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Week 9: Lectures 25-27

Lecture 25

Example 1 A continuous function which is nowhere differentiable:

Put

φ(x) = |x|, − 1 ≤ x ≤ 1

and extend this function all over R by periodicity:

φ(x+ 2) = φ(x).

This function is continuous on R and not differentiable at any integer value

of x.

Let φn(x) = φ(4nx). Then each φn has similar properties to φ but the

period has decreased and the number of points at which it is not differentiable

has increased viz., at all those rational numbers q such that 4nq ∈ Z. We now

take

f(x) =
∞∑
n=0

(
3

4

)n
φn(x).

Observe that 0 ≤ φn(x) ≤ 1 for all n and hence the above series is uniformly

convergent and hence defines a continuous function on R. It is also clear that

this function is not differentiable at any dyadic rational number. But there

is a bonus: it is not differentiable anywhere:

Let x ∈ R. For each integer m consider 4mx. Then one of the intervals
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(4mx, 4mx+ 1/2), (4mx− 1/2, 4mx) will not contain any integer. Choose one

such and accordingly define δm = ± 1
2(4m)

so that there is no integer between

4mx and 4m(x+ δm).

Now if n > m then 4nδm is an even integer and hence φn(x+δm)−φn(x) =

0. Also for 0 ≤ n ≤ m, we have |φn(x + δm) − φn(x)| = |4nδm|. (To see this

use the property |φ(x) − φ(y)| = |x − y| if the interval (x, y) contains no

integer.) Therefore∣∣∣∣f(x+ δm)− f(x)

δm

∣∣∣∣ =

∣∣∣∣∣ 1

δm

m∑
0

(
3

4

)n
(φ(4n(x+ δm))− φ(4nx))

∣∣∣∣∣
≥ 3m −

m−1∑
0

3n = 3m − 3m − 1

2
=

3m + 1

2
.

Therefore upon taking the limit as m→∞, we see that f ′(x) does not exist.

Such functions are collectively called Weierstrass’ functions, because,

Weierstrass was the first one to show the existence of such functions. In-

deed, this discovery was a cultural shock to the mathematics community of

that time and there were plenty of mathematicians who would not want to

allow such weird things as functions. For, this is some thing the graph of

which cannot be drawn on a paper.

There are many ways to get such functions. As a simple exercise show

that the following function due to McCarthy 1 is also one such:

Another example Define

ψ(x) =


1 + x, if −2 ≤ x ≤ 0;

1− x, if 0 ≤ x ≤ 2;

g(x− 4n), if −2 ≤ x− 4n ≤ 2, for some integer n 6= 0.

Put ψk(x) = g(22k
x) and g(x) =

∑∞
0 gk(x)/2k. Show that g is a Weierstrass’

function. [Hint: Consider the sequence {x + 2−2k} or {x− 2−2k} depending

upon whether mod 2 you have 0 ≤ x ≤ 1 or 1 ≤ x ≤ 2.

1This appeared in Amer. Math. Monthly Vol. LX No. 10 Dec. 1953.
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Uniform metric

Let X be any set and B(X) be the set of all real (or complex) valued

functions on X which are bounded. Then for each f ∈ B(X),

‖f‖ = sup{|f(x)| : x ∈ X} <∞

and is called the sup norm of f. One easily checks that

(a) f ≡ 0 iff ‖f‖ = 0.

(b) |αf‖ = |α|‖f |,α ∈ R(C).

(c) ‖f + g‖ ≤ ‖f‖+ ‖g‖.
Therefore if we define d(f, g) = ‖f−g‖, then d becomes a metric on B(X)

which is called the uniform metric on B(X). Note that if X is a compact

metric space then any continuous real valued function on X is bounded. In

particular, C[a, b] ⊂ B[a, b].

Theorem 1 A sequence {fn} in B(X) is convergent with respect to the uni-

form metric iff it is uniformly convergent on X as a sequence of functions.

Theorem 2 B(X) is a complete metric space.

Remark 1 It follows from Weierstrass’s theorems, that if K is compact

subset of Rn, then the space C(K) of continuous functions is a closed subset

of B(X).

Lecture 26

Let us now see a constructive proof of Weierstrass’ approximation theorem.

Theorem 3 Weierstrass’ Approximation Theoem The set of all poly-

nomial functions on [a, b] is dense in C[a, b].
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Proof: Given a continuous function f : [a, b]→ R and ε > 0 we must find a

polynomial P such that

|f(x)− P (x)| < ε, a ≤ x ≤ b.

Step 1 Enough to prove this for the case [a, b] = [0, 1].

Put g(t) = f(a+ [b− a]t), 0 ≤ t ≤ 1,

get a polynomial Q such that

|g(y)−Q(y)| < ε, for 0 ≤ t ≤ 1

and put P (x) = Q
(
x−a
b−a

)
.

Step 2 Bernstein’s Polynomials. For n ≥ 1, and 0 ≤ x ≤ 1, define

Bn(x) := Bf
n(x) :=

n∑
k=0

(
n

k

)
xk(1− x)n−kf(k/n).

We have

(I) If f(x) ≡ 1 then Bf
n(x) = 1.

(II) If f(x) = x then Bf
n(x) = x.

(III) If f(x) = x2 then Bf
n(x) = x2(1− 1

n
) + x

n
.

(IV)
∑n

k=0

(
n
k

) (
k
n
− x
)2
xk(1− x)n−k = x(1−x)

n
.

[Proof: I is obvious. For II and III consider the binomial expansion

(x+ y)n =
n∑
0

(
n

k

)
xkyn−k

Differentiate this wrt x and multiply by x/n to obtain

x(x+ y)n−1 =
n∑
0

k

n

(
n

k

)
xkyn−k.

If you put y = 1− x now you get II.

Differentiate this again with respect to x multiply by x/n and substitute

y = 1− x to obtain III.

Finally (IV) is verified by expanding out and using I,II,III.]

Step 3 We shall now prove
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Lemma 1 Given any continuous function f : [a, b]→ R, the sequence Bf
n of

Bernstein polynomials converges uniformly to f on [0, 1].

Given ε > 0 choose δ > 0 such that

|f(x)− f(y)| < ε/2, for |x− y| < δ, x, y ∈ [0, 1].

Now for any x ∈ [0, 1] by (I) above we have

f(x)−Bn(x)

= f(x)
n∑
0

(
n

k

)
xk(1− x)n−k +

n∑
k=0

f(k/n)]

(
n

k

)
xk(1− x)n−k

=
n∑
k=0

[f(x)− f(k/n)]

(
n

k

)
xk(1− x)n−k

=
∑

k∈A +
∑

k∈B

where A = {k : |f(x)− f(k/n)| < ε
2
} and B = {1, 2, . . . , n} \ B. Note that

A and B depend on x. In any case, we have

∣∣∣∣∣∑
k∈A

[f(x)− f(k/n)]

(
n

k

)
xk(1− x)n−k

∣∣∣∣∣ < ε

2

n∑
0

(
n

k

)
xk(1− x)n−k =

ε

2
.

It is the second sum on the right that needs more careful handling. For

k ∈ B we have |f(x)− f(k/n)| ≥ ε/2 and therefore, |x− k/n| ≥ δ. Therefore∣∣∣∣∣∑
k∈B

[f(x)− f(k/n)]

(
n

k

)
xk(1− x)n−k

∣∣∣∣∣
≤ 2‖f‖

∑
k∈B

(
n

k

)
xk(1− x)n−k

( k
n
− x)2

δ2

≤ 2‖f‖
δ2

x(1− x)

n
by (IV)

≤ 2‖f‖
nδ2

.

Luckily this result is independent of x. All that we have to do now is to

choose N such that 2 ‖f‖
Nδ2

< ε
2

i.e., N > 4‖f‖
δ2ε

.

4



∣∣∣∣∣∑
k∈A

[f(x)− f(k/n)]

(
n

k

)
xk(1− x)n−k

∣∣∣∣∣ < ε

2

n∑
0

(
n

k

)
xk(1− x)n−k =

ε

2
.

♠

Remark 2 The above lemma actually implies, in probability theory the so

called Week law of large numbers.

Exercise 1 (a) Write down Bf
1 , B

f
2 , B

f
3 explicitly for f(x) = x2, and f(x) =

x3.

(b) Learn about Bezier curves used in computer graphics, which are closely

related to Bernstein polynomials.

Alternative proof of Weierstrass’s theorem:

As before, we may assume that [a, b] = [0, 1]. We may further assume that

f(0) = f(1) = 0, by considering the function g(x) = f(x)− f(0)− x[f(1)−
f(0)]. Morever we can now extend f all over R by defining it to be 0 outside

[0, 1] so that f is uniformly continuous on R.

Lemma 2 For any continuous function f : R→ R such that suppf ⊂ [0, 1].

Define the polynomial functions

Pn(f)(x) =

∫ 1

0

f(s)Qn(s− x)ds (1)

where

Qn(f)(x) = cn(1− x2)n

where the constant cn is chosen so that∫ 1

−1

Qn(x)dx = 1, n ≥ 1.

Then {Pn(f)} is a sequence of polynomials converging uniformly to the func-

tion f on R.
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Proof: For each fixed x ∈ R, the integrand in (1) is continuous function and

hence is Riemann integrable in [0, 1]. Also, since the integrand is a polynomial

in x with coefficients which are continuous functions of s upon taking the

definite integral w.r.t. s, we obtain Pn(f) as a polynomial functions in x.

We begin with some estimate of the size of the constants cn.

Claim: cn <
√
n :∫ 1

−1

(1− x2)ndx = 2

∫ 1

0

(1− x2)ndx

≥ 2

∫ 1/
√
n

0

(1− x2)ndx

≥ 2

∫ 1/
√
n

0

(1− nx2)dx =
4

3
√
n
>

1√
n
.

Now if 1 > δ > 0, then for δ ≤ |x| ≤ 1, we have

Qn(x) ≤
√
n(1− δ2)n.

Since
√
n(1− δ2)n → 0 as n→∞, Qn → 0 uniformly in δ ≤ |x| ≤ 1.

Next we shall rewrite Pn : Putting s = x+ t, we get

Pn(f)(x) =

∫ 1−x

−x
f(x+ t)Qn(t)dt.

Since f = 0 outside [0, 1] we see that for x ∈ [0, 1]

Pn(f)(x) =

∫ 1

−1

f(x+ t)Qn(t)dt.

Given ε > 0 choose 1 > δ > 0 so that

|x− y| < δ implies that |f(x)− f(y)| < ε/2.

Let M = sup{|f(x)| : x ∈ R}.
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Then for any x ∈ [0, 1]

|Pn(x)− f(x)| =

∣∣∣∣∫ 1

−1

[f(x+ t)− f(x)]Qn(t)dt

∣∣∣∣
≤

∫ 1

−1

|f(x+ t)− f(x)|Qn(t)dt

≤ 2M

∫ −δ
−1

Qn(t)dt+
ε

2

∫ δ

−δ
Qn(t)dt+ 2M

∫ 1

δ

Qn(t)dt

≤ 4M
√
n(1− δ2)n +

ε

2
< ε

for sufficiently large n. ♠

Lecture 27

Remark 3 Given a continuous function f : R → R, it is not true that we

can find a sequence of polynomials approximating f all over R. For instance,

in the above discsussions, the polynomials Pn wouild obviously diverge to

±∞ as x→∞ whereas the function f is identically 0 outside [0, 1].

Remark 4 The space B(K) is not only a vector space but is also an algebra,

i.e., if f, g ∈ B(X) fg ∈ B(X). We have earlier remarked that if K is a

compact subset of Rn then C(K) is a closed subset of B(K). Indeed we can

also verify that C(K) is a subalgebra. More generally we have,

Theorem 4 If A is a subalgebra of B(X) then Ā is a subalgebra of B(X).

Definition 1 Let A be a family of functions on a set X. We say A separates

points in X if given any two distinct points x1, x2 ∈ X there exists at least

one f ∈ A such that f(x1) 6= f(x2). Likewise, we say A vanishes at no point

of X if for each x ∈ X there is at least one f ∈ A such that f(x) 6= 0.

Example 2 A typical example of A satisfying the above properites is the

family of polynomial functions where X is any subset of Rn. On the other
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hand if we take the family of even polynomials on [−1, 1] it does not separates

points and the family of odd polynomials does vanishes at x = 0.

Theorem 5 Let A be an algebra of (real or complex valued) functions on a

set X which separates points of X and which does not vanish at any point of

X. Given x1 6= x2 and constants c1, c2 there exists f ∈ A such that f(xj) =

cj, j = 1, 2.

Proof: First find functions g, h, k such that

g(x1) 6= g(x2), h(x1) 6= 0, k(x2) 6= 0.

Put

f(x) = c1
(g(x)− g(x2))h(x)

(g(x1)− g(x2))h(x1)
+ c2

(g(x)− g(x1))k(x)

(g(x2)− g(x1))k(x2)
.

♠

Remark 5 Are you reminded of Lagrange’s interpolation formula? Notice

the role of the functions h, k in the above formula. Why does the simpler

formula

f(x) = c1
(g(x)− g(x2)

(g(x1)− g(x2))
+ c2

(g(x)− g(x1))

(g(x2)− g(x1))

doe not work? Simply because we do not know whether the constant function

1 is in A or not.

Theorem 6 Stone-Weierstrass Theorem Let A be an algebra of continu-

ous real valued functions on a compact metric space X which separates points

of X and vanishes at no point of X. Then Ā = C(X).

Proof: Note that A ⊂ C(X) ⊂ B(X) implies Ā ⊂ C(X) because the latter

is closed in B(X). So we have to show C(X) ⊂ Ā.

Step 1: If f ∈ Ā then |f | ∈ Ā.
Let a = sup {|f(x)| : x ∈ X}. Now find polynomials Pn(t) such that |Pn(t)−
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|t|| < 1
n

for −a ≤ t ≤ a (exists by Weierstrass’s theorem.) We can also

assume that Pn(0) = 0 by considering Qn(t) = Pn(t) − Pn(0). Consider

gn(x) = Pn(f(x)) = c1f(x) + c2f
2(x) + · · · ckfk(x) ∈ A. On the other hand

for all x ∈ X, we have

|gn(x)− |f(x)|| = |Pn(f(x))− |(f(x)|| < 1

n

This implies gn → |f | and we are through.

Step 2 If f, g ∈ Ā, then max{f, g},min{f, g} ∈ Ā.
This follows since

max{f, g} =
f + g + |f − g|

2
; min{f, g} =

f + g − |f − g|
2

.

By repeated application of this it follows that maximum (or minimum) of

finitely many functions in Ā is again in Ā.

Step 3 Let f : X → R be a continuous function and x ∈ X. Given ε > 0

there exists gx ∈ Ā such that gx(x) = f(x) and

gx(t) > f(x)− ε, t ∈ X. (2)

Using the property of separation of points and nonvanishing, it follows

that for every t ∈ X, we have a function ht ∈ A such that ht(x) = f(x), ht(t) =

f(t). By continuity of ht − f, there is a nbd Vt of t in X such that ht(y) >

f(y)− ε for y ∈ Vt. Since X is compact, we get

X ⊂ Vt1 ∪ Vt2 ∪ · · · ∪ Vtk .

Put

gx = max {ht1 , . . . , htk}.

Then gx(x) = f(x) and if y ∈ X is such that y ∈ Vti , we have

gx(y) ≥ hti(y) > f(y)− ε, y ∈ Vti .
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By Step 2, gx ∈ Ā.
Step 4 Given a continuous function f : X → R and ε > 0 there exists g ∈ Ā
such that |f(t)− g(t)| < ε, t ∈ X.

For each x ∈ X, let gx ∈ Ā be a function as in Step 3. By continuity

of gx − f there is a nbd Ux of x such that gx(y) < f(y) + ε for all y ∈ X.
Cover X with finitely many Ux1 , . . . , Uxm and take g = min {gx1 , . . . , gxm}.
By step 2, g ∈ Ā. Since each gxi

has the property (2), it follows that g(y) >

f(y)− ε, y ∈ X. On the other hand, if y ∈ Uxi
then g(y) ≤ gxi

(y) < f(y) + ε.

Therefore for all y ∈ X, we have f(y)− ε < g(y) < f(y) + ε. ♠

Remark 6 The theorem does not hold for algebras of complex valued func-

tions without the additional hypothesis that A is self-adjoint, i.e., it is closed

under conjugation, i.e., if f = u + ıv ∈ A then f̄ = u− ıv ∈ A. This can be

illustrated by the following example.

Let X = S1, the unit circle and A be the algebra of all polynomial func-

tions with complex coefficients. The A separates points and the polynomial

z ∈ A does not vanish on A. The function f(z) = 1
z

is continuous on X. How-

ever, it does not belong to Ā. For, we have
∫
S1 P (z)dz = 0 for all polynomials

whereas
∫
S1

dz
z

= 2πı. If there were a sequence of polynomials uniformly con-

verging to 1/z then the integral should have been zero according to theoreom

??.

The situation can be saved if we make one more assumption.

Theorem 7 Let X be any compact metric space and A be a self adjoint

algebra over C, of complex valued continuous functions on X. Assume that A

separates points of X and does not vanish anywhere on X. Then Ā contains

all continuous complex valued functions on X.

Proof: (Note that A has the additional property: f ∈ A =⇒ ıf, f̄ ∈ A as

compared with an algebra over R being an algebra over complex numbers,

which is implict when we talk about self-adjoint algebras.)
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Let AR denote the subspace of all members of A which take real values

only. Then A is a subalgebra which also has these two additional properties:

For first of all observe that if f ∈ A then <(f) = (f + f̄)/2 ∈ A and =(f) =

(f − f̄)/2ı ∈ A. Therefore <(f),=(f) ∈ AR. Now given x1 6= x2 ∈ X let

f ∈ A be such that f(x1) 6= f(x2). Then <(f(x1)) 6= Re(f(x2)) or =(f(x1)) 6=
=(f(x2)) and accordingly, we get some g ∈ AR with g(x1) 6= g(x2). Similarly,

if f ∈ A is such that f(x) 6= 0 then one of <(f)(x) 6= 0,=(f(x)) 6= 0 is true

and so we are done.

Now given any continuous function f : X → C we can apply the real

Stone-Weierstrass theorem to conclude that <(f) ∈ Ā and =(f) ∈ Ā. There-

fore f ∈ Ā. ♠
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Week 10 lectures 28-30

Lecture 28. Fourier Series

Some important Exercises on Integration:

Exercise 2 Throughout, let α be a fixed increasing function on [a, b].

1. Famous Inequalities Let p > 1 be a positive real number. 1
p

+ 1
q

= 1.

(a) Show that φ(x) = 1
p
x − x1/p, attains its minimum at x = 1. Put

φ(1) = 1
p
− 1 = 1

q
so that 1

p
+ 1

q
= 1. Note that both p, q > 1. They are

called ‘dual pair’ of numbers, i.e., q is the dual of p and p is the dual

of q. Observe that if p = 2 then q = 2, i.e., 2 is dula to itself.

(b) If u, v ≥ 0 then

uv ≤ up

p
+
vq

q
.

Show that equality holds iff up = vq.

(c) Let f, g ∈ R(α) and f, g ≥ 0 such that∫ b

a

fpdα = 1 =

∫ b

a

gqdα.

Then show that
∫ b
a
fgdα ≤ 1.

(d) Let f, g be any complex valued functions in R(α). Then prove that

Holder’s Inequality:∣∣∣∣∫ b

a

fgdα

∣∣∣∣ ≤ (∫ b

a

|f |pdα
)1/p(∫ b

a

|g|qdα
)1/q

.
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(e) Schwarz’s Inequality With f, g as in (d), show that

∣∣∣∣∫ b

a

fgdα

∣∣∣∣ ≤ (∫ b

a

|f |2dα
)1/2(∫ b

a

|g|2dα
)1/2

.

(f) For any u ∈ R(α) define and p > 0

‖u‖p :=

[∫ b

a

|u|pdα
]1/p

.

For any f, g, h ∈ R(α) prove Minkowski Iniquality:

‖f + g‖p ≤ ‖f‖p + ‖g‖p.

(g) Show that dp(f, g) = ‖f − g‖p satisfies triangle inequality.

Solution:

(a) φ′(x) = 0 iff x = 1 and φ′′(1) > 0. The conclusion follows.

(b) Put x = up/vq in (a).

(c) f, g ∈ R(α) implies |f |p, |g|q ∈ R(α). (Why? Remember how we

proved f 2 ∈ R(α)?) Now by (b) f(x)g(x) ≤ f(x)p

p
+ g(x)q

q
. Upon taking

integration and use the fact 1
p

+ 1
q

= 1 we are done.

(d) Apply (c) to appropriate multiples of f, g.

(e) Put p = q = 2.

(f) Notice that 1
p

+ 1
q

= 1, p, q > 0 implies p, q ≥ 1. Put k =
∫ b
a
(|f | +

|g|)pdα. Then

k =
∫ b
a
(|f |+ |g|)(|f |+ |g|)p−1dα

=
∫ b
a
(|f |(|f |+ |g|)p−1dα +

∫ b
a
|g|(|f |+ |g|)p−1dα

≤
(∫ b

a
|f |pdα

)1/p (∫ b
a
(|f |+ |g|)(p−1)qdα

)1/q

+
(∫ b

a
|g|pdα

)1/p (∫ b
a
(|f |+ |g|)(p−1)qdα

)1/q

=

[(∫ b
a
|f |pdα

)1/p

+
(∫ b

a
|g|pdα

)1/p
]
k1/q

because (p− 1)q = p. The result follows.

(g) Easy.
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2. Let f ∈ R(α) on [a, b]. Given ε > 0 show that there exists a continuous

function g : [a, b]→ R such that ‖f − g‖2 < ε.

Sol: Given ε positive it is enough construct a continuous function g

and a partition P = {a = a0 < a1 · · · < an = b} such that∑
i

|f(ti)− g(ti)|2∆αi < ε.

Let M > 0 be such that |f | < M. Choose P so that

∑
i

|f(ti)− f(si)|∆αi < ε2/8M, for all ti, si ∈ [ai−1, ai].

It follows that∑
i

|f(ti)− f(si)|2∆αi < ε2/4, for all ti, si ∈ [ai−1, ai].

Put ∆xi = ai − ai−1 and

g(t) =
ai − t
∆xi

f(ai−1) +
t− ai−1

∆xi
f(ai), ai−1 ≤ t ≤ ai.

Then clearly g is continuous. For ai−1 ≤ ti ≤ ai we have,

f(ti)− g(ti) =
ai − ti
∆xi

(f(ti)− f(ai−1)) +
ti − ai−1

∆xi
(f(ti)− f(ai))

Therefore

|f(ti)− g(ti)| ≤ |(f(ti)− f(ai−1)|+ |(f(ti)− f(ai)| ≤ 2|f(ti)− f(si)|

where si = ai or ai−1. Therefore∑
i

|f(ti)−g(ti)|2∆αi ≤ 4
∑
i

|f(ti)−f(si)|2∆α ≤ 8M
∑
i

|f(ti)−f(si)|∆αi < ε2.

Definition 2 A function f : R→ R, (C) is called periodic with period λ > 0

if f(x+ λ) = f(x) for all x ∈ R.
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As an immediate corollary of Theorem 7, (Stone-Weierstrass Theorem), we

have

Theorem 8 Let f : R → R be a continuous function with the property

f(x+ 2π) = f(x) for all x ∈ R. Then there exists a sequence

SN(x) = a0 +
N∑
n=1

(an cosnx+ bn sinnx), a0, an, bn ∈ R, (3)

which converges uniformly to f on the whole of R.

Proof: Functions of the above form SN are called trigonometric polynomials.

Notice that each summand that occurs on the RHS of the formula for SN

has the property

g(x+ 2π) = g(x), x ∈ R.

Such functions are called periodic with period 2π. The important thing to

note about them is that their behavior on R is completely known by their

behaviour on any interval of length (≥) 2π.

If we allow complex coefficients a0, an, bn in (3) then using the identities

cosx =
eıx + e−ıx

2
; sin x =

eıx − e−ıx

2ı
,

it follows that we can rewrite (3) in the form

sN(x) =
N∑
−N

cne
inx, cn ∈ C. (4)

Let A denote the collection of all such functions sN . Check that A is a

self-adjoint algebra of continuous functions on the whole of R (but we shall

consider these functions on the closed interval [−π, π]). Also check that this

algebra separates points of [−π, π] and does not vanish anywhere (since it con-

tains constant functions). Therefore its closure contains the space C[−π, π].
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Now given any continuous periodic function f : R → R with period 2π

restrict f : [−π, π] → R. Now by what we have concluded above, we get

a sequence {sN(x)} ∈ A (with coefficients a0, an, bn ∈ C) which uniformly

converges to f. Upon rewriting it in terms of cosnx and sinnx and taking

the real part the theorem follows. ♠
The above theorem prods us into studying many related concepts which

lead us to the so called Theory of Fourier series. We shall only give a few

basics of this vast theory here depending only on the mathematics that we

have developed so far. Full justification to this topic cannot be done without

the support of Lebesgue theory.

Lemma 3 Let n be an integer. Then

1

2π

∫ π

−π
eınxdx =

{
1 if n = 0;

0 otherwise
(5)

Definition 3 By a trigonometric series we mean a sum of the form

∞∑
−∞

cne
ınx (6)

whose N th-partial sum sN is given by (4). Given a Riemann integrable

function f on [−π, π], and an integer n, we define its nth Fourier coefficient

by the formula

cn(f) :=
1

2π

∫ π

−π
f(x)e−ınxdx. (7)

The Fourier series (also called trigonometric series) associated to f is defined

to be
∞∑
−∞

cn(f)eınx. We express this often by

f ∼
∞∑
−∞

cn(f)eınx. (8)
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Remark 7 We observe that if SN is a trigonometric polynomial as in (4),

then cn(SN) = cn, for |n| ≤ N and cn(SN) = 0, |n| > N. Thus the Fourier

series of SN reduces to a trigonometric polynomial. One of the fundamental

problem in the theory is when can we write = in place of ∼ in (8)? Of course

there are many subquestions related to this as well viz., what should be the

meaning of ‘ =′ here. For instance, it is clear that at all cost we should insist

that RHS converges. If the convergence is uniform then it follows that the

function represented is periodic and moreover continuous. The first property

is desirable whereas the second one is NOT. The applications that we have

in mind involve, quite often, functions which have discontinuities.

For instance if the series (6) converges to some function f̂ , then we would

like that the so called Euler’s formula

cn =
1

2π

∫ π

−π
f̂(x)eınxdx

to be true. If we grant uniform convergence, then term-by-term integration

is valid and so using (5) one easily checks that this property is true. (The

situation is similar to the case of an analytic function whose nth derivative

at 0 determines the coefficeint of xn in the power series expansion.) For

trigonometric series or for more general Fourier series, we are looking for

similar properties under more general conditions than uniform convergence.

Definition 4 Let {φj} be a family of complex valued integrable functions

on [a, b] with the property:∫ b

a

φj(x)φk(x)dx = 0, j 6= k. (9)

Then we say {φj} is an orthogonal family of functions. In addition if∫ b

a

|φj(x)|2dx = 1 (10)

we call it an orthonormal family.
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Example 3 We have seen that the family { eınx
√

2π
} is an orthonormal family

on [−π, π]. Similarly,

{ 1√
2π
,
cosx√

2π
,
sinx√

2π
,
cos 2x√

2π
,
sin 2x√

2π
, · · · }

is also an orthonormal family on [−π, π].

Definition 5 Given an integrable function f on [a, b] we define

cj(f) :=

∫ b

a

f(t)φj(x)dx (11)

to be the Fourier coefficient of f with respect to the family {φj}. Moreover

the formal sum
∑

j cj(f)φj(x) is then called the Fourier series of f with

respect to {φj}. And we express this by

f(x) ∼
∑
j

cj(f)φj(x).

For any two integrable functions, f, g on [a, b], let us write

〈f, g〉 =

∫ b

a

fḡdx.

Also let us write

‖f‖ := ||f ||2 :=
√
〈f, f〉.

Theorem 9 Pythagorus theorem: If 〈f, g〉 = 0 then

‖f + g‖2 = ‖f‖2 + ‖g‖2.

Proof: Direct.

Theorem 10 Least Square Approximation Let f be an integrable func-

tion on [a, b]. Let {φn} be an orthonormal system and

sn(x) :=
n∑

m=1

cmφm(x)
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be the nth partial sum of the Fourier series of f. Then for all

tn(x) =
n∑

m=1

γmφm(x)

we have ∫ b

a

|f − sn|2dx ≤
∫ b

a

|f − tn|2dx (12)

with equality holding iff γm = cm, for all 1 ≤ m ≤ n.

Proof: Check that f−sn is orthogonal to sn− tn and use the above theorem

to conclude that

‖f − tn‖2 = ‖f − sn‖2 + ‖sn − tn‖2.

This proves (10). As for the last part, repeated application of Pythagoras

yields

‖sn − tn‖2 =
n∑

m=1

|cm − γm|2

from which the conclusion follows.

Theorem 11 Bessel’s Inequality: For any integrable function f on [a, b]

if f ∼
∑

m cmφm then ∑
n

|cn|2 ≤ ‖f‖2

Proof: Putting tm = 0 in the proof of the above theorem, we first obtain that

f − sn is orthogonal to sn. (Or do this directly afresh). Again by Pythagorus

theorem, we get

‖f‖2 = ‖f − sn‖2 + ‖sn‖2.

The conclusion follows. ♠
In particular, we have the so called
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Theorem 12 Lebesgue-Riemann theorem: For any integrable function

f on [−π, π] the sequence of Fourier coefficients converges to 0 :

lim
n→∞

∫ π

−π
f(t) cos kt dt = 0; lim

n→∞

∫ π

−π
f(t) sin kt dt = 0. (13)

Proof: Bessel’s inequality implies that limn→±∞ cn = 0 and we also have

cn = c̄n. The above two quantities are nothing but cn+c̄n
2

and c̄n−cn
2

, the real

and imaginary parts of cn. ♠

Lecture 30

Theorem 13 Parseval’s Theorem: Let f, g be integrable functions with

period 2π. Put

f(x) ∼
∞∑
−∞

cme
ımx; g(x) ∼

∞∑
−∞

γme
ımx.

Then

(i) lim
N→∞

1

2π

∫ π

−π
|f(x)− sN(f ;x)|2dx = 0.

(ii)
1

2π

∫ b

a

f(x)g(x)dx =
∞∑
−∞

cmγm.

(iii)
1

2π

∫ π

−π
|f(x)|2dx =

∞∑
−∞

|cm|2.

Proof: We shall denote by ‖h‖2 =
(

1
2π

∫ b
a
|h(x)|2dx

)1/2

. Since f is integrable

and f(−π) = f(π), from a previous exercise 2.2, given ε > 0, we have a

continuous 2π-periodic function h such that

‖f − h‖2 < ε.

By the theorem 8 above, there is a trigonometric polynomial

P =
N∑
−N

γme
ımx
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of degree N, say, such that |P (x) − h(x)| < ε for all x ∈ [−π, π] and hence

‖P − h‖2 < ε.

Let us use a slightly modified notation: for any g ∈ R(α)[−π, π],

sn(g) :=
n∑
−n

ck(g)eıkx

By Least Square Approximation, it follows that

‖h− sn(h)‖2 ≤ ‖h− P‖2 < ε, for n ≥ N.

Also Bessel’s inequality, we have,

‖sn(h)− sn(f)‖2 = ‖sn(h− f)‖2 ≤ ‖h− f‖2 < ε.

Finally by Triangle inequality, we have

‖f − sn(f)‖2 ≤ ‖f − h‖2 + ‖h− sn(h)‖2 + ‖sn(h)− sn(f)‖2 < 3ε

for all n ≥ N. This proves (i).

To prove (ii), we first observe that at finite sum level, we have

1

2π

∫ π

−π
sN(f)ḡdx =

1

2π

N∑
−N

∫ π

−π
cne

ınxg(x)dx =
N∑
−N

cnγ̄n.

Therefore, using Schwarz’s inequality, we get∣∣∣∣∫ fḡ −
∫
sN ḡ

∣∣∣∣ ≤ ∫ |f − sn| |g| ≤ (∫ |f − sN |2)1/2(∫
|g|2
)1/2

.

Letting N →∞ we get (ii).

(iii) follows from (ii) by putting g = f. ♠
Convergence problem for Trigonometric Series.

We shall now on deal with only trigonometric series and consider functions

f with period 2π which are Riemann integrable over [−π, π].
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Consider the trigonometric polynomial with all its coeffients equal to 1.

(By analogy, this plays the role of the polynomial which is the nth partial

sum of the geometric series for (1− x)−1.) The trigonometric polynomial

DN(x) =
N∑
−N

eınx

is called the Dirichlet’s kernel. Multiplying it by eıx − 1 we get

(eıx − 1)DN(x) = eı(N+1)x − e−ıNx.

Multiplying further by e−ıx/2 we get

2ı sin(x/2)DN(x) = 2ı sin(N + 1/2)x.

Therefore

DN(x) =
sin(N + 1/2)x

sinx/2
. (14)

Another interesting property of Dirichlet’s kernel is that∫ π

−π
Dn(t)dt = 2π. (15)

Given any f ∈ R(α)[−π, π] we can rewrite sN(f) in terms of Dirichlet’s

kernel:

sN(f)(x) =
N∑
−N

1

2π

(∫ π

−π
f(t)e−ıntdt

)
eınx

=
1

2π

∫ π

−π
f(t)

N∑
−N

eın(x−t) dt

=
1

2π

∫ π

−π
f(t)DN(x− t)dt

=
1

2π

∫ x+π

x−π
f(x− s)Dn(s)ds

=
1

2π

∫ π

−π
f(x− s)Dn(s)ds

the last equality being the result of periodicity of the integrand.

We shall now prove a local convergence theorem:
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Theorem 14 Suppose for some x, there exist δ > 0,M <∞ such that

|f(x+ t)− f(x)| ≤M |t|, t ∈ (−δ, δ). (16)

Then

lim
N→∞

sN(f, x) = f(x).

Proof: Put

g(t) =

{
f(x−t)−f(x)

sin(t/2)
0 < |t| < π

0, t = 0.

We first note that g ∈ R(α) ∈ [−π, π]. [Let us prove that g satisfies R-

condition in [0, π] the proof for the interval [−π, 0] being the same. Given

ε > 0 we can choose δ1 > 0 such that |t/ sin(t/2)| < 2. Now choose δ2 =

min{δ, δ1, ε/8M}. Now observe that in [δ2, π], g is integrable and hence we

can find a partition P := {δ2 = a1 < a2 < · · · an = π} in which g satisfies

Riemann’s condition for ε/2. It then follows that for the partition Q := {0 <
δ2 = a1 < · · · < an}, g satisfies Riemann’s condition in the interval [0, π] for

ε. ]

Using (15) we get

sN(f ;x)− f(x)

=
1

2π

∫ π

−π
[f(x− t)− f(x)]Dn(t) dt

=
1

2π

∫ π

−π
g(t)sin(t/2)Dn(t) dt

=
1

2π

∫ π

−π
g(t) sin(N + 1/2)t dt

=
1

2π

∫ π

−π
g(t)[sin(t/2) cosN(t) + cos(t/2) sinN(t)]dt

= αN + βN

where αN and βN are respectively real part of the N th Fourier coefficient

of g(t) sin(t/2) and the imaginary part of the N th Fourier coefficient of

g(t) cos(t/2). Because of (16) both these functions are Riemann integrable
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functions in the closed interval. Therefore, by Lebesgue Riemann (12), it

follows that αN → 0, βN → 0 as N →∞. ♠

Remark 8 It follows that if f ∈ C2 then it satisfies (16) and hence the

Fourier series is convergent. However, by carrying out integration by parts

twice and using Weierstrass’s majorant criterion, one can directly prove that

the Fourier series is uniformly convergent to a function g. But then term-by-

term integration is valid and hence it follows that the function g is equal to

f.

Lemma 4 Let g ∈ R(α)[0, π]. Then

lim
N→∞

∫ π

0

g(s) sin[(N + 1/2)s]ds = 0. (17)

Proof: Extend g to all over [−π, π] by defining g(t) = 0 for t ∈ [π, 0). Then

g ∈ R(α)[−π, π] and we have∫ π

0

g(s) sin[(N + 1/2)s]ds =

∫ π

−π
g(s) sin[(N + 1/2)s]ds.

Use the fact

sin[(N + 1/2)s] = sinNs cos(s/2) + cosNs sin s/2

and appeal to the theorem 12. ♠

Theorem 15 Let f ∈ R(α)[−π, π] and let x ∈ [−π, π]. Assume that f(x±), f ′(x±)

exist. Then the Fourier series for f at x will converge to [f(x+) + f(x−)]/2.

Proof: The hypothesis f ′(x+), f(x−) exist implies that f satisfies the follow-

ing Lipschitz condtions:

|f(x+ t)− f(x+)| ≤Mt, for 0 ≤ t ≤ δ
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and

|f(x− t)− f(x−)| ≤Mt, for 0 ≤ t ≤ δ

for some M, δ > 0.

Now we use the property DN(x) = Dn(−x) to see that

sN(f) =
1

2π

∫ π

0

[f(x+ s) + f(x− s)]DN(s)ds.

Therefore

sN(f, x)− f(x+) + f(x−)

2

=
1

2π

∫ π

0

[f(x+ s) + f(x− s)− f(x+)− f(x−)]DN(s)ds

≤ 1

2π

∫ π

0

(f(x+ s)− f(x+))DN(s)ds+
1

2π

∫ π

0

(f(x− s)− f(x−))DN(s)ds

=
1

2π

∫ π

0

g+(s) sin[(N + 1/2)s]ds+
1

2π

∫ π

0

g−(s) sin[(N + 1/2)s]ds

where g± are defined in a similar way as in the proof of the above theorem:

g±(s) =

{
f(x±s)−f(x±)

sin(s/2)
, 0 < s ≤ π;

0, s = 0.

Exactly as in the above theorem, it follows that g± ∈ R(α)[0,±π]. By the

lemma above each of the terms on the rhs converge to 0 and we are through.

♠
(C,1) Summability of Fourier series

Given f ∈ R(α)[−π, π], let us discuss the (C, 1)−summability of the

series ∑
cn(f ;x)e−ınx.

We consider the sequence

σn(x) =
1

n

n−1∑
k=0

sn(f ;x)
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and ask the question under what conditions

lim
n→∞

σn(x) = f(x)?.

Thus it is natural to consider the sequence of sums,

Kn(x) =
1

n

n−1∑
0

Dk(x).

These functions are called Fejer kernels. We have

Kn(x) =
1

n sin(x/2)

n−1∑
k=0

sin(k + 1/2)x =
sin2 nx/2

2n sin2(x/2)
.

Also observe that from (15), it follows that∫ π

−π
Kn(x)dx = 2π. (18)

Theorem 16 Let f ∈ R(α)[−π, π] and x ∈ (−π, π) be such that f is con-

tinuous at x. Then the Fourier series of f(x) is (C, 1)−convergent to f(x)

at x.

Proof: We have to show that σn(x) → f(x). As before, this is the same as

showing

lim
n→∞

∫ π

0

[f(x+ t) + f(x− t)− 2f(x)]Kn(t)dt = 0.

By continuity of f at x we can find 0 < δ < |π − x| such that for t ≤ δ we

have

|f(x+ t) + f(x− t)− 2f(x)| < ε/2.

On the other hand, for t ≥ δ we have

Kn(t) =
sin2(nt/2)

2n sin2(t/2)
≤ 1

2n sin2(δ/2)

and hence for sufficiently large n we can make∣∣∣∣∫ π

δ

[f(x+ t) + f(x− t)− 2f(x)]Kn(t)

∣∣∣∣ ≤ 2πM

n sin2(δ/2)
< ε/2.

The theorem follows. ♠
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Remark 9 If x is one of the end points ±π then the continuity of f at x

should be interpreted to mean that f(−π) = f(π) and the extended function

defined by f(x+ 2π) = f(x) all over R, should be continuous at x = π. With

this meaning the above arguments go through in this case also. Further, if f

is continuous on the whole of [−π, π] (and f(−π) = f(π) then the choise of

δ in the above proof can be made independent of x and so is the choice of n.

This yields:

Theorem 17 Let f be a periodic continuous function. Then the Fourier

series of f is uniformly (C, 1)-convergent to f all over R.

Exercise 3

1. Let f : R→ R be a non constant function such that

f(x+ y) = f(x) + f(y) for all x, y ∈ R.

(i) If f is continuous at x = 0 show that it is continuous on R.
(ii) Determine all such continuous f.

2. Let f : R→ R be a non constant function such that

f(x+ y) = f(x)f(y) for all x, y ∈ R.

(i) If f is continuous at x = 0 show that it is continuous on R.
(ii) Determine all such continuous f.

3. Apply Parseval’s theorem to the function f(x) = x, 0 ≤ x < 2π and

obtain the value of
∑∞

0
1
n2 .
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4. Prove that on [−π, π]

(π − |x|)2 =
π2

3
+
∞∑
n=1

4

n2
cosnx.

Evaluate
∑∞

0
1
n2 ;

∑∞
0

1
n4 .

5. Integration by Parts: Let α be an increasing function on [a, b].

Suppose f(x) = F ′(x) on [a, b]. Then∫ b

a

α(x)f(x)dx = F (b)α(b)− F (a)α(a)−
∫ b

a

Fdα.
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