx2
(1+nx2)2

converges

to a function which is not even continuous. It is also true that a

uniform limit of a sequence of smooth functions can be continuous but

not differentiable, or differentiable but not continuously differentiable

or ... and so on.

On the positive side, we shall now see that by controling the limiting

process of the derived sequence itself we get better results:

Theorem 2 Let fn : [a, b] → R be a sequence of differentiable func-

tions such that f ′n converges uniformly in [a, b] to a function g. Also

suppose for some x0 ∈ [a, b], the sequence {fn(x0)} is convergent. Then

the sequence fn converges uniformly to a function f and f ′ = g =

limn→∞ f
′
n.

Proof: First we want to show that fn is uniformly convergent and for

this it is enough to show that it is uniformly Cauchy, i.e., given ε > 0

we must find n0 such that n,m > n0 implies

|fn(x)− fm(x)| < ε, x ∈ [a, b] (1)

Using the hypothesis we get n1 such that n,m > n1 implies

|f ′n(x)− f ′m(x)| < ε

2(b− a)
, x ∈ [a, b]. (2)
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Put φmn = fn − fm. Therefore by Mean Value theorem applied to

φmn, we have∣∣∣∣φmn(x1)− φmn(x2)

x1 − x2

∣∣∣∣ < ε

2(b− a)
, x1, x2 ∈ [a, b],m, n > n1. (3)

This is the same as

|fn(x1)− fm(x1)− fm(x2) + fn(x2)| <
|x1 − x2|
2(b− a)

≤ ε/2. (4)

We now use the fact that fn(x0) is convergent and hence find n2

such that n,m > n2 implies

|fn(x0)− fm(x0)| < ε/2. (5)

Combining the above two inequalities we conclude that fn is uniformly

Cauchy,

|fn(x)− fm(x)| < ε, m, n > max{n1, n2} (6)

as required. Let now f(x) = limn→∞ fn(x). To show that f ′ = g :

Now fix a x2 ∈ [a, b] and put hn(x1) = fn(x1)−fn(x2)
x1−x2 . Then (11) implies

that hn is uniformly Cauchy in [a, b] \ {x2} and hence converges to a

continuous function h(x1) which is nothing but

lim
n→∞

fn(x)− fn(x2)

x1 − x2
=
f(x1)− f(x2)

x1 − x2
.

Therefore the limit function is continuous on the closure of [a, b] \ {x2}
which is [a, b]. We can now interchange the takiong limit with respect

to n with limit with respect to x, i.e.,

g(x1) = lim
n→∞

f ′n(x1) = lim
n→∞

lim
x2→x1

fn(x2)− fn(x1)

x2 − x1

= lim
x2→x1

lim
n→∞

fn(x2)− fn(x1)

x2 − x1
= lim

x2→x1

f(x2)− f(x1)

x2 − x1
= f ′(x1).

♠
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Lecture 16 Cesaro Summability

Given a sequence {an} of complex numbers, a method T first associates

another sequence {tn} to it and then takes the limit of {tn}. If this limit

exists and is equal to L then we say {an} is T -convergent to the T-limit

L and write

T limnan = L; OR lim
n
an = L(T ).

Example 1 Series summation is such a method in which tn is just

the nth partial sum of the given sequence. Another method is called

(C, 1)-summable (Cesero-1) in which tn = an
n

= a1+···+an
n

. Note that if

the sequence an → L, then it is (C, 1)-summable to the sum L.

Proof: an → L, which is the same as saying limn(an−L) = 0.Given ε >

0 there is a N0 such that |an−L| < ε/2 for n ≥ N0. Also, the sequence

{an−L} is bounded and so there is M > 0 such that |an−L| < M for

all n. Therefore |tn − L| = |a1+···+an−nLn
| ≤ N0M+(n−N0)ε/2

n
≤ N0M

n
+ ε/2

and so on. ♠
Another example is an = (−1)n. Of course the sequence is not

convergent. But it is (C, 1)-summable to 0. The (C, 1)-limit is a good

representation of the average.

Example 2 More generally, given k ≥ 1, we define a sequence {an} to

be (C, k)-summable to L if the sequence

tn =
1(

n+k−1
n−1

)∑
j=1

n

(
n+ k − 1− j

n− j

)
aj → L

It is not hard to check that if {an} is (C, k)-summable to L then

it is (C, k + 1)-summable to L. Also, there are sequences which are

(C, k + 1)-summable but not (C, k)-summable. For instance the se-

quence 1,−1, 2,−2, 3,−3, . . . , is not (C, 1) summable but is (C, 2).

Similarly the sequence 1,−2, 3,−4, 5,−6, . . . is not (C, 2) summable

but (C, 3).
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Example 3 (General Weighted Averages) Even more generally, given

a sequence of positive real numbers P = {p1, p2, . . . , pn, . . .}, we put

Pn =
∑n

j=1 pj and we define P-summability of a sequence {an} if the

sequence

tn =

∑n
j=1 ajpn−j

Pn

converges to a limit L and say P lim an = L. Check that each (C, k) in

indeed a P method for some sequence P . Thus each Cesaro sum can

be thought of as a combinatorial (binomial) average.

Definition 1 We say a summability method T is regular if whenever

limn an = L then T limnan = L.

What we have seen above is that each (C, k) is regular. On the

other hand the series method is not regular.

Theorem 3 P is regular iff for each k,

lim
n

pn−k
Pn

= 0. (7)

Proof: Suppose P is regular. Take an = 0, n 6= k and = 1 for n = k to

see (7). Conversely, suppose (7) holds and let an → L. WLOG we may

assume that L = 0. Given ε > 0 find N0 such that |an| < ε for n ≥ N0.

Then for each k ≤ N0 find Nk such that |pn−k

Pn
| < ε/N0 for n ≥ Nk. Take

N = max{N0, . . . , NN0}. Then for n ≥ N we have |tn| < ε(M + 1),

where M is a bound {|an|}.

Remark 2 In this sense series is not a regular summability, whereas,

all Cesaro summabilities are.

Definition 2 Given a series
∑

n an with partial sums {sn}, we say that∑
n an is (C, 1)-summable to S if

lim
n
sn = S(C, 1).
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And then we write ∑
n

an = S. (C, 1).

Example 4 Consider the series
∞∑
n=0

(−1)n. Here the sequence of par-

tial sums is 1, 0, 1, 0, 1, 0, . . . which is (C,1)-converges to 1/2. Therefore

we write
∑

n(−1)n = 1/2 (C, 1). Notice that the (C, 1) limit of the

sequence {(−1)n} is equal to 0. So, you must pay attention to this

definition properly.

Definition 3 A sequence {an} is called square summable OR is said to

be of class `2 if
∑

n a
2
n∞. We can add two square summable sequences

to get another such. Indeed square summable sequences form a vector

space. {1/n} is in `2 whereas {
√

1/n} is not in `2.

Thus there are several important summation methods one can use

depending upon ones requirement. We shall meet (C, 1) summability

again while studying Fourier series. You may consult Goldberg’s book

for an elementary exposition of this subject beyond what we have seen

so far.

Connectedness

Definition 4 Let X be any topolgical space. We say X is connected

if the only subsets A ⊂ X which are both open and closed in X are X

and ∅.
We say a subset A ⊂ X is connected if the subspace A of X is

connected.

Theorem 4 Let X be a topological space. Then the following are equiv-

alent:
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(a) X is connected.

(b) A ∪ B = X, both A and B are open, A 6= ∅ 6= B then A ∩ B 6= ∅.
(c) A ∪ B = X, both A and B are closed, A 6= ∅ 6= B then A ∩ B 6= ∅.
(d) ∅ 6= A ⊂ X is both open and closed then A = X.

Theorem 5 A subset of R is connected iff it is an interval.

Proof: Suppose A ⊂ R which is not an interval. This means there exist

x < z < y such that x, y ∈ A but z 6∈ A. Put F = A ∩ (−∞, z);G =

A ∩ (z,∞). Then both F,G are open in A nonempty and the union is

A. This is a contradiction.

Conversely, let A be an interval in R, A = F ∪ G, x ∈ F, y ∈ G

x < y. Assume that both F,G are closed in A. We shall show that

F ∩G 6= ∅. Put w = supF ∩ [x, y]. Then w ∈ A and since F is closed

w ∈ F. Clearly, w ≤ y. Now for any z such that w < z ≤ y, then z 6∈ F
and hence z ∈ G. This means w is a limit point of G. Since G is closed

w ∈ G. ♠

Theorem 6 Let f : X → Y be a continuous function, A ⊂ X is

connected. Then f(A) is connected.

Proof: If not we can write f(A) = U ∩ V where U, V are both non

empty open in f(A) and U ∩ V = ∅. But then f−1(U) and f−1(V ) are

non empty open in A and A = f−1(U)∪f−1(V ) and f−1(U)∩f−1(V ) =

∅. THis means A is not connected. ♠

Theorem 7 Intermediate Value Property Let f : [a, b] → R be a

continuous function. Let f(a) < z < f(b). Then there exists a < c < b

such that f(c) = z.

Proof: Since [a, b] is connected this implies f [a, b] is connected and

hence is an interval. Therefore all real numbers between the two values

f(a) and f(b) are also in this interval. ♠
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Remark 3 IVP is equivalent to intervals being connected.

Example 5

(i) Every path is connected.

(ii) Every path connected space is connected. But converse is not true.

(iii) Rn is connected.

(iv) Every cell in Rn is connected.

(v) Complement of a countable set in Rn, n ≥ 2 is connected. (vi)

Complement of a vector subspace of codimension ≥ 2 in Rn is con-

nected.

(vii) Every convex subset is connected.

(viii) Spheres ellipsoids etc are connected. Not nec. hyperboloids.

Lecture 18 Uniform limits of functions

We have seen that a sequence of continuous functions which is uni-

formly convergent produces a limit function which is also continuous.

We shall strengthen this result now.

Theorem 8 Let X be any metric space. Let fn : X → R or (C) be a

sequence of continuous functions. Let A ⊂ X on which {fn} converges

uniformly. Then {fn} converges on the closure Ā of A to a function f

which is continuous.

Proof: Let us fix a point x0 ∈ Ā. We must first of all show that the

sequence {fn(x0)} is convergent. Enough to show that it is Cauchy.

To begin with we have the sequence is uniformly convergent on A.

Therefore, given ε > 0 there exist n0 such that n,m > n0 implies

|fn(x)− fm(x)| < ε/3
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for all x ∈ A. By continuity of fn and fm we can find δ > 0 such that

d(x, x0) < δ implies that

|fm(x)− fm(x0)|+ |fn(x)− fn(x0)| < 2ε/3.

Now since x0 ∈ Ā, there exists x ∈ Bδ(x0) ∩ A. With the help of this

x, we have

|fn(x0)− fm(x0)| ≤ |fm(x)− fm(x0)|+ |fn(x)− fn(x0)|+ |fn(x)− fm(x)| < ε, ∀ n,m > n0. (8)

Let us carefully examine what we have done now. We have got n0

satisfying (8) without depending on what x0 we have chosen in Ā. This

just means that the sequence {fn} is uniformly Cauchy on Ā.

Therefore, we have got a function f : Ā → R which is the limit of

{fn} and the convergence is uniform on A. Therefore the conclusion of

the theorem follows. ♠

Remark 4 What about differentiability under uniform convergence?

We should be careful here as illustrated by the example: fn(x) = x
1+nx2

on [0, 1]. This sequence converges uniformly to the function which is

identically 0. (To see this find the maxima of fn in [0, 1].) However

the derived sequence f ′n(x) = 1−nx2
(1+nx2)2

converges to a function which

is not even continuous. It is also true that a uniform limit of a se-

quence of smooth functions can be continuous but not differentiable,

or differentiable but not continuously differentiable or ... and so on.

On the positive side, we shall now see that by controlling the lim-

iting process of the derived sequence itself we get better results:

Theorem 9 Let fn : [a, b] → R be a sequence of differentiable func-

tions such that f ′n converges uniformly in [a, b] to a function g. Also

suppose for some x0 ∈ [a, b], the sequence {fn(x0)} is convergent. Then

the sequence fn converges uniformly to a function f and f ′ = g =

limn→∞ f
′
n.
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Proof: First we want to show that fn is uniformly convergent and for

this it is enough to show that it is uniformly Cauchy, i.e., given ε > 0

we must find n0 such that n,m > n0 implies

|fn(x)− fm(x)| < ε, x ∈ [a, b] (9)

Using the hypothesis we get n1 such that n,m > n1 implies

|f ′n(x)− f ′m(x)| < ε

2(b− a)
, x ∈ [a, b]. (10)

Put φmn = fn − fm. Therefore by Lagrange Mean Value Theorem

applied to φmn, we have∣∣∣∣φmn(x1)− φmn(x2)

x1 − x2

〈
|φ′mn(c)| = |f ′n(x)− f ′m(x)| < ε

2(b− a)
, ∀ x1, x2 ∈ [a, b],m, n > n1.(11)

This is the same as

|fn(x1)− fm(x1)− fm(x2) + fn(x2)| <
|x1 − x2|
2(b− a)

≤ ε/2. (12)

We now use the fact that fn(x0) is convergent and hence find n2

such that n,m > n2 implies

|fn(x0)− fm(x0)| < ε/2. (13)

Put x1 = x0 and x2 = x and combining the above two inequalities

(12),(??), we conclude that fn is uniformly Cauchy:

|fn(x)− fm(x)| < ε, m, n > max{n1, n2} (14)

as required. Let now f(x) = limn→∞ fn(x). To show that f ′ = g : Now

fix x2 ∈ [a, b] and put hn(x1) = fn(x1)−fn(x2)
x1−x2 . Then (11) implies that hn

is uniformly Cauchy in [a, b]\{x2} and hence converges to a continuous

function h(x1) which is nothing but

lim
n→∞

fn(x)− fn(x2)

x1 − x2
=
f(x1)− f(x2)

x1 − x2
.
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Therefore the limit function is continuous on the closure of [a, b] \ {x2}
which is [a, b]. We can now interchange the order of taking limit with

respect to n with the limit with respect to x, i.e.,

g(x1) = lim
n→∞

f ′n(x1) = lim
n→∞

lim
x2→x1

fn(x2)− fn(x1)

x2 − x1

= lim
x2→x1

lim
n→∞

fn(x2)− fn(x1)

x2 − x1
= lim

x2→x1

f(x2)− f(x1)

x2 − x1
= f ′(x1).

♠

Remark 5 There are certain properties of real valued functions de-

fined on intervals, which is peculiar to the 1-variable functions only.

For instance, let f : [a, b]→ [c, d] be a bijection. Then it is not hard to

see that f is continuous iff it is strictly monotone. (For instance, as-

sume that f is order preserving. Then f−1 is also order preserving and

show that image of any closed interval is a closed interval under f−1.

It would follow that image of an open interval is an open interval and

hence f is continuous.) In particular it follow that if f : [a, b]→ [c, d] is

a continuous bijection then its inverse is also continuous. (That means

f is homeomorphism.) There is nothing sacrosanct about taking closed

intervals. The statement holds for open intervals and for the whole of

R as well.

Remark 6 On the other and, there are some general results about

topological spaces which have special properties such as compactness

and connectedness. For example consider a continuous bijection f :

X → Y where X is a compact space and Y is a metric space. We

can prove that f−1 is contiguous very easily as follows: It is enough to

show that f is an open mapping this is equivalent to show that f is a

closed mapping (because f is a bijection). If F is a closed subset of X,

F will be also compact. Therefore f(F ) is compact. Being a compact

subset of metric space Y, f(F ) is closed.
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Thus we get an alternative easy proof of the fact that a continuous

bijection [a, b]→ [c, d] is a homeomorphism.
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