
Week 7 Riemann Stieltjes

Integration:

Lectures 19-21

Lecture 19

Throughout this section α will denote a monotonically increasing func-

tion on an interval [a, b].

Let f be a bounded function on [a, b].

Let P = {a = a0 < a1, · · · , an = b} be a partition of [a, b]. Put

∆αi = α(ai)− α(ai−1).

Mi = sup{f(x) : ai−1 ≤ x ≤ ai}.
mi = inf{f(x) : ai−1 ≤ x ≤ ai}.

U(P, f) =
n∑
i=1

Mi∆αi; L(P, f) =
n∑
i=1

mi∆αi.∫̄ b

a

fdα = inf{U(P, f) : P};
∫ b

a

fdα = sup{L(P, f) : P}.

Definition 1 If

∫̄ b

a

fdα =

∫ b

a

fdα, then we say f is Riemann-Stieltjes

(R-S) integrable w.r.t. to α and denote this common value by∫ b

a

fdα :=

∫ b

a

f(x)dα(x) :=

∫̄ b

a

fdα =

∫ b

a

fdα.
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Let R(α) denote the class of all R-S integrable functions on [a, b].

Definition 2 A partition P ′ of [a, b] is called a refinement of another

partition P of [a, b] if, points of P are all present in P ′. We then write

P ≤ P ′.

Lemma 1 If P ≤ P ′ then L(P ) ≤ L(P ′) and U(P ) ≥ U(P ′).

Enough to do this under the assumption that P ′ has one extra point

than P. And then it is obvious because if a < b < c then

inf{f(x) : a ≤ x ≤ c} ≤ min{inf{f(x) : a ≤ x ≤ b}, inf{f(x) : b ≤ x ≤ c}

etc.

Theorem 1

∫̄ b

a

fdα ≥
∫ b

a

fdα.

For first of all, because for every partition P we have U(P, f) ≥ L(P, f).

Let P and Q be any two partitions of [a, b]. By taking a common

refinement T = P ∪Q, and applying the above lemma we get

U(P ; f) ≥ U(T ; f) ≥ L(T ; f) ≥ L(Q; f)

Now varying Q over all possible partitions and taking the supremum,

we get

U(P ) ≥
∫ b

a

fdα.

Now varying P over all partitions of [a, b] and taking the infimum, we

get the theorem. ♠

Theorem 2 Let f be a bounded function and α be a monotonically

increasing function. Then the following are equivalent.

(i) f ∈ R(α).

(ii) Given ε > 0, there exists a partition P of [a, b] such that

U(P, f)− L(P, f) < ε.
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(iii) Given ε > 0, there exists a partition P of [a, b] such that for all

refinements of Q of P we have

U(Q, f)− L(Q, f) < ε.

(iv) Given ε > 0, there exists a partition P = {a0 < a1 < cdots < an}
of [a, b] such that for arbitrary points ti, si ∈ [ai−1, ai] we have

n∑
i=1

|f(si)− f(ti)|∆αi < ε.

(v) There exists a real number η such that for every ε > 0, there exists

a partition P = {a0 < a1, < · · · < an} of [a, b] such that for arbitrary

points ti ∈ [ai−1, ai], we have |
∑n

i=1 f(ti)∆αi − η| < ε.

Proof: (i) =⇒ (ii): By definition of the upper and lower integrals,

there exist partitions Q, T such that

U(Q)−
∫̄ b

a

fdα < ε/2;

∫ b

a

fdα− L(T ) < ε/2.

Take a common refinement P to Q and T and replace Q, T by P in

the above inequalities, and then add the two inequalities and use the

hypothesis (i) to conclude (ii).

(ii) =⇒ (i): Since L(P ) ≤
∫ b
a
fdα ≤

∫̄ b
a
fdα ≤ U(P ) the conclusion

follows.

(ii) =⇒ (iii): This follows from the previous theorem for if P ′ ≥ P then

L(P ) ≤ L(P ′) ≤ U(P ′) ≤ U(P ).

(iii) =⇒ (ii): Obvious.

(iii) =⇒ (iv): Note that |f(si)− f(ti)| ≤Mi −mi. Therefore,∑
i

|f(si)− f(ti)|∆αi ≤
∑
i

(Mi −mi)∆αi = U(P, f)− L(P, f) < ε.
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(iv) =⇒ (iii): Choose points ti, si ∈ [ai−1, ai] such that

|mi − f(si)| <
ε

2n∆αi
, |Mi − f(ti)| <

ε

2n∆αi
.

Then U(P, f)− L(P, f)−
∑

i(Mi −mi)∆αi

≤
∑

i[|Mi − f(ti)|+ |mi − f(si)|+ |f(ti)− f(si)]∆αi < 2ε.

Thus so far, we have proved that (i) to (iv) are all equivalent to each

other.

(i) =⇒ (v): We first note that having proved that (i) to (iv) are all

equivalent, we can use any one of them. We take η =
∫ b
a
fdα. Given

ε > 0 we choose a partition P such that |L(P ) − η| < ε/3. and a

partition Q such that (iv) holds with ε replaced by ε/3. We then take a

common refinement T of these two partitions for which again the same

would hold because of (iii). We now choose si ∈ [ai−1, ai] such that

|mi − f(si)| < ε
3n∆αi

whenever ∆αi is non zero. (If ∆αi = 0 we can

take si to be any point.) Then for arbitrary points ti ∈ [ai−1, ai], we

have

|
∑

i f(ti)∆αi − η|

=

∣∣∣∣∣∑
i

[(f(ti)− f(si) + (f(si)−mi) +mi]∆αi − η

∣∣∣∣∣
≤

∑
i

|f(si)− f(ti)|∆αi +
∑
i

|f(si)−mi|∆αi + |L(P )− η|

≤ ε/3 + ε/3 + ε/3 = ε.

(v) =⇒ (iv): Given ε > 0 choose a partition as in (v) with ε replaced

by ε/2. ♠
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Lecture 20

Fundamental Properties of the Riemann-Stieltjes Integral

Theorem 3 Let f, g be bounded functions and α be an increasing func-

tion on an interval [a, b].

(a) Linearity in f : This just means that if f, g ∈ R(α), λ, µ ∈ R then

λf + µg ∈ R(α). Moreover,∫ b

a

(λf + µg) = λ

∫ b

a

fdα + µ

∫ b

a

fdα.

(b) Semi-Linearity in α. This just means if f ∈ R(αj), j = 1, 2 λj > 0

then f ∈ R(λ1α1 + λ2α2) and moreover,∫ b

a

fd(λ1α1 + λ2α2) = λ

∫ b

a

fdα1 + µ

∫ b

a

fdα2.

(c) Let a < c < b. Then f ∈ R(α) on [a, b] if f ∈ R(α) on [a, c] as well

as on [c, b]. Moreover we have∫ b

a

fdα =

∫ c

a

fdα +

∫ b

c

fdα.

(d) f1 ≤ f2 on [a, b] and fi ∈ R(α) then
∫ b
a
f1dα ≤

∫ b
a
f2dα.

(e) If f ∈ R(α) and |f(x)| ≤M then∣∣∣∣∫ b

a

fdα

∣∣∣∣ ≤M [α(b)− α(a)].

(f) If f is continuous on [a, b] then f ∈ R(α).

(g) f : [a, b] → [c, d] is in R(α) and φ : [c, d] → R is continuous then

φ ◦ f ∈ R(α).

(h) If f ∈ R(α) then f 2 ∈ R(α).

(i) If, f, g ∈ R(α) then fg ∈ R(α).

(j) If f ∈ R(α) then |f | ∈ R(α) and∣∣∣∣∫ b

a

fdα

∣∣∣∣ ≤ ∫ b

a

|f |dα.
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Proof: (a) Put h = f + g. Given ε > 0, choose partitions P,Q of [a, b]

such that

U(P, f)− L(P, f) < ε/2, P (Q, g)− L(Q, g) < ε/2

and replace these partitions by their common refinement T and then

appeal to

L(T, f) + L(T, g) ≤ L(T, h) ≤ U(T, h) ≤ U(T, f) + U(T, g).

For a constant λ since

U(P, λf) = λU(P, f); L(P, λf) = λL(P.f)

it follows that

∫ b

a

λfdα = λ

∫ b

a

fdα. Combining these two we get the

proof of (a).

(b) This is easier: In any partition P we have

∆(λ1α1 + λ2α2) = λ1∆α1 + λ2∆α2

from which the conclusion follows.

(c) All that we do is to stick to those partitions of [a, b] which contain

the point c.

(d) This is easy and

(e) is a consequence of (d).

(f) Given ε > 0, put ε1 = ε
α(b)−α(a)

. Then by uniform continuity of f,

there exists a δ > 0 such that |f(t) − f(s)| < ε1 whenever t, s ∈ [a, b]

and |t− s| < δ. Choose a partition P such that ∆αi < δ for all i. Then

it follows that Mi −mi < ε1 and hence U(P )− L(P ) < ε.

(g) Given ε > 0 by uniform continuity of φ, we get ε > δ > 0 such that

|φ(t)−φ(s)| < ε for all t, s ∈ [c, d] with |t− s| < δ. There is a partition

P of [a, b] such that

U(P, f)− L(P, f) < δ2.
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The differences Mi−mi may behave in two different ways: Accordingly

let us define

A = {1 ≤ i ≤ n : Mi −mi < δ}, B = {1, 2, . . . , n} \ A.

Put h = φ ◦ f. It follows that

Mi(h)−mi(h) < ε, i ∈ A.

Therefore we have

δ(
∑
i∈B

∆αi) ≤
∑
i∈B

(Mi −mi)∆αi < U(P, f)− L(P, f) < δ2.

Therefore we have
∑

i∈B ∆αi < δ. Now let K be a bound for |φ(t)| on

[c, d]. Then

U(P, h)− L(P, h) =
∑

i(Mi(h)−mi(h))∆αi

=
∑

i∈A(Mi(h)−mi(h))∆αi +
∑

i∈B(Mi(h)−mi(h))∆αi

≤ ε(α(b)− α(a)) + 2Kδ < ε(α(b)− α(a) + 2K).

Since ε > 0 is arbitrary, we are done.

(h) Follows from (g) by taking φ(t) = t2.

(i) Write fg = 1
4
[(f + g)2 − (f − g)2].

(j) Take φ(t) = |t| and apply (g) to see that |f | ∈ R(α). Now let λ = ±1

so that λ
∫ b
a
fdα ≥ 0. Then∣∣∣∣∫ b

a

fdα

∣∣∣∣ = λ

∫ b

a

fdα =

∫ b

a

λfdα ≤
∫ b

a

|f |dα.

This completes the proof of the theorem.

Theorem 4 Suppose f is monotonic and α is continuous and mono-

tonically increasing. Then f ∈ R(α).

Proof: Given ε > 0, by uniform continuity of α we can find a partition

P such that each ∆αi < ε.
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Now if f is increasing, then we have Mi = f(ai),mi = f(ai−1).

Therefore,

U(P )− L(P ) =
∑
i

[f(ai)− f(ai−1)]∆αi < f(b)− f(a))ε.

Since ε > 0 is arbitrary, we are done. ♠

Lecture 21

Theorem 5 Let f be a bounded function on [a, b] with finitely many

discontinuities. Suppose α is continuous at every point where f is dis-

continuous. Then f ∈ R(α).

Proof: Because of (c) of theorem 3, it is enough to prove this for the

case when c ∈ [a, b] is the only discontinuity of f. Put K = sup|f(t)|.
Given ε > 0, we can find δ1 > 0 such that α(c + δ1) − α(c − δ1) < ε.

By uniform continuity of f on [a, b] \ (c − δ, c + δ) we can find δ2 > 0

such that |x − y| < δ2 implies |f(x) − f(y)| < ε. Given any partition

P of [a, b] choose a partition Q which contains the points c and whose

‘mesh’ is less than min{δ1, δ2}. It follows that U(Q)−L(Q) < ε(α(b)−
α(a)) + 2Kε. Since ε > 0 is arbitrary this implies f ∈ R(α). ♠

Remark 1 The above result leads one to the following question. As-

suming that α is continuous on the whole of [a, b], how large can be

the set of discontinuities of a function f such that f ∈ R(α)? The an-

swer is not within R-S theory. Lebesgue has to invent a new powerful

theory which not only answers this and several such questions raised

by Riemann integration theory but also provides a sound foundation

to the theory of probability.

Example 1 We shall denote the unit step function at 0 by U which
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is defined as follows:

U(x) =

{
0, x ≤ 0;

1, x > 0.

By shifting the origin at other points we can get other unit step func-

tion. For example, suppose c ∈ [a, b]. Consider α(x) = U(x − c), x ∈
[a, b]. For any bounded function f : [a, b] → R, let us try to compute∫ b
a
fdα. Consider any partition P of [a, b] in which c = ak. The only

non zero ∆αi is ∆αk = 1. Therefore U(P )− L(P ) = Mk(f)−mk(f).

Now assume that f is continuous at c. Then by choosing ak+1 close

to ak = c, we can make Mk − mk → 0. This means that f ∈ R(α).

Indeed, it follows that Mk → f(c) and mk → f(c). Therefore,∫ b

a

fdα = f(c).

Now suppose f has a discontinuity at c of the first kind i.e, in

particular, f(c+) exists. It then follows that |Mk−mk| → |f(c)−f(c+)|.
Therefore, f ∈ R(α) iff f(c+) = f(c).

Thus, we see that it is possible to destroy integrability by just dis-

turbing the value of the function at one single point where α itself is

discontinuous.

In particular, take f = α. It follows that α 6∈ R(α) on [a, b].

We shall now prove a partial converse to (c) of Theorem 3.

Theorem 6 Let f be a bounded function and α an increasing function

on [a, b]. Let c ∈ [a, b] at which (at least) f or α is continuous. If

f ∈ R(α) on [a, b] then f ∈ R(α) on both [a, c] and [c, b]; moreover, in

that case, ∫ b

a

fdα =

∫ c

a

fdα +

∫ b

c

fdα.
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Proof: Assume α is continuous at c. If Tc is the translation function

Tc(x) = x − c then the functions g1 = U ◦ T and g2 = 1 − U ◦ T
are both in R(α) since they are discontinuous only at c. Therefore

fg1, fg2 ∈ R(α). But these respectively imply that f ∈ R(α) on [c, b]

and on [a, c].

We now consider the case when f is continuous at c. We shall prove

that f ∈ R(α) on [a, c], the proof that f ∈ R(α) on [c, b] being similar.

Recall that the set of discontinuities of a monotonic function is

countable. Therefore there exist a sequence of points cn in [a, c] (we

are assuming that a < c) such that cn → c. By the earlier case f ∈ R(α)

on each of the intervals [a, cn]. We claim that the sequence

sn :=

∫ cn

a

fdα

converges to a limit which is equal to
∫ c
a
fdα. Let K > 0 be a bound

for α. Given ε > 0 we can choose δ > 0 such that for x, y ∈ [c− δ, c +

δ], |f(x) − f(y)| < ε/2K. If n0 is big enough then n,m ≥ n0 implies

that |sn − sm| < ε. This means {sn} Cauchy and hence is convergent

with limit equal to say, s. Now choose n so that |s− sn| < ε.

Put ∆ = α(c) − α(c−). Since cn → c, from the left, it follows that

α(cn)→ α(c−). Choose n large enough so that

|α(cn)− α(c−)| < ε/L

where L is a bound for f.

Now, choose any partition Q of [a, cn] so that |U(Q, f) − sn| < ε.

This is possible because f ∈ R(α) on [a, cn]. Put P = Q ∪ {c}, M =

max{f(x) : x ∈ [cn, c]}. Then

|s+ ∆f(c)− U(P, f)|
≤ |s− sn|+ |sn − U(Q, f)|+ |∆f(c)− (α(c)− α(cn))M |
≤ ε+ ε+ |∆(f(c)−M)|+ |(α(cn)− α(c−))M |
≤ 2ε+ ∆ ε

2K
+ |M | ε

K
≤ 4ε.
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Theorem 7 Let {cn} be a sequence of non negative real numbers such

that
∑

n cn < ∞. Let tn ∈ (a, b) be a sequence of distinct points in

the open interval and let α =
∑

n cnU ◦ T−tn . Then for any continuous

function f on [a, b] we have∫ b

a

fdα =
∑
n

cnf(tn).

Proof: Observe that for any x ∈ [a, b], 0 ≤
∑

n U(x− tn) ≤
∑

n cn and

hence α(x) makes sense. Also clearly it is monotonically increasing

and α(a) = 0 and α(b) =
∑

n cn. Given ε > 0 choose n0 such that∑
n>n0

cn < ε. Take

α1 =
∑
n≤n0

U ◦ T−tn , α2 =
∑
n>n0

U ◦ T−tn .

By (b) of theorem 3, and from the example above, we have∫ b

a

fdα1 =
∑
n≤n0

cnf(tn).

If K is bound for |f | on [a, b] we also have∣∣∣∣∫ b

a

fdα2

∣∣∣∣ < K(α2(b)− α2(a)) = K
∑
n>n0

cn = Mε.

Therefore, ∣∣∣∣∣
∫ b

a

fdα−
∑
n≤n0

cnf(tn)

∣∣∣∣∣ < Kε.

This proves the claim. ♠

Theorem 8 Let α be an increasing function and α′ ∈ R(x) on [a, b].

Then for any bounded real function on [a, b], f ∈ R(α) iff fα′ ∈ R(x).

Furthermore, in this case,∫ b

a

fdα =

∫ b

a

f(x)α′(x)dx.
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Proof: Given ε > 0, since α′ is Riemann integrable, by (iv) of theorem

2, there exists a partition P = {a = a0 < a1 < · · · < an = b} of [a, b]

such that for all si, ti ∈ [ai−1, ai] we have,

n∑
i=1

|α′(si)− α′(ti)|∆xi < ε.

Apply MTV to α to obtain ti ∈ [ai−1, ai] such that ∆αi = α′(ti)∆xi.

Put M = sup|f(x)|. Then

n∑
i=1

f(si)∆αi =
n∑
i=1

f(si)α
′(ti)∆xi.

Therefore,∣∣∣∣∣
n∑
i=1

f(si)∆xi −
n∑
i=1

f(si)α
′(si)∆xi

∣∣∣∣∣ <∑
i

|f(si)||α′(si)−α′(ti)|∆xi > Mε.

Therefore

n∑
i=1

f(si)∆xi ≤
n∑
i=1

f(si)α
′(si)∆xi +Mε ≤ U(P, fα′) +Mε.

Since this is true for arbitrary si ∈ [ai−1, ai], it follows that

U(P, f, α) ≤ U(P, fα′) +Mε.

Likewise, we also obtain

U(P, fα′) ≤ U(P, f, α)) +Mε.

Thus

|U(P, f, α)− U(P, fα′)| < Mε.

Exactly in the same manner, we also get

|L(P, f, α−L(P, fα′)| < Mε.
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Note that the above two inequalities hold for refinements of P as well.

Now suppose f ∈ R(α). we can then assume that the partition P is

chosen so that

|U(P, f, α)− L(P, fα)| < Mε.

It then follows that

|U(P, fα′)− L(P, fα′)| < 3Mε.

Since ε > 0 is arbitrary, this implies fα′ is Riemann integrable. The

other way implication is similar. Moreover, the above inequalities also

establish the last part of the theorem. ♠

Remark 2 The above theorems illustrate the power of Stieltjes’ modi-

fication of Riemann theory. In the first case, α was a staircase function

(also called a pure step function). The integral therein is reduced to

a finite or infinite sum. In the latter case, α is a differentiable func-

tion and the integral reduced to the ordinary Riemann integral. Thus

the R-S theory brings brings unification of the discrete case with the

continuous case, so that we can treat both of them in one go. As an

illustrative example, consider a thin straight wire of finite length. The

moment of inertia about an axis perpendicular to the wire and through

an end point is given by ∫ l

0

x2dm

where m(x) denotes the mass of the segment [0, x] of the wire. If

the mass is given by a density function ρ, then m(x) =
∫ x

0
ρ(t)dt or

equivalently, dm = ρ(x)dx and the moment of inertia takes form∫ l

0

x2ρ(x)dx.

On the other hand if the mass is made of finitely many values mi
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concentrated at points xi then the inertia takes the form∑
i

x2
imi.

Theorem 9 Change of Variable formula Let φ : [a, b]→ [c, d] be a

strictly increasing differentiable function such that φ(a) = c, φ(b) = d.

Let α be an increasing function on [c, d] and f be a bounded function

on [c, d] such that f ∈ R(α). Put β = α ◦ φ, g = f ◦ φ. Then g ∈ R(β)

and we have ∫ b

a

gdβ =

∫ d

c

fdα.

Proof: Since φ is strictly increasing, it defines a one-one correspon-

dence of partitions of [a, b] with those of [c, d], given by

{a = a0 < a1 < · · · < an = b} ↔ {c = φ(a) < φ(a1) < · · · < φ(an) = d}.

Under this correspondence observe that the value of the two functions

f, g are the same and also the value of function α, β are also the same.

Therefore, the two upper sums lower sums are the same and hence the

two upper and lower integrals are the same. The result follows. ♠
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Week 8 Functions of

Bounded Variation Lectures

22-24

Lecture 22 : Functions of bounded Variation

Definition 3 Let f : [a, b] → R be any function. For each partition

P = {a = a0 < a1 < · · · < an = b} of [a, b], consider the variations

V (P, f) =
n∑
k=1

|f(ak)− f(ak−1)|.

Let

Vf = Vf [a, b] = sup{V (P, f) : P is a partition of [a, b]}.

If Vf is finite we say f is of bounded variation on [a, b]. Then Vf is

called the total variation of f on [a, b]. Let us denote the space of all

functions of bounded variations on [a, b] by BV [a, b].

Lemma 2 If Q is a refinement of P then V (Q, f) ≥ V (P, f).

Theorem 10 (a) f, g ∈ BV [a, b], α, β ∈ R =⇒ αf + βg ∈ BV [a, b].

Indeed, we also have Vαf+βg ≤ |α|Vf + |β|Vg.
(b) f ∈ BV [a, b] =⇒ f is bounded on [a, b].
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(c) f, g ∈ BV [a, b] =⇒ fg ∈ BV [a, b]. Indeed, if |f | ≤ K, |g| ≤ L then

Vfg ≤ LVf +KVg.

(d) f ∈ BV [a, b] and f is bounded away from 0 then 1/f ∈ BV [a, b].

(e) Given c ∈ [a, b], f ∈ BV [a, b] iff f ∈ BV [a, c] and f ∈ BV [c, b].

Moreover, we have

Vf [a, b] = Vf [a, c] + Vf [c, b].

(f) For any f ∈ BV [a, b] the function Vf : [a, b] → R defined by

Vf (a) = 0 and Vf (x) = Vf [a, x], a < x ≤ b, is an increasing func-

tion.

(g) For any f ∈ BV [a, b], the function Df = Vf − f is an increasing

function on [a, b].

(h) Every monotonic function f on [a, b] is of bounded variation on

[a, b].

(i) Any function f : [a, b] → R is in BV [a, b] iff it is the difference of

two monotonic functions.

(j) If f is continuous on [a, b] and differentiable on (a, b) with the

derivative f ′ bounded on (a, b), then f ∈ BV [a, b].

(k) Let f ∈ BV [a, b] and continuous at c ∈ [a, b] iff Vf : [a, b] → R is

continuous at c.

Proof: (a) Indeed for every partition, we have V (P, αf+βg) = αV (P, f)+

βV (P, g). The result follows upon taking the supremum.

(b) Take M = Vf + |f(a)|. Then

|f(x)| ≤ |f(x) − f(a)||f(a)| ≤ V (P, f) + |f(a)| ≤ M, where P is any

partition in which a, x are consecutive terms.

(c) For any two points x, y we have,

|f(x)g(x)− f(y)g(y)| ≤ |f(x)||f(x)− g(y)|+ |g(y)||f(x)− f(y)|

Therefore, it follows that

V (P, f) ≤ KVg + LVf .
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(d) Let 0 < m < |f(x)| for all x ∈ [a, b]. Then∣∣∣∣ 1

f(x)
− 1

f(y)

∣∣∣∣ =

∣∣∣∣f(x)− f(y)

f(x)f(y)

∣∣∣∣
It follows that V (P, 1/f) ≤ Vf

m2 for all partitions P and hence the result.

(e) Given any partition P of [a, c] we can extend it to a partition Q of

[a, b] by including the interval [c, b]. Then

V (Q, f) = V (P, f) + |f(b)− f(c)|

and hence it follows that if f ∈ BV [a, b] then f ∈ BV [a, c]; for a similar

reason, f ∈ BV [c, b] as well. Conversely suppose f ∈ BV [a, c]∩BV [c, b].

Given a partion P of [a, b] we first refine it to P ∗ by adding the point

c and then write Q = Q1 · Q2 where Qi are the resstrictions of Q to

[a, c], [c, b] respectively. It follows that

V (P, f) ≤ V (Q, f) = V (Q1, f) + V (Q2, f) ≤ Vf ([a, c] + Vf [c, b].

Therefore f ∈ BV [a, b]. In either case, the above inequality also shows

that Vf [a, b] ≤ Vf [, c + Vf [c, b]. On the other hand, since V (P, f) ≤
V (P ∗, f) for all P it follows that

Vf [a, b] = sup{V (P ∗, f) : P is a partition of [a, b]}.

Since every partition P ∗ is of the form P ∗ = Q1 ·Q2 where Q1, Q2 are

arbitrary partitions of [a, c] and [c, b] respectively, and

V (P ∗, f) = V (Q1, f) + V (Q2, f)

it follows that

Vf [a, b] = Vf [a, c] + Vf [c, b].

(f) Follows from (e)

(g) Let a ≤ x < y ≤ b. Proving Vf [a, x]− f(x) ≤ Vf [a, y]− f(y) is the
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same as proving Vf |a, x] + f(y)− f(x) ≤ Vf [a, y]. For any partition P

of [a, x] let P ∗ = P ∪ {y}. Then

V (P, f) + f(y)− f(x) ≤ V (P, f) + |f(y)− f(x)| = V (P ∗, f) ≤ Vf [a, y].

Since this is true for all partitions P of [a, x] we are through.

(h) May assume f is increasing. But then for every partition P we

have V (P, f) = f(b)− f(a) and hence Vf = f(b)− f(a).

(i) If f ∈ BV [a, b], from (f) and (g), we have f = Vf − (Vf − f) as a

difference of two increasing functions. The converse follows from (a)

and (h).

(j) This is because then f satisfies Lipschitz condition

|f(x)− f(y)| ≤M |x− y| for all x, y ∈ [a, b].

Therefore for every partition P we have V (P, f) ≤M(b− a).

(k) Observe that Vf is increasing and hence Vf (c
±) exist. By (h) it

follows that same is true for f. We shall show that f(c) = f(c±) iff

Vf (c) = Vf (c
±) which would imply (k). So, assume that f(c) = f(c+).

Given ε > 0 we can find δ1 > 0 such that |f(x) − f(c)| < ε for all

c < x < c + δ1, x ∈ [a, b]. We can also choose a partition P = {c =

x0 < x1 < · · · < xn = b} such that

Vf [c, b]− ε <
∑
k

∆fk.

Put δ = min{δ1, x1 − c}. Let now c < x < c+ δ. Then

Vf (x)− Vf (c)
= Vf [c, x] = Vf [c, b]− Vf [x, b]
< ε+

∑
k ∆fk − Vf [x, b]

≤ ε+ |f(x)− f(c)|+ |f(x1)− f(x)|+
∑

k≥2 ∆fk − Vf [x, b]
≤ ε+ ε+ Vf [x, b]− Vf [x, b] = 2ε.

This proves that Vf (c
+) = Vf (c) as required.
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Conversely, suppose Vf (c
+) = Vf (c). Then given ε > 0 we can find

δ > 0 such that for all c < x < c + δ we have Vf (x) − Vf (c) < ε. But

then given x, y such that c < y < x < c+ δ it follows that

|f(y)− f(c)|+ |f(x)− f(y)| ≤ Vf ([c, x] = Vf (x)− Vf (c) < ε

which definitely implies that |f(x)−f(y)| ≤ ε. This completes the proof

that Vf (c
+) = Vf (c) iff f(c+) = f(c). Similar arguments will prove that

Vf (c
−) = Vf (c) iff f(c−) = f(c). ♠

Example 2 Not all continuous functions on a closed and bounded

interval are of bounded variation. A typical examples is f : [0, π]→ R
defined by

f(x) =

{
x cos

(
π
x

)
, x 6= 0

0, x = 0.

For each n consider the partition

P = {0, 1

2n
,

1

2n− 1
, . . . , 1}

Then V (P, f) =
∑n

k=1
1
k
. As n→∞, we know this tends to ∞.

However, the function g(x) = xf(x) is of bounded variation. To

see this observe that g is differentiable in [0, 1] and the derivative is

bounded (though not continuous) and so we can apply (j) of the above

theorem.

Also note that even a partial converse to (j) is not true, i.e., a

differentiable function of bounded variation need not have its derivative

bounded. For example h(x) = x1/3, being increasing function, is of

bounded variation on [0, 1] but its derivative is not bounded.

Remark 3 We are now going extend the R-S integral with integrators

α not necessarily increasing functions. In this connection, it should

be noted that condition (v) of theorem 63 becomes the strongest and

hence we adopt that as the definition.
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Definition 4 Let f, α : [a, b] → R be any two functions. We say f is

R-S integrable with respect to to α and write f ∈ R(α) if there exists

a real number η such that for every ε > 0 there exists a partition P of

[a, b] such that for every refinement Q = {a+ x0 < x1 < · · · < xn = b}
of P and points ti ∈ [xi−1, xi] we have∣∣∣∣∣

n∑
i=1

f(ti)∆αi − η

∣∣∣∣∣ < ε.

We then write η =
∫ b
a
fdα and call it R-S integral of f with respect to

α.

It should be noted that, in this general situation, several proper-

ties listed in Theorem 64 may not be valid. However, property (b) of

Theorem 64 is valid and indeed becomes better.

Lemma 3 For any two functions α, β and real numbers λ, µ, if f ∈
R(α) ∩R(β), then f ∈ R(λα + µβ). Moreover, in this case we have∫ b

a

fd(λα + µβ) = λ

∫ b

a

fdα + µ

∫ b

a

fdβ.

Proof: This is so because for any fixed partition we have the linearity

property of ∆:

∆(λα + µβ)i = (λα + µβ)(xi − xi−1) = λ(∆α)i + µ(∆β)i

And hence the same is true of the R-S sums. Therefore, if η =∫ b
a
fdα, γ =

∫ b
a
fdβ, then it follows that

λη + µγ =

∫ b

a

fd(λα + µβ).

♠
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Theorem 11 Let α be a function of bounded variation and let V de-

note its total variation function V : [a, b] → R defined by V (x) =

Vα[a, x]. Let f be any bounded function. Then f ∈ R(α) iff f ∈ R(Vα)

and f ∈ R(V − α).

Proof: The ‘if’ part is easy because of (a). Also, we need only prove

that if f ∈ R(α) then f ∈ R(V ). Given ε > 0 choose a partition Pε so

that for all refinements P of Pε, and for all choices of tk, sk ∈ [ai−1, ai],

we have, ∣∣∣∣∣
n∑
k=1

(f(tk)− f(sk))∆αk

∣∣∣∣∣ < ε, Vf (b) <
∑
k

∆αk + ε.

We shall establish that

U(P, f, V )− L(P, f, V ) < εK

for some constant K. By adding and subtracting, this task may be

broken up into establishing two inequalities∑
k

[Mk(f)−mk(f)][∆Vk−|∆αk|] < εK/2;
∑
k

[Mk(f)−mk(f)]|∆αk| < εK/2.

Now observe that ∆Vk−|∆αk| ≥ 0 for all k. Therefore if M is a bound

for |f |, then∑
k[Mk(f)−mk(f)][∆Vk − |∆αk|] ≤ 2M

∑
k(∆Vk − |∆αk|)

≤ 2M(Vf (b)−
∑
|∆αk|) < 2Mε.

To prove the second inequality, let us put

A = {k : ∆αk ≥ 0}; B = {1, 2, . . . , n} \ A.

For k ∈ A choose tk, sk ∈ [ak−1, ak] such that

f(tk)− f(sk) > Mk(f)−mk(f)− ε;
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and for k ∈ B choose them so that

f(sk)− f(tk) > Mk(f)−mk(f)− ε.

We then have

∑
k[Mk(f)−mk(f)]|∆αk|

<
∑

k∈A(f(tk)− f(sk))|∆αk|+
∑

k∈B(f(sk)− f(tk))|∆k|+ ε
∑

k |∆αk|
=

∑
k[f(tk)− f(sk))∆αk + εV (b) = ε(1 + V (b)).

Putting K = max{2M, 1 + V (b)} we are done. ♠

Corollary 1 Let α : [a, b]→ R be of bounded variation and f : [a, b]→
R be any function. If f ∈ R(α) on [a, b] then it is so on every subin-

terval [c, d] of [a, b].

Corollary 2 Let f : [a, b]→ R be of bounded variation and α : [a, b]→
R be a continuous of bounded variation. Then f ∈ R(α).

Proof: By (k) of the above theorem, we see that V (α) and V (α)−α are

both continuous and increasing. Hence by a previous theorem, V (f)

and V (f)− f are both integrable with respect to V (α) and V (α)− α.
Now we just use the additive property. ♠

Lecture 24

Example 3 :

1. Consider the double sequence,

sm,n =
m

m+ n
, m, n ≥ 1.
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Compute the two iterated limits

lim
m

lim
n
sm,n, lim

n
lim
m
sm,n

and record your results.

2. Let fn(x) =
x2

(1 + x2)n
, x ∈ R, n ≥ 1 and put f(x) =

∑
n fn(x).

Check that fn is continuous. Compute f and see that f is not

continuous.

3. Define gm(x) = limn→∞(cosm!πx)2n and put g(x) = limm→∞ gm(x).

Compute g and see that g is discontinuous everywhere. Directly

check that each gm is Riemann integrable whereas g is not Rie-

mann integrable.

4. Consider the sequence hn(x) =
sinnx√

n
and put h(x) = limn fn(x).

Check that h ≡ 0. On the other hand, compute limn h
′
n(x). What

do you conclude?

5. Put λn(x) = n2x(1 − x2)n, 0 ≤ x ≤ 1. Compute the limn λn(x).

On the other hand check that∫ 1

0

λn(x)dx =
n2

2n+ 2
→∞.

Therefore we have

∞ = lim
n

[∫ 1

0

λn(x)dx

]
6=
∫ 1

0

[lim
n
λn(x)]dx = 0.

These are all examples wherein certain nice properties of functions

fail to be preserved under ‘point-wise’ limit of functions. And we have

seen enough results to show that these properties are preserved under

uniform convergence.

We know that if a sequence of continuous functions converges uni-

formly to a function, then the limit function is continuous. We can
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now ask for the converse: Suppose a sequence of continuous functions

fn converges pointwise to a function f which is also continuous. Is

the convergence uniform? The answer in general is NO. But there is a

situation when we can say yes as well.

Theorem 12 Let X be a compact metric space fn : X → R be a

sequence of continuous functions converging pointwise to a continuous

function f. Suppose further that fn is monotone. Then the fn → f

uniformly on X.

Proof: Recall that f is monotone increasing means fn(x) ≤ fn+1(x)

for all n and for all x. Likewise fn is monotone decreasing means

fn(x) ≤ fn+1(x) for all n and for all x. Therefore, we can define

gn(x) = |f(x) − fn(x)| to obtain a sequence of continuous functions

which monotonically decreases to 0. It suffices to prove that gn con-

verges uniformly.

Given ε > 0 we want to find n0 such that gn(x) < ε for all n ≥ n0

and for all x ∈ X. Put

Kn = {x ∈ X : gn(x) ≥ ε}.

Then each Kn is a closed subset of X. Also gn(x) ≥ gn+1(x) it follows

that Kn+1 ⊂ Kn. On the other hand, sunce gn(x) → 0 it follows that

∩nKn = ∅. Since this is happening in a compact space X we conclude

that Kn0 = ∅ for n0. ♠

Remark 4 The compactness is crucial as illustrated by the example:

fn(x) =
1

nx+ 1
, 0 < x < 1.

23


