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List of Notations

Standard Spaces

1. Rn = {(x1, x2, . . . , xn)/xi ∈ R, i = 1, 2, . . . , n}

2. Cn = {(z1, z2, . . . , zn)/zi ∈ C, i = 1, 2, . . . , n}

3. ‖x‖ =
√
x2

1 + x2
2 + · · · + x2

n, x = (x1, x2, . . . , xn) ∈ Rn

4. Sn−1 = {x ∈ Rn/‖x‖ = 1}

5. En = {x ∈ Rn/‖x‖ ≤ 1}

6. In is the standard unit cube, the Cartesian product of n copies of [0, 1].

7. İn is the (topological) boundary of In.

8. RP n is the n-dimensional real projective space

9. M(n,R) is the set of all n× n matrices with real entries

10. GL(n,R) is the set of all invertible n× n matrices with real entries

11. O(n,R) is the set of all orthogonal matrices with real entries

12. SO(n,R) is the set of all orthogonal matrices with real entries and determinant one

13. U(n) is the set of all n× n unitary matrices with complex entries

14. SU(n) is the set of all n× n unitary matrices with determinant one

15. Gr is the category of groups

16. AbGr is the category of abelian groups

17. Top is the category of topological spaces

18. Top2 is the category of pairs of topological spaces

19. Top0 is the category of pointed topological spaces
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Standard constructions:

1. γ1 ∗ γ2 juxtaposition of paths γ1 and γ2

2. [γ] the homotopy class of a loop γ (with a chosen base point)

3. G1 ⊕G2 direct sum of abelian groups or coproduct of G1 and G2 in AbGr

4. G1 ∗G2 Free product of groups or coproduct of G1 and G2 in Gr

5. X t Y disjoint union of topological spaces or coproduct of X and Y in Top

6. X tf Y adjunction space

7. G1 ×G2 direct product of groups G1 and G2

8. X × Y product of topological spaces X and Y

9. X ∨ Y wedge of topological spaces X and Y

10. Fk free group on k generators or Z ∗ Z · · · ∗ Z (k factors)

11. [G,G] the commutator subgroup of G

Functors and related things:

1. π1(X, x0) the fundamental group of X with base point x0

2. Hn(X) the n−th homology group of X

3. Hn(X,A) the n−th relative homology group of the pair (X,A)

4. Zn(X) the group of singular n−cycles in X
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Note to instructors and students

The lectures contain numerous examples and exercises all of which need not be worked through in
detail. It is entirely up to the instructor to select a few for illustration in class and assign a few as
home assignments. Complete solutions are provided for any exercise that is referred to in the proof
of any theorem. In fact solutions to more than half of the exercises are available on line and hints
(beyond what has already been indicated against the exercise) are provided for many others.

Depending on the availability of time and the background of the class the instructor may choose
to omit some topics altogether. For instance if the class is not well-prepared in general topology
the instructor may wish to spend more time on the material covered in the first five lectures and
leave out some of the later sections of the first part or discuss them superficially. Another route is
to work thorough the first part throughly and leave out some of the technical proofs in the second
part. In fact some basic courses on algebraic topology cover only the theory of covering spaces and
fundamental groups but this would involve discussing thoroughly the existence of a universal cover
and the Galois theory of covering spaces not discussed here. The text of W. Massey may be used as
a supplementary reference for these topics. Beyond these broad hints we offer no specific suggestions
on what to cover/omit and leave this choice to the instructor.

The examples have been worked out in meticulous detail in order to encourage students to write
out clear proofs and adhere to standard levels of mathematical rigor. Hand waving is unfortunately
much too common in algebraic topology and often one finds students offering specious arguments. The
material is intended for forty one hour sessions six of which are to be used for one hour tests. Some
longer topics have been assigned two lectures.

Perhaps more pictures are desirable. We encourage the reader to doodle (preferably with coloured
pencils) as he/she goes along drawing relevant figures and diagrams. Lovely pictures of the Klein’s
bottle and other things are available on the internet.

Prerequisites: This course is aimed at students who are in their second year of Master’s program
and who have done courses on linear algebra, real analysis, complex analysis, abstract algebra up to
and including Sylow theory. Presumably a student of this course would be concurrently doing a course
on multi-variable calculus leading to differential forms and Stokes’ theorem. We shall freely use ideas
from linear algebra and some elementary complex analysis such as properties of the exponential map
and Möbius maps as a source of examples. Notions such as orthogonal matrices and the spectral
theorem are ubiquitous in all of mathematics and this course is no exception. A student who is uneasy
with these notions is advised to brush up these concepts before embarking upon a study of algebraic
topology. We shall not use Jordan canonical forms in this course. In algebra we expect the students
to be familiar with group actions, isomorphism theorems and notions such as inner automorphisms,
center of a group and commutator subgroup.
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Lecture I - Introduction

General topology, a language for communicating ideas of continuous geometry, provides us use-
ful tools for studying local properties of space. Notions of compactness and connectedness though
important, are quite inadequate for obtaining a reasonable understanding of the global geometry of
space. For example, the sphere and the torus are not homeomorphic although they are both compact,
path-connected, locally connected metric spaces.

Algebraic topology is a powerful tool in global analysis - the study involving the global geometry of
space. It is difficult to define precisely at this point what global analysis is. Perhaps the few examples
discussed in the following paragraphs may help in understanding this. The most basic example comes
from advanced calculus in connection with Stokes’ theorem where a student encounters the notion of
orientability of a two dimensional surface in R3. A sphere is easily seen to be orientable inasmuch as
it has “two sides”. Small pieces of a surface obviously have “two sides” but the Möbius band “has
only one side”. How would one formulate a precise notion of an orientable surface and prove that
the Möbius band is non-orientable? Is non-orientability an intrinsic property of the surface or does it
depend on the way the surface is presented in R3?

Frequently one also sees an interplay between local and global analysis. The powerful algebraic
techniques that we shall develop streamlines the process of piecing together local information (which
is often trivial) to provide non-trivial information on the global geometry of space. A good example
illustrating this “piecing of local information” is provided by the proof of the famous theorem in
complex analysis asserting the impossibility of a continuous branch of the argument function on the
punctured plane C − {0}. Although formal use of algebraic topology can be avoided for this specific
case, it is less obvious that the function

√
1 − z2 is holomorphic on C − [−1, 1]. Analogous problems

in several dimensions would be practically intractable without the use of algebraic topology or some
other equally powerful tool in global analysis.

The first example in our list is provided by the famous Jordan curve theorem which also arose in
connections with complex analysis.

Theorem 1.1 (Jordan Curve Theorem): A simple closed curve separates the plane into two
disjoint open connected sets precisely one of which is bounded.

The theorem was used by Jordan in his formulation of Cauchy’s theorem. Though the Jordan curve
theorem no longer plays a central rôle in complex function theory it is nevertheless indispensable in
many other branches such as ordinary differential equations. Let us consider the (non-trivial) problem
of locating periodic solutions of systems of differential equations. In planar domains, a useful criterion
is given by the following

Theorem 1.2 (Poincare Bendixon): Suppose given a planar system of differential equations

ẋ = P (x, y), ẏ = Q(x, y) (1.1)
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Figure 1: Simple closed curve

where P (x, y) and Q(x, y) are smooth functions in the plane. Assume that there is an annulus Ω not
containing rest points1 and invariant under the flow of the differential equation2. Then Ω must contain
periodic orbits.

Figure 2: Invariant Annulus

The proof of this important result requires the Jordan curve theorem ([8], pp. 52-54). The analogue
of theorem (1.2) is true for differential equations on the sphere but is false for differential equations
on the torus. The Poincaré Bendixon theorem may be used to prove the existence of limit cycles for
the Van der Pol oscillator

ẋ = −y, ẏ = x + ε(x2 − 1)y

by finding an invariant annulus for the flow ([8], pp. 60-61). Another result from the theory of
ordinary differential equations is the following result stated for planar systems (1.1) but holds in
higher dimensions also. A proof may be given using Stokes’ theorem or the Brouwer’s fixed point
theorem (see [8], p. 49).

1These are the common zeros of the pair P (x, y) and Q(x, y).
2This means a trajectory (solution curve) starting at a point of Ω stays in Ω for all times.
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Theorem 1.3 Every closed trajectory of the system (1.1) contains a rest point in its interior.
Algebraic topology is a branch of geometry where properties of space are studied by assigning

algebraic invariants (such as groups, rings etc.,) to space. Thus to each topological space X we attach
an algebraic object such as a group h(X) and to each continuous map f : X −→ Y we attach a group
homomorphism h(f) : h(X) −→ h(Y ) satisfying two basic properties:

1. IfX, Y and Z are three topological spaces and f : X −→ Y and g : Y −→ Z are continuous maps,
then the corresponding group homomorphisms h(f) : h(X) −→ h(Y ), h(g) : h(Y ) −→ h(Z) and
h(g ◦ f) : h(X) −→ h(Z) must satisfy the condition

h(g ◦ f) = h(g) ◦ h(f).

2. The identity map i : X −→ X corresponds to the identity map h(i) : h(X) −→ h(X)

These properties are summarized by the statement that h is a (covariant) functor from the category
of topological spaces to the category of groups. We shall provide formal definitions of a category and
functor elucidating them through examples as we go along.

We shall introduce two important functors - the fundamental groups and the homology groups.
We also indicate how these functors help in the understanding (under restrictive conditions) of two
fundamental problems in topology - the extension problem and the lifting problem. The Tietze’s
extension theorem which provides a solution to the extension problem in certain special but important
cases, is recalled in lecture 3 where we also place it against the general background of the extension
problem. The extension problem reappears again in lecture 10 in connection with the Brouwer’s fixed
point theorem. Certain questions in complex analysis lead us naturally to the lifting problem as
elaborated in lecture 18.

The course is organized as follows. Lectures 1 through 26 constitute the first part on fundamental
groups and covering spaces. The second part on singular homology is covered in lectures 28 through
40. We begin with a review of general topology in the next four lectures. We shall touch upon some of
the important results on compactness, connectedness, path-connectedness and their local analogues.
This is followed by a longer chapter on quotient spaces with a large supply of examples that would
occur frequently in the subsequent lectures. The exercises at the end of the lectures are designed as a
warm up on these notions. The universal properties of the quotient is emphasized. We shall introduce
the notion of a topological group in lecture 5 and discuss some important examples.

In the next lecture we introduce one of the principal thespians of the play - the fundamental group
of a topological space. The theme will be developed in the subsequent lectures. The first non-trivial
result is that the fundamental group of a circle is the group of integers which in turn implies several
important results such as the Brouwer’s fixed point theorem and the Perron-Frobenius theorem from
matrix theory. The theory of covering spaces will be developed in lectures 13-17. The theory of covering
spaces is important in many areas of mathematics but we shall study it here in close connection with
the theory of the fundamental group. We introduce one of the fundamental problems in topology
namely, the lifting problem for which an elegant solution is available in the context of covering spaces.

Many important spaces in mathematics such as the Klein’s bottle, projective spaces and Riemann
surfaces (the torus being an important example) occur as orbit spaces under the action of discrete
groups. Lecture 18 is devoted to many of these examples. Unfortunately limitations in space and time
prevent us from discussing the existence of a universal covering for a space.

Algebraic topology is certainly not a stand alone subject and we have tried (to the extent possible)
to indicate connections with other areas of mathematics.
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Lecture II - Preliminaries from general topology:

We discuss in this lecture a few notions of general topology that are covered in earlier courses
but are of frequent use in algebraic topology. We shall prove the existence of Lebesgue number for a
covering, introduce the notion of proper maps and discuss in some detail the stereographic projection
and Alexandroff’s one point compactification. We shall also discuss an important example based on
the fact that the sphere Sn is the one point compactifiaction of Rn. Let us begin by recalling the basic
definition of compactness and the statement of the Heine Borel theorem.

Definition 2.1: A space X is said to be compact if every open cover of X has a finite sub-cover. If X
is a metric space, this is equivalent to the statement that every sequence has a convergent subsequence.

If X is a topological space and A is a subset of X we say that A is compact if it is so as a topological
space with the subspace topology. This is the same as saying that every covering of A by open sets
in X admits a finite subcovering. It is clear that a closed subset of a compact subset is necessarily
compact. However a compact set need not be closed as can be seen by looking at X endowed the
indiscrete topology, where every subset of X is compact. However, if X is a Hausdorff space then
compact subsets are necessarily closed. We shall always work with Hausdorff spaces in this course.
For subsets of Rn we have the following powerful result.

Theorem 2.1(Heine Borel): A subset of Rn is compact (with respect to the subspace topology) if
and only if it is closed and bounded.

The theorem provides a profusion of examples of compact spaces.

1. The unit sphere Sn−1 = {(x1, x2, . . . , xn) ∈ Rn | x2
1 + x2

2 + · · ·+ x2
n = 1} is compact.

2. The unit square I2 = [0, 1] × [0, 1] is compact.

3. The set of all 3× 3 matrices is clearly homeomorphic to R9. Then the set of all 3× 3 orthogonal
matrices, denoted by O(3,R) is is compact. That is to say the orthogonal group is compact. The
result readily generalizes to the group of n× n orthogonal matrices.

4. Think of the set of all n× n matrices with complex entries as Cn2
which in turn may be viewed

as R2n2
. The set of all n× n unitary matrices is then easily seen to be a compact space. These

matrices form a group known as the unitary group U(n).

5. The set of all n × n unitary matrices with determinant one is also a closed bounded subset of
Cn2

and so is compact. This is the special unitary group SU(n).

Theorem 2.2: Suppose that X is a compact topological space, Y is an arbitrary Hausdorff space
and f : X −→ Y is a continuous surjection then

1. Y is compact.

2. If A is a closed subset of X then f(A) is closed.

3. It f is bijective then f is a homeomorphism.
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Proof: The first assertion is proved in courses on point set topology. We remark that the Hausdorff
assumption is not necessary for (i). The second follows from the first and we shall prove the third
which will be of immense use in the sequel. Let g be the inverse of f and A be closed in X then
g−1(A) = f(A) is closed in Y from which continuity of g follows.

Definition 2.2 (The Lebsesgue number for a cover): Given an open covering {Gα} of a metric
space X, a Lebesgue number for the covering is a positive number ε such that every ball of radius ε is
contained in some member Gα of the cover.

Theorem 2.3: Every open covering of a compact metric space has a Lebesgue number.

Proof: The student is advised to draw relevant pictures as he reads on. Suppose that a cover {Gα}
has no Lebesgue number. Then for every n ∈ N, 1/n is not a Lebesgue number and so there is a point
xn ∈ X such that the ball of radius 1/n centered at xn is not contained in any of the open sets in
the covering. By compactness the sequence {xn} has a convergent subsequence converging to a point
p ∈ X. Choose an α such that Gα contains p and there is a δ > 0 such that the ball of radius δ around
p is contained in Gα. Now take n large enough that 1/n < δ/3 and xn is contained in the ball of radius
δ/3 centered at p.

Now, since the ball of radius 1/n with center xn is not contained in any of the open sets in our
covering, there exists yn ∈ X such that yn /∈ Gα and d(xn, yn) < 1/n. But

d(p, yn) ≤ d(p, xn) + d(xn, yn) < 2δ/3 < δ.

So yn is in the ball of radius δ centered at p and so yn ∈ Gα which is a contradiction.

Definition 2.3 (Locally compact spaces): A (Hausdorff) space X is said to be locally compact
if each point of X has a neighborhood whose closure is compact.

It is an exercise for the student to check that under this hypothesis each point of X has a local
base of consisting of compact neighborhoods.

Examples: The reader may easily verify the following.

1. Open subsets of Rn are locally compact.

2. Q is not locally compact.

Locally compact spaces are easily realized as dense open subsets of compact spaces. One has to merely
adjoin one additional point. The idea is important in many applications and is called Alexandroff’s
one point compactification.

One point compactification: Let X be a locally compact, non-compact Hausdorff space and
X̂ = X ∪ {∞} be the one point union of X with an additional point ∞. The topology T consists of
all the open subsets in X as well as all the subsets of the form {∞} ∪ (X −K), where K ranges over

all the compact subsets of X. The following theorem summarizes the properties of X̂ and the proof is
left for the reader.
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Theorem 2.4: (i) The collection of sets T is a topology on X̂.

(ii) The family of sets X̂−K, where K ranges over all compact subsets of X, forms a neighborhood
base of ∞.

(iii) X with the given topology is an open dense subset of X̂.

(iv) The space X̂ is compact.

Definition 2.4 (Proper maps): A map f : X −→ Y between topological spaces is said to be
proper if f−1(C) is a compact subset of X whenever C is a compact subset of Y .

Theorem 2.5: Suppose X and Y are locally compact spaces and f : X −→ Y is a continuous proper
map then it extends continuously as a map f̂ : X̂ −→ Ŷ between their one point compactifications.

Proof: Denote the adjoined points in X̂ and Ŷ as p and q respectively and extend the given map
by sending p to q. We need to show that the extension is continuous at p. Let C be any compact
subset of Y so that K = f−1(C) is compact in X. Then N = X̂ − K is a neighborhood of p in X̂

that is mapped by f̂ into the preassigned neighborhood Ŷ −C of q. This proves the continuity of the
extension.

The converse is not true as the constant map shows. However the following version in the reverse
direction is easy to see,

Theorem 2.6: Suppose X and Y are locally compact Hausdorff spaces and f : X̂ −→ Ŷ is a
continuous map such that f−1(q) = {p}, where p and q are as in the previous theorem, then the
restriction of f to X is a proper map.

Proof: If C is a compact subset of Y then f−1(C) being a closed subset of X̂ is compact. The
hypothesis says that f−1(C) does not contain p and hence is a compact subset of X itself.

Stereographic projection: Consider the sphere

Sn =
{

(x1, x2, . . . , xn+1) ∈ Rn+1 | x2
1 + x2

2 + · · ·+ x2
n+1 = 1

}

and the plane xn+1 = 0 of the equator. Let n = (0, 0, . . . , 0, 1) and x be a general point on the
equatorial plane. The line through n and x is described parametrically by (1− t)n+ tx and meets the
sphere at points corresponding to the roots of the quadratic equation

〈(1 − t)n + tx, (1 − t)n + tx〉 = 1.

The root t = 0 corresponds to the point n and the second root

t =
2(1 − n · x)

1 + ‖x‖2 − 2n · x

is continuous with respect to x and provides a point F (x) ∈ Sn − {n}. The map F is a bijective
continuous map between the plane xn+1 = 0 and Sn − {n}. Note that the origin is mapped to the
south pole by F . The inverse map G is called the stereographic projection. Let us now show that G
is also continuous whereby it follows that F is a homeomorphism.
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Well, let y be a point on the sphere minus the north pole n. The ray emanating from n and passing
through y meets the plane at the point

G(y) =
( y1

1 − yn+1
,

y2

1 − yn+1
, . . . ,

yn
1 − yn+1

)

We see that G is also continuous and so the sphere minus its north pole is homeomorphic to Rn.
It is useful to note that the stereographic projection takes points y close to the north pole to points

G(y) of Rn such that ‖G(y)‖ → +∞. We summarize the discussion as a theorem.

Theorem 2.7: The unit sphere in Sn is homeomorphic to the one point compactification of Rn.

Theorem 2.8: Suppose that T is a linear transformation of Rn into itself and not the zero map,
then T extends as a continuous map of Sn to itself if and only if T is non-singular.

Proof: Note that if T is non-singular, it is a proper map and so it extends continuously as a map of
Sn sending the point at infinity to itself. Conversely, if T fails to be bijective then there is a sequence
of points xn such that ‖xn‖ → +∞ but T (xn) = 0 for every n. Thus if T were to extend continuously
as a map of Sn we would be forced to map the point at infinity namely the north pole to (the point
of Sn corresponding to) the origin. On the other hand since T is not the zero map, pick a vector u
such that Tu 6= 0 and the sequence mu converges (as m → ∞) to the point at infinity on Sn. Thus
by continuity we would have limT (mu) = 0, as m → 0. Hence, m‖Tu‖ −→ 0 which is plainly false
since Tu 6= 0.

More important examples are furnished by regarding S2 as the one point compactification of the
plane C and using the field structure on the plane. The proof of the following is an exercise.

Theorem 2.9: Any non-constant polynomial is a proper map of C onto itself and so may be viewed
as a continuous map of S2 to itself fixing the point at infinity.

Exercises

1. Prove that a topological space is compact if and only if it satisfies the following condition known
as the finite intersection property. For every family {Fα} of closed sets with ∩αFα = ∅, there is
a finite sub-collection whose intersection is empty

2. Show that f : [0, 1] −→ [0, 1] is continuous if and only if its graph is a compact subset of I 2.

3. Examine whether the exponential map from C onto C − {0} is proper. What about the expo-
nential map as a map from R onto (0,∞)?

4. (Gluing Lemma) Suppose that
{
Uα

}
α∈Λ

is a family of open subsets of a topological space and

for each α ∈ Λ we are given a continuous function fα : Uα −→ Y . Assume that whenever
fα(x) = fβ(x) whenever x ∈ Uα ∩ Uβ. Show that there exists a unique continuous function

f :
⋃

α∈Λ

Uα −→ Y such that f(x) = fα(x) for all x ∈ Uα and for all α ∈ Λ. Show that the result

holds if all the Uα are closed sets and Λ is a finite set.
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5. How would you show rigorously that the closed unit disc in the plane is homeomorphic to the
closed triangular region determined by three non-collinear points? You are allowed to use results
from complex analysis, provided you state them clearly.

6. Prove that any two closed triangular planar regions (as described in the previous exercise) are
homeomorphic. Show that any such closed triangular region is homeomorphic to I 2.

7. Suppose that Z is a Hausdorff space and f, g : Z −→ X are continuous functions then the set
{z ∈ Z/f1(z) = f2(z)} is closed in Z.

8. Show that the space obtained by rotating the circle (x − 2)2 + y2 = 1 about the y−axis is
homeomorphic to S1 × S1.
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Lecture III - More preliminaries from general topology:

In this lecture we take up the second most important notion in point set topology, namely the
notion of connectedness. This topic is usually covered in good detail in point set topology courses.
Again we shall merely outline the theory emphasizing examples rather than proving standard results.
We begin by recalling the definition of a connected subset of a topological space ([13], p. 42).

Definition 3.1: A subset Y of a topological space X is said to be disconnected if there are non-empty
subsets A and B of X such that

Y = A ∪B, A ∩ B = ∅, A ∩ B = ∅.

If Y is not disconnected we say that Y is connected.

Examples 3.1: (i) The intervals [0, 1] and (0, 1) on the real line are connected. The only connected
subsets of the real line are intervals (including the empty set). Hence the only connected subsets of Z
are singletons and the empty set.

(ii) Product of connected spaces are connected. Thus the cube [0, 1] × [0, 1] × [0, 1] is connected.
We now state the most basic theorem on connectedness whose proof ought to be done in standard

courses on general topology and will not be repeated here.

Theorem 3.1: (i) If X and Y are topological spaces and f : X −→ Y is a continuous map and A is
a connected subset of X then f(A) is a connected subset of Y .

(ii) A topological space X is connected if and only if every continuous function f : X −→ Z is
constant.

(iii) If {An} is a sequence of connected subsets of a topological space X and An ∩ An+1 is non-empty
for each n = 1, 2, 3, . . . then ∪∞

n=1An is connected. In particular, taking A2 = A3 = . . . we get the
result for two connected sets.

(iv) If Aα is a family of connected subsets of a topological space such that for some connected
subset B, Aα ∩ B 6= ∅ for each α, then

⋃
αAα is also connected.

(v) Suppose that A is a connected subset of a topological space and A ⊂ B ⊂ A then B is also
connected.

(vi) A space X is connected if and only if the only subsets of X that are open and closed are X
and ∅.

Example 3.2: The theorem can be used to prove that the sphere

Sn = {(x1, x2, . . . , xn+1) ∈ Rn+1/x2
1 + x2

2 + . . . x2
n+1 = 1}

is connected. Define Sn± to be the closed upper and lower hemispheres. Then Sn± are connected. The
intersection of these hemispheres is Sn−1. One can now apply induction observing first that the circle
S1 is connected since it is the continuous image of the real line under the map

t 7→ exp(2πit).
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Example 3.3: The set GL(n,R) of all n× n invertible matrices with real entries is disconnected as
a subspace of the space of all n× n matrices with real entries (the latter may be identified with Rn2

).
If GL(n,R) were connected then so would be its image under a continuous map. Well, the deter-

minant map d : GL(n,R) −→ R is continuous but the image is the real line minus the origin. The
same argument shows that the set of all n× n orthogonal matrices O(n,R) is disconnected.

Definition 3.2 (Path connectedness): A space X is said to be path connected if given any two
points x, y ∈ X, there is a continuous function f : [0, 1] −→ X such that f(0) = x and f(1) = y.

Theorem 3.3: If X is path connected then it is connected.

Proof: Assume X is path connected but not connected. Then there is a non constant continuous
function g : X −→ Z say f(x) = m and f(y) = n for a pair of distinct integers m and n. But there is
also a continuous function f : [0.1] −→ X such that g(0) = x and g(1) = y. The composite function
f ◦ g : [0, 1] −→ Z is non constant which is a contradiction.

Corollary 3.4: A convex set in Rn and more generally a star shaped set in Rn is path connected
and hence connected. In particular, the square [0, 1] × [0, 1] is path connected and hence connected.

Theorem 3.5: (i) If X and Y are topological spaces and f : X −→ Y is a continuous map and A is
a path connected subset of X then f(A) is also a path connected subset of Y .

(ii) If {An} is a sequence of path connected subsets of a topological space X and An ∩An+1 is non-
empty for each n = 1, 2, 3, . . . then ∪∞

n=1An is path connected. In particular, taking A2 = A3 = . . . we
see get the result for two path connected sets.

Proof: This is usually done in point set topology courses and so the proof will not be repeated here.

Definition 3.3: A space X is said to be locally path connected if each point of X has a local base
consisting of path connected neighborhoods.

Theorem 3.6: A connected, locally path-connected space is path connected. In particular, an open
subset of Rn is path connected.

Proof: Let x and y be arbitrary points of X and let G be the set of all points of X that can be
joined to x by a path. Clearly G is non-empty since it contains the point x. If we show that G is
open and closed then by connectedness of X it would follow that G would equal the whole space X.
In particular G contains y thereby proving that there is a path in X joining x and y. First we show
that G is open. Well, let z be an arbitrary point of G and choose a path γ : [0, 1] −→ X such that
γ(0) = x and γ(1) = z. Choose a path connected neighborhood N of z and w ∈ N be arbitrary. Then
there is a path σ lying in N joining z and w. We now juxtapose γ and σ by defining η : [0, 1] −→ X
as

η(t) =

{
γ(2t), 0 ≤ t ≤ 1/2
σ(2t− 1), 1/2 ≤ t ≤ 1

By virtue of the gluing lemma η is continuous and defines a path joining x and w. Hence w belongs
to G and so N ⊂ G. We now show that G is closed as well. Let y /∈ G and N be a path connected
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neighborhood of y. Then we show that N ⊂ X −G. Well, if not, pick z ∈ G ∩N and there is a path
γ in G joining x and z and a path σ in N joining z and y. Juxtaposing we would get a path in X
joining x and y which would contradict the fact that y /∈ G. So X−G is also open in X and the proof
is complete.

The Tietze’s extension theorem: We shall make occasional use of this in the sequel. Since we
need it for the special case of metric spaces, we shall state the theorem in this context.

Theorem 3.7: Suppose that X is a metric space, A is a closed subspace of X and f : A −→ R is
a continuous function then f extends continuously to the whole of X. Furthermore if f is bounded
from above/below then the extension may be so chosen that the bound(s) are preserved.

Remarks: Note that the Tietze’s extension theorem is valid for maps taking values in Rn or a finite
product of intervals such as [0, 1]n.

Exercises:

1. Prove that any continuous function f : [−1, 1] −→ [−1, 1] has a fixed point, that is to say, there
exists a point x ∈ [−1, 1] such that f(x) = x.

2. Prove that the unit interval [0, 1] is connected. Is it true that if f : [0, 1] −→ [0, 1] has connected
graph then f is continuous? What if connectedness is replaced by path connectedness?

3. Suppose X is a locally compact, non-compact, connected Hausdorff space, is its one point com-
pactification connected? What happens if X is already compact and Hausdorff?

4. Show that any connected metric space with more than one point must be uncountable. Hint:
Use Tietze’s extension theorem and the fact that the connected sets in the real line are intervals.

5. Show that the complement of a two dimensional linear subspace in R4 is connected. Hint:
Denoting by V be the two dimensional vector space, show that Σ = {x/‖x‖ / x ∈ R4 − V } is
connected using stereographic projection or otherwise.

6. How many connected components are there in the complement of the cone

x2
1 + x2

2 + x3
3 − x2

4 = 0

in R4? Hint: The complement of this cone is filled up by families of hyperboloids. Examine if
there is a connected set B meeting each member of a given family.

7. A map f : X −→ Y is said to be a local homeomorphism if for x ∈ X there exist neighborhoods

U of x and V of f(x) such that f
∣∣∣
U

: U −→ V is a homeomorphism. If f : X −→ Y is a local

homeomorphism and a proper map, then for each y ∈ Y , f−1(y) is a finite set. Show that the
map f : C − {1,−1} −→ C given by f(z) = z3 − 3z is a local homeomorphism. Is it a proper
map?
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Lecture IV - Further preliminaries from general topology:

We now begin with some preliminaries from general topology that is usually not covered or else
is often perfunctorily treated in elementary courses on topology. Since many important examples in
topology arise as quotient spaces, this lecture is completely devoted to this topic.

Quotient Spaces: Suppose that X is a topological space and f : X −→ Y is a surjective mapping,
let us consider the various topologies on Y with respect to which f is continuous. Certainly the
function f would be continuous if Y carries the trivial topology where the only open sets are ∅ and
Y . The quotient topology on Y is the strongest topology that makes f continuous. More explicitly
consider the family

T = {A ⊂ Y : f−1(A) is open in X}. (4.1)

Since T is closed under arbitrary unions, finite intersections and contains Y and the empty set, we
conclude that T is a topology on Y with respect to which f is continuous. It is also clear that any
strictly larger topology would render f discontinuous.

Definition 4.1: (i) Given a topological space X, a set Y and a surjective map f : X −→ Y , the
topology T defined by (4.1) is called the quotient topology on Y induced by the function f . By
construction f is continuous with this topology on Y .

(ii) Given a map f : X −→ Y between topological spaces X and Y , we say f is a quotient map if
the given topology on Y agrees with the quotient topology on Y induced by f .

The quotient topology enjoys a universal property which is easy to prove but extremely useful.

Theorem 4.1 (Universal property of quotients): Suppose that X is a topological space, Y is a
set, f : X −→ Y is a surjective map and Y is assigned the quotient topology induced by f . Then given
any topological space Z and map g : Y −→ Z, the map g is continuous if and only if g ◦ f : X −→ Z
is continuous.

X
f

//

g◦f
  

@@
@@

@@
@ Y

g
��~~

~~
~~

~

Z

Proof: If g is continuous it is trivial that g ◦ f is continuous. Conversely suppose that g ◦ f is
continuous. Let A be any open set in Z so that (g ◦ f)−1(A) is open in X. Thus f−1(g−1(A)) is open
in X. Invoking the definition of the quotient topology, we see that g−1(A) must be open in Y which
means g is continuous.

Before illustrating the use of the universal property of quotients we discuss the following issue.
Suppose that X and Y are topological spaces and f : X −→ Y is a given continuous map, then the
quotient topology on Y induced by f is weaker than the given topology on Y . When would the given
topology on Y be equal to the quotient topology?

Definition 4.2: A (not necessarily continuous) map f : X −→ Y between topological spaces X and
Y is said to be a closed map if the image of closed sets is closed. Likewise we say f is an open mapping
if the image of open sets is open.
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Example 4.1: (i) Suppose X is a compact space and Y is a Hausdorff space then any surjective
continuous map f : X −→ Y is a closed map.

(ii) The reader may check that φ : R −→ S1 given by φ(t) = exp(2πit) is an open mapping.
(iii) The map φ : [0, 1] −→ S1 given by φ(t) = exp(2πit) is closed but not open.

Theorem 4.2: Suppose that X and Y are topological spaces and f : X −→ Y is a surjective
continuous closed/open map then the quotient topology on Y induced by f agrees with the given
topology on Y .

Proof: The quotient topology on Y induced by f is stronger than the given topology. To obtain the
reverse inclusion, suppose that f is a continuous open mapping and A ⊂ Y is open with respect to the
quotient topology on Y induced by f which means f−1(A) is open in X whereby f(f−1(A)) is open
in Y in the given topology since f is an open mapping. But since f is surjective, f(f−1(A)) = A and
so we conclude A is open in the given topology as well.

Let us now turn to a continuous, closed surjective map f : X −→ Y . Again we merely have to show
that the given topology on Y is stronger than the quotient topology since the reverse inclusion is trivial.
So let A be an open set in Y with respect to the quotient topology induced by f . By definition f−1(A)
is open in X, or in other words X − f−1(A) is closed in X. Since f is closed, f(X − f−1(A)) = Y −A
is closed in Y with respect to the given topology on Y . That is to say A is open with respect to the
given topology on Y .

Corollary 4.3: Suppose X is a compact space and Y is a Hausdorff space then any continuous
surjection from X onto Y is a quotient map.

Identification spaces: Suppose that X is a topological space and ∼ is an equivalence relation on
X. The set of all equivalence classes is denoted by X/ ∼ and η : X −→ X/ ∼ denotes the projection
map

η(x) = x, x ∈ X,

where x denotes the equivalence class of x. The space X/ ∼ with the quotient topology induced by η
is called the identification space given by the equivalence relation. An important special case deserves
mention as it is of frequent occurrence. Suppose that A is a subset of a topological space then we
consider the equivalence relation for which all the points of A form one equivalence class and the
equivalence class of any x ∈ X − A is a singleton. That is to say all the points of A are identified
together as one point and no other identification is made. We shall refer to the resulting quotient
space as the space obtained from X by collapsing A to a singleton.

Theorem 4.4: Let X and Y be topological spaces and f : X −→ Y be a surjective continuous map
such that the given topology on Y agrees with the quotient topology on Y induced by f . Define an
equivalence relation ∼ on X as follows:

x1 ∼ x2 if and only if f(x1) = f(x2), x1, x2 ∈ X

The identification space X/ ∼ is homeomorphic to Y via the map φ : X/ ∼−→ Y given by

φ(x) = f(x).
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Proof: It is easy to see that φ is well-defined, bijective and satisfies φ ◦ η = f . Since f is continuous
and η is a quotient map we see by the universal property that φ is continuous. Since f is a quotient
map and η is continuous we may invoke the universal property again but this time to φ−1 ◦ f = η to
conclude that φ−1 is continuous as well.

The real projective spaces RP n: The projective space RP n is the identification space obtained
from the sphere Sn by the equivalence relation ∼ given by

x ∼ y if and only if x = −y, x,y ∈ Sn. (4.2)

That is to say, each pair of antipodal points are identified.

Theorem 4.5: (i) The projective spaces are compact and connected.
(ii) The projective space RP n is homeomorphic to the identification space (Rn+1 − {0})/ ∼ where

x ∼ y if and only if for some λ ∈ R, x = λy.

(iii) The projective space RP n is homeomorphic to the identification space En/ ∼ where x ∼ y if
and only if either x = y or else x,y ∈ Sn−1 and x = −y.

Proof: (i) The sphere Sn is compact and connected and RP n is the continuous image of Sn under
the projection map η.

(ii) Let η : Sn −→ RP n and p : Rn+1 − {0} −→ (Rn+1 −{0})/ ∼ be the projection maps. We have
a continuous map φ : Rn+1 − {0} −→ RP n given by the prescription

φ(x) = x, x ∈ Rn+1 − {0},

where x is the equivalence class of x in Sn+1/ ∼. Denoting by [x] the equivalence class of x in
(Rn+1 − {0})/ ∼, the associated map φ : (Rn+1 − {0})/ ∼ −→ RP n given by

φ([x]) = x.

It is readily checked that φ is bijective and φ ◦ η = φ. The universal property now gives us the
continuity of φ. Consider now the map

ψ : Sn −→ (Rn+1 − {0})/ ∼

given by ψ(x) = [x] which is evidently continuous map. There is a unique map

ψ : RP n −→ (Rn+1 − {0})/ ∼

such that ψ ◦ η = ψ. By the universal property of the quotient we see that ψ is continuous. It is left
as an exercise to check that ψ and φ are inverses of each other. Proof of (iii) is left as an exercise.

We shall see later that the spaces are Hausdorff as well. The space RP 1 is a familiar space and the
proof of the following result will be left for the reader.

Theorem 4.6: The space RP 1 is homeomorphic to the circle S1.
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The Möbius band and the Klein’s bottle: We describe the Möbius band and Klein’s bottle as
quotient spaces of I2 via identifications which are described as follows. Each point in the interior of
I2 forms an equivalence class in itself. That is to say a point in the interior of I 2 is not identified with
any other point. Points on the boundary are identified according to the following scheme:

1. Möbius band: On the part of the boundary ({0}× [0, 1])∪ ({1}× [0, 1]), the pair of points (0, y)
and (1, 1 − y) are identified for each y with 0 ≤ y ≤ 1. Points on the remaining part of the
boundary namely

(0, 1) × {0} ∪ (0, 1) × {1} (4.3)

are left as they are. That is to say the equivalence class of each of the points (4.3) is a singleton.

Figure 3: Möbius Band

2. Klein’s bottle: As in the case of the Möbius band, for each 0 ≤ y ≤ 1, the pair of points (0, y)
and (1, 1− y) are identified. However also for each 0 ≤ x ≤ 1, the pair of points (x, 0) and (x, 1)
are identified.

Figure 4: Klein’s Bottle

The torus: This is obtained by identifying the opposite sides of the square I2 according to the
following scheme. For each x ∈ [0, 1], the pair of points (x, 0) and (x, 1) are identified. Likewise for
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each y ∈ [0, 1] the pair of points (0, y) and (1, y) are identified. One first obtains a cylinder S1 × [0, 1]
which is then “bent around” and the circular ends are glued together. One obtains a space which looks
like the crust of a dough-nut (or medu vada).

Example: The torus defined above is homeomorphic to S1 × S1. To see this, let T denote the torus
and η : I2 −→ T be the quotient map. Define the map f : I2 −→ S1 × S1 as

f(x, y) = (exp(2πix), exp(2πiy)).

There is a unique bijection f : T −→ S1 × S1 such that f ◦ η = f. The universal property shows that
f is continuous and since T is compact and S1 × S1 is Hausdorff, the map f is a closed map and so a
homeomorphism.

The wedge: The wedge of two topological spaces X and Y , denote by X ∨ Y , is the following
subspace of X × Y

(X × {y0}) ∪ ({x0} × Y ),

where (x0, y0) is a chosen point of X × Y .

Theorem 4.7: The quotient space (S1 × S1)/(S1 ∨ S1) is homeomorphic to the sphere S2.

Proof: It is an exercise that the space obtained by collapsing the boundary of I 2 to a singleton is
homeomorphic to S2. Let η1 denote the quotient map I2 −→ S2 which collapses the boundary to
a singleton and likewise let η2 : S1 × S1 −→ (S1 × S1)/(S1 ∨ S1) be the quotient map. The map
φ : S1 × S1 −→ S2 given by the prescription

φ(exp(2πix), exp(2πiy)) = η1(x, y)

is well-defined and surjective. Since η1 is continuous it follows that φ is continuous (why?). There is
a unique bijective map φ : (S1 × S1)/(S1 ∨ S1) −→ S2 such that φ ◦ η2 = φ, from which follows that
φ is continuous and a closed map since the domain is compact and the codomain is Hausdorff. Hence
φ is a homeomorphism between (S1 × S1)/(S1 ∨ S1) and S2.

Surfaces: The sphere S2, torus, Klein’s bottle and projective plane are the four basic examples of
a class of spaces called surfaces. We shall not formally define a surface but provide one more example
namely, the double torus. Roughly the double torus is obtained by taking two copies of the torus
and cutting out a little disc form each of them so as to obtain a pair of tori each with a boundary.
One then glues these boundaries together to obtain a double torus. Analytically the double torus is
the identification space obtained by identifying pairs of opposite sides of an octagon according to the
following scheme. Obviously the process can be generalized and one can obtain for instance a triple
torus by identifying pairs of opposite sides of a twelve sided polygon. The classification of surfaces
forms an important chapter in topology and we refer to the book of [11].

Hausdorff Quotients: The quotient of a Hausdorff space need not be Hausdorff. Since quotient
spaces occur in abundance we need easily verifiable sufficient conditions for a quotient space to be
Hausdorff. We provide here one such condition which suffices for most applications [16]. Let X be a
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Figure 5: Double torus as a connected sum

Figure 6: Double torus

space on which an equivalence relation ∼ has been defined. Note that a relation on X is a subset Γ of
the cartesian product X ×X on which we have the product topology. Thus,

Γ = {(x, y) ∈ X ×X / x ∼ y}

Definition 4.3: The relation ∼ is said to be closed if Γ is a closed subset of X ×X.
We shall employ the two projection maps

p : X ×X −→ X, q : X ×X −→ X,

(x, y) 7→ x, (x, y) 7→ y,

and denote by η the quotient map η : X −→ X/ ∼.

Theorem 4.8: Let X be a compact Hausdorff space and ∼ be a closed relation on X. Then,

(a) The map η is a closed map.

(b) The quotient space X/ ∼ is Hausdorff.
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Proof: Let C be a closed subset of X. Since p−1(C) is closed in X ×X we note that p−1(C) ∩ Γ is
closed in X ×X and hence is compact. Thus q(p−1(C) ∩ Γ) is compact and so is closed in X. Now,

q(p−1(C) ∩ Γ) = {y ∈ X / (x, y) ∈ p−1(C) ∩ Γ for some x ∈ X}
= {y ∈ X / y ∼ x for some x ∈ C}
= η−1(η(C))

showing that η(C) is closed. This proves (a) and in particular we note that singleton sets in X/ ∼ are
closed since they are images of singletons. Turning to the proof of (b), for an arbitrary pair of distinct
elements x and y in X/ ∼, the sets η−1(x) and η−1(y) are a pair of disjoint closed sets in X. Since X
is normal there exist disjoint open sets U and V in X such that

η−1(x) ⊂ U and η−1(y) ⊂ V.

The sets η(X − U) and η(X − V ) are closed in X/ ∼ by (a). We leave it to the reader to verify that
the complements

(X/ ∼) − η(X − U) and (X/ ∼) − η(X − V )

are disjoint sets. Now η−1(x) ⊂ U implies x /∈ η(X − U) whereby x ∈ (X/ ∼) − η(X − U). Likewise
y ∈ (X/ ∼) − η(X − V ) and the proof is complete.

Corollary 4.9: The projective spaces RP n are Hausdorff.

Proof: The relation ∼ on Sn given by (4.2) defines a closed subset of Sn × Sn.

Exercises

1. What happens if we omit the surjectivity hypothesis on the function f : X −→ Y in the definition
of quotient topology on Y induced by f ?

2. Show that the space obtained from the unit ball {x ∈ Rn/‖x‖ ≤ 1} by collapsing its boundary
to a singleton, is homeomorphic to the sphere Sn.

3. Show that RP 1 ∼= S1 by considering the map f : S1 −→ S1 given by f(z) = z2.

4. Try to show that S2 is not homeomorphic to RP 2. Would the Jordan curve theorem help?

5. Show that the boundary of the Möbius band is homeomorphic to S1.

6. Does a Möbius band result upon cutting the projective plane RP n along a closed curve on it?
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Lecture V - Topological Groups

A topological group is a topological space which is also a group such that the group operations
(multiplication and inversion) are continuous. They arise naturally as continuous groups of symmetries
of topological spaces. A case in point is the group SO(3,R) of rotations of R3 about the origin which
is a group of symmetries of the sphere S2. Many familiar examples of topological spaces are in fact
topological groups. The most basic example of-course is the real line with the group structure given
by addition. Other obvious examples are Rn under addition, the multiplicative group of unit complex
numbers S1 and the multiplicative group C∗.

In the previous lectures we have seen that the group SO(n,R) of orthogonal matrices with determi-
nant one and the group U(n) of unitary matrices are compact. In this lecture we initiate a systematic
study of topological groups and take a closer look at some of the matrix groups such as SO(n,R) and
the unitary groups U(n).

Definition 5.1: A topological group is a group which is also a topological space such that the
singleton set containing the identity element is closed and the group operation

G×G −→ G

(g1, g2) 7→ g1g2

and the inversion j : G −→ G given by j(g) = g−1 are continuous, where G×G is given the product
topology.

We leave it to the reader to prove that a topological group is a Hausdorff space. It is immediate
that the following maps of a topological group G are continuous:

1. Given h ∈ G the maps Lh : G −→ G and Rh : G −→ G given by Lh(g) = hg and Rh(g) = gh.
These are the left and right translations by h.

2. The inner-automorphism given by g 7→ hgh−1 which is a homeomorphism.

Note that the determinant map is a continuous group homomorphism from GLn(R) −→ R−{0}. The
image is surjective from which it follows that GLn(R) is disconnected as a topological space.

Theorem 5.1: The connected component of the identity in a topological group is a subgroup.

Proof: Let G0 be the connected component of G containing the identity and h, k ∈ G0 be arbitrary.
The set h−1G0 is connected and contains the identity and so G0 ∪ h−1G0 is also connected. Since G0

is a component, we have G0 ∪ h−1G0 = G0 which implies h−1G0 ⊂ G0. In particular h−1k belongs to
G0 from which we conclude that G0 is a subgroup.

Interesting properties of topological groups arise in connection with quotients:

Theorem 5.2: Suppose that G is a topological group and K is a subgroup and the coset space G/K
is given the quotient topology then

1. If K and G/K are connected then G is connected.

2. If K and G/K are compact then G is compact.
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Proof: If G is connected then so is G/K since the quotient map η : G −→ G/K is a continuous
surjection. To prove the converse suppose that K and G/K are connected and f : G −→ {0, 1} be
an arbitrary continuous map. We have to show that f is constant. The restriction of f to K must be
constant and since each coset gK is connected, f must be constant on gK as well taking value f(g).
Thus we have a well defined map f̃ : G/K −→ {0, 1} such that f̃ ◦η = f . By the fundamental property
of quotient spaces, it follows that f̃ is continuous and so must be constant since G/K is connected.
Hence f is also constant and we conclude that G is connected. �

Since we shall not need (2), we shall omit the proof. A proof is available in [12], p. 109.

Theorem 5.3: The groups SO(n,R) are connected when n ≥ 2.

Proof: It is clear that SO(2,R) is connected (why?). Turning to the case n ≥ 3, we consider the
action of SO(n,R) on the standard unit sphere Sn−1 in Rn given by

(A,v) 7→ Av,

where A ∈ SO(n,R) and v ∈ Sn−1. It is an exercise for the student to check that this group action
is transitive and that the stabilizer of the unit vector ên is the subgroup K consisting of all those
matrices in SO(n,R) whose last column is ên. The subgroup K is homeomorphic to SO(n− 1,R) and
so, by induction hypothesis, is connected. By exercise 3, the quotient space SO(n,R) is homeomorphic
to Sn−1 which is connected. So the theorem can be applied with G = SO(n,R), H = SO(n − 1,R)
and G/H is the sphere Sn−1 with n ≥ 2. �

Theorem 5.4: If G is a connected topological group and H is a subgroup which contains a neigh-
borhood of the identity then H = G. In particular, an open subgroup of G equals G.

Proof: Let U be the open neighborhood of the identity that is contained in H and h ∈ H be
arbitrary. Since multiplication by h is a homeomorphism, the set Uh = {uh/u ∈ U} is also open and
also contained in H. Hence the set

L =
⋃

h∈H

Uh

is open and contained in H. Since U contains the identity element, H ⊂ L and we conclude that H is
open. Our job will be over if we can show that H is closed as well. Let x ∈ H be arbitrary. Since the
neighborhood Ux of x contains a point y ∈ H, there exists u ∈ U such that y = ux which, in view of
the fact that U ⊂ H, implies x ∈ H. Hence H = H. �

Theorem 5.5: Suppose G is a connected topological group and H is a discrete normal subgroup of
G then H is contained in the center of G.

Proof: Since H is discrete, the identity element is not a limit point of H and so there is a neighbor-
hood U of the identity such that U ∩H = {1}. We may assume U has the property that if u1, u2 are
in U then the product u−1

1 u2 is in U . This follows from the continuity of the group operation and a
detailed verification is left as an exercise. It is easy to see that if h1 and h2 are two distinct elements
of H then

Uh1 ∩ Uh2 = ∅.
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Fix h ∈ H and consider now the set K given by

K = {g ∈ G / gh = hg}

We shall show that the subgroup K contains a neighborhood of the identity. Pick a neighborhood V
of the identity such that V = V −1 and (hV h−1V )∩H = {1}. Then for any g ∈ V , we have on the one
hand

hgh−1g−1 ∈ hV h−1V

and on the other hand hgh−1g−1 ∈ H since H is normal. Hence hgh−1g−1 ∈ (hV h−1V ) ∩ H = {1}
which shows that g belongs to K and K contains a neighborhood of the unit element. We may now
invoke the previous theorem. �

Remark: The result is false if the hypothesis of normality of H is dropped. For example consider a
cube in R3 with center at the origin and H be the subgroup of G = SO(3,R) that map the cube to
itself. Then H is the symmetric group on four letters (proof?). Clearly H is not in the center of G.

Exercises

1. Show that in a topological group, the connected component of the identity is a normal subgroup.

2. Show that the action of the group SO(n,R) on the sphere Sn−1 given by matrix multiplication
is transitive. You need to employ the Gram-Schmidt theorem to complete a given unit vector to
an orthonormal basis.

3. Suppose a group G acts transitively on a set S and x, y are a pair of points in S and y = gx.
Then the subgroups stab x and stab y are conjugates and g−1(stab y)g = stab x.

(i) Show that the map φ : G/stab x −→ S given by φ(g) = gx is well-defined, bijective and
φ ◦ η = φ.

(ii) Suppose that S is a topological space, G is a topological group and the action G×S −→ S
is continuous. Show that the map φ is continuous.

(iii) Deduce that if G is compact and S is Hausdorff then G/stab x and S are homeomorphic.

4. Examine whether the map φ : SU(n)×S1 −→ U(n) given by φ(A, z) = zA is a homeomorphism.

5. Show that the group of all unitary matrices U(n) is compact and connected. Regarding U(n−1)
as a subgroup of U(n) in a natural way, recognize the quotient space as a familiar space.

6. Show that the subgroups SU(n) consisting of matrices in U(n) with determinant one are con-
nected for every n.

7. Suppose G is a topological group and H is a normal subgroup, prove that G/H is Hausdorff if
and only if H is closed.
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Lecture VI (Test - I)

1. Prove that the intervals (a, b) and [a, b) are non-homeomorphic subsets of R. Prove that if A
and B are homeomorphic subsets of R, then A is open in R if and only if B is open in R. Is an
injective continuous map f : R −→ R a homeomorphism onto its image?

2. Using Tietze’s extension theorem or otherwise construct a continuous map from R into R such
that the image of Z is not closed in R.

3. If K is a compact subset of a topological group G and C is a closed subset of G, is it true that
KC is closed in G? What if K and C are merely closed subsets of G?

4. Removing three points from RP 2 we get an open set G and a continuous map f : G −→ RP 2

given by f([x1, x2, x3]) = [x2x3, x3x1, x1x2]. Which three points need to be removed? Prove the
continuity of f .

5. Let C = {(v1,v2) ∈ S2 × S2 / 〈v1,v2〉 = 0}. Is C connected? Is C homeomorphic to SO(3,R)?

6. Prove that RP 1 is homeomorphic to S1.
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Solutions to Test - I

1. Suppose that (0, 1) and (0, 1] are homeomorphic subsets of R and φ is a homeomorphism then
φ(t) = 1 for some t ∈ (0, 1). Then, (0, t)∪ (t, 1) is homeomorphic to (0, 1) by restricting the map
φ and this is a contradiction. Next suppose that A and B are homeomorphic subsets of R and
A is open in R. To show that B is open, let q ∈ B and q = φ(p) for some p ∈ A. Since A is open
we can find δ > 0 such that I = (p− δ, p+ δ) ⊂ A. The image φ(I) is then an interval containing
q and this interval cannot be compact since I is not compact. This interval cannot be of the
form (a, b] or [a, b) by what we have proved. This φ(I) is an open interval in R containing q and
so q is an interior point of B. Let f be an injective continuous map from R onto B ⊂ R. Then
f is strictly increasing or strictly decreasing. It is a basic fact proved in real analysis courses
that under these circumstances the inverse map f−1 : B −→ R is continuous and so f must be
a homeomorphism onto its range.

2. Enumerate the rationals in [0, 1] as q1, q2, q3, . . . . An arbitrary bijection φ : Z −→ Q ∩ [0, 1]
is continuous since Z carries the discrete topology. By Tietze’s extension theorem φ extends
continuously as a map (still denoted by φ) from R −→ R. The image of the closed set Z is not
closed. A more direct example is the function (sin x)/x.

3. To show that KC is closed, let g be a limit point of G and {kncn} be a sequence in KC con-
verging to g ∈ G, where {kn} and {cn} are sequences in K and C respectively. Passing on to a
subsequence if necessary, we may assume that {kn} converges to say k. Then {k−1

n } converges
to k−1 and so

cn = k−1
n (kncn) −→ k−1g

But C being closed, k−1g ∈ C and so g = k(k−1g) ∈ KC. The result is false if K and C are
merely closed. Take

C = {2n+
1

n
/ n = 1, 2, 3, . . . }, K = {−2n +

1

n
/ n = 1, 2, 3, . . . }.

4. For the function to be well-defined one must clearly remove the points [1, 0, 0], [0, 1, 0] and
[0, 0, 1]. Let S be the space obtained from R3 by removing the three coordinate axes and η is
the restriction of the quotient map R3 − {(0, 0, 0)} −→ RP 2. Consider

g : S −→ RP 2

given by g(x1, x2, x3) = [x1x2, x2x3, x3x1]. The map g = f ◦ η is continuous and by the universal
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property of quotients (see the commutative diagram)

S
η

//

f◦η
!!D

DD
DD

DD
D G

f
}}zz

zz
zz

zz

RP 2

we conclude that f is continuous.

5. Let us consider the map F : SO(3,R) −→ C given by

F (A) = (Ae1, Ae2).

Then F is a continuous surjection so that C is connected. In fact F is bijective (why?) and so
F is a homeomorphism.

6. Let σ : S1 −→ S1 denote the map σ(z) = z2 and η denote the standard quotient map S1 −→ RP 1.
Define σ : RP 1 −→ S1 by the prescription

σ(z) = σ(z)

It is easily checked (draw relevant diagram) that σ◦η = σ and the universal property of quotients
reveals that σ is a continuous bijection. Since the domain of σ is compact and the codomain is
Hausdorff it follows that σ is a homeomorphism.
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Lecture VII - Paths, homotopies and the fundamental group

In this lecture we shall introduce the most basic object in algebraic topology, the fundamental
group. For this purpose we shall define the notion of homotopy of paths in a topological space X and
show that this is an equivalence relation. We then fix a point x0 ∈ X in the topological space and
look at the set of all equivalence classes of loops starting and ending at x0. This set is then endowed
with a binary operation that turns it into a group known as the fundamental group π1(X, x0). Besides
being the most basic object in algebraic topology, it is of paramount importance in low dimensional
topology. A detailed study of this group will occupy the rest of part I of this course. However in this
lecture we shall focus only on the most elementary results.

All spaces considered here are path connected Hausdorff spaces.

Definition 7.1 (homotopy of paths): Two paths γ0, γ1 in X with parameter interval [0, 1] such
that

γ0(0) = γ1(0), γ0(1) = γ1(1) (that is with the same end points) are said to be homotopic if there
exists a continuous map F : [0, 1] × [0, 1] → X such that

F (0, t) = γ0(t)

F (1, t) = γ1(t)

F (s, 0) = γ0(0) = γ1(0)

F (s, 1) = γ0(1) = γ1(1)

The definition says that the path γ0(t) can be continuously deformed into γ1(t) and F is the continuous

Figure 7: Homotopy of paths

function that does the deformation. The deformation takes place in unit time parametrized by s. For
s ∈ [0, 1], the function γs : t→ F (s, t) is the intermediate path. Finally, the conditions

F (s, 0) = γ0(0) and F (s, 1) = γ0(1)

imply that the ends γ0(0), γ0(1) do not move during the deformation. We shall now show that
homotopy is an equivalence relation.
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Figure 8: Homotopy of paths

Theorem 7.1: If γ1, γ2, γ3 are three paths in X such that

γ1(0) = γ2(0) = γ3(0) and γ1(1) = γ2(1) = γ3(1),

γ1 and γ2 are homotopic; γ2 and γ3 are homotopic then γ1 and γ3 are homotopic.

Proof: It is clear that the homotopy is reflexive, and symmetry is left for student to verify. To prove
transitivity let

F : [0, 1] × [0, 1] → X and G : [0, 1] × [0, 1] → X

be homotopies between the pairs γ1, γ2 and γ2, γ3 respectively. Define H : [0, 1] × [0, 1] → X by the
prescription:

H(s, t) =

{
F (2s, t) 0 ≤ s ≤ 1/2
G(2s− 1) 1/2 ≤ s ≤ 1

Note that by gluing lemma H is continuous. We need to check the conditions at endpoints.

H(s, 0) =

{
F (2s, 0) = γ1(0) = γ3(0), 0 ≤ s ≤ 1/2
G(2s− 1, 0) = γ2(0) = γ3(0), 1/2 ≤ s ≤ 1

Likewise one verifies easily H(s, 1) = γ1(1) = γ3(1) for all s ∈ [0, 1]. Finally we see that H(0, t) =
F (0, t) = γ1(t) and H(1, t) = G(1, t) = γ3(t), which proves the result.

Notation: The equivalence class of γ will be denoted by [γ] and called the homotopy class of the
path γ. When γ1, γ2 are homotopic we write γ ∼ γ2.

Theorem 7.2 (Reparametrization theorem): Let X be a topological space. Suppose that φ :
[0, 1] −→ [0, 1] is a continuous map such that φ(0) = 0 and φ(1) = 1. Then for any given path γ in X,
we have a homotopy

γ ∼ γ ◦ φ

Proof: We must remark that we are not assuming anything about φ besides continuity and the fact
that it fixes 0 and 1. In particular φ need not be monotone. The idea of proof is simple. The convexity
of the unit square [0, 1] × [0, 1] is used to tweak the graph of φ onto the graph of the identity map of
[0, 1]. Thus we define a continuous map F : [0, 1] × [0, 1] −→ X by the prescription

F (s, t) = γ(sφ(t) + (1 − s)t)

Now F (0, t) = γ(t), F (1, t) = γ ◦ φ(t). For verifying that the end points are fixed during deformation,

F (s, 0) = γ(sφ(0)) = γ(0)

F (s, 1) = γ(sφ(1) + (1 − s)) = γ(1), 0 ≤ s ≤ 1.
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Juxtaposition of paths: Suppose that γ1, γ2 are two paths such that γ1(1) = γ2(0), that is to say,
the end point of γ1 is the initial point of γ2. The paths γ1 and γ2 can be juxtaposed to produce a path
from γ1(0) to γ2(1) called called the juxtaposition γ1 and γ2,, denoted by γ1 ∗ γ2 and defined as :

(γ1 ∗ γ2)(t) =

{
γ1(2t) 0 ≤ t ≤ 1/2
γ2(2t− 1) 1/2 ≤ t ≤ 1

Lemma 7.3: If γ′1 and γ′′1 are two homotopic paths starting at γ0(1) then

γ0 ∗ γ′1 ∼ γ0 ∗ γ′′1

Proof: Let F : [0, 1] × [0, 1] → X be a homotopy between γ ′
1 and γ′′1 so that F (0, t) = γ0(1),

F (1, t) = γ′1(1) = γ′′1 (1). The homotopy we seek is the map H(s, t) given by

H(s, t) =

{
γ0(2t), 0 ≤ t ≤ 1/2
F (s, 2t− 1), 1/2 ≤ t ≤ 1

It can be checked that the definition is meaningful along [0, 1] × { 1
2
} and the continuity of H follows

by the gluing lemma. The reader may complete the proof by verifying that

H(0, t) = γ0 ∗ γ′1; H(1, t) = γ0 ∗ γ′′1 . �

Corollary 7.4: If γ′1, γ
′′
1 are homotopic paths starting at γ0(1) then [γ0 ∗γ′1] = [γ0 ∗γ′′1 ]. Likewise if γ1

is a path in X and γ′0, γ
′′
0 are homotopic paths whose terminal points are at γ1(0) then γ′0 ∗γ1 ∼ γ′′0 ∗γ1.

Definition 7.2: If γ1, γ2 are two paths in X such that initial point of γ1 is the terminal point of γ2,
then we define the product of the homotopy classes of paths as

[γ1] · [γ2] = [γ1 ∗ γ2.] (7.1)

The Inverse Path and the constant path: Suppose γ : [0, 1] → X is a path then the inverse
path γ−1(t) is the path traced in the reversed direction namely the map γ−1 : [0, 1] → X given by

γ−1(t) = γ(1 − t).

The initial point of γ is the terminal point of γ−1 and vice versa.
The constant path at x0 is the path εx0 : [0, 1] −→ X given by

εx0(t) = x0 for all t ∈ [0, 1].

The following lemma summarizes the main properties of the constant and the inverse paths in terms of
the homotopy classes of paths. Theorem (7.6) spells out the associativity of multiplication of homotopy
classes of paths. The reader would see analogies with the defining properties of a group.

Lemma 7.5:

(i) γ ∗ γ−1 ∼ εγ(0). Thus [γ] · [γ−1] = [εγ(0)].

(ii) γ ∗ εγ(1) ∼ γ. Thus [γ][εγ(1)] = [γ]

(iii) εγ(0) ∗ γ ∼ γ. Thus [εγ(0)][γ] = [γ].
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Proofs: One uses the reparametrization theorem to prove (ii) and (iii). Proof of (i) is more involved
and we indicate two different methods by which this can be achieved. On the boundary İ2 of the unit
square I2 we define a map φ : İ2 −→ [0, 1] as follows.

φ(0, t) = 0, φ(s, 0) = 0, φ(s, 1) = 0

Along the part (1, t) of the boundary,

φ(1, t) =

{
2t 0 ≤ t ≤ 1/2
2 − 2t 1/2 ≤ t ≤ 1

By Tietze’s extension theorem φ extends continuously to I2 taking values in [0, 1]. Consider now the
map H : I2 −→ X given by

H(s, t) = γ ◦ φ(s, t).

It is readily checked that H establishes a homotopy between γ ∗ γ−1 and the constant path εγ(0). �

Theorem 7.6: Suppose γ1, γ2, γ3 are three paths in X such that γ1(1) = γ2(0); γ2(1) = γ3(0) then

(γ1 ∗ γ2) ∗ γ3 ∼ γ1 ∗ (γ2 ∗ γ3)

Hence
([γ1][γ2])[γ3] = [γ1]([γ2][γ3])

Proof: By direct calculation we get on the one hand

(γ1 ∗ γ2) ∗ γ3 =





γ1(4t) 0 ≤ t ≤ 1/4

γ2(4t− 1) 1/4 ≤ t ≤ 1/2

γ3(2t− 1) 1/2 ≤ t ≤ 1.

On the other hand, for γ1 ∗ (γ2 ∗ γ3) we find

γ1 ∗ (γ2 ∗ γ3) =





γ1(2t) 0 ≤ t ≤ 1/2

γ2(4t− 2) 1/2 ≤ t ≤ 3/4

γ3(4t− 3) 3/4 ≤ t ≤ 1.

These two are homotopic by the reparametrization theorem. To see this define φ : [0, 1] → [0, 1] by

φ(t) =





2t 0 ≤ t ≤ 1
4

t + 1
4

1
4
≤ t ≤ 1

2

t
2

+ 1
2

1
2
≤ t ≤ 1.

one verifies that γ ◦ φ = (γ1 ∗ γ2) ∗ γ3 where γ = γ1 ∗ (γ2 ∗ γ3). By theorem (7.2) the result follows.
We are now ready to define the fundamental group.
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Definition 7.3 (The fundamental group π1(X, x0)): Let X be a path connected topological space
and x0 be a point of X. We define π1(X, x0) to be the set of all homotopy classes of paths beginning
and ending at the given point x0 namely homotopy classes [γ] where γ : [0, 1] → X is continuous and
γ(0) = γ(1) = x0:

π1(X, x0) = { [γ] /γ : [0, 1] → X continuous and γ(0) = γ(1) = x0}.

Terminology: Paths in X starting and ending at x0 will be referred to as loops based at x0. The
distinguished point x0 ∈ X is called the base point of X.

Note that if γ1, γ2 are two loops based at x0, their juxtaposition γ1 ∗ γ2 is defined whereby both
the products [γ1][γ2] and [γ2][γ1] are defined. Also for [γ] ∈ π1(X, x0), [γ−1] also belongs to π1(X, x0).
[εx0] ∈ π1(X, x0) and lemma (7.5) and theorem (7.6) imply that π1(X, x0) is a group with unit element
[εx0]. This group is written multiplicatively and the unit element [εx0] will be denoted by 1 when there
is no danger of confusion. Summarizing,

Theorem 7.7: The set π1(X, x0) of homotopy classes of loops in X based at x0 is a group with
respect to the binary operation defined by (7.1). The unit element of the group is the homotopy class
of the constant loop at the base point x0 and the inverse of [γ] is the homotopy class of the loop γ−1.

Definition: The group π1(X, x0) is called the fundamental group of the space X based at x0. This
group can be non-abelian although we need to do some work to produce an example. Indeed we need
to do some work to produce such an example for which π1(X, x0) is non-trivial. All we shall do in the
rest of this lecture is to show that it is trivial in case X is a convex subset of Rn. First we shall see
what happens when the base point is changed.

Theorem 7.8: Let X be a path connected topological space and x1, x2 be two arbitrary points of
X. Then π1(X, x1) and π1(X, x2) are isomorphic.

Proof: Let σ be a path joining x1 and x2. Observe that if γ is a loop at the x1 then σ ∗ γ ∗ σ−1 is a
loop at x2 thereby enabling us to define a map

h[σ] : π1(X, x1) −→ π1(X, x2)

[γ] 7→ [σ ∗ γ ∗ σ−1].

Corollary (7.4) shows that the function is well defined and lemma (7.5) shows that it is a group

Figure 9: Change of base point

homomorphism. Let Γ be a loop at x2. Then σ−1 ∗ Γ ∗ σ is a loop at x1 and h[σ]([σ
−1 ∗ Γ ∗ σ]) = [Γ]

showing that h[σ] is surjective. The map

h[σ−1] : [Γ] −→ [σ−1 ∗ Γ ∗ σ]

is the inverse of h[σ]. �
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Remarks: The isomorphism h depends on the homotopy class of the path σ joining x1 and x2

justifying the notation h[σ]. The reason for the elaborate notation is that it will reappear in lecture
11. The next theorem tells us what happens when we choose various paths from x1 to x2.

Theorem 7.9: Suppose γ ′0, γ
′′
0 are two paths joining x1 and x2 and h′, h′′ are the corresponding group

isomorphisms from π1(X, x1) −→ π1(X, x2) given by the previous theorem. Then there exists an inner
automorphism

σ : π1(X, x2) −→ π1(X, x2)

such that h′ = σ ◦ h′′. In fact σ is the inner automorphism determined by [γ ′
0][γ

′′
0 ]−1.

If π1(X, x0) is abelian then π1(X, x0) and π1(X, x1) are naturally isomorphic. That is the isomor-
phism h[σ] is canonical in this case.

Proof: Using lemma (7.5) we begin by writing

h′[γ] = [γ′0 ∗ γ ∗ (γ′0)
−1] = [γ′0 ∗ (γ′′0 )−1 ∗ γ′′0 ∗ γ ∗ (γ′′0 )−1 ∗ γ′′0 ∗ γ−1

0 ].

By definition (7.2), the right hand side equals

[γ′0][γ
′′
0 ]−1h′′([γ])[γ′′0 ][γ′0]

−1 = (σ ◦ h′′ ◦ σ−1)[γ] �

Definition: A path connected space X is said to be simply connected if π1(X, x0) = {1}, x0 ∈ X.

Definition 7.4 (Convex and star-shaped domains): (i) A subset X of Rn is said to be convex
if for every pair of points a and b in X, the line segment ta+ (1 − t)b, 0 ≤ t ≤ 1 lies entirely in X.

(ii) A subset X of Rn is said to be star shaped with respect to a point x0 if for every a ∈ X, the
line segment ta + (1 − t)x0, 0 ≤ t ≤ 1 lies entirely in X.

So a convex domain is star shaped with respect to any of its points.

Figure 10: Convex and star-shaped domains

Theorem 7.10: If X is star shaped then π1(X, x0) = {1}. In particular the fundamental groups of
the unit disc and Rn are both equal to the trivial group.
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Proof: By the previous result it is immaterial which point x0 is chosen as the base point. Assume
that X is star shaped with respect to x0. Let γ : [0, 1] −→ X be a loop in X based at x0. We shall
prove [γ] = [εx0] = 1 by constructing a homotopy F between γ and the constant loop εx0, namely

F (s, t) = (1 − s)γ(t) + sx0.

This makes sense because X is star shaped with respect to x0. Turning to the boundary conditions,

F (0, t) = γ(t), F (1, t) = εx0

F (s, 0) = (1 − s)γ(0) + sx0 = (1 − s)x0 + sx0 = x0

F (s, 1) = (1 − s)γ(1) + sx0 = (1 − s)x0 + sx0 = x0.

Exercises:

1. Explicitly construct a homotopy between the loop γ(t) = (cos 2πt, sin 2πt, 0) on the sphere S2

and the constant loop based at (1, 0, 0). Note that an explicit formula is being demanded here.

2. Show that a loop inX based at a point x0 ∈ X may be regarded as a continuous map f : S1 −→ X
such that f(1) = x0. Show that if f is homotopic to the constant loop εx0 then f extends as a
continuous map from the closed unit disc to X.

3. Show that if γ is a path starting at x0 and γ−1 is the inverse path then prove by imitating the
proof of the reparametrization theorem (that is by taking convex combination of two functions)
that γ ∗ γ−1 is homotopic to the constant loop εx0 .

4. Prove theorems (7.2) and theorem (7.6) using Tietze’s extension theorem.

5. Suppose φ : [0, 1] −→ [0, 1] is a continuous function such that φ(0) = φ(1) = 0 and γ is a closed
loop in X based at x0 ∈ X. Is it true that γ ◦ φ is homotopic to the constant loop εx0?

6. Show that the group isomorphism in theorem (7.8) is natural namely, if f : X −→ Y is continuous
and x1, x2 ∈ X then

h[f◦σ] ◦ f ′
∗ = h[σ] ◦ f ′′

∗

where, y1 = f(x1), y2 = f(x2) and σ is a path joining x1 and x2. The maps f ′
∗ and f ′′

∗ are the
maps induced by f on the fundamental groups. This information is better described by saying
that the following diagram commutes:

π1(X, x1)
f ′
∗−−−→ π1(Y, y1)

h[σ]

y h[f◦σ]

y

π1(X, x2)
f ′′
∗−−−→ π1(Y, y2)
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Lecture VIII - Categories and Functors

Note that one often works with several types of mathematical objects such as groups, abelian
groups, vector spaces and topological spaces. Thus one talks of the family of all groups or the family
of all topological spaces. These entities are huge and do not qualify to be sets. We shall call them
families or classes and their individual members as objects. Between two objects of a family say
between two topological spaces X and Y one is interested in the class of all continuous functions.
Instead if we take two objects G and H from the class of all groups we are interested in the set of
all group homomorphisms from G into H. Abstracting from these examples we say that a category
consists of a family of objects and for each pair of objects X and Y we are given a family of maps
X → Y called the set of morphisms Mor(X, Y ) subject to the following properties:

(i) To each pair Mor(X, Y ) and Mor(Y, Z) there is a map

Mor(X, Y ) × Mor(Y, Z) −→ Mor(X,Z)

(f, g) 7→ g ◦ f

such that for f ∈ Mor(X, Y ), g ∈ Mor(Y, Z) and h ∈ Mor(Z,W ),

(h ◦ g) ◦ f = h ◦ (g ◦ f)

(ii) To each object X there is a unique element idX ∈ Mor(X,X) such that for any f ∈ Mor(X, Y )
and g ∈ Mor(Z,X)

f ◦ idX = f, idX ◦ g = g

Example 8.1: We see that the family of all groups Gr forms a category where Mor(G,H) consists
of the set of all group homomorphisms from G to H.

(ii) Likewise we can look at the family AbGr of all abelian groups and as before Mor(G,H) consists
of all group homomorphisms from G to H.

(iii) The class of all topological spaces Top forms a category if we take as morphisms between X
and Y the set of all continuous functions from X to Y .

Definition 8.1 (Covariant functor): Given two categories C1 and C2, a covariant functor is a rule
that assigns to each object A ∈ C1 an object h(A) ∈ C2 and to each morphism f ∈ Mor(A,B), where
A,B are objects in C1, a unique morphism h(f) ∈ Mor(h(A), h(B)) such that the following hold:

(i) Given objects A,B and C in C1 and a pair of morphisms f ∈ Mor(A,B), g ∈ Mor(B,C),

h(g ◦ f) = h(g) ◦ h(f)

(ii) h(idA) = idh(A)

37



Definition 8.2 (Contravariant functor): A contravariant functor between the two given categories
C1 and C2 is a rule that assigns to each object A ∈ C1 an object h(A) ∈ C2 and to each morphism
f ∈ Mor(A,B), where A,B are objects in C1, a unique morphism h(f) ∈ Mor(h(B), h(A)) such that
the following conditions hold:

(i) Given objects A,B and C in C1 and a pair of morphisms f ∈ Mor(A,B), g ∈ Mor(B,C),

h(g ◦ f) = h(f) ◦ h(g)

(ii) h(idA) = idh(A)

Example 8.2: To each group G we assign its commutator subgroup [G,G]. A group homomorphism
f : G −→ H maps the commutator subgroup into the commutator subgroup [H,H] so that the
restriction

f
∣∣∣
[G,G]

: [G,G] −→ [H,H]

is a meaningful group homomorphism enabling us to assign to the morphism f its restriction to [G,G].
The conditions of definition 8.1 are readily verified.

Example 8.3: Between the categories Gr and AbGr we define a map as follows. For G ∈ Gr we
denote by AG its abelianization namely the quotient group:

AG = G/[G,G].

The quotient is an abelian group and so belongs to AbGr. For example if we take G = Sn the
symmetric group on n letters then its abelianization is the cyclic group of order two (why?). If G and
H are two groups and f : G −→ H is a group homomorphism then

ηH ◦ f : G −→ H/[H,H]

is a group homomorphism into an abelian group where ηH is the quotient map H −→ H/[H,H]. The
kernel of ηH ◦ f must contain all the commutators and so defines a group homomorphism

f̃ : G/[G,G] −→ H/[H,H]

x 7→ f(x),

where the bar over x denotes the residue class of x in the quotient. Thus to each object G of Gr we
have assigned a unique object of AbGr namely the abelianization G/[G,G] and to each morphism
f ∈ Mor(G,H) we have associated a unique morphism f̃ . The following properties are quite clear:

(i) If f ∈ Mor(G,H) and g ∈ Mor(H,K) then

g̃ ◦ f = g̃ ◦ f̃

(ii) For any group G,

ĩdG = idG/[G,G]

This is an example of a covariant functor from one category to another.
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Example 8.4: Here we give an example of a contra-variant functor. The family of all real vector
spaces, denoted by Vect is a category and for a pair of real vector spaces V and W , the set Mor(V,W )
consists of all linear transformations from V to W . We define a functor from Vect to itself by assigning
to each V its dual V ∗ and to each T ∈ Mor(V,W ) the adjoint map T ∗. Again,

(idV )∗ = idV ∗

But if U, V and W are three vector spaces and T ∈ Mor(U, V ) and S ∈ Mor(V,W ) are two linear maps
then

(S ◦ T )∗ = T ∗ ◦ S∗

Let us look at an example of a functor from the category of topological spaces to the category Rng
of commutative rings. We shall always assume that every ring that we shall deal with, has a unit
element.

Example 8.5: Let X be a topological space and C(X) be the set of all continuous functions from
X to the real line (with its usual topology). Then C(X) is a commutative ring with unity. Suppose
that f : X −→ Y is a continuous map between topological spaces then we define f ∗ to be the map

f ∗ : C(Y ) −→ C(X)

φ 7→ φ ◦ f

It is obvious to see that f ∗ is a ring homomorphism and id∗
X = idC(X). Further, (g ◦ f)∗ = f ∗ ◦ g∗ for

f ∈ Mor(X, Y ) and g ∈ Mor(Y, Z). We thus have a contravariant functor Top −→ Rng sending the
object X ∈ Top to the object C(X) ∈ Rng and assigning to f ∈ Mor(X, Y ) the ring homomorphism
f ∗ ∈ Mor(C(Y ), C(X)).

Category of pairs: Given topological spaces X and Y one is often not interested in the class of
all continuous maps f : X −→ Y but a restricted class of continuous functions satisfying some “side
conditions” such as mapping a given subset A of X into a given subset B of Y .

Definition 8.3: The category Top2 of pairs has as its objects the class of all pairs of topological
spaces (X,A) where X is a topological space and A ⊂ X. Given two pairs (X,A) and (Y,B) the set
of morphisms between them is the class of all continuous functions f : X −→ Y such that f(A) ⊂ B.

Exercises:

1. Recast the notion of homotopy of paths in terms of morphisms of the category Top2.

2. Define a binary operation on Z × Z as follows

(a, b) · (c, d) = (a + c, b+ (−1)ad)

Show that this defines a group operation on Z×Z and this group is called the semi-direct product
of Z with itself. The standard notation for this is Z n Z. Compute the inverse of (a, b), compute
the conjugate of (a, b) by (c, d) and the commutator of two elements. Determine the commutator
subgroup and the the abelianization of Z n Z.
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3. A morphism φ ∈ Mor(X, Y ) in a category is said to be an equivalence if there exists ψ ∈
Mor(Y,X) such that φ ◦ ψ = idY and ψ ◦ φ = idX . In a category whose objects are sets and
morphisms are maps, show that if g ◦ f is an equivalence for f ∈ Mor(X, Y ) and g ∈ Mor(Y, Z)
then g is surjective and f is injective.

4. We say a category C admits finite products if for every pair of objects U, V in C there exists an
object W and a pair of morphisms p : W −→ U , q : W −→ V such that the following property
holds. For every pair of morphisms f : Z −→ U , g : Z −→ V there exists a unique morphism
f × g ∈ Mor(Z,W ) such that

p ◦ (f × g) = f, q ◦ (f × g) = g.

Show that the categories Top, Gr and AbGr admit finite products and in fact the usual product
of topological spaces/groups serve the purpose with p and q being the two projection maps.

5. Discuss arbitrary products in a category generalizing the preceding exercise and discuss the
existence of arbitrary products in the categories Top, Gr and AbGr.

6. We say a category C admits finite coproducts if for every pair of objects U, V in C there exists an
object W and a pair of morphisms p : U −→ W , q : V −→ W such that the following property
holds. For every pair of morphisms f : U −→ Z, g : V −→ Z there exists a unique morphism
f ⊕ g ∈ Mor(W,Z) such that

(f ⊕ g) ◦ p = f, (f ⊕ g) ◦ q = g.

Show that the category AbGr admits finite coproducts and in fact the usual product of groups
serves the purpose where the maps p and q are the canonical injections:

p : G −→ G×H, q : H −→ G×H

p(g) = (g, 1), q(h) = (1, h)

What happens when this (naive construction) is tried out in the category Gr instead of AbGr?
In the context of abelian groups the coproduct is referred to as the direct sum.

7. Discuss the coproduct of an arbitrary family of objects in the category AbGr. It is referred to
as the direct sum of the family.

8. Suppose that X and Y are two topological spaces, form their disjoint union X t Y which is the
set theoretic union of their homeomorphic copies X × {1} and Y × {2}. A subset G of X t Y
is declared open if G ∩ (X × {1}) and G ∩ (Y × {2}) are both open. Check that this defines a
topology on X t Y and the maps

p : X −→ X t Y, q : Y −→ X t Y
p(x) = (x, 1), q(y) = (y, 2)

are both continuous. Show that the category Top admits finite coproducts.
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Lecture IX - Functorial Property of the Fundamental Group

We now turn to the most basic functor in algebraic topology namely, the π1 functor. Recall
that the fundamental group of a space involves a base point and according to theorem (7.8) the
fundamental group of a path connected space is unique upto isomorphism. However, this isomorphism
is not canonical as theorem 7.9 shows and isomorphism classes of groups do not form a category. To
get around this difficulty and to obtain a well-defined functor, we introduce the category of pointed
topological spaces.

Definition 9.1 (The category of pointed topological spaces): This category will be denoted
by Top0 and its objects consists of all pairs (X, x0) where X is a topological space and x0 is a point
of X. Given two pairs of pointed spaces (X, x0) and (Y, y0), the morphisms between them consists of
all continuous functions f : X −→ Y such that f(x0) = y0.

Suppose that X, Y are path connected spaces and f : X −→ Y is a continuous map such that
f(x0) = y0 then f clearly defines a morphism, denoted by same letter, between pointed spaces

f : (X, x0) −→ (Y, y0).

The map f∗ : π1(X.x0) −→ π1(Y, y0) given by f∗([γ]) = [f ◦γ] where γ in X based at x0, is well defined
since f ◦ γ is a loop in Y based at y0 Therefore f∗ is well defined because if γ1, γ2 are homotopic loops
in X based at x0 and F is the homotopy then f ◦ F is a homotopy between f ◦ γ1 and f ◦ γ2 in Y . It
is immediately checked that f ◦ (γ1 ∗ γ2) = (f ◦ γ1) ∗ (f ◦ γ2) thereby giving a group homomorphism:

f∗([γ1][γ2]) = f∗([γ1])f∗([γ2]).

The group homomorphism f∗ is called the map induced by f on the fundamental groups. In other
words we obtain a functor π1 from Top0 to Gr.

Lemma 9.1: Suppose that (X, x0), (Y, y0) and (Z, z0) are pointed topological spaces. Let f :
(X, x0) −→ (Y, y0) and g : (Y, y0) −→ (Z, z0) be continuous maps of pairs, that is continuous maps
satisfying f(x0) = y0; g(y0) = z0, then the induced homomorphisms on the respective fundamental
groups satisfies

(g ◦ f)∗ = g∗ ◦ f∗.
If idx : X −→ X is the identity map then (idx)∗ = idπ1(X,x0). That is to say, the identity map on X
induces the identity homomorphism on π1(X, x0).

Proof: The second part is obvious. To prove the first part, for any loop γ in X based at x0,

(g ◦ f) ◦ γ = g ◦ (f ◦ γ)
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so we get upon passing to equivalence classes,

(g ◦ f)∗[γ] = g∗[f ◦ γ] = g∗(f∗([γ]))

In particular if f : X −→ Y is a homeomorphism then f∗ : π1(X, x0) −→ π1(Y, y0) is an isomorphism
of groups. �

Definition 9.2 (Retraction): Given a topological space X, a subset A ⊆ X is said to be retract
of X if there exits a continuous function r : X −→ A such that r(a) = a for all a ∈ A.

It is immediate that a retract of a Hausdorff space must be closed. The condition that A be a
retract of X is quite a strong condition. For example if X is compact and connected then so must A.
Thus {0, 1} cannot be a retract of [0, 1]. The boundary İ2 of I2 is not a retract of I2 but this is highly
non-trivial.

Example 9.1:

(i) S1 × {1} is a retract of S1 × S1. A retraction is given by r(z, w) = (z, 1).

(ii) (S1 × {1}) ∪ ({1} × S1) is not a retract of S1 × S1 as we shall see later.

(iii) S1 is a retract of R2 − {(0, 0)} and the retraction is given by the map x 7→ x/‖x‖.

(iv) Suppose A is a retract of X then every continuous map f : A −→ Y extends continuously to a
map f̃ : X −→ Y .

We shall show later (lectures 12-13) that π1(S
1, 1) = Z is non-trivial but we present it here as a

theorem for immediate use in the next lecture on the Brouwer’s fixed point theorem.

Theorem 9.2: π1(S
1, 1) = Z and the generator is given by the homotopy class of the loop

t 7→ exp(2πit), 0 ≤ t ≤ 1.

Lemma 9.3: Suppose r : X −→ A is a retraction, j : A −→ X is the inclusion, then for a ∈ A

r∗ : π1(X, a) −→ π1(A, a)

is surjective and
j∗ : π1(A, a) −→ π1(X, a)

is injective.

Proof: Since r ◦ j = idA we see that r∗ ◦ j∗ = idπ1(A,a). Hence r∗ is surjective and j∗ is injective. �

Corollary 9.4 (No retraction theorem): S1 is not a retract of E2 = {x ∈ R2/‖x‖ ≤ 1}
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Proof: Suppose we have a retraction r : E2 −→ S1 then the induced map

r∗ : π1(E
2, 1) −→ π1(S

1, 1)

would be surjective which means we have a surjective group homomorphism

r∗ : {1} −→ Z

which is impossible. �

Corollary 9.5 (Brouwer’s fixed point theorem): Every continuous function f : E2 −→ E2 has
a fixed point where E2 = {x ∈ R2/‖x‖ ≤ 1}.

Proof: Will be done in the next lecture.

Fundamental group of a Product: The fundamental group functor has the pleasant property
that it respects products. The following theorem summarizes the matter for finite products.

Theorem 9.6: Suppose that X and Y are two topological spaces and x0 ∈ X and y0 ∈ Y . Then

π1(X × Y, (x0, y0)) = π1(X, x0) × π1(Y, y0).

Proof: Let p1 and p2 be the usual projection maps X × Y −→ X and X × Y −→ Y respectively
and γ be a loop in X × Y based at (x0, y0). Then p1 ◦ γ and p2 ◦ γ are loops in X and Y based at x0

and y0 respectively. The map

φ : π1(X × Y, (x0, y0)) −→ π1(X, x0) × π1(Y, y0)

[γ] 7→ ([p1 ◦ γ], [p2 ◦ γ])

is well-defined and easily seen to be a surjective group homomorphism. Injectivity is also easy to
check. Well, suppose that [γ] is in the kernel of φ then p1 ◦ γ and p2 ◦ γ are homotopic to the constant
loops εx0 and εy0 respectively via homotopies F1 and F2. That is to say there exists continuous maps
F1 : I2 −→ X and F2 : I2 −→ Y such that

F1(0, t) = p1 ◦ γ, F1(1, t) = εx0, F2(0, t) = p2 ◦ γ, F2(1, t) = εy0.

and F1(s, 0) = F1(s, 1) = x0, F2(s, 0) = F2(s, 1) = y0 for all s ∈ [0, 1]. Putting these together we get a
continuous map F1 × F2 : I2 −→ X × Y namely

(s, t) 7→ (F1(s, t), F2(s, t))

which is a homotopy between γ and the constant loop at (x0, y0) proving that the kernel is trivial.

Corollary 9.7: π1(S
1 × S1, (1, 1)) = Z × Z
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Exercises

1. Show that the sphere S2 retracts onto one of its longitudes. If X is the space obtained from S2

by taking its union with a diameter, there is a surjective group homomorphism π1(X) −→ Z.

2. Prove that A is a retract of X if and only if every space Y , every continuous map f : A −→ Y
has a continuous extension f̃ : X −→ Y .

3. Show that the fundamental group respects arbitrary products.

4. Construct a retraction from {(x, y) : x or y is an integer} onto the boundary of I 2.

5. Show that every homeomorphism of E2 onto itself must map the boundary to the boundary.

6. Given that there exists a functor T from the category Top to the category AbGr such that T (X)
is the trivial group for every convex subset X of a Euclidean space and T (Sn) is a non-trivial
group, prove that Sn is not a retract of the closed unit ball in Rn+1.
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Lecture X - Brouwer’s Theorem and its Applications.

In this lecture we shall prove the Brouwer’s fixed point theorem and deduce some of its consequences
such as the Perron-Frobenius’ theorem. The one dimensional Brouwer’s theorem follows from the
intermediate value property as is indicated in the exercises of lecture 3. We also include a proof of the
fact that the spheres Sn have trivial fundamental group when n ≥ 2. This result has been included
here to demonstrate why the fundamental group is insufficient to prove the Brouwer’s fixed point
theorem in dimension three or higher.

We begin by defining the fixed point property for a space. Here we require the fixed point property
to hold for all continuous functions of the space into itself. Note that in analysis the spaces considered
are somewhat special and so are the maps whose fixed point property are sought. A classic example
of such a restricted fixed point theorem is the Banach’s fixed point theorem.

Definition 10.1: A space X is said to have the fixed point property if every continuous map f :
X −→ X has a fixed point namely, there exists p ∈ X such that f(p) = p.

Theorem 10.1: The fixed point property is a topological property. That is, if X and Y are homeo-
morphic and X has the fixed point property then so does Y .

Proof: Suppose that X has the fixed point property and h : X −→ Y is a homeomorphism. Let g :
Y −→ Y be an arbitrary continuous map. Applying the fixed point property to the map f = h−1◦g◦h
we get a point p ∈ X such that f(p) = p. The fixed point of g is seen to be h(p).

Examples 10.1: (i) The closed unit interval [0, 1] has the fixed point property (exercise 1, lecture
3).

(ii) A non-trivial topological group does not have the fixed point property.
(iii) The space RP 2n has the fixed point property but we are not yet ready to prove this.
(iv) The open unit disc U = {z ∈ C/|z| < 1} does not have the fixed point property. For if a is a

non-zero complex number with |a| < 1 then the map f : U −→ U given by

f(z) =
z − a

1 − az

has no fixed points in U . The reader must first check that f maps the open unit disc to itself and
examine if it has any fixed points.

Theorem 10.2 (Brouwer’s fixed point theorem): Every continuous function f : E2 −→ E2 has
a fixed point where E2 = {x ∈ R2 | ‖x‖ ≤ 1}.

45



Proof: We assume the contrary, that is to say a continuous function f of the closed unit disc into
itself exists which has no fixed points. We produce a retraction from E2 onto S1 which would be a
contradiction. The ray emanating from f(x) ∈ E2 and passing through x ∈ E2 namely

Figure 11: E2 is not a retract of S1

tx + (1 − t)f(x), t ≥ 0,

meets the circle S1 at a point denoted by r(x) = t0x+(1− t0)f(x) where, t0 is a root of the quadratic

〈tx+ (1 − t)f(x), tx + (1 − t)f(x)〉 = 1. (10.1)

We recast this quadratic as

t2(|f(x) − x|2) − 2tf(x) · (f(x) − x) − (1 − |f(x)|2) = 0. (10.2)

Since the coefficient of t2 is never zero, the roots are continuous functions of x and they are real.
Moreover the roots differ in sign or one of the roots is zero. Take t0 to be the larger root for constructing
r(x). From (10.1) we see that r maps E2 to S1. Note that if |x| = 1 then t = 1 satisfies the quadratic
and so must be the larger root. Hence we conclude r(x) = x if |x| = 1 and we get a retraction of E2

onto S1 which is a contradiction. �

Remark: Note that the proof merely used the fact that π1 functor is trivial on discs and nontrivial
on circles. Any functor with this property may be used to prove the Brouwer’s fixed point theorem.

Theorem 10.3 (Perron-Frobenius): A 3×3 matrix with strictly positive real entries has a positive
eigen-value. The corresponding eigen-vector has non-negative entries.

Proof: Let A be a 3 × 3 matrix with strictly positive real entries and S be the part of the sphere

S = {(x, y, z) ∈ R3 : x2 + y2 + z2 = 1, x ≥ 0, y ≥ 0, z ≥ 0}
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Then S is homeomorphic to the closed unit disc in the plane (why?) and so has the fixed point
property. If v is any unit vector with non-negative entries then the entries of Av are non-negative and
at-least one of the entries must be positive. Hence the map f : S −→ S given by f(v) = Av/‖Av‖ is
continuous. By Brouwer’s fixed point theorem, f has a fixed point v0 which means Av0/‖Av0‖ = v0

from which we infer that ‖Av0‖ is an eigen-value of A and this must be positive.

Fundamental groups of spheres: We close this lecture with a proof of the fact that π1(S
n) = {1}

when n ≥ 2. The student ought to try and figure out intuitively why is this so.

Theorem 10.4: If U and V are simply connected open subsets of X such that X = U ∪V and U ∩V
is path connected then X is simply connected.

Proof: Let us choose a base point x0 ∈ U ∩ V and γ be an arbitrary loop in X based at x0. The
open cover {γ−1(U), γ−1(V )} of [0, 1] has a Lebesgue number ε. Choose a partition

{t0 = 0 < t1 < t2 < · · · < tn = 1}.

such that the length of each sub-interval is less than ε. Then γ maps each [tj, tj+1] into U or V . If γ
maps two adjacent intervals into U or into V then drop the abutting point of the two intervals thereby
coarsening the partition. Thus may arrange it such that for each j = 1, 2, . . . , n − 1, the point γ(tj)
lies in U ∩ V . We now choose a path σj joining x0 and γ(tj) such that the image of σj lies entirely
in U ∩ V . This is possible since U ∩ V is path connected and x0 ∈ U ∩ V . Also let γj denote the
restriction of γ to the sub-interval [tj−1, tj] (j = 1, 2, . . . , n). We may reparametrize γj (retaining the
name) so that its domain is [0, 1]. Now

γ ∼ γ1 ∗ σ−1
1 ∗ σ1 ∗ γ2 ∗ σ−1

2 ∗ σ2 ∗ γ3 ∗ · · · ∗ σ−1
n−1 ∗ σn−1 ∗ γn

Now each of the loops γ1∗σ−1
1 , σ1∗γ2∗σ−1

2 ,. . . , σn−1∗γn based at x0 lies in one of the simply connected
open sets U or V and so each of them is homotopic to the constant loop via a homotopy Fj. These
homotopies Fj may be juxtaposed to provide a homotopy between

γ1 ∗ σ−1
1 ∗ σ1 ∗ γ2 ∗ σ−1

2 ∗ σ2 ∗ γ3 ∗ · · · ∗ σ−1
n−1 ∗ σn−1 ∗ γn

and the constant loop. The proof is complete.

Theorem 10.5: For n ≥ 2, the sphere Sn is simply connected.

Proof: Let U be the sphere minus the north pole and V be the sphere minus the south pole. Using
the stereo-graphic projections, we see that U and V are simply connected open subsets of Sn and it is
easily verified that U ∩ V is path connected. The result follows from the previous theorem.

Exercises

1. Suppose that a space X has the fixed point property, is it necessary that it be connected? Does
it have to be path-connected?

2. Explain why a non-trivial topological group cannot have the fixed point property.
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3. Prove the Brouwer’s fixed point theorem for the closed unit ball in Rn given that that there
exists a functor T from the category Top to the category AbGr such that T (X) is the trivial
group for every convex subset X of a Euclidean space and T (Sn−1) is a non-trivial group.

4. Show that the Brouwer’s fixed point theorem implies the no retraction theorem.

5. Explain how the homotopies Fj in the proof of theorem 10.4 can be juxtaposed.

6. Show that the circle S1 is not a retract of the sphere S2.
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Lecture XI - Homotopies of maps. Deformation retracts.

We generalize the notion of homotopy of paths to homotopy of a pair of continuous maps between
topological spaces. This would be particularly useful in the second part of the course. It also leads to
a powerful notion of deformation retracts which is often useful in deciding whether two spaces have the
same fundamental group. Homotopy of maps is a useful coarsening of the notion of homeomorphism of
two spaces leading to the notion of homotopy equivalence of spaces. Over the decades homotopy has
proved to be the most important notion in topology, susceptible to considerable generalization with
wide applicability.

Definition 11.1 (Homotopies of maps): (i) Given continuous maps f, g : X −→ Y between
topological spaces we say that f and g are homotopic if there exists a continuous map F : X×[0, 1] −→
Y such that

F (x, 0) = f(x), F (x, 1) = g(x), for all x ∈ X (11.1)

We shall occasionally use the notation f ∼ g to indicate that f and g are homotopic. One can formulate
a notion for pairs of spaces:

(ii) Two continuous maps f, g : (X,A) −→ (Y,B) between pairs of topological spaces are said to
be homotopic if there exists F : (X× I, A× I) −→ (Y,B) such that in addition to (11.1) the following
condition holds:

F (a, t) ∈ B, for all a ∈ A, t ∈ [0, 1]. (11.2)

Condition (11.2) is a boundary condition which states that the intermediate functions

Ft : x 7→ F (x, t)

all map A into B. Note that when A = {x0} and B = {y0}, the condition says that all the intermediate
maps Ft are base point preserving. We leave it to the reader to prove the following two simple results.

Theorem 11.1: Homotopy is an equivalence relation.

Theorem 11.2: Suppose that f and g are homotopic maps of pairs (X, x0) and (Y, y0) then the
induced group homomorphisms f∗ and g∗ from π1(X, x0) to π1(Y, y0) are equal.

Now suppose that f and g are homotopic maps from X to Y such that for a base point x0 ∈ X,
f(x0) = g(x0) = y0 say, but the intermediate maps do not respect these base points. Then it is not
necessary that f∗ = g∗ as maps from π1(X, x0) to π1(Y, y0). The following theorem addresses this issue.

Theorem 11.3: Suppose that F is a homotopy between maps f, g : X −→ Y and for a point
x0 ∈ X, f(x0) = g(x0) = y0. Then the group homomorphisms f∗ and g∗ are conjugate by the
inner-automorphism generated by the loop

σ : t 7→ F (x0, t) (11.3)
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Proof: The idea of proof is simple. Observe that (11.3) is the image of the base point x0 under the
deformation suggesting the use of theorem (7.8). If we fix an intermediate time s ∈ [0, 1] then the
curve σs given by σs(t) = t 7→ σ(st) starts at y0 and we could use it to construct a loop at y0 namely

σs ∗ F (γ( . ), s) ∗ σ−1
s

In detail, for each loop γ(t) ∈ X based at x0, the homotopy φ : [0, 1] × [0, 1] −→ Y given by

φ(s, t) = σ(3st) if 0 ≤ t ≤ 1/3

= F (γ(3t− 1), s) if 1/3 ≤ t ≤ 2/3

= σ(3s− 3st) if 2/3 ≤ t ≤ 1.

establishes the equality of f∗[γ] and [σ](g∗[γ])[σ
−1].

Corollary 11.4: Suppose that F is a homotopy between maps f, g : X −→ Y and for a point
x0 ∈ X, f(x0) = g(x0) = y0. If π1(Y, y0) is abelian then the group homomorphisms f∗ and g∗ are
equal.

If we drop the hypothesis f(x0) = g(x0) in theorem 11.3 the proof still goes through but since σ is
no longer a loop we merely get that the induced maps f∗ and g∗ differ by a composition through the
isomorphism h[σ] encountered in theorem (7.8). We record the result as a theorem and the reader may
rework the proof of theorem 11.3 to fit it in the present context.

Theorem 11.5: Suppose that F is a homotopy between maps f, g : X −→ Y then for x0 ∈ X, the
induced maps f∗ : π1(X, x0) −→ π1(Y, f(x0)) and g∗ : π1(X, x0) −→ π1(Y, g(x0)) satisfy the relation

h[σ] ◦ f∗ = g∗ (11.4)

where h[σ] is the isomorphism
h[σ] : [γ] 7→ [σ ∗ γ ∗ σ−1] (11.5)

we have encountered earlier with σ being the curve F (x0, t) joining f(x0) and g(x0).

Definition 11.2 (Homotopy equivalence): (i) A map f : X −→ Y is said to be a homotopy
equivalence if there exists a map g : Y −→ X such that f ◦ g and g ◦ f are respectively homotopic to
the identity maps idY and idX respectively. Under this circumstance we say that the spaces X and Y
are homotopically equivalent or have the same homotopy type.

(ii) A space that is homotopy equivalent to a point is said to be contractible. This is equivalent to
the statement that the identity map on X is homotopic to a constant map.

The student may check that if X and Y are homotopy equivalent and Y and Z are homotopically
equivalent then X and Z are homotopy equivalent.

Theorem 11.6: If f : X −→ Y is a homotopy equivalence then the groups π1(X, x0) and π1(Y, f(x0))
are isomorphic.
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Proof: There exists g : Y −→ X such that f ◦ g and g ◦ f are respectively homotopic to idY and
idX . By theorem 11.5 f∗ ◦ g∗ differs from the identity map on π1(Y, (f ◦ g)(y0)) by a composition with
the isomorphism h[σ] where σ is a path joining f(g(y0)) and y0. In particular f∗ ◦ g∗ is bijective and
so f∗ is surjective and g∗ is injective. Likewise, working with g ◦ f one concludes that g∗ is surjective
and f∗ is injective. Hence f∗ is an isomorphism between π1(X, x0) and π1(Y, f(x0)).

Deformation retract: A subspace A of X is said to be a deformation retract if there exists a
continuous map r : X −→ A such that r ◦ j = idA and j ◦ r ∼ idX where j denotes the inclusion of A
into X. In particular, X and A have the same homotopy type.

Theorem 11.7: Suppose that A is a deformation retract of X via a map r : X −→ A. Then for
x0 ∈ A, the maps r∗ : π1(X, x0) −→ π1(A, x0) and i∗ : π1(A, x0) −→ π1(X, x0) are isomorphisms.

Proof: Let r : X −→ A be a retraction such that j ◦ r ∼ idX . By (the proof of) theorem 11.6,
r∗ is injective. But the composition r ◦ j = idA shows that r∗ is surjective. Hence r∗ establishes an
isomorphism between π1(X, x0) and π1(A, x0).

Example 11.1: The sphere Sn−1 is a deformation retract of Rn−{0}. A retraction r : Rn−{0} −→
Sn−1 is given by the formula r(x) = x/‖x‖. The homotopy between j ◦ r and the identity map on
Rn − {0} is provided by the convex combination

F (x, t) = tx + (1 − t)
x

‖x‖ (11.6)

The student must however check that F (x, t) omits the zero vector. From this we get the following
important result.

Theorem 11.8: (i) The fundamental group of the punctured plane is the additive group Z and the
homotopy class of the loop

t 7→ exp(2πit), 0 ≤ t ≤ 1 (11.7)

provides a generator for the group.
(ii) The fundamental group of Rn − {0} is the trivial group.

Example 11.2: Let X be the union of the sphere S2 and one of its diameters. Then X is homotopy
equivalent to the space S2 ∨ S1. While it is easy to construct the map f : X −→ S2 ∨ S1, the map g
in the opposite direction is not easy to write down. Exercise 6 shows how to get around the difficulty.

Example 11.3: Let L be the line {(0, 0, x3)/x3 ∈ R} in R3 and C be the circle

(x1 − 1)2 + x2
2 = 1/4, x3 = 0.

We show that the torus is a deformation retract of the space X = R3 − (L ∪ C). The idea is simple
but some details ought to be examined. Let us begin with the punctured half plane

H ′
0 = {(x1, 0, x3)/x1 > 0} − {(1, 0, 0)}
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which clearly deformation retracts to the circle C0 given by

C0 : (x1 − 1)2 + x2
3 = 1/4, x2 = 0.

The homotopy F : H ′
0 × [0, 1] −→ H ′

0 is simply given by the convex combination:

F (x, t) = (1 − t)x + t
(
e1 +

x − e1

‖x − e1‖
)
, e1 = (1, 0, 0).

The idea is to rotate the picture about the x3-axis. It is expedient to use spherical polar coordinates
given by

x1 = ρ cos θ sin φ, x2 = ρ sin θ sinφ, x3 = ρ cosφ, 0 < φ < π, θ ∈ R.

Let H ′
θ be the half plane bounded by the x3-axis making angle θ with H ′

0 and Rθ denote the rotation
about the x3-axis mapping H ′

θ onto H ′
0 namely,

Rθ(ρ cos θ sin φ, ρ sin θ sin φ, ρ cosφ) = (ρ sinφ, 0, ρ cosφ)

The homotopy we are looking for is then the map G : X × [0, 1] −→ X given by

G(x, t) = R−1
θ ◦ F (Rθ(x), t). (11.8)

It is easy to see using the properties of rotations, that

(i) G is well defined, that is the image of G avoids the circle C

(ii) Satisfies the requisite boundary conditions at t = 0 and t = 1.

However, the continuity of G is not automatic since the θ appearing in the definition of G depends also
on x and we know that θ cannot be defined as a continuous function of x on X. One can either write
a formula (which is easy) and see that θ occurs in (11.8) only as cos θ and sin θ which are continuous
functions on X or better still use the property of quotients. We leave the amusing details to the reader.

Corollary 11.9: The fundamental group of the complement of L ∪ C in R3 is Z × Z.

Exercises:

1. Check that the map φ constructed in the proof of theorem 11.3 is continuous and is indeed a
homotopy. Work out the proof of theorem 11.5.

2. Show that the boundary ∂M of the Möbius band M is not a deformation retract of M by taking
a base point x0 on the boundary and computing explicitly the group homomorphism

i∗ : π1(∂M, x0) −→ π1(M,x0).

3. Show that the boundary of the Möbius band is not even a retract of the Möbius band.

4. Fill in the details on the continuity of the map G in the example preceding corollary 11.9.

5. Show that the space R3 − {(x, y, z)/x2 + y2 = 1, z = 0} deformation retracts to a sphere with a
diameter attached to it.

6. Let X be the union of S2 and one of its diameters D, Y = S2 ∨ S1 and Z be the union of S2

with a punctured half disc contained in a half with edge along D. Show that X and Y are both
deformation retracts of Z and so they have the same homotopy type.
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Lectures XII - XIII The fundamental group of the circle.

We have already stated the fact that the fundamental group of the circle is the group of integers
and derived some important consequences form it. The importance of this result is attested by the
fact that the Brouwer’s fixed point theorem for a disc follows immediately from it. In this lecture will
provide a detailed proof that π1(S

1, 1) = Z. Some of the ideas of the proof would appear again later
in a general context of covering spaces. Though this result is a special one from the theory of covering
spaces it is worthwhile looking at this important special case without reference to the general theory
but rather as a preview to it. This topic will be covered in two lectures but the numbering will be as
that of lecture 12. We begin with an algebraic lemma [14] (p. [//]).

Lemma 12.1: Suppose S is a set on which two binary operations ∗ and ∗′ are defined such that

(a) Both ∗ and ∗′ have a common two sided unit.

(b) The binary operations ∗ and ∗′ are mutually distributive. That is,

(f1 ∗ g1) ∗′ (f2 ∗ g2) = (f1 ∗′ f2) ∗ (g1 ∗′ g2), f1, f2, g1, g2 ∈ S.

Then,

(i) both ∗ and ∗′ are associative and commutative.

(ii) f ∗ g = f ∗′ g for all f, g ∈ S.

Proof: Denoting the common two sided identity by 1,

(f ∗ g) = (f ∗′ 1) ∗ (1 ∗′ g) = (f ∗ 1) ∗′ (1 ∗ g) = f ∗′ g

which proves (ii). Next we prove commutativity:

g ∗ f = (1 ∗′ g) ∗ (f ∗′ 1) = (1 ∗ f) ∗′ (g ∗ 1) = f ∗′ g = f ∗ g.

Finally, using (ii) we prove associativity:

(f ∗ g) ∗ h = (f ∗ g) ∗′ (1 ∗ h) = (f ∗′ 1) ∗ (g ∗′ h) = f ∗ (g ∗′ h) = f ∗ (g ∗ h)
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Corollary 12.2: If X is a topological group with unit element e then π1(X, e) is abelian. Moreover,
if γ1, γ2 are two loops based at e define the binary operation ◦ on π1(X, e) by3

[γ1] ◦ [γ2] = [γ1(t) · γ2(t)]

where γ1(t) · γ2(t) denotes the group multiplication in X. Then

[γ1] ◦ [γ2] = [γ1][γ2],

the right hand side being the product in π1(X, e). In other words, γ1(t) · γ2(t) ∼ γ1 ∗ γ2.

Proof: Let ē denote the homotopy class of the constant loop based at e. We first show that the
operation ◦ is well defined. If γ ′1 ∼ γ′′1 and γ′2 ∼ γ′′2 via the respective homotopies F,G : I × I −→ X,
it is easily checked that the map F ·G : [0, 1] × [0, 1] −→ X given by

F ·G(s, t) = F (s, t) ·G(s, t),

the product on the right denoting with group multiplication in X, is a homotopy between γ ′
1(t)γ

′
2(t)

and γ′′1 (t)γ′′2 (t). We conclude that ◦ is a well defined binary operation on π1(X, e) with a two sided unit
ē. Clearly, ē is a common two sided unit element for both binary operations on π1(X, e). To invoke
the lemma we show that the two binary operations are mutually distributive. Let γ ′

1, γ
′
2γ

′′
1 , γ

′′
2 be loops

based at e
( [γ′1][γ

′′
1 ] ) ◦ ( [γ′2][γ

′′
2 ] ) = [ (γ′1 ∗ γ′′1 )(t) · (γ′2 ∗ γ′′2 )(t) ]

We first verify through direct calculation that (γ ′
1 ∗ γ′′1 ) · (γ′2 ∗ γ′′2 ) = (γ′1 · γ′2) ∗ (γ′′1 · γ′′2 ). Well,

(γ′1 ∗ γ′′1 )(t) · (γ′2 ∗ γ′′2 )(t) = γ′1(2t)γ
′
2(2t), if 0 ≤ t ≤ 1

2

= γ′′1 (2t− 1)γ′′2 (2t− 1), if
1

2
≤ t ≤ 1.

∴ [(γ′1 ∗ γ′′1 )(t) · (γ′2 ∗ γ′′2 )(t)] = [γ′1(t) · γ′2(t)][γ′′1 (t) · γ′′2 (t)]

So finally
([γ′1][γ

′′
1 ]) ◦ ([γ′2][γ

′′
2 ]) = [γ′1(t)γ

′
2(t)][γ

′′
1 (t)γ′′2 (t)] = ([γ′1] ◦ [γ′2])([γ

′′
1 ] ◦ [γ′′2 ])

Thus lemma (12.1) is applicable for the binary operations ∗ and ◦ and the proof is complete.

Theorem 12.3: π1(S
1, 1) = Z and the group is generated by homotopy class of the loop

t 7→ exp(2πit), 0 ≤ t ≤ 1

Proof: The proof is broken into several steps. We shall employ the exponential map ex: R −→ S1

given by
ex(t) = e2πit. (12.1)

The function ex maps (−1
2
, 1

2
) homeomorphically onto S1 − {−1} and we denote its inverse by

lg : S1 − {−1} −→ (
−1

2
,

1

2
) (12.2)

which is also a homeomorphism.

3To avoid introducing more notation we are being notationally imprecise. The expression γ1(t) · γ2(t) inside the
brackets refers to the map t 7→ γ1(t) · γ2(t).
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Lemma 12.4 (The lifting lemma): Let X be a compact subset of Rn that is star shaped with
respect to origin. Let f : X −→ S1 be a continuous function such that f(0) = ex(t0) for some t0 ∈ R.
Then, there exists a continuous function f̃ : X −→ R such that

exf̃(x) = f(x), f̃(0) = t0 (12.3)

Moreover the function f̃ satisfying (12.3) is unique and is called the lift of f with respect to ex.

Proof: Invoking the uniform continuity of f with ε = 2, there exists δ > 0 such that

‖x− y‖ < δ ⇒ |f(x) − f(y)| < 2

which in turn implies that f(x) 6= −f(y). Now choose n ∈ N such that n−1‖x‖ < δ for all x ∈ X
which is possible since X is compact. This n is now fixed for the rest of the discussion. For x ∈ X
and j = 0, 1, . . . , n− 1 ∥∥∥ j

n
x− (j + 1)

n
x
∥∥∥ < δ,

whereby,

f(
j + 1

n
x) 6= −f(

j

n
x).

From this we conclude that the function given by

lg
(f( j+1

n
x)

f( j
n
x)

)
, x ∈ X

is continuous with respect to x. We now claim that

f̃(x) = t0 +

n−1∑

j=0

lg
(f( j+1

n
x)

f( j
n
x)

)

is the required continuous function. Observe that lg(1) = 0, f̃(0) = t0 and

exf̃(x) = (ex(t0)) ·
f( 1

n
x)

f(0)
· f( 2

n
x)

f( 1
n
x)

· · · f(n
n
x)

f(n−1
n
x)

= f(x).

Turning to the proof of uniqueness of the lift f̃ , suppose f̃1, f̃2 : X −→ R are two continuous functions
such that f̃1(0) = f̃2(0) = t0 and exf̃1(x) = exf̃2(x) = f(x). Then ex(f̃1(x)− f̃2(x)) = 1, which implies
f̃1(x) − f̃2(x) ∈ Z (see note below). Since both functions are continuous, agree at the origin and X is
connected, we conclude that

f̃1(x) ≡ f̃2(x). �

Note: The properties of the exponential function used here must be established using power series
expansions. Specifically prove using power series the following:

(i) ex(z1 + z2) = ex(z1) · ex(z2)

(ii) There exists a unique positive real root of cos(x) = 0 in [0, 2] (via the real power series for the
cosine function) and we denote this root by π/2.

(iii) cos(2π + x) = cos x, sin(2π + x) = sin x (using addition formula for sin and cos following (i) )

(iv) If cos x = cos y, sin x = sin y then there exists k ∈ Z such that x− y = 2πik.
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Definition 12.1: Let γ : [0, 1] −→ S1 be a loop based at 1. By the lifting lemma there exists unique
lift γ̃ : [0, 1] −→ R such that γ̃(0) = 0, exγ̃(1) = 1. Thus, γ̃(1) ∈ Z and we call this integer the degree
of the loop γ.

Lemma 12.5: If γ1 and γ2 are two homotopic loops based at 1. then degγ1 = degγ2. Thus the map
φ : π1(S

1, 1) −→ Z given by [γ] 7→ deg γ is well-defined.

Proof: Let F : I × I −→ S1 be the homotopy between γ1 and γ2. Since I × I is star shaped with
respect to (0, 0) and F (0, 0) = 1 = ex(0), the lifting lemma gives a unique lift F̃ : I × I −→ R with
F̃ (0, 0) = 0. The image F (s, 0) is a connected subset of R as s runs from 0 to 1 and expF̃ (s, 0) =
F (s, 0) = 1 for all s ∈ [0, 1]. So F̃ (s, 0) is integer valued and hence constant. From F̃ (0, 0) = 0 we
conclude that F̃ (s, 0) = 0 for all s ∈ [0, 1]. In particular the lifts γ̃1 and γ̃2 both start at the origin
and so

deg γ1 = γ̃1(1), deg γ2 = γ̃2(1).

Our job will be over if we show that γ̃1(1) = γ̃2(1). Well, F̃ must map the connected set {(s, 1)/0 ≤
s ≤ 1} onto a connected subset J of R and since

exF̃ (s, 1) = F (s, 1) = 1,

this connected subset J must be a subset of Z and hence reduces to a singleton which means

F̃ (s, 1) = F̃ (0, 1), for all s ∈ [0, 1]

Setting s = 0 and 1 we see that

γ̃2(1) = F̃ (1, 1) = F̃ (0, 1) = γ̃1(1),

thereby completing the proof that the map φ : [γ] 7→ degγ is well defined.

Lemma 12.6: The map φ defined in lemma (12.5) is a group isomorphism.

Proof: Suppose γ1 and γ2 are two loops at 1 with lifts γ̃1, γ̃2 starting at origin. Then the path γ̃
given by γ̃(t) = γ̃1(t) + γ̃2(t) also starts at the origin and satisfies

ex γ̃(t) = ex γ̃1(t) · ex γ̃2(t) = γ1(t) · γ2(t).

Hence γ̃ is the unique lift of γ1(t) · γ2(t) whereby,

deg(γ1(t)γ2(t)) = γ̃(1) = γ̃1(1) + γ̃2(1) = deg γ1 + deg γ2.

Thus φ([γ1 · γ2]) = φ([γ1]) + φ([γ2]). From corollary (12.2), [γ1 · γ2] = [γ1 ∗ γ2] = [γ1][γ2] whence
φ([γ1][γ2]) = φ([γ1]) + φ([γ2]) which means that φ is a group homomorphism.

Surjectivity of φ is easy to see. Let n ∈ Z be arbitrary and γ̃(t) = nt. Then γ̃ is the unique
lift of γ(t) = exγ̃(t) starting at the origin so that φ([γ]) = γ̃(1) = n. We now show that the group
homomorphism φ is injective. Suppose γ1, γ2 are two loops at 1 in S1 such that deg γ1 = deg γ2. Then
γ̃1(1) = γ̃2(1), where γ̃1 and γ̃2 are the lifts of γ1 and γ2 starting at the origin. Since R is convex and

56



the two curves γ̃1 and γ̃2 have common end points, they are homotopic. That is to say, there exists a
continuous function F̃ : I × I −→ R such that

F̃ (0, t) = γ̃1(t), F̃ (1, t) = γ̃2(t); for all t ∈ [0, 1]

F̃ (s, 0) = 0, F̃ (s, 1) = γ̃1(1) = γ̃2(1), for all s ∈ [0, 1].

The function F : [0, 1] × [0, 1] given by

F (s, t) = exF̃ (s, t)

is then a homotopy between γ1 and γ2 and we have shown that deg γ1 = deg γ2 implies [γ1] = [γ2].
This suffices for a proof.

Corollary 12.7 (Generators for π1(S
1, 1)): (1) The generators for π1(S

1, 1) are given by the loops

η : t 7→ exp(±2πit) (12.4)

(2) The loops (12.4) also generate the group π1(C − {0}, 1).

Proof: The lifts of these starting at the origin are ±1 so that these loops have degrees ±1 respectively.
The second conclusion follows from the fact that a deformation retraction induces an isomorphism of
fundamental groups. �

Definition 12.2 (Degree of a map): Suppose that f : S1 −→ S1 is a continuous map such that
f(1) = 1, the degree of f is defined to be the degree of the loop

f ◦ η : t 7→ f(exp(±2πit)), 0 ≤ t ≤ 1. (12.5)

Theorem 12.8: For a continuous map f : S1 −→ S1 with f(1) = 1, the degree satisfies the equation

f∗[η] = (deg f)[η] (12.6)

where the group operation on π1(S
1, 1) is viewed additively.

Proof: Since [η] generates π1(S
1, 1), writing the group operation additively, we have

f∗[η] = c[η] (12.6)

We have to show that c = deg f . By definition, f∗[η] = [f ◦ η] which is mapped to deg f by the
isomorphism φ of lemma (12.5). But this isomorphism maps [η] to 1 and hence applying φ to (12.6)
we get the result. �

Theorem 12.9 (The Borsuk Ulam Theorem): Suppose f : Sn −→ Rn is a continuous map.
Then there exists a pair of antipodal points x,−x such that f(x) = f(−x)
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Proof for the case n = 2: We follow the elegant proof given in [17] (p. 109). We first show that any
continuous function g : E2 −→ S1 maps a pair of antipodal points on the boundary of E2 to the same
point. That is there exists z ∈ E2 such that |z| = 1 and g(z) = g(−z). Since E2 is a compact convex
set, by lemma (12.4) we see that any continuous map g : E2 −→ S1 has a continuous lift g̃ : E2 −→ R.
Since the real valued map

θ 7→ g̃(e2πiθ) − g̃(e−2πiθ), 0 ≤ θ ≤ 1,

changes sign we see that there is a pair of antipodal points z,−z ∈ S1 such that g̃(z) = g̃(−z) and
hence g(z) = g(−z). Turning now to a continuous map f : S2 −→ R2, assume f(x) 6= f(−x) for every
x ∈ S2. We construct the continuous function g : E2 −→ S1

g(z) = h(z)/|h(z)|
where

h(x1, x2) = f(x1, x2,
√

1 − x2
1 − x2

2) − f(−x1,−x2,−
√

1 − x2
1 − x2

2), (x1, x2) ∈ E2.

Since |h(z)| = |h(−z)|, we infer that there is no z ∈ E2 satisfying |z| = 1 and g(z) = g(−z) resulting
in a contradiction.

Corollary 12.10: S2 is not homeomorphic to any subset of R2

Proof: The Borsuk Ulam theorem shows that a continuous function S2 −→ R2 cannot be injective.

Theorem 12.11 (Fundamental theorem of algebra): Every non-constant polynomial with com-
plex coefficients has a complex root.

Proof: If the polynomial p(z) = zn + a1z
n−1 + · · · + an has no zeros, then in particular, p(1) 6= 0.

For t 6= 0, we define

p(z/t)tn =
(
zn + a1z

n−1t+ · · · + ant
n
)
.

The right hand side makes sense even when t = 0 and we denote the right hand side by g(z, t). Observe
that g(z, 0) = zn and g(z, 1) = p(z). However we need a homotopy of maps of S1 preserving the base
point 1. To this end we modify it consider instead the map F : S1 × [0, 1] −→ S1 given by

F (z, t) =
g(z, t)

|g(z, t)|
|g(1, t)|
g(1, t)

. (12.7)

Clearly g(z, 0) 6= 0 for any z ∈ S1 and if 0 < t ≤ 1 then again g(z, t) = p(z/t)tn 6= 0. Thus (12.7) is a
base point preserving homotopy between the function f : S1 −→ S1 given by

f(z) =
p(z)

|p(z)|
|p(1)|
p(1)

(12.8)

and the map z 7→ zn. We conclude that degree of f is n. However we have a base point preserving
homotopy between (12.8) and the constant map namely, G : S1 × [0, 1] −→ S1 given by

G(z, s) =
p(sz)

|p(sz)|
|p(s)|
p(s)

.

We now conclude that degree of (12.8) is zero and we have a contradiction.
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Exercises:

1. Formulate and prove the Borsuk Ulam theorem for continuous maps from S1 to the real line.

2. Use the Borsuk Ulam theorem to prove that a pair of homogeneous polynomials of odd degree
in three real variables have a common non-trivial zero.

3. For the following three maps f : S1 −→ S1 compute the induced map f∗ : π1(S
1, 1) −→ π1(S

1, 1).
All three maps preserve the base point 1.

(i) f(z) = zn

(ii) f(z) = z̄.

(iii) f(z) =
z2−z+ 3

2

|z2−z+ 3
2
|
. Hint: Is (z2 − z)t + 3/2 = 0 for any z ∈ S1 and 0 ≤ t ≤ 1?

4. Let X be the union of the sphere S2 and one of its diameters. Use exercise 1 of lecture 8 to
determine a generator for π1(X, x0), where x0 is a point on the sphere.

5. Determine the generators of the group π1(S
1 × S1, (1, 1)). Determine the generators for the

fundamental group of the space X of example 11.3.

6. Compute f∗ : π1(C − {0}, 1) −→ π1(C − {0}, 1) for the function f(z) = zk.
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Lecture XIV (Test - II)

1. Suppose X is a metric space and A is a retract of X. Show that A is closed in X. Is the space
homeomorphic to the letter Y a deformation retract of a space homeomorphic to E2?

2. Show that if X has the fixed point property and A is a retract of X then A also has the fixed
point property.

3. Show that S1 is not homeomorphic to any subset of R. Can S2 be homeomorphic to a subset of
R2?

4. Determine π1(RP 2 − {p}) where p is any point of RP 2. Show that π1(RP 2 − {p}) deformation
retracts to a space homeomorphic to S1. For this purpose you need the following fact:

If η : X −→ Y is a quotient map and Z is locally compact and Hausdorff then η×idZ : X×Z −→
Y × Z is also a quotient map.

5. For the map f : S1 −→ S1 × S1 given by f(z) = (zp, zq), where p and q are positive integers,
find the induced group homomorphism f∗ : Z −→ Z × Z.
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Solutions to Test - II

1. Let r : X −→ A be a retraction. To show that A is closed assume that {an} is a sequence
of points of A converging to a. We have to show that a ∈ A. Since r(an) = an we have, by
continuity, r(a) = a and since r(a) ∈ A we conclude that a ∈ A.

As a concrete representation we take the letter Y to be the union of the three radii of S1

terminating at the cube roots of unity namely

J0 = {t / 0 ≤ t ≤ 1}, J1 = {tω / 0 ≤ t ≤ 1}, J2 = {tω2 / 0 ≤ t ≤ 1}

and A be the sector between J0 and J1. We construct the retraction piece by piece beginning
with A. It is convenient to use Tieze’s extension theorem. First we define the obvious map
λ : [−1, 1] −→ J0 ∪ J1 given by

λ(t) =

{
−tω t ≤ 0
t t ≥ 0

Next, we define g(tω) = −t and g(t) = t for 0 ≤ t ≤ 1. The function g is continuous on the
closed subset J0 ∪ J1 of A and so by Tietze’s theorem extends continuously from A −→ [−1, 1].
Let r = λ ◦ g and we chech that r(z) = z for all z ∈ J0 ∪ J1. Similarly one can define r on the
other two sectors and we have the desired retraction.

2. Suppose r : X −→ A is a retraction and X has the fixed point property. Let g : A −→ A be
continuous. Then i ◦ g ◦ r : X −→ X is continuous where i : A −→ X is the inclusion map. By
the fixed point property of X, there exists p ∈ X such that

i ◦ g ◦ r(p) = p.

But r(p) ∈ A and so g(r(p)) ∈ A and consequently p = i ◦ g ◦ r(p) ∈ A. As a result r(p) = p and
the displayed equation simplifies to g(p) = p.

3. If S1 is homeomorphic to a subset B of R then B is compact and connected and hence B = [a, b]
for some a, b ∈ R and a < b. However removal of a point from (a, b) disconnects [a, b] but S1

minus a point remains connected and hence it is impossible for S1 and B to be homeomorphic.
The second part was a result discussed in the lecture.

4. Recall (theorem (4.5) (iii)) that RP 2 is obtained from E2 by identifying pairs of antipodal points
on the boundary. We take the point p to be the center of the disc E2 and denote X = RP 2−{p}.
Let F : (E2 − {p}) × I −→ S1 be the deformation retraction onto the boundary S1. Let
η : E2 −→ RP 2 and η0 : S1 −→ RP 1 = S1 be the standard quotient maps. We also denote by η
the restriction η : E2 − {p} −→ RP 2 − {p} which is also a quotient map (why?).
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We now have the commutative diagram where G = η0 ◦ F and F is the unique map given by
F (x, t) = η0 ◦ F (x, t):

E2 − {p} × I
G

))RRRRRRRRRRRRRRRR

F
��

η×id
// B

F
��

S1
η0

// D

Since G is continuous and η × id is a quotient map we have the continuity of F and F is the
deformation retraction from X onto S1.

5. Let g denote the generator for π1(S
1, 1) namely g = [γ] where γ is the loop

t 7→ exp(2πit), 0 ≤ t ≤ 1.

Then, by corollary (12.2) the map S1 −→ S1 given by z 7→ zk induces on the fundamental group
the homomorphism Z −→ Z given by

x 7→ kx,

where the group operation on Z is written additively whereas when we regard π1(S
1, 1) as an

abstract group we shall denote the operation multiplicatively. Now,

f∗(g) = [f ◦ γ] = φ−1
(
gp, gq

)
,

where φ denotes the canonical isomorphism of theorem (9.6). The group π1(S
1×S1) is identified

as Z × Z via the isomorphism φ and we see that the map f∗ regarded as a map Z −→ Z × Z is
given by

m 7→ (mp,mq).
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Lecture XV - Covering Projections

The theory of covering projections sets a common stage for the development of diverse branches
of mathematics. In this course we develop the theory of covering projections only to the extent that
is relevant for the computation of the fundamental group. It may be useful for the student to review
the proof that π1(S

1) = Z. In fact one of the paradigms for a covering projection is the map

t 7→ exp(2πit)

wrapping the real line onto the circle.

Definition 15.1: A covering projection is a triple (X̃,X, p) where X̃, X are connected topological
spaces and a continuous map p : X̃ −→ X satisfying the following properties:

(i) The map p is surjective

(ii) Each x ∈ X has a neighborhood U such that the inverse image p−1(U) is a disjoint union of a
collection open subsets {Uα} of X̃.

(iii) Each Uα is mapped onto U homeomorphically by p.

The neighborhood U described in the definition above is called an evenly covered neighborhood of x,
the open sets Uα are referred to as sheets lying above U and for x ∈ X, the subset p−1(x) of X̃ is called
the fiber over x. This terminology will be used frequently. We shall also say that X̃ is a covering space
of X when it is fairly clear what the map p is.

Figure 12: Covering projection

Remark: It is NOT sufficient that each Uα be homeomorphic to U but the homeomorphism must
be given by the restricting p to Uα.
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Examples 15.1: We now present four examples to illustrate the concept of a covering projection.

1. As indicated in the beginning the most basic example is the map ex : R −→ S1 given by

ex(t) = exp(2πit)

For each point z on the circle take an arc U centered at z and of length say π/2. The reader
may check that the inverse image of U under ex is a disjoint union of open intervals on the line.

2. Consider the map T : C − {0} −→ C − {0} given by T (z) = z2. If we pick a point z ∈ C − {0}
and a small disc U centered at z not containing a pair of antipodal points then T−1(U) is a
disjoint union of two open sets each of which is mapped bijectively onto U by T .

3. Consider the map p : C − {±1,±2} −→ C − {±2} given by

p(z) = z3 − 3z

The equation p(z) = w has three distinct roots for each w ∈ C − {±2} and the roots are
continuous functions of w. For a sufficiently small neighborhood U of w, p−1(U) is a disjoint
union of three open sets each of which is mapped onto U homeomorphically onto U by the open
mapping theorem. Several examples of this type related to complex analysis are discussed in [6].

4. Consider the quotient map η : Sn −→ RP n. We show that η is a covering projection. Let U1 be
an open subset of Sn not containing a pair of anti-podal points and

U2 = {−x/x ∈ U1}.

Then, η(U1) = η(U2). Denoting these images by U , we see that η−1(U) = U1 ∪ U2 which is an
open set in Sn and so U is open in RP n. Second, η maps each of U1 and U2 bijectively onto U .
To see that η maps each of U1 and U2 homeomorphically onto U , we merely have to show that
η is an open mapping. So let V1 be an open subset of U1 and V2 = {−x/x ∈ V1}. Then

η−1(η(V1)) = V1 ∪ V2

is open in Sn so that η(V1) is an open subset of RP n. Thus we have shown that η restricted to
each Uj is an open mapping and that suffices for a proof.

We now summarize the most basic properties of covering projections.

Theorem 15.1: Suppose that p : X̃ −→ X is a covering projection. Then

(i) The map p is a local homeomorphism (see exercise 7, lecture 3).

(ii) The function p is an open mapping.

(iii) The fibers p−1(x) are discrete for each x ∈ X.
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Proof: Let x̃ ∈ X̃ be arbitrary and x = p(x̃). Choose an evenly covered neighborhood U of x and
Ũ be a sheet lying over U and containing x̃. Then Ũ is an open set in X̃ containing x̃ that is mapped
by p homeomorphically onto U . Thus p is a local homeomorphism and we have proved (i). Let G̃
be an arbitrary open set in X̃. Then G̃ can be covered by open sets Ũ such that p maps each Ũ
homeomorphically onto an evenly covered open subset U of X (why?). Then G = p(G̃) is the union of
such evenly covered neighborhoods U implying that G is an open set in X. Thus p is an open mapping.
Finally to prove (iii) suppose that z̃ ∈ X̃ is a limit point of p−1(x). Pick an arbitrary evenly covered
neighborhood U of z = p(z̃) and a sheet Ũ lying over U containing z̃. In particular the restriction of
p to the sheet Ũ is injective. But since z̃ is a limit point of p−1(x), this sheet must contain infinitely
many points of p−1(x) which means p restricted to Ũ cannot be injective which is a contradiction.

The lifting problem: Suppose that p : E −→ B is a surjective continuous map between topological
spaces and f : T −→ B is a given continuous map, a lift of f is by definition a continuous map
f̃ : T −→ E such that

p ◦ f̃ = f

The lifting problem involves giving sufficient conditions for the existence of the lift f̃ . The main point
here is of course the continuity of the lift. The significance of the problem can be understood from
complex analysis.

Example 15.2: Consider the exponential map exp : C −→ C− {0} and an open set Ω ⊂ C and the
inclusion map

j : Ω −→ C − {0}.
To say that the inclusion map j has a lift with respect to the exponential map means the existence of
a continuous j̃ : Ω −→ C such that

exp(j̃(z)) = z, for all z ∈ Ω.

In other words the existence of a lift of j is equivalent to the existence of a continuous branch of the
logarithm on Ω. We know from complex variable theory that such a continuous branch need not exist
in general such as for instance the case Ω = C − {0}.

In place of the exponential map we could consider the map S : C − {0} −→ C − {0} given by
S(z) = z2. The problem of lifting the inclusion map of a domain Ω ⊂ C−{0} is then equivalent to the
existence of a continuous branch of the square root function on Ω. We also know from complex analysis
that if the lift exists it need not be unique. Well, if a domain Ω ⊂ C−{0} admits a continuous branch
of the square root then it admits two branches. If it admits a continuous branch of the logarithm
then it admits infinitely many any two of which differ by an integer multiple of 2πi. On a connected
domain, the branch however is uniquely specified by specifying a value at a point of the domain. The
following theorem generalizes this in the context of covering spaces.

Theorem 15.2 (uniqueness of lifts): Suppose p : X̃ −→ X is a covering projection, T is a
connected topological space and f1 : T −→ X̃ and f2 : T −→ X̃ are two lifts of a given continuous
map f : T −→ X such that f1(t0) = f2(t0) for some t0 ∈ T . Then the two lifts agree on T namely,
f1(t) = f2(t) for all t ∈ T .
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Proof: Let G be the subset given by G = {t ∈ T/f1(t) = f2(t)}. The set G is non-empty since
t0 ∈ G. We shall show that G is both open and closed in T from which the result would follow since
T is connected. For t ∈ G pick an evenly covered neighborhood U of

x = p(f1(t)) = p(f2(t)).

and Ũ be the sheet lying over U and containing f1(t) = f2(t). The set

N = f−1
1 (Ũ) ∩ f−1

2 (Ũ)

is open and contains t. If z ∈ N then f1(z) and f2(z) both belong to Ũ and p(f1(z)) = p(f2(z)) = f(z).
But p restricted to Ũ is injective and so f1(z) = f2(z) for all z ∈ N and we conclude that N ⊂ G.
The proof that G is closed is left as an exercise. The student may assume that the spaces involved are
Hausdorff (see exercise 7 of lecture 2).

Exercises:

1. Explain why the map φ : C−{0, 1/2} −→ C−{−1/4} given by φ(z) = z(z−1) is not a covering
projection?

2. Show that the map f : S1 −→ S1 given by f(z) = zk is a covering projection for every k ∈ N.

3. Suppose p : X̃ −→ X is a covering projection and E is a closed subset of X. Is the map

p : X̃ − p−1(E) −→ X − E

a covering projection?

4. Find a discrete subset E of C such that sin : C − E −→ C − {−1, 1} is a covering projection.

5. Suppose that p : X̃ −→ X and q : Ỹ −→ Y are covering projections then the product map
(p, q) : X̃ × Ỹ −→ X × Y given by

(p, q)(z, w) = (p(z), q(w)), z ∈ X̃, w ∈ Ỹ ,

is a covering projection. In particular the plane R2 is a covering space of the torus S1 × S1.

6. Let Y be the infinite grid
Y = {(x, y) ∈ R2/x ∈ Z or y ∈ Z}

is a covering projection of the figure eight loop. Draw the figure eight loop on the torus.

7. Show that the set G in theorem (15.2) is closed without using the Hausdorff assumption on T .
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Lecture XVI - Lifting of paths and homotopies

In the last lecture we discussed the lifting problem and proved that the lift if it exists is uniquely
determined by its value at one point. In this lecture we shall prove the important result that covering
projections enjoy the path lifting and covering homotopy properties. This theorem is fundamental in
the the theory of covering projections and will be used in the next lecture to define an action of the
fundamental group on the fibers.

Theorem 16.1 (path lifting lemma): Let p : X̃ −→ X be a covering projection and γ : [0, 1] −→
X be a path such that for some x0 ∈ X and x̃0 ∈ X̃,

γ(0) = x0 = p(x̃0). (16.1)

Then there exists a unique path γ̃ : [0, 1] −→ X̃ such that

p ◦ γ̃ = γ, γ̃(0) = x̃0 (16.2)

Thus each path in X lifts to a unique path in X̃ with a prescribed initial point in p−1(γ(0)).

Proof: Let O be the open cover of X by evenly covered open sets and γ−1(O) be the family

γ−1(O) = {γ−1(G)/G ∈ O}

of open sets covering [0, 1]. There is a Lebesgue number η for this cover and we choose n to be a
natural number such that 1/n < η. Consider the partition

{
0,

1

n
,
2

n
, . . . ,

n− 1

n

}
.

For each j = 1, 2, . . . , n, the piece γ([ j−1
n
, j
n
]) lies in an evenly covered open set in X. In particular if γ0

denotes the restriction of γ to [0, 1/n] then the image of γ0 lies in an open set G0 ∈ O. The conditions
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(16.1)-(16.2) say that there is a sheet G̃0 lying over G0 and containing the point x̃0. Let p0 denote the
restriction of p to the sheet G̃0 and q−1

0 be its inverse. On the sub-interval [0, 1/n], we define

γ̃0 = q0 ◦ γ0

thereby obtaining an initial piece of the desired lift γ̃. We shall construct the lift γ̃ piece by piece
defining it on each subinterval of the partition of [0, 1]. In what follows γj denotes the restriction of γ
to the sub-interval [ j

n
, j+1

n
]. Assume inductively that

γ̃j : [
j

n
,
j + 1

n
] −→ X̃

has been defined such that

p ◦ γ̃j = γj

γ̃j(j/n) = γ̃j−1(j/n), in case j ≥ 1.

γ̃0(0) = x̃0

For the inductive step we set up the notations for the endpoints of the lift γ̃j namely, let

γj

(j + 1

n

)
= xj+1, γ̃j

(j + 1

n

)
= x̃j+1, p(x̃j+1) = xj+1.

Let Gj+1 ∈ O be an evenly covered neighborhood containing xj+1 such that γ maps [ j+1
n
, j+2

n
] into

Gj+1 and G̃j+1 be the sheet lying over Gj+1 containing the point x̃j+1. The restriction of p to G̃j+1 is
a homeomorphism with inverse qj+1 say, so that qj+1(xj+1) = x̃j+1. We set

γ̃j+1 = qj+1 ◦ γj+1

Then γ̃j+1 is continuous, p ◦ γ̃j+1 = γj+1 and

γ̃j+1

(j + 1

n

)
= qj+1(xj+1) = x̃j+1 = γ̃j

(j + 1

n

)

By gluing lemma, the pieces γ̃j may be glued together to yield a continuous function γ̃ : [0, 1] −→ X̃
such that

p ◦ γ̃ = γ, γ̃(0) = x̃0.

The proof is complete. The uniqueness has been already proved in general.

Lifting of homotopies: We now examine what happens when we lift homotopic paths with the lifts
having the same initial points.

Theorem 16.2 (Covering homotopy property): Let p : X̃ −→ X be a covering projection and
x̃0 ∈ X̃, x0 ∈ X be chosen base points such that p(x̃0) = x0. Let γ1, γ2 be two curves in X starting at
x0 and having the same terminal points and F : [0, 1] × [0, 1] −→ X be a homotopy between γ1 and
γ2. There is a unique lift F̃ : [0, 1]× [0, 1] −→ X̃ of F such that F̃ (0, 0) = x̃0. In particular the unique
lifts of γ1 and γ2 starting at x̃0 have the same terminal points.
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Proof: The idea behind the proof is simple and parallels the proof of the previous theorem except
that the book-keeping gets a bit more involved. Consider a covering O of X by evenly covered open
neighborhoods and choose a Lebesgue number ε for the covering

{F−1(U)/U ∈ O}. (16.3)

Choose n so large that any square in [0, 1] × [0, 1] of side 1/n is contained in one of the sets F −1(U)
in (16.3). Partition [0, 1] × [0, 1] using the grid points

{( j
n
,
k

n

)
/0 ≤ j ≤ n, 0 ≤ k ≤ n

}

and Sj,k be the square with vertices

( j
n
,
k

n

)
,

(j + 1

n
,
k

n

)
,

(j + 1

n
,
k + 1

n

)
,

( j
n
,
k + 1

n

)
.

Let U0,0 be an evenly covered neighborhood in X such that F (S0,0) ⊂ U0,0 and Ũ0,0 be the sheet in

Figure 13: Homotopy lifting property

X̃ lying above U0,0. Denoting by p0,0 and F0,0 the restrictions of p and F to Ũ0,0 and S0,0 respectively,
define

F̃0,0 = p−1
0,0 ◦ F.

Thus F̃0,0 : S0,0 −→ X̃ is continuous, takes the value x̃0 at the origin and is a part of the lift F̃ under
construction. As in the previous theorem we shall construct the lift F̃ piece by piece and we now turn
to the adjacent square S1,0 which is mapped by F to an evenly covered neighborhood U1,0 in the cover
O. In particular (referring to the figure) F (B) ∈ U1,0. Choose a sheet Ũ1,0 lying above U1,0 containing
F̃ (B) and the restriction

p1,0 = p
∣∣∣
Ũ1,0
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maps Ũ1,0 homeomorphically onto U1,0. Now we define the next piece of the lift F̃1,0 as

F̃1,0 = p−1
1,0 ◦ F

which is continuous on the square S1,0 and

p ◦ F̃1,0 = F
∣∣∣
S1,0

In order to glue together the pieces F̃0,0 and F̃1,0 we must ensure that they agree all along the common
edge BC of the adjacent squares S0,0 and S1,0. Their restrictions alongBC where t = 0 and 0 ≤ s ≤ 1/n
agree at B namely

F̃0,0(0,
1

n
) = F̃1,0(0,

1

n
)

and are both lifts of the map

s 7→ F (s,
1

n
), 0 ≤ s ≤ 1

n

which implies, by uniqueness of lifts,

F̃0,0(s,
1

n
) = F̃1,0(s,

1

n
), 0 ≤ s ≤ 1

n
,

as desired. It is now clear how the construction ought to proceed and we get a lift F̃ : [0, 1]×[0, 1] −→ X̃
of F .

We now have to check that F̃ is indeed a homotopy of paths with fixed endpoints. Well,

p ◦ F̃ (s, 0) = F (s, 0) = x0, for all s ∈ [0, 1]

so that the connected set
{F̃ (s, 0)/0 ≤ s ≤ 1}

is contained in the discrete set p−1(x0) and so must reduce to a singleton. Likewise F̃ (s, 1) is constant
as s varies over [0, 1]. Also p ◦ F̃ (0, t) = F (0, t) = γ1(t) and p ◦ F̃ (1, t) = F (1, t) = γ2(t) showing that
F̃ is the desired homotopy between the lifts of γ1 and γ2 starting at x̃0. �

Theorem 16.3: Given a covering projection p : X̃ −→ X, for any x0 ∈ X and x̃0 ∈ X̃ the induced
group homomorphism

p∗ : π1(X̃, x̃0) −→ π1(X, x0)

is injective.

Proof: Let γ̃ be a loop in X̃ based at x̃0 that represents an element of ker p∗. This means the loop
γ = p ◦ γ̃ is homotopic to the constant loop in X based at x0. But the constant loop εx0 at x0 lifts
as the constant loop εx̃0 at x̃0 ∈ X̃. By the covering homotopy theorem we conclude that γ̃ and the
constant loop εx̃0 are homotopic. That is to say [γ̃] is the trivial element in π1(X̃, x̃0). �

Remark: The above theorem enables us to identify π1(X̃, x̃0) as a subgroup of π1(X, x0).
We shall now discuss another important consequence of the path lifting property.
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Theorem 16.4: Given a covering projection p : X̃ −→ X where X and X̃ are path-connected, for
any points x1, x2 ∈ X the fibers p−1(x1) and p−1(x2) have the same cardinality.

Proof: We shall construct injective maps from p−1(x1) into p−1(x2) and vice versa. Fix a path γ
in X joining x1 and x2. Pick x̃1 ∈ p−1(x1) and let γ̃ be the lift of γ starting at x̃1 and define a map
T : p−1(x1) −→ p−1(x2) by the prescription

T : x̃1 7→ γ̃(1).

Likewise let S : p−1(x2) −→ p−1(x1) be the map in the reverse direction constructed using the path
γ−1. Since the inverse path γ̃−1 is the unique lift of γ−1 starting at γ̃(1), we see that

S(γ̃(1)) = γ̃(0) = x̃1,

whereby we conclude S ◦T is the identity map on p−1(x1). By symmetry T ◦ S is the identity map on
p−1(x2) as desired. �

Exercises

1. Use the general results of this section to give an efficient and transparent proof that π1(S
1, 1) = Z.

First show that for any loop γ based at 1, the map π1(S
1, 1) −→ Z given by [γ] 7→ γ̃(1) is

well defined by theorem 16.1, is a group homomorphism using uniqueness of lifts. Show that
surjectivity follows from uniqueness of lifts and injectivity follows from theorem 16.1.

2. Let X be a topological spaces and a, b ∈ X. A simple chain connecting a and b is a finite sequence
U1, U2, . . . , Un of open sets such that a ∈ U1, b ∈ Un and for 1 ≤ i < j ≤ n, Ui ∩ Uj 6= ∅ implies
j = i+ 1. Show that if X is a connected metric space and U is an open covering of X then any

Figure 14: Chain connectedness

two points a, b ∈ X can be connected by a simple chain. This property is referred to as chain
connectedness. Is Q chain connected?
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3. Use the above exercise to show that if X is a chain-connected space and p : X̃ −→ X is a
covering projection then for any pair of points x, y ∈ X the fibers p−1(x) and p−1(y) have the
same cardinality. The point here is that X need not be path connected and the idea of using a
path joining x and y as was done in the proof of theorem 14.4 is no longer available.

4. A toral knot is a group homomorphism κ : S1 −→ S1×S1 given by z 7→ (zm, zn) where m,n ∈ N.
Regarding the toral knot as a loop on the torus determine its lifts with respect to the covering
projection R × R −→ S1 × S1.

5. For the group homomorphism κ of the previous exercise describe the induced map κ∗.
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Lecture XVII - Action of π1(X, x0) on the fibers p−1(x0)

Given a covering projection p : X̃ −→ X, the lifting lemma would imply that the fundamental
group of the base space X acts naturally on the fibers p−1(x0) (x0 ∈ X). We define this action and
examine its basic properties such as its transitivity. The action provides a great deal of information
about the fundamental group π1(X, x0) and this is the primary application of the theory of covering
spaces in this course.

Definition 17.1: Let p : X̃ −→ X be a covering projection and x0 ∈ X be a given point. For
a loop γ in X based at x0, define the right-action of π1(X, x0) on the fiber p−1(x0) as follows. For
x̃1 ∈ p−1(x0),

x̃1 · [γ] = γ̃(1), (17.1)

where γ̃ is the unique lift of γ starting at x̃1.

Theorem 17.1: The prescription (17.1) defines a right action of the fundamental group π1(X, x0)
on the fiber p−1(x0).

Proof: We first show that the action is well-defined. That is to say if γ1 and γ2 are homotopic loops
based at x0 then for x̃ ∈ p−1(x0)

γ̃1(1) = γ̃2(1),

where γ̃1 and γ̃2 are lifts of γ1 and γ2 starting at x̃. Well, if F is the homotopy between γ1 and γ2 then
F has a unique lift F̃ satisfying F̃ (0, 0) = x̃. In other words, F̃ : [0, 1] × [0, 1] −→ X̃ is the unique
continuous map such that

p ◦ F̃ = F, F̃ (0, 0) = x̃

In particular the image set {F̃ (s, 1)} as s runs through [0, 1], must be a connected subset of X̃. But
since F is a homotopy of loops based at x0,

F (s, 1) = p ◦ F̃ (s, 1) = x0, for all s ∈ [0, 1].

Hence {F̃ (s, 1)/s ∈ [0, 1]} ⊂ p−1(x0) which means {F̃ (s, 1)/s ∈ [0, 1]} is a singleton since p−1(x0) is
discrete. In particular,

F̃ (0, 1) = F̃ (1, 1), that is, γ̃1(1) = γ̃2(1).

Next, we show that (15.1) defines a right group action. First let us note that if x̃1, x̃2 and x̃3 are
three points in p−1(x0) and γ̃1 and γ̃2 is a pair of paths joining x̃1 to x̃2 and x̃2 to x̃3 respectively then

p ◦ (γ̃1 ∗ γ̃2) = (p ◦ γ̃1) ∗ (p ◦ γ̃2).
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Now let γ1 and γ2 be two loops in X based at x0. Assume that γ̃1 is the unique lift of γ1 starting at x̃1

and γ̃2 is the unique lift of γ2 starting at the point x̃2 = γ̃1(1) then the juxtaposition γ̃1 ∗ γ̃2 is defined
and is the unique lift of γ1 ∗ γ2 starting at x̃1. Thus,

x̃1 · ([γ1][γ2]) = x̃1 · [γ1 ∗ γ2] = γ̃1 ∗ γ̃2(1) = γ̃2(1)

On the other hand,
γ̃2(1) = x̃2 · [γ2] = (x̃1 · [γ1]) · [γ2].

Note that if we had tried to operate from the left we would instead get an anti-action. This is one of
the instances where it is important to have the book-keeping done correctly from the very outset.

Finally the constant loop εx0 at x0 lifts as the constant loop starting at x̃1 ∈ p−1(x0) and so (17.1)
implies

x̃1 · [εx0] = x̃1, x̃1 ∈ p−1(x0).

We now examine the issues related to this group action namely, its transitivity and the stabilizer
subgroups of various points of p−1(x0).

Theorem 17.2: (i) The group action defined in theorem (17.1) is transitive.
(ii) For x0 ∈ X and each x̃ ∈ p−1(x0), the stabilizer of x̃ is the subgroup p∗(π1(X̃, x̃)).
(iii) The family {p∗(π1(X̃, x̃))/x̃ ∈ p−1(x0)} forms a complete conjugacy class of subgroups of

π1(X, x0).
(iv) |p−1(x0)| = [π1(X, x0) : p∗(π1(X̃, x̃0))]

Proofs: Statement (iv) follows from (ii). Assertion (iii) is a general fact about transitive group
actions. To prove that the group action is transitive, let x̃1 and x̃2 be two points in the fiber p−1(x0)
and γ̃ be a path in X̃ joining x̃1 and x̃2. The image path γ = p ◦ γ̃ is then a loop in X based at x0

and so represents an element of π1(X, x0). Also γ̃ being the lift of γ starting at x̃1, we see that

x̃1 · [γ] = γ̃(1) = x̃2.

Turning now to the proof of (ii), let x̃0 ∈ p−1(x0) and γ be an arbitrary loop in X based at x0. Then
[γ] belongs to the stabilizer of x̃0 if and only if its lift starting at x̃0 terminates at the same point x̃0.
That is if and only if γ lifts as a loop based at x̃0. But this is equivalent to saying [γ̃] ∈ π1(X̃, x̃0)
and γ = p∗[γ̃]. Conversely if [γ] ∈ π1(X, x0) is the image under p∗ of [γ̃] ∈ π1(X̃, x̃0) then γ̃ is a loop
homotopic to a lift of γ starting at x̃0. But any two such lifts have the same terminal point which
means

x̃0 · [γ] = γ̃(1) = x̃0.

That is to say [γ] belongs to the stabilizer of x̃0 and that completes the proof.

Corollary 17.3: The fundamental group of RP n (n ≥ 2) is the cyclic group of order two.

Proof: We know that the fundamental group of Sn is the trivial group and the standard quotient
map η : Sn −→ RP n is a covering projection. So from (iv) of the preceding theorem we get

|η−1(x0)| = 2 = [π1(RP
n, x0) : η∗(π1(S

n, x̃0))]

From which follows that
|π1(RP

n, x0)| = 2

and that completes the proof.
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Regular coverings: These are coverings that exhibit symmetry. The precise meaning will be clari-
fied in theorem (19.4) below and theorem (19.2) in lecture 19.

Theorem 17.4: For a covering projection p : X̃ −→ X with path connected X and X̃ the following
are equivalent:

(i) The subgroup p∗(π1(X̃, x̃0)) is a normal subgroup of π1(X, x0), where p(x̃0) = x0.

(ii) For any loop in X based at x0, either all its lifts are closed loops or none of the lifts is closed.

Proof: We begin with the observation that the condition spelled out in (i) is independent of the
choice of x0 and also independent of the choice of x̃0 ∈ p−1(x0). Well, changing the element x̃0 in the
fiber would give a conjugate subgroup but the normality hypothesis says that the conjugacy class of
the subgroup p∗(π1(X̃, x̃0)) is a singleton. Second, a group isomorphism must take a normal subgroup
to a normal subgroup and so the condition (i) does not depend on the choice of the base point x0.

Proof that (i) implies (ii). Suppose that p∗(π1(X̃, x̃0)) is a normal subgroup of π1(X, x0) and
γ is an arbitrary loop in X based at x0. Let γ̃1 and γ̃2 be two lifts of γ with initial points x̃1, x̃2 such
that γ̃1 a closed loop. Then

x̃1 · [γ] = x̃1

which means [γ] is in the stabilizer of x̃1 and hence, by (iii) of theorem (17.2), [γ] belongs to the
stabilizer of x̃2. Thus

x̃2 · [γ] = γ̃2(1) = x̃2

and we see that γ̃2 is also closed.
Proof that (ii) implies (i). If p∗(π1(X̃, x̃0)) is not a normal subgroup of π1(X, x0) then it has

at least two distinct conjugates which, by virtue of theorem (17.2), must be the stabilizers of say
x̃1, x̃2 ∈ p−1(x0). Thus there exists [γ] ∈ p∗(π1(X̃, x̃1)) = Stab x̃1 but [γ] /∈ p∗(π1(X̃, x̃2)) = Stab x̃2.
In other words

x̃1 · [γ] = γ̃1(1) = x̃1, x̃2 · [γ] = γ̃2(1) 6= x̃2,

where γ̃1 and γ̃2 are the lifts of γ starting at x̃1 and x̃2 respectively. Thus the lift γ̃1 of γ is closed
whereas the lift γ̃2 is not closed.

Definition 17.2: A covering projection p : X̃ −→ X with path connected X and X̃ is said to be
regular if it satisfies one of the equivalent conditions stated in theorem (15.4).

Corollary 17.5: If π1(X, x0) is abelian then every covering of X is regular.
To construct an example of a non-regular covering we need a space with non-abelian fundamental

group. We shall see an example in lecture 19 (exercise 3).

Exercises

1. Describe a path in Sn whose image under the standard map represents the generator of π1(RP n, x0).
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2. Let C0 be the unit circle in the complex plane and ω1, ω2, . . . , ωn denote the n−th roots of unity
and at each of these a circle Cj of small radius touches the unit circle externally. Construct a
continuous map p from the union of these n + 1 circles onto the figure eight loop such that p is
a regular covering. Hint: Take one lobe of the figure eight to be the unit circle C0 and define
p(z) = zn for z ∈ C0. Let L be the other lobe of figure eight touching the lobe C0 at say the
point 1. For each j let pj : Cj −→ L be any homeomorphism such that pj(ωj) = 1. Use gluing
lemma to glue these maps to obtain the desired covering.

Figure 15: Covering of the figure eight loop

3. For the covering projection of the preceding exercise determine the action of the fundamen-
tal group of the base on a fiber assuming that the loops C0 and L (based at 1) generate the
fundamental group.

4. Consider the covering projection of exercise 6, lecture 15. Show by studying the lifts of various
loops based at (1, 1) that the covering is regular. We shall see another proof of regularity of this
covering in lecture 19.

5. For the covering considered in the preceding exercise, determine the lifts of the loops

γ1 : t 7→ 1 − exp(2πit), γ2 : t 7→ −1 + exp(2πit).

Find the lift of γ1 ∗ γ2 ∗ γ−1
1 ∗ γ−1

2 and deduce that the fundamental group of the figure eight
space is non-abelian.

6. Show that the figure eight loop (S1 × {1}) ∪ ({1} × S1) is not a retract of the torus S1 × S1.
Show that the figure eight loop is a deformation retract of the torus minus a point.
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Lecture XVIII - The lifting criterion

We have already discussed the lifting problem and examined its significance in the light of complex
analysis. We have seen in connection with the exponential map/squaring map that the existence of a
lift of the inclusion map of a domain Ω into C−{0} is equivalent to the existence of a continuous branch
of the logarithm/square-root function on Ω. Thus it is desirable to have a necessary and sufficient
condition for the existence of lifts. We prove one such theorem in this lecture which provides an elegant
necessary and sufficient condition.

Theorem 18.1: Let X and Y be connected locally path connected spaces, p : (X̃, x̃0) −→ (X, x0) is
a covering projection and f : (Y, y0) −→ (X, x0) is a continuous function. A lift f̃ : Y −→ X̃ satisfying
f̃(y0) = x̃0 exists if and only if

f∗(π1(Y, y0)) ⊂ p∗(π1(X̃, x̃0)). (18.1)

In particular, if Y is simply connected, that is if π1(Y, y0) is trivial, then (18.1) holds and the lift
f̃ : Y −→ X̃ satisfying f̃(y0) = x̃0 exists.

Proof: To prove that the condition (18.1) is necessary, let us assume that a the lift exists. Then
p ◦ f̃ = f and p∗ ◦ f̃∗ = f∗ whereby,

f∗(π1(Y, y0)) = p∗

(
f̃∗(π1(Y, y0))

)
⊂ p∗(π1(X̃, x̃0)).

We now turn to the proof of sufficiency of (18.1). To construct the lift f̃ let y ∈ Y and γ be a path in
Y joining y0 and y. Take the lift of f ◦ γ : [0, 1] −→ X starting at x̃0 and we declare

f̃(y) = f̃ ◦ γ(1).

To show that the function f̃ is well-defined, take two paths γ1 and γ2 joining y0 and y in Y and form
the closed loop γ1 ∗ γ−1

2 at y0. Then f ◦ (γ1 ∗ γ−1
2 ) is a loop in X based at x0 and so

[f ◦ (γ1 ∗ γ−1
2 )] ∈ f∗(π1(Y, y0)) ⊂ p∗(π1(X̃, x̃0)).

Choose a loop σ in X̃ based at x̃0 such that p∗([σ]) = [f ◦ (γ1 ∗ γ−1
2 )]. In other words, the loop

(f ◦γ1)∗(f ◦γ−1
2 ) is homotopic to p◦σ. By the covering homotopy lemma, The lift of (f ◦γ1)∗(f ◦γ−1

2 )
starting at x̃0 which will be denoted by τ , is homotopic to σ. As a result, τ is also closed loop at x̃0.

Let f̃ ◦ γ1 be the lift of f ◦ γ1 starting at x̃0 and f̃ ◦ γ−1
2 be the lift of f ◦ γ−1

2 starting at the terminal

point f̃ ◦ γ1(1). Observe that

τ(t) =

{
f̃ ◦ γ1(2t) 0 ≤ t ≤ 1/2

f̃ ◦ γ−1
2 (2t− 1) 1/2 ≤ t ≤ 1
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We now look at the projection of the two paths τ(s/2) and τ
(

2−s
2

)
(0 ≤ s ≤ 1):

p ◦ τ(s/2) = f ◦ γ1(s), 0 ≤ s ≤ 1

and

p ◦ τ
(2 − s

2

)
= f ◦ γ2(s), 0 ≤ s ≤ 1.

The paths τ(s/2) and τ
(

2−s
2

)
(0 ≤ s ≤ 1) are thus lifts of f ◦ γ1 and f ◦ γ2, both starting at x̃0 since

τ is a closed loop. Hence

f̃ ◦ γ1(1) = τ(1/2) = f̃ ◦ γ2(1)

proving that f̃(y) is well-defined.

Continuity of the lift f̃ : Let y ∈ Y be arbitrary, and let f(y) = x and f̃(y) = x̃. Choose an evenly
covered neighborhood U of x and Ũ be the sheet containing x̃ lying above U . By continuity of f we
obtain a neighborhood V of y in Y such that f(V ) ⊂ U and hence f̃(V ) ⊂ p−1(U) (since p ◦ f̃ = f).

Now if we assume that f̃ maps the neighborhood V into Ũ , then the following would be valid:

f̃ =
(
p
∣∣∣
Ũ

)−1

◦ f, (18.2)

which would prove the continuity of f̃ . To prove that f̃(V ) ⊂ Ũ , we shall assume that the neighbor-
hoods U , V and Ũ are path connected and invoke the construction of f̃ . Choose a path γ in Y joining
y0 and y and for each z ∈ V pick a path η joining y and z and then we get the path γ ∗ η joining y0

and z. Lift f ◦ γ and f ◦ η to paths in X̃ starting at x̃0 and f̃ ◦ γ(1) respectively. Since f ◦ η lies in
U , its lift must lie entirely in Ũ and hence

f̃(z) = ˜f ◦ (γ ∗ η)(1) = f̃ ◦ η(1) ∈ Ũ .

Theorem 18.2 (Uniqueness of simply connected covers): Suppose that p1 : (X̃1, x̃1) −→
(X, x0) and p2 : (X̃2, x̃2) −→ (X, x0) are covering projections such that both X̃1 and X̃2 are simply
connected and locally path connected. Then there is a homeomorphism ψ : X̃1 −→ X̃2 such that

p2 ◦ ψ = p1. INSERTDIAGRAM

Proof: Since X̃1 is simply connected the map p1 has a lift φ1 : X̃1 −→ X̃2 with respect to the
covering projection p2 : X̃2 −→ X, such that φ1(x̃1) = x̃2. Likewise there exists a lift φ2 : X̃2 −→ X̃1

of the map p2 with respect to the covering p1 : X̃1 −→ X, such that φ2(x̃2) = x̃1. From p1 ◦ φ2 = p2

and p2 ◦ φ1 = p1 follows p1 ◦ (φ2 ◦ φ1) = p1 and (φ2 ◦ φ1)(x̃1) = x̃1. Thus, the identity map on X̃1 and
φ2 ◦ φ1 : X̃1 −→ X̃1 are both lifts of p1 : X̃1 −→ X with respect to itself. By uniqueness of lifts we
conclude that φ2 ◦ φ1 is the identity map on X̃1. Likewise φ1 ◦ φ2 is the identity map on X̃2. �

Example 18.1 (Some applications to complex analysis): (i) Let Ω be a simply connected open
subset of C − {0} and j : Ω −→ C − {0} be the inclusion and exp : C −→ C − {0} be the exponential
map. Then p is a covering projection with respect to which j has a lift j̃ : Ω −→ C which means

exp(j̃(z)) = z, z ∈ Ω (18.3)
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Thus there is a continuous branch of the logarithm on any simply connected open subset of C − {0}.
In the exercises the student is asked to show that any continuous lift is holomorphic.

(ii) Consider the map S : C − {0} −→ C − {0} given by S(z) = z2. Let Ω = C − [0, 1/2] and
f : Ω −→ C − {0} be given by

f(z) = z(2z − 1). (16.4)

Let us determine the induced map f∗ : π1(Ω, 1) −→ π1(C − {0}, 1). The group π1(Ω, 1) is the infinite
cyclic group generated by the homotopy class of the loop γ(t) = exp(2πit). Since C − {0} is a
topological group under multiplication of complex numbers, we may apply corollary (12.2) to get

[f ◦ γ(t)] = [γ(t)] + [2γ(t) − 1]. (18.5)

The additive notation is used for the infinite cyclic group. The last equation may be rewritten as

[f ◦ γ(t)] = [γ(t)] +
[
γ(t)

(
2 − 1

γ(t)

)]
= 2[γ(t)] +

[
2 − 1

γ(t)

]
= 2, (18.6)

since |γ(t)| = 1 and the loop
(
2 − 1

γ(t)

)
can be contracted to the constant loop in C − {0}. Hence

f∗(π1(C − [0, 1/2], 1) = 2Z = S∗(C − {0}, 1). (18.7)

The lifting criterion holds and f has a unique lift f̃ such that f̃(1) = 1. This lift is the continuous
branch of

√
z(2z − 1) defined on Ω. In exercise 3, the student is asked to show that the lift f̃ is

holomorphic. Note that the space Ω is not simply connected.
The next example is Picard’s theorem which is a corollary of the following highly non-trivial result.

Theorem 16.3: The open unit disc is a covering space for the plane with two points removed.

Theorem 16.4 (The Little Picard Theorem): An entire function that misses two or more points
is a constant.

Proof: Suppose an entire function f misses two points p and q. The map f : C −→ C − {p, q} lifts
to a map f̃ : C −→ {z ∈ C/|z| < 1}. As before the lift is holomorphic and hence is an entire function
taking its values in the unit disc. By Liouville’s theorem, f̃ is constant and so must f .

Exercises:

1. For the map S in example (18.3) show that S∗ is the map Z −→ Z given by x 7→ 2x.

2. Suppose G is a path connected topological group with unit element e and p : G̃ −→ G is a
covering map. For any choice of ẽ ∈ p−1(e) show that there is a group operation on G̃ with unit
element ẽ that makes G̃ into a topological group and p is a continuous group homomorphism.

3. Show that if Ω is an open subset of C − {0} on which a continuous branch of the logarithm
exists then this branch is automatically holomorphic. Likewise show that the continuous branch
of

√
z(2z − 1) on C − [0, 1/2] obtained in the lecture is holomorphic.

4. Use the fact that Sn−1 is not a retract of Sn to prove that RP n−1 is not a retract of RP n.

5. Show that any continuous map Sn −→ S1 is homotopic to the constant map if n ≥ 2. What
about maps from the projective spaces RP n −→ S1 (n ≥ 2)?
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Lecture XIX - Deck Transformations

Given a covering projection p : X̃ −→ X, the deck transformations are, roughly speaking, the
symmetries of the covering space. Thus it should not come as a surprise that they play a crucial part
in the theory of covering spaces. In this lecture all spaces are assumed to be connected and locally
path connected.

Definition 19.1 (Deck transformations): Let p : X̃ −→ X be a covering projection. A deck

transformation is a homeomorphism φ : X̃ −→ X̃ such that p ◦ φ = p, that is to say φ is a lift of p.

Examples 19.1: (i) For the covering space ex : R −→ S1 given by ex(t) = exp(2πit) the deck
transformations are the maps

Tn : R −→ R, Tn(x) = x+ n, n ∈ Z

(ii) For the two sheeted covering p : Sn −→ RP n the deck transformations are the identity map
and the antipodal map.

The following theorem summarizes the most basic properties of the group of deck transformations.

Theorem 19.1: Let p : X̃ −→ X be a covering projection and φ be a deck transformation. Then
(i) φ is uniquely determined by its value at one point of X̃
(ii) φ(x̃0) ∈ p−1(x0) whenever x̃0 ∈ x0.
(iii) If φ(x̃1) = x̃2, where x̃1, x̃2 ∈ p−1(x0) then

p∗π1(X̃, x̃1) = p∗π1(X̃, x̃2) (19.1)

(iv) Conversely if (1) holds then there exists a unique deck transformation φ such that φ(x̃1) = x̃2

Proof: Statement (i) follows from the uniqueness of lifts. Statement (ii) follows immediately from
the definition. To prove (iii) apply the lifting criterion (necessity) to both φ and φ−1. To prove (iv)

apply lifting criterion (sufficiency) to get continuous functions φ : X̃ −→ X̃ and ψ : X̃ −→ X̃ such
that

p ◦ φ = p, φ(x̃1) = x̃2; p ◦ ψ = p, ψ(x̃2) = x̃1.

Then φ ◦ ψ and ψ ◦ φ are both lifts of the map p : X̃ −→ X such that

φ ◦ ψ(x̃2) = x̃2, ψ ◦ φ(x̃1) = x̃1

The identity map on X̃ is also a lift of p with these initial conditions. By uniqueness, we see that
both φ ◦ψ and ψ ◦ φ must be the identity map on X̃ proving that φ and ψ are homeomorphisms. The
uniqueness clause follows from the uniqueness of lifts. �
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Remark: If φ : X̃ −→ X̃ is a continuous map such that p ◦φ = p, then prove that φ is a homeomor-
phism in the following cases:

(i) π1(X̃) is a finite group (ii) p∗π1(X̃, x̃0) has finite index in π1(X, x0) (iii) X̃ is a regular cover of
X. Is this true in general? The point is that if H is a subgroup of G and gHg−1 ⊂ H then it follows
gHg−1 = H in case H is finite or has finite index or is normal.

Definition 19.2: The set of deck transformations of a covering projection p : X̃ −→ X forms a
group under composition of maps denoted by Deck(X̃,X).

Action of Deck(X̃,X) on the fibers p−1(x0): We fix a base point x0 ∈ X. Since each deck
transformation is a bijection, it is a permutation of the fiber p−1(x0) and so acts on p−1(x0) as a group
of permutations:

(φ, x̃0) 7→ φ(x̃0)

We study this action closely and relate it to the action of π1(X, x0) on the fiber p−1(x0). We first look
at the case of regular coverings

Theorem 19.2: The covering p : X̃ −→ X is a regular covering if and only if the action of
Deck(X̃,X) is transitive on p−1(x0).

Proof: Let x̃1 and x̃2 be two arbitrary points of p−1(x0). The action of Deck(X̃,X) is transitive on

p−1(x0) if and only if there is a φ ∈Deck(X̃,X) carrying x̃1 to x̃2, which is the case if and only if (19.1)
holds. This in turn implies that the conjugacy class

{
p∗π1(X̃, x̃0) : x̃0 ∈ p−1(x0)

}

reduces to a singleton and conversely, in other words, if and only if the covering is regular. �

We now relate the (perhaps intransitive) action of Deck(X̃,X) on p−1(x0) with the transitive action

of π1(X, x0) on p−1(x0). Pick φ ∈ Deck(X̃,X) and φ(x̃1) = x̃2. Then on the one hand (19.1) must

hold while since p∗π1(X̃, x̃1) = stab x̃1 (for the action of π1(X, x0)), we have on the other hand

stab x̃1 = stab x̃2 = g(stab x̃1)g
−1, (19.2)

for some g ∈ π1(X, x0). In fact (19.2) states that g belongs to the normalizer

N(stab x̃1) = N(p∗(π1(X̃, x̃1)) ⊂ π1(X, x0).

This suggests that we must relate φ to the element g ∈ N(p∗(π1(X̃, x̃1)). However since there may be
several such elements g it is expedient to define the map in the opposite direction.

Let g ∈ N(p∗(π1(X̃, x̃1)) ⊂ π1(X, x0) and x̃1 ·g = x̃2. Then (19.1) holds since g is in the normalizer

of stab x̃1. There is a unique φg ∈ Deck(X̃,X) such that φg(x̃1) = x̃2 = x̃1 · g. The map

ψ : N(p∗(π1(X̃, x̃1)) −→ Deck(X̃,X), g 7→ φg (19.3)

is a homomorphism. To see that it is surjective, let φ ∈ Deck(X̃,X). There is a g ∈ π1(X, x0) such
that

x̃1 · g = φ(x̃1)
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then stab x̃1 and stab φ(x̃1) are conjugate by g but they are also equal by (iii) of Theorem (19.1),

whereby we conclude g is in the normalizer N(p∗(π1(X̃, x̃1)) and φ = φg. To determine the kernel of
ψ, observe that φg = id if and only if

φg(x̃1) = x̃1 · g
that is, if and only if g ∈ stab x̃1. But stab x̃1 = p∗(π1(X̃, x̃1)). Summarizing these observations,

Theorem 19.3: We the group isomorphism

Deck(X̃,X) ∼= N(p∗(π1(X̃, x̃1))/p∗(π1(X̃, x̃1)). (19.4)

Corollary 19.4: If p : X̃ −→ X is a regular covering then

Deck(X̃,X) ∼= π1(X, x0)/p∗(π1(X̃, x̃1)). (19.5)

Corollary 19.5: If X̃ is a simply connected covering of X then

Deck(X̃,X) ∼= π1(X, x0). (19.6)

Corollary 19.6: π1(S
1) ∼= Z and π1(RP n) ∼= Z2

Existence of a simply connected covering space: Despite being an important theme, we shall
not discuss this in any detail in this elementary course but make a few remarks about it. Most of the
spaces that we shall encounter are reasonably well-behaved and indeed many of them such SO(n,R), S3

and the projective spaces are smooth manifolds. Given the existence of a simply connected covering
- called a universal covering4, one can develop a Galois correspondence for covering spaces which
asserts the existence of a unique (upto isomorphism) covering corresponding to each conjugacy class
of subgroups of π1(X, x0).

Definition 19.3: Let us consider a fixed connected topological space X with a specified base point
x0 ∈ X. A homomorphism between two coverings p : (Y, y0) −→ (X, x0) and q : (Z, z0) −→ (X, x)) is
a surjective continuous map r : (Y, y0) −→ (Z, z0) such that q ◦ r = p or diagrammatically,

(Y, y0)
r

//

p
%%J

JJJJJJJJ
(Z, z0)

q
yyttttttttt

(X, x0)

The definition enables us to form a category of coverings of a given space X with a specified base point
x0 ∈ X. To obtain a satisfactory theory one must impose some additional assumption on X such as
local connectedness. In other words r is a lift of p with respect to the covering map q. The universal
covering is then defined in terms of a universal property.

4Actually the notion of a universal covering is more general than the notion of a simply connected coverings but the
two notions coincide for all reasonable spaces and certainly for all spaces that we shall deal with.
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Definition 19.4: The universal covering is a covering e : (E, e0) −→ (X, x0) such that for every
covering p : (Y, y0) −→ (X, x0) there is a unique homomorphism ψ : (E, e0) −→ (Y, y0), that is a
continuous surjection ψ such that p ◦ ψ = e.

The universal covering if it exists is unique and one can establish the existence of a universal
covering for a reasonable nice class of topological spaces X.

Exercises

1. Suppose that G and G̃ are topological groups and p : G̃ −→ G is a covering projection that is
also a group homomorphism then ker p = Deck(G̃, G).

2. Determine the deck transformations for the covering

sin : C −
{π

2
+ kπ : k ∈ Z

}
−→ C − {±1}

3. Determine the deck transformations for the covering

p : C −
{
± 1,±2

}
−→ C − {±2}

given by p(z) = z3 − 3z. Show that this covering is not regular. Hint: Use Riemann’s removable
singularities theorem to show that a deck transformation must be analytic on the whole plane.

4. If p is a prime, what can you say about the group of deck transformations of a p-sheeted covering
space?

5. Show using the universal property that the universal covering, if it exists is unique upto isomor-
phism of covering projections.
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Lecture XX - Orbit Spaces

Many interesting spaces in geometry arise as the space of orbits under the action of groups. We
have seen examples of this already in lecture 4. An important special case is when the group action
is discrete such as the case of the multiplicative group {±1} on the sphere Sn resulting in the real
projective space RP n.

Properly discontinuous group actions: Recall that a group is said to act freely if there are no
fixed points of the action. That is to say, if G acts on S such that if g · s = s for all s ∈ S then g = 1.
We now define a stronger notion when the group acts on a topological space.

Definition 20.1: Let Y be a topological space on which a group G acts. We say that the action is
properly discontinuous if each point y ∈ Y has a neighborhood U such that for any pair of distinct

elements g′, g′′ ∈ G,
g′U ∩ g′′U = ∅.

Theorem 20.1: If a group G acts properly discontinuously on a topological space then the group
action must then be free.

Proof: We shall show that if g · y = y for some y ∈ Y and g ∈ G then g = 1. If g 6= 1, choose a
neighborhood U of y as in definition (20.1) which in particular implies g ·U ∩U = ∅. But y ∈ g ·U ∩U
and we get a contradiction.

The set of all orbits of the action with its quotient topology is denoted by Y/G and the following
theorem expresses the covering properties of the quotient map

η : Y −→ Y/G.

Note that for each g ∈ G, the map y 7→ g·y is a bijective map. If each of these maps is a homeomorphism
of Y onto itself, we say that G acts as a group of homeomorphisms on Y .

Theorem 20.2: Let Y be a Hausdorff space and G be a group of acting properly discontinuously
on Y as a group of homeomorphisms. Then,

(i) The orbit space Y/G is Hausdorff.
(ii) The quotient map η : Y −→ Y/G is a covering projection.
(iii) G is the group of deck-transformations for the covering projection η : Y −→ Y/G.
(iv) In case Y is simply connected, π1(Y/G) is isomorphic to G.
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Proof: Pick distinct points ȳ, z̄ ∈ Y/G and let U and V be disjoint neighborhoods of y and z such
that for every pair of distinct elements g′, g′′ ∈ G,

g′U ∩ g′′U = ∅, g′V ∩ g′′V = ∅.

Then
η−1(η(U)) =

⋃

g∈G

gU, η−1(η(V )) =
⋃

g∈G

gV.

Since G is a group of homeomorphisms, it follows from the definition of quotient topology that η(U)
and η(V ) are open sets containing ȳ and z̄. It is easy to see that η(U) and η(V ) are disjoint and
(i) follows and also that η is an open mapping. Now η restricted to each gU is a continuous, open
bijection, that is a homeomorphism onto η(U) and so (ii) follows. Conclusion (iv) follows from (iii).
To prove (iii) first observe that the map

φg : y 7→ g · y, y ∈ Y

is a deck transformation for each g ∈ G. The map

ψ : g 7→ φg

is easily seen to be a group homomorphism. To see that it is surjective, let φ be a deck transformation
and y1 be a given point in Y and φ(y1) = y2. Since y1 and y2 are in the same fiber, there is a unique
element g of the group such that g · y1 = y2. Then the deck transformations φ and φg agree at y1 and
so are identical which means ψ(g) = φ proving surjectivity. If g ∈ ker ψ then

φg(y) = g · y = y, ∀y ∈ Y.

Since the action is properly discontinuous (and hence fixed point free) this forces g = 1.

Definition 20.2 (Lens spaces): Let Y = S3 = {(z, w) ∈ C2/|z|2 + |w|2 = 1} and p be a prime, q
be an integer relatively prime to p. The action of Zp on S3 given by

exp(2πik/p) · (z1, z2) = (exp(2πik/p)z1, exp(2πikq/p)z2)

is fixed point free and hence properly discontinuous. The orbit space is called the lens space denoted
by L(p, q). Theorem (20.2) now implies

π1(L(p, q)) = Zp.

Definition 20.3 (Generalized lens spaces): Let q1, q2, . . . , qn be relatively prime to p. Define the
action of the cyclic group Zp on S2n+1 by

(z0, z1, . . . , zn) 7→
(
z0 exp

(2πi

p

)
, z1 exp

(2πiq1
p

)
, . . . , exp

(2πiqn
p

))
,

where S2n+1 = {(z, w1, w2, . . . , wn) ∈ Cn+1/|z|2 + |w1|2 + · · · + |wn|2 = 1}. The resulting orbit
space is denoted by L(p, q1, q2, . . . , qn) and its fundamental group is Zp since the action is properly
discontinuous.
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The Mobius band: Consider the strip Y = [0, 1] × R and let S : Y −→ Y be the homeomorphism

S(x, y) = (1 − x, y + 1)

of Y . Then S generates an infinite cyclic group of homeomorphisms of Y acting properly discontinu-
ously on Y . The resulting orbit space is the Möbius band. It is an exercise to show that the cylinder
is a double cover of the Möbius band.

Klein’s bottle: Let Y = R2 and G be the group generated by the affine maps T and S given by

T (x, y) = (x + 1, y), S(x, y) = (1 − x, y + 1).

Note that T and S are isometies and the group generated by these acts properly discontinuously on
R2. The orbit space is the Klein’s bottle K. Thus π1(K) = G. Now

TS(x, y) = (2 − x, y + 1), ST (x, y) = (−x, y + 1)

The fundamental group of the Klein’s bottle is non-abelian. Note that TST = S. There are no other
independent relations and the fundamental group of the Klein’s bottle is the group on two generators
T and S with one relation TST = S. Summarizing we have

Theorem 20.3: The fundamental group of the Klein’s bottle is the non-abelian group with two
generators S and T with the relation TST = S.

Exercises:

1. Suppose that G is a finite group acting freely on a Hausdorff space then the action is properly
discontinuous and hence deduce that the group action in the example of the generalized Lens
space is properly discontinuous.

2. Suppose that p : X̃ −→ X is a covering projection and X̃ is locally path connected and simply
connected. Show that if U is an evenly covered open set in X and Ũ is a sheet lying above it
then φ(Ũ) ∩ Ũ = ∅ for every φ ∈ Deck(X̃,X) and φ 6= idX̃ . Deduce that the group of deck
transformations acts properly discontinuously on X̃. How does this relate to theorem 17.2?

3. Does the fundamental group of Klein’s bottle have elements of finite order? Identify this group
with a familiar group that we have already encountered in lecture 8. What is its abelianization?
Hint: First show that T nSm = SmT (−1)mn. Now for an element α in the group, define height of
α to be the y−coordinate of α(0, 0). What is the height of a torsion element and what does this
imply about the sum of the indices of powers of S occuring in it?

4. Show that the torus is obtained as the orbit space of a group of homeomorphisms acting properly
discontinuously on R2. Write out these homeomorphisms explicitly.

5. Show that the torus is a double cover of the Klein’s bottle. Hence the fundamental group of the
Klein’s bottle must contain a subgroup of index two. Determine this subgroup.

6. Show that the cylinder is a two-sheeted cover of the Möbius band.
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7. Suppose that G is a topological group, H is a discrete subgroup of G. Show that there exists
a neighborhood U of the identity such that U = U−1, U ∩ H = {1} and that {hU/h ∈ H}
is a family of disjoint open sets. Deduce that the quotient map η : G −→ G/H is a covering
projection. Also show that G/h is Hausdorff.
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Lecture XXI - Test - III

1. Show that a homeomorphism of E2 onto itself must preserve the boundary. That is it must map
a boundary point to a boundary point.

2. Show that for fixed k ∈ N, the k−th roots of unity acts properly discontinuously on C − {0}.

3. Let G be the infinite grid

G = {(x, y) ∈ R2 / x ∈ Z or y ∈ Z}.

Consider the covering map from G onto the figure eight loop (S1 × {1}) ∪ ({1} × S1) given by

p(x, y) = (exp(2πix), exp(2πiy)).

Determine the deck transformations of this covering. Is this a regular covering?

4. Suppose p : X̃ −→ X is a covering projection and X̃ is path connected, show that p−1(y) and
p−1(z) have the same cardinality for every pair y, z ∈ X.

5. Given a covering projection p : (X̃, x̃0) −→ (X, x0), describe the action of π1(X, x0) on the fiber
p−1(x0) and deduce that the cardinality of p−1(x0) is the index of the subgroup p∗π1(X̃, x̃0).
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Solutions to Test - III

1. Suppose that φ : E2 −→ E2 is a homeomorphism and maps a boundary point p into an interior
point q. Then the restriction φ : E2 − {p} −→ E2 − {q} is a homeomorphism but π1(E

2 − {q})
is isomorphic to Z whereas E2 − {p} is star-shaped and so has trivial fundamental group.

2. Check that the action is free and use the result of exercise 1 of lecture 20. Thus we have to
show that if a finite group G acts freely on a Hausdorff space X then the action is properly
discontinuous. Well, let p ∈ X and since the action is free,

g′ · p 6= g′′ · p, when g′ 6= g′′.

Choose for each g ∈ G an open neighborhood Ug of gp such that the finite family {Ug} consists
of pairwise disjoint sets. Let

V =
⋂

g∈G

g−1Ug.

Then V is an open neighborhood of p and it is easy to see that g ′V ∩ g′′V = ∅ whenever g′ 6= g′′.

3. It is elementary to verify that the the deck-transformations are translations namely for each pair
(n,m) ∈ Z2,

(x, y) 7→ (x+ n, y +m), (x, y) ∈ R2.

These deck transformations act transitively on each fiber and so the covering is regular.

4. See the proof of theorem 16.4.

5. See lecture 17.
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Lecture XXII - Fundamental group of SO(3,R) and SO(4,R)

For many applications, it is important to know the fundamental groups of the classical groups. We
shall discuss in detail the orthogonal groups SO(3,R) and SO(4,R) since their underlying topolog-
ical spaces are easily described. Indeed SO(3,R) is the three dimensional real projective space and
SO(4,R), as a topological space, is the product of the three dimensional real projective space and the
three dimensional sphere S3. To unravel the structure of these spaces it is convenient to use quater-
nions. We shall assume some basic familiarity with quaternions (see [1]). We shall also use some basic
facts from multi-variable calculus. The student who is unfamiliar with these parts of multi-variable
calculus may omit these parts of the proof.

Theorem 22.1 The unit sphere S3 is the double cover of the space SO(3,R) and as a topological
space is homeomorphic to RP 3. In particular π1(SO(3,R)) is the cyclic group of order two.

The proof will be split into several lemmas. We begin by setting up a few notations which would
remain in force throughout the lecture. We shall regard S3 as the set of all unit quaternions forming
a subgroup of the multiplicative group of non-zero quaternions.

Definition 22.1: A pure quaternion is one whose real part is zero. Thus a quaternion is pure q if
and only if q = −q, where the bar denotes the conjugate of q. We denote the set of all pure quaternions
by Π. Thus Π is a three dimensional real vector space with the Euclidean norm inherited from R4.

We now list three lemmas whose proofs are left for the reader as easy exercises in linear algebra. It
is useful to recall that a linear map of Rn to itself which preserves the Euclidean norm is an orthogonal
transformation.

Lemma 22.2: If q is a pure quaternion then so is x−1qx for any non-zero quaternion x.
Thus, each non-zero quaternion x defines a non-singular linear map Tx : Π −→ Π namely

Tx(q) = x−1qx (22.1)

Lemma 22.3: The linear map Tx : R4 −→ R4 given by equation (22.1) preserves the Euclidean norm
and so defines an element of O(4,R). Its restriction to Π still denoted by Tx maps Π onto itself and
so may be identified as an element of O(3,R). The map

ψ : x 7→ Tx (22.2)

is a group homomorphism from the multiplicative group of non-zero quaternions into O(4,R).
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Lemma 22.4: The kernel of ψ is the set of non-zero real numbers. In particular the kernel of the
map

ψ : S3 −→ O(3,R) (22.3)

obtained by restricting ψ to S3 is the two element group ±1.

Lemma 22.5: The image of ψ : S3 −→ O(3,R) is a compact connected subgroup of SO(3,R).

Proof: Since S3 is compact and connected, the image of the map ψ : S3 −→ O(3,R) is a compact
and connected subgroup of O(3,R). Now O(3,R) is disconnected with two components and so the
image must lie entirely in one of these components. Since ψ(1) is the identity map this connected
subgroup meets SO(3,R) and so must be contained entirely in SO(3,R).

Slightly more difficult is the proof that the image of S3 under ψ is the whole of SO(3,R). It is
possible to give an argument which uses only linear algebra but we prefer to follow a slightly more
sophisticated approach using the inverse function theorem. The student who is uncomfortable may
merely skim through the argument and take the result on faith.

Lemma 22.6: The group homomorphism ψ : S3 −→ SO(3,R) is surjective and is a covering projec-
tion. As a topological space, SO(3,R) is homeomorphic to RP 3.

Proof: Once we show that ψ : S3 −→ SO(3,R) is surjective it follows from lemma (22.4) and the
definition of real projective spaces that SO(3,R) and RP 3 are homeomorphic.

To prove the surjectivity of ψ, note that S3 and SO(3,R) are three dimensional manifolds and ψ
is a smooth map. We show that the derivative Dψ(1) is an invertible linear map and so by the inverse
function theorem the image must contain a neighborhood of the identity. We merely have to recall
from lecture 5 that if a subgroup H of a connected topological group G contains a neighborhood of
the identity then H = G.

We now turn to the proof that Dψ(1) is a surjective linear transformation. We shall regard ψ as
a map from R4 to SO(3,R) ⊂ M(3,R) and compute its derivative at 1. For a quaternion h with
sufficiently small norm,

ψ(1 + h)v − ψ(1)v = ‖1 + h‖−2(v + hv + vh) − v +O(‖h‖2) = −2h0v + hv + vh+O(‖h‖2),

where h0 denotes the real part of h. We see that Dψ(1) is the linear map R4 −→M(3,R) given by

h 7→ −2h0(·) + h(·) + (·)h. (22.4)

The kernel of this linear map contains 1 and so is at-least one dimensional. It is exactly one dimensional
since Dψ(1)i, Dψ(1)j and Dψ(1)k are linearly independent (skew-symmetric) matrices.

Remark: The curves σ1, σ2 and σ3 given by

σ1(t) = cos t+ i sin t, σ2(t) = cos t + j sin t, σ3(t) = cos t + k sin t

lie on S3 and pass through the point 1. Differentiating and setting t = 0 confirms that the vectors
i, j, k span the tangent space to S3 at 1. Thus Dψ(1)i, Dψ(1)j and Dψ(1)k span the image of Dψ(1).
We leave it to the reader to check, by calculating the derivatives of ψ ◦ σj (j = 1, 2, 3) at t = 0, that
Dψ(1)i, Dψ(1)j and Dψ(1)k are linearly independent.
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Topological structure of SO(4,R): Regard L ∈ SO(4,R) as a linear transformation on the space
R4 of all quaternions. In particular, L(1) is a non-zero quaternion and we may define the linear map
L′ : R4 −→ R4 via the prescription

L′(x) = L(x)L(1)−1, x ∈ R4.

Lemma 22.7: The map L′ preserves Euclidean distance and maps Π to itself.

Proof: The fact that it is distance preserving is clear so that it is an orthogonal transformation.
Since L′ also fixes the real axis by orthogonality it must map Π to itself.

Theorem 22.8: As a topological space, SO(4,R) is homeomorphic to the product S3 × SO(3,R).

Proof: We show that the map φ : SO(4,R) −→ S3 × O(3,R) given by φ(L) = (L(1), L′), where L′

is defined as in the previous lemma, is a homeomorphism. The map L′ is an element of O(3,R) since
it maps Π to itself and preserves Euclidean norm. Further, L(1) is obviously a unit quaternion. The
image of φ is a compact connected subspace of S3 ×O(3,R) and sends the identity element to the pair
(1, id) which means the image must be contained in S3 × SO(3,R). It is an exercise that the map is
bijective. Since the space SO(4,R) is compact and S3 × SO(3,R) is Hausdorff, it follows that φ is a
homeomorphism.

Corollary 22.9: The fundamental group of SO(4,R) is the cyclic group of order two. �

Exercises

1. Show that the sphere S3 is isomorphic (as a topological group) to SU(2,C).

2. Show that the center of the group of non-zero quaternions is the set of non-zero real numbers.
In the light of this explain why kerDψ(1) in lemma (22.6) is non-trivial.

3. Explain why the map φ defined in theorem (22.8) is bijective.

4. Verify the properties of the map TA in the proof of theorem (22.10). Also fill in the details
concerning the properties of the map φ (except for the claims made concerning its derivative).

5. Use exercise 4 to find a generator of π1(SO(3,R)). Let i : SO(2,R) −→ SO(3,R) be given by

A 7→
(
A 0
0 1

)
, A ∈ SO(2,R).

Show that i∗ : π1(SO(2,R)) −→ π1(SO(3,R)) is surjective.
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Lectures - XXIII and XXIV Coproducts and Pushouts

We now discuss further categorical constructions that are essential for the formulation of the Seifert
Van Kampen theorem. We first discuss the notion of coproducts which is a prerequisite for a proof
of the existence of push-outs. The coproduct is popularly known as the free product in the context
of groups but we shall also use the term coproduct which seems more appropriate from a categorical
point of view ([11], p. 71). The notion of coproducts has already been introduced in the exercises
to lecture 7 for the categories Top and AbGr where it is popularly known as the disjoint union and
the direct sum respectively. However the construction is more complicated in the category Gr. The
coproduct is defined in terms of a universal property.

Definition 23.1: Given two groups G1 and G2, their coproduct is a group G together with a pair
of group homomorphisms i1 : G1 −→ G and i2 : G2 −→ G such that given any group H and group
homomorphisms f1 : G1 −→ H and f2 : G2 −→ H there exists a unique homomorphism φ : G −→ H
such that

φ ◦ i1 = f1, φ ◦ i2 = f2 (23.1)

summarized in the following diagram (k = 1, 2.):

Gk
ik

//

fk   B
BB

BB
BB

B
G

φ
��~~

~~
~~

~~

H

The definition immediately generalizes to any arbitrary (not necessarily finite) collection of groups.
The uniqueness clause in the definition is important and the following theorem hinges upon it.

Theorem 23.1: If the coproduct (free product) exists then it is unique upto isomorphism. Denoting
the coproduct by G1 ∗ G2, the maps i1 and i2 are injective and so G1 and G2 may be regarded as
subgroups of G1 ∗G2.

Proof: To establish uniqueness, suppose that G′ is another candidate for the coproduct with the
associated homomorphisms j1 : G1 −→ G′ and j2 : G2 −→ G′ satisfying the universal property.
Taking f1 = j1 and f2 = j2 in the definition, there exists a homomorphism φ : G −→ G′ such that

φ ◦ i1 = j1, φ ◦ i2 = j2.

But since G′ is also a coproduct we obtain reciprocally a group homomorphism ψ : G′ −→ G such that

ψ ◦ j1 = i1, ψ ◦ j2 = i2.
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Combining the two we get (ψ◦φ)◦ i1 = i1 and (ψ◦φ)◦ i2 = i2. We see that the identity map idG as well
as ψ ◦ φ satisfy the universal property with H = G, f1 = i1 and f2 = i2. The uniqueness clause in the
definition of the coproduct gives ψ ◦ φ = idG Interchanging the roles of G and G′ we get φ ◦ ψ = idG′ .
We leave it to the student to show that the maps i1 and i2 are injective.

Theorem 23.2: Coproducts exist in the category Gr.

Proof: We shall merely provide a sketch of the argument. Let G1 and G2 be two given groups. A
word is by definition a finite sequence (x1, x2, . . . xn) such that each xi (i = 1, 2 . . . , n) belongs to one
of the groups, no pair of adjacent terms of the sequence belong to the same group and none of the xi
is the identity element of either of the groups. We call the integer n the length of the word and also
include the empty word of length zero. Denoting by W is the set of all words, the idea is to define a
binary operation of juxtaposition of words. The empty word would serve as the identity and the inverse
of a word (x1, x2, . . . , xn) would be the word (x−1

n , x−1
n−1, . . . , x

−1
1 ). One would hope that the operation

of juxtaposition would make W a group. This however would not quite suffice. The juxtaposition of
two words (x1, x2, . . . , xn) and (y1, y2, . . . , ym) may result in a sequence that does not qualify to be
called a word for the simple reason that xn and y1 may belong to the same group. When this happens
we may try to replace the juxtaposed string by the smaller string

(x1, x2, . . . , xn−1, z, y2, . . . , ym)

where z = xny1. If z is not the unit element we do get a legitimate word but if z is the unit element
of one of the groups we must drop it altogether obtaining instead the still smaller string

(x1, x2, . . . , xn−1, y2, . . . , ym)

If xn−1 and y2 belong to the same group the above process must continue and thus in finitely many
steps we obtain a legitimate word that ought to be the product of the two given words. To check that
we do get a group that qualifies as the coproduct of the given groups can be tedious. The reader may
consult [11], pp 72-73.

We now introduce the notion of a direct sum of abelian groups which will play a crucial role in the
second part of the course.

Definition 23.2 (Coproduct of abelian groups or the direct sum): Given a family of abelian
groups {Gα / α ∈ Λ}, their coproduct or direct sum is an abelian group G together with a family of
group homomorphisms {ια : Gα −→ G / α ∈ Λ} such that the following universal property holds.

Given any abelian group A and a family of group homomorphisms fα : Gα −→ A, there exists a
unique group homomorphism φ : G −→ A such that each of the diagrams commutes:

Gα
ια

//

fα
  

AA
AA

AA
AA

G

φ
����

��
��

��

A

Theorem 23.3: Coproducts exist in the category AbGr and it is unique.
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Proof: We use the additive notation and shall use the same symbol 0 to denote the identity element
of all the groups. The cartesian product

∏
Gα is a group with respect to component-wise addition

and we consider the subgroup
⊕

Gα given by
⊕

α∈Λ

Gα =
{

(xα)α ∈
∏

α∈Λ

Gα / xα = 0 for all but finitely many indices α
}
.

For each β ∈ Λ we define the standard inclusion map

ιβ : Gβ −→
⊕

α∈Λ

Gα

such that ιβ(x) has entry x in position β and all other coordinates are zero. We leave it to the reader
to check that the group

⊕
αGα together with the family {ια : Gα −→ G / α ∈ Λ} satisfies all the

requirements.

Definition 23.3 (free groups): The coproduct in the category Gr (known as the free product) of
k copies of Z is called the free group on k generators.

We shall denote a free group on k generators by Fk or if there is a need to specify the generators
a1, a2, . . . , ak we shall use the notation F [a1, a2, . . . , ak].

Theorem 23.4: Any group H having k generators is a homomorphic image of Fk.

Proof: Let H be generated by x1, x2, . . . , xk and for each j = 1, 2, . . . , k let Gj be the infinite cyclic
group with generator aj, regarded as a subgroup of Fk. Applying the definition of the coproduct to
the collection of group homomorphisms fj : Gj −→ H defined by

fj(aj) = xj, j = 1, 2 . . . , k,

we get a group homomorphism φ : Fk −→ H such that φ(aj) = fj(aj) = xj. It is clear that φ is
surjective and the proof is complete.

Generators and relations: Denoting by B the set of generators a1, a2, . . . , ak of Fk, any collection
S of words

an1
i1
an2
i2
. . . , a

np

ip
, aij ∈ B, nj ∈ Z, 1 ≤ j ≤ p. (23.2)

gives rise to a group Fk/〈S〉 where 〈S〉 denotes the normal subgroup generated by S. Conversely, let H
be a finitely generated group and φ be as in the theorem. We take a set R of words (23.2) generating
the kernel of φ and write

H = Fk/〈R〉. (23.3)

The elements of R are called relators and the set of equations

an1
i1
an2
i2
. . . , a

np

ip
= 1 (21.4)

obtained by setting each relator to 1 are called the relations for the group with respect to φ. The list
of generators {a1, a2, . . . , ak} and relations among them uniquely specifies H through equation (23.3).
If a relation in the list (23.4) is a consequence of others, for example if one of them is the product of
two others, we may clearly drop it from the list thereby shortening the list. In practice one would try
to keep the list of relations down to a minimum. Such a description of H is called a presentation of
the group H through generators and relations. A group in general has many presentations and it is
usually very difficult to decide whether or not two presentations represent the same group.
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Example 23.1 (Presentation of some groups): We describe some of the commonly occurring
groups in terms of generators and relations. Some of these would appear as fundamental groups of
spaces that we have already encountered or would do so in the next few lectures.

1. If we take the free group on two generators a, b and take H = Z × Z then every commutator
ambna−mb−n is a relator and hence each of the equations ambna−mb−n = 1 is a relation. However,
all of them may be derived from the single relation aba−1b−1 = 1. For example, we derive the
relation a2ba−2b−1 = 1 as follows

a2ba−2b−1 = a(aba−1b−1)ba−1b−1 = aba−1b−1 = 1.

Thus Z × Z has presentation
Z × Z = 〈a, b | ab = ba〉 (23.5)

2. The cyclic group of order n has presentation

Zn = 〈a | an = 1〉 (23.6)

3. Recall from lecture 20 that the fundamental group of the Klein’s bottle is given by the presen-
tation

Z n Z = 〈a, b | aba = b〉 (23.7)

4. This example is from [15], p. [?]. Let us consider the group G given by the presentation

G = 〈a, b | a2 = b4 = 1, bab = a〉 (23.8)

To understand this group concretely, let us derive some consequences of the three displayed
relations. Multiplying bab = a on the left/right by a gives the relations (ab)2 = 1 and (ba)2 = 1.
Further,

ab3 = (ab)b2 = b3(bab)b2 = b3ab2 = ba.

We conclude from this that G consists of the elements

{1, a, b, b2, b3, ab, ba, ab2} (23.9)

This however does not preclude further simplifications to a group of smaller order though it
seems unlikely. The group has atleast three elements of order two and so if the elements listed
in (21.9) are distinct then G must be the dihedral group D4 of order eight if it is non-abelian
or else must be an abelian group. In any case there must be atleast five elements of order two
(why?). It is easy to see that ab2 has order two. The map f : a, b −→ D4 given by

f(a) = (13), f(b) = (1234)

respects the given relations since (13)2 = 1, (1234)4 = 1 and (1234)(13)(1234) = (13). Hence f
extends to a surjective group homomorphism f : F2 −→ D4. Since the kernel contains a2, b4 and
bab we get a surjective group homomorphism G −→ D4 and we conclude that G is indeed D4.

Push-outs: The notion of push-outs is a convenient generalization of the coproduct and in the
context of groups is also known as the free-product with amalgamation. In topology it is often referred
to as the adjunction space though some authors in analogy with groups call it the amalgamated sum.
We formulate this notion in general terms.
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Definition 23.4: Suppose given a pair of morphisms j1 : C −→ A1 and j2 : C −→ A2 in a category
C, represented as a diagram:

C
j1−−−→ A1

j2

y
A2

a push out is an object P in C together with a pair of morphisms f1 : A1 −→ P and f2 : A2 −→ P
satisfying the following two conditions:

(i) f1 ◦ j1 = f2 ◦ j2
(ii) Universal property: Given any pair of morphisms g1 : A1 −→ E and g2 : A2 −→ E satisfying

g1 ◦ j1 = g2 ◦ j2

there exists a unique morphism φ : P −→ E such that

φ ◦ f1 = g1, φ ◦ f2 = g2.

Remark: If P is a push-out for the pair j1 : C −→ A1 and j2 : C −→ A2 the commutative diagram

C
j1−−−→ A1

j2

y
yf1

A2
f2−−−→ P

is also known as a cocartesian square.

Theorem 23.5: If the push out for the pair j1 : C −→ A1 and j2 : C −→ A2 exists in a given
category, then it is unique.

Proof: If P ′ with morphisms f ′
1 : A1 −→ P ′ and f ′

2 : A2 −→ P ′ is another candidate we may apply
the universal property to get a map φ : P −→ P ′ such that

φ ◦ f1 = f ′
1, φ ◦ f2 = f ′

2.
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Reciprocally since P ′ is a push out, there is a map ψ : P ′ −→ P such that

ψ ◦ f ′
1 = f1, ψ ◦ f ′

2 = f2.

Combining we see that (ψ ◦ φ) ◦ f1 = f1 and (ψ ◦ φ) ◦ f2 = f2. We see that both ψ ◦ φ and idP satisfy
the universal property with E = P , g1 = f1 and g2 = f2. The uniqueness clause in the definition gives
ψ ◦ φ = idP . Likewise we get φ ◦ ψ = idP ′ and the proof is complete.

Example: Let us now work in the category Top and recast the gluing lemma in terms of the push-out
construction. Take a pair of open sets G1, G2 in a topological space X and the inclusions

j1 : G1 ∩G2 −→ G1, j2 : G1 ∩G2 −→ G2.

The push out for this pair is the space G1 ∪G2 together with inclusion maps

i1 : G1 −→ G1 ∪G2, i2 : G2 −→ G1 ∪G2

To see this suppose that Y is a topological space and f1 : G1 −→ Y and f2 : G2 −→ Y are a pair of
continuous maps such that f1 ◦ j1 = f2 ◦ j2 then

f1

∣∣∣
G1∩G2

= f2

∣∣∣
G1∩G2

The gluing lemma now says that there exists a unique map ψ : G1 ∪G2 −→ Y such that

ψ
∣∣∣
G1

= f1, ψ
∣∣∣
G2

= f2

which means ψ ◦ i1 = f1 and ψ ◦ i2 = f2 as desired. Instead of a pair of open subsets of a topological
space one could choose a pair of closed sets.

Existence of push outs: We begin with the coproduct of A1 and A2 and perform some identifi-
cations. We examine the three categories Gr, AbGr and Top and show that the push-out exists in
each of them. It may be noted that the popular term for the push out in the category of groups is free

product with amalgamation.

Theorem 23.6: Push-outs exist in the categories Gr, AbGr and Top.

Proof: Let us begin with Gr and a given pair of morphisms j1 : C −→ A1 and j2 : C −→ A2. Let
G be the coproduct of the groups A1 and A2. We regard A1 and A2 as subgroups of G. Let N be the
normal subgroup of G generated by

{j1(c)j2(c)−1/c ∈ C}
and η : G −→ G/N be the quotient map. We claim that G/N qualifies as the push-out with the
associated homomorphisms

f1 = η ◦ i1, f2 = η ◦ i2
where i1 and i2 are the inclusions of A1, A2 in G. Since η(j1(c)) = η(j2(c)), we see that f1 ◦ j1 = f2 ◦ j2.
To check the universal property, let g1 : A1 −→ H and g2 : A2 −→ H be a pair of morphisms such
that

g1 ◦ j1 = g2 ◦ j2 (23.10)
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Aside from (23.10), by definition of coproduct, there exists a unique homomorphism ψ : G −→ H
such that ψ ◦ i1 = g1 and ψ ◦ i2 = g2 from which follows easily that the kernel of ψ contains N . Let
ψ : G/N −→ H be the unique map such that ψ ◦ η = ψ. Then

ψ ◦ η ◦ i1 = ψ ◦ i1 = g1, ψ ◦ η ◦ i2 = g2.

which means ψ ◦ f1 = g1 and ψ ◦ f2 = g2. That completes the job of verifying that G/N is indeed
the push-out. Note that we have only used the definition of coproducts and the most basic property
of quotients. As a result the proof goes through verbatim for the other two situations as we shall see.
Leaving aside the case of abelian groups we pass on to the category Top.

Well, changing notations to suit the need, let h1 : Z −→ X and h2 : Z −→ Y be a pair of continuous
functions and X t Y be the disjoint union of X and Y , and i1 : X −→ X t Y , i2 : Y −→ X t Y be
the canonical inclusions. For each z ∈ Z we identify the points (i1 ◦ h1)(z) and (i2 ◦ h2)(z) in X t Y
and W be the quotient space with the projection map

η : X t Y −→W = (X t Y )/ ∼
We claim that W qualifies to be the push-out with associated morphisms f1 = η ◦ i1 : X −→ W and
f2 = η ◦ i2 : Y −→ W . To check the first condition observe that since (i1 ◦ h1)(z) and (i2 ◦ h2)(z) are
identified, η(i1(h1(z))) = η(i2(h2(z))) which means f1 ◦ h1 = f2 ◦ h2. Turning now to the universal
property let g1 : X −→ T and g2 : Y −→ T be two continuous maps such that

g1 ◦ h1 = g2 ◦ h2. (23.11)

Aside from (23.11), since XtY is the coproduct in Top, there is a unique continuous map ψ : XtY −→
T such that ψ ◦ i1 = g1 and ψ ◦ i2 = g2. Now (23.11) implies that ψ respects the identification and
so there is a unique ψ : (X t Y )/ ∼ −→ T such that ψ ◦ η = ψ. By the universal property of the
quotient, ψ is continuous and

ψ ◦ f1 = ψ ◦ η ◦ i1 = ψ ◦ i1 = g1,

and likewise ψ ◦ f2 = g2. That suffices for a proof.

Exercises

1. Show that the maps i1 and i2 in definition (23.1) are injective and that the images of i1 and i2
generate G1 ∗G2. Hint: Use the universal property with H = G1, f1 = i1 and i2 = 1.

2. Show that abelianizing a free group on k generators results in a group isomorphic to the direct
sum of k copies of Z. Use the fact that the coproduct in AbGr is the direct sum.

3. Is there a surjective group homomorphism from the direct sum Z× Z onto Z2 × Z2 ×Z2? Prove
that if k and l are distinct positive integers, the free group on k generators is not isomorphic to
the free group on l generators.

4. Show that 〈a, c | a2c2 = 1〉 is also a presentation of the fundamental group of the Klein’s bottle.

5. Construct the push-out for the pair j1 : C −→ A1 and j2 : C −→ A2 in the category AbGr?

6. Suppose that C is the trivial group in the definition of push-out in the category Gr, show that
the resulting group is the coproduct of the two given groups. What happens in the category
AbGr? Describe explicitly the construction of the group specifying the subgroup that is being
factored out.
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Lecture - XXV Adjunction Spaces

The notion of push-outs in the category Top leads to an important class of spaces known as
adjunction spaces. We shall see that most of the important spaces encountered are adjunction spaces.
This lecture may be regarded as one on important examples of topological spaces.

Definition 25.1: Given a topological space X, a closed subset A and a continuous map A −→ B
we define an equivalence relation on the disjoint sum (coproduct) X t B as follows

b ∼ x if and only if x ∈ A and f(x) = b.

Thus a point x ∈ A is identified with its image f(x) ∈ B. There are no other identifications besides
this. The quotient space under this equivalence relation is called the adjunction space or the space
obtained by attaching X to B via the map f . The space is denoted by X tf B. Thus

X tf B = (X t B)/ ∼
The situation may be pictorially described as

Figure 16: Adjunction Space

Example 25.1: Take X = S1, A = {1} ⊂ X, B = S1 and f : A −→ B as f(1) = 1. The resulting
space is the wedge of two circles S1 ∨ S1.

Example 25.2 We now take X = E2 the closed unit disc in the plane, A = S1 the boundary of
E2, B = {1} and f to be the constant map from S1 to the singleton set B. The adjunction space is
obtained by collapsing the boundary of E2 to the single point B. The resulting space is S2.

Before discussing further examples we relate this to the push-out construction.
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Figure 17: Wedge of two circles

Theorem 25.1: Let X and B be topological spaces, A be a closed subspace of X and f : A −→ B
be a continuous map. Then the space X tf B is the push-out for the following diagram

A
i−−−→ X

f

y
B

where i : A −→ X denotes the inclusion map.

Proof: We first define the associated maps h1 : X −→ X tf B and h2 : X −→ X tf B. Let
η : X t B −→ X tf B be the quotient map and iX : X −→ X t B and iB : B −→ X t B denote the
inclusions. Then the associated maps h1 and h2 given by

h1 = η ◦ iX , h2 = η ◦ iB. (25.1)

For any a ∈ A we have

h1 ◦ i(a) = η(iX(a)) = η(a), h2 ◦ f(a) = η(iB(f(a))) = η(f(a))

Recalling the identifications we see that h1 ◦ i = h2 ◦ f . We now check the universal property. Suppose
Z is a topological space and g1 : X −→ Z, g2 : B −→ Z are continuous maps such that

g1 ◦ i = g2 ◦ f (25.2)

Define the continuous map φ : X t B −→ Z as

φ(x) =

{
g1(x) if x ∈ X
g2(x) if x ∈ B.

Condition (25.2) now shows that there is a unique map φ : (X tf B)/ ∼ −→ Z such that

φ ◦ η = φ. (25.3)
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The universal property of the quotient implies that φ is continuous. Equations (25.1)-(25.3) immedi-
ately give

φ ◦ h1 = g1, φ ◦ h2 = g2. (25.4)

thereby completing the verification of the universal property.

Corollary 25.2: The square

A
i−−−→ X

f

y
yh1

B
h2−−−→ X tf B

is a push-out where h1 and h2 are defined as in (25.1).

Proof: This is just a summary of the details of the maps involved.

Definition 25.2: An n−cell is any space that is homeomorphic to the closed unit ball En in Rn.
Thus the square I2 is an example of a two cell and the hemisphere

{(x1, x2, . . . , xn) ∈ Sn−1/xn ≥ 0}

is an n− 1 cell.

Example 25.3 (The torus and the Klein’s bottle): We now show that the Klein’s bottle and
the torus are obtained by attaching a two cell to the figure eight space S1 ∨ S1. In both cases we take
X = I2 to be the two cell, A = İ2 the boundary of I2 and B = S1 ∨S1 regarded as a subset of S1 ×S1

namely (S1 × {1}) ∪ ({1} × S1). The distinguishing factor is that the attaching map f : A −→ B is
different in the two cases.

1. For the torus we define f : A −→ B to be the continuous surjection

f(x, 1) = f(x, 0) = (e2πix, 1), x ∈ [0, 1]

f(1, y) = f(0, y) = (1, e2πiy), y ∈ [0, 1]

It is geometrically clear that X tf B is a torus but we demonstrate this formally owing to the
importance of the type of argument involved. Let p : I2 −→ S1 × S1 be the quotient map,
iX : X −→ X t B the inclusion map and η : X t B −→ X tf B the quotient map. The map

φ : S1 × S1 −→ X tf B

given by φ(exp(2πix), exp(2πiy)) = (η ◦ iX)(x, y) is well-defined, bijective and its continuity
follows from the fact that φ ◦ p = iX ◦ η and iX ◦ η is continuous. Finally the compactness of
S1 × S1 and the fact that X tf B is Hausdorff shows that φ is a homeomorphism.

102



2. The argument for the Klein’s bottle proceeds along similar lines and we merely indicate the
attaching map f : I2 −→ S1 ∨ S1 namely,

f(x, 1) = f(x, 0) = (e2πix, 1), x ∈ [0, 1]

f(1, y) = f(0, 1 − y) = (1, e2πiy), y ∈ [0, 1].

3. It is sometimes convenient to take the closed unit disc E2 as the two cell. But the attaching map
f : S1 −→ S1 ∨ S1 would be slightly more complicated to write down. For the Klein’s bottle the
attaching map is given by

f(z) =





(z4, 1) 0 ≤ arg z ≤ π/2
(1, z4) π/2 ≤ arg z ≤ π
(−z4, 1) π ≤ arg z ≤ 3π/2
(1,−z4) 3π/2 ≤ arg z ≤ 2π

(25.5)

For the torus the attaching map is obtained from (25.5) by suppressing the negative signs in the
last two expressions. The student is invited to work out a similar construction for the double
torus as well.

Example 25.4 (The projective plane): This is obtained by attaching a two cell to the circle.
For the two cell we take the closed unit disc E2 in the complex plane and its boundary as A. The
attaching map is given by f(z) = z2. We leave it to the reader to prove that the resulting adjunction
space is indeed RP 2.

Example 25.5 (Real projective spaces): We take the space X to be the closed unit disc En in Rn

and A as its boundary. The space B is the lower dimensional projective space RP n−1. The attaching
map is the quotient map p : Sn−1 −→ RP n−1. We leave the proof of the following result to the reader.

Theorem 25.3: The space En tp RP n−1 is homeomorphic to the real projective space RP n. Thus
RP n is obtained from RP n−1 by attaching an n-cell.

Definition 25.3 (The cone over a space): Let X be a topological space. The cone C(X) over X
is the quotient space

C(X) = (X × [0, 1])/(X × {0})
We have an obvious inclusion map i : X −→ C(X) given by i(x) = [x, 1] where the square bracket

Figure 18: Cone over a space

refers to the image of (x, 1) ∈ X × [0, 1] in the quotient C(X).
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Theorem 25.5: A continuous map f : X −→ Y is homotopic to a constant map if and only if f
extends continuously to a map F : C(X) −→ Y namely F ◦ i = f .

Proof: The proof writes itself out. Suppose that G : X × [0, 1] −→ Y is a homotopy between f and
the constant map taking the value y0 say,

G(x, 1) = f(x), G(x, 0) = f(y0), for all x ∈ X.

The second equation in (25.12) says that G respects the identification made on X × [0, 1] to yield
(X × [0, 1])/(X × {0}) whereby we conclude the existence of a map F : C(X) −→ Y satisfying
F ◦ η = G. This map F is continuous by the universal property and the first equation in (25.12) gives
F [x, 1] = G(x, 1) = f(x). The proof of necessity is complete.

Conversely suppose given a continuous map f : X −→ Y such that there is a G : C(X) −→ Y with
F ◦ i = G. Denoting by η the quotient map X × [0, 1] −→ C(X), the map G ◦ η provides a homotopy
between f the constant map. �

Exercises

1. We have obtained S2 by attaching E2 to a singleton with the attaching map as the constant map
on the boundary of E2. Discuss how would you obtain Sn analogously as an adjunction space.

2. Show that if X and B are connected/path-connected then X tf B is connected/path-connected.

3. Describe the push out resulting from the diagram

Sn−1 i1−−−→ En

i2

y
En

4. Show that Sm × Sn results from attaching an n + m cell to Sn ∨ Sm. Hint: Let I denote [0, 1]
and define a map f : ∂(In × Im) −→ Sn ∨ Sm as follows

f(z) =

{
(η1(x), y0) if x ∈ ∂In

(x0, η2(y)) if y ∈ ∂Im

and η1 : In −→ Sn and η2 : Im −→ Sm are the quotient maps of exercise 1.

5. Prove theorem (25.3).

6. Fill in the details in examples (25.4) and (25.5).
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Lecture - XXVI Seifert Van Kampen theorem and knots

This is one of the most famous theorem concerning the fundamental group which serves as a tool
for computations and applications to combinatorial group theory. If U and V are path connected open
subsets of a topological space such that U ∩ V is path connected, the theorem provides information
on the geometry of U ∪ V in terms of the geometry of U , V and U ∩ V . In precise terms it states that
the π1 functor maps the push-out diagram of pointed topological spaces with x0 ∈ U ∩ V ,

(U ∩ V, x0)
i1−−−→ (U, x0)

i2

y
yj1

(V, x0)
j2−−−→ (U ∪ V, x0)

to the push-out diagram of groups:

π1(U ∩ V, x0)
i1∗−−−→ π1(U, x0)

i2∗

y
yj1∗

π1(V, x0)
j2∗−−−→ π1(U ∪ V, x0)

thereby giving a precise description of the group π1(U∪V, x0) in terms of the groups π1(U, x0), π1(V, x0)
and π1(U ∩V, x0). Thus π1(U ∪V, x0) is the free product of π1(U, x0) and π1(V, x0) amalgamated along
π1(U∩V, x0). The theorem enables us to calculate quickly the fundamental groups of several important
spaces.

Theorem 26.1 (Seifert and Van Kampen - version I): Let U , V be open path connected subsets
of a topological space such that U ∩ V is path connected. Let x0 ∈ U ∩ V and i1 : U ∩ V −→ U ,
i2 : U ∩ V −→ V denote the inclusion maps. Then π1(U ∪ V, x0) is the free product (coproduct) of
π1(U, x0) and π1(V, x0) amalgamated along π1(U ∩ V, x0) with respect to the maps i1∗ and i2∗. That
is to say if N is the normal subgroup

N = 〈i1∗[γ](i2∗[γ])−1 : [γ] ∈ π1(U ∩ V, x0)〉 (26.1)

then the fundamental group of U ∪ V is given by

π1(U ∪ V, x0) = π1(U, x0) ∗ π1(V, x0)/N. (26.2)

Considering π1(U, x0) and π1(V, x0) as subgroups of π1(U) ∗ π1(V ), their images in the quotient group
generate π1(U ∪ V, x0).

The result may be elegantly stated using a push-out diagram namely,
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Theorem 26.2 (Seifert and Van Kampen - version II): Let U , V be open path connected
subsets of a topological space such that U ∩V is path connected. Let x0 ∈ U ∩V and i1 : U ∩V −→ U ,
i2 : U ∩ V −→ V denote the inclusion maps. Then the push-out data

π1(U ∩ V, x0)
i1∗−−−→ π1(U, x0)

i2∗

y
π1(V, x0)

may be completed to yield the push-out square

π1(U ∩ V, x0)
i1∗−−−→ π1(U, x0)

i2∗

y
yj1∗

π1(V, x0)
j2∗−−−→ π1(U ∪ V, x0)

where the maps j1 : U −→ U ∪ V and j2 : V −→ U ∪ V are inclusions.
The proof is neatly presented on pages 110-113 of the book by J. Vick and need not be repeated

here. Instead we move on to its applications to the computation of the fundamental groups of certain
spaces.

Corollary 26.3: Suppose that U , V are open path-connected, simply connected subsets of a topo-
logical space such that U ∩ V is path connected then U ∪ V is simply connected.

Fundamental groups of spheres: An important example of this is the case U = Sn − {en} and
V = {en}. When n ≥ 2, the spaces U and V are homeomorphic to Rn via the stereo-graphic projection
and since U ∩ V is path connected we conclude that U ∪ V = Sn is simply connected.

Corollary 26.4: Suppose that U , V are open path-connected subsets of a topological space such
that U ∩ V is simply connected then

π1(U ∩ V, x0) = π1(U, x0) ∗ π1(V, x0).

Wedge of two circles: Let us consider the space S1 ∨S1 given by the union of two circles of radius
one in the plane touching each other externally at the origin. We take U and V to be the open sets
obtained by deleting one of the points of each lobe (not the common point!). Then the circle is a
deformation retract of both U and V and U ∩ V deformation retracts to the origin. Thus

π1(S
1 ∨ S1) = Z ∗ Z. (26.3)

The last clause in theorem (26.1) also provides the generators of the fundamental group. Assuming
the circles to centered at ±1, the generators are given by the homotopy classes of the loops

±1 + exp(2πit) (26.4)

The generalization to a wedge of n circles is left as an exercise.
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Corollary 26.5 Suppose that U , V are open path-connected subsets of a topological space such that
U ∩ V and U are simply connected then with a base point x0 ∈ U ∩ V ,

π1(U ∪ V, x0) = π1(V, x0).

We turn to an important example to illustrate the use of this corollary. Regard R3 as a subset of S3

via the stereo-graphic projection and K be a compact subset of R3 such that the complement R3 −K
is connected. We then have the following result.

Theorem 26.6: π1(S
3 −K) = π1(R3 −K).

Proof: Let p ∈ S3 denote the north-pole using which we project S3 − {p} stereo-graphically onto
R3. Since K is compact there is a neighborhood U of p in S3 homeomorphic to a ball which does not
intersect K. Taking V = S3−(K∪{p}) = R3−K, we see that U ∪V = S3−K and U ∩V deformation
retracts to S2. The result now follows from the previous theorem.

Corollary 26.7: Suppose that U , V are open path-connected subsets of a topological space such that
U is simply connected and i : U ∩ V −→ V is the inclusion map then, taking a base point x0 ∈ U ∩ V ,

π1(U ∪ V, x0) = π1(V, x0)/〈Im i∗〉,
where 〈Im i∗〉 denotes the normal subgroup generated by the image of i∗.

Proof: The subgroup N in (26.1) reduces to 〈Im i∗〉.

The projective plane: We work this example out in meticulous detail. Such details will be pro-
gressively cut down and left for the students to fill in as we go along. The projective plane RP 2 is
obtained by attaching a two cell E2 to S1 using the map given in complex form as f(z) = z2. Let p
denote the center of E2 and η : E2 −→ RP 2 be the quotient map. Taking U to be the interior of E2

and V = RP 2 − {p} we apply corollary (26.7). For computing the image of i∗ we take a generator for
the infinite cyclic group π1(U ∩ V, y0) with base point y0 = 1/2. The generator is the equivalence class
of the loop

γ(t) =
1

2
exp(2πit), 0 ≤ t ≤ 1. (26.5)

We also need a base point x0 sitting on the loop Γ given by

Γ(t) = η(exp(iπt)), 0 ≤ t ≤ 1, (26.6)

which generates π1(RP 2 − {p}, x0). Taking a path β joining y0 and x0 we get a generator for the
infinite cyclic group π1(RP 2 − {p}, y0) namely, the class of the loop β ∗ Γ ∗ β−1. Having set the stage
we are ready to compute i∗[γ] namely, the homotopy class of the loop γ in RP 2 − {p}. This loop γ
based at y0 is homotopic to the loop

β ∗ Γ ∗ Γ ∗ β−1. (26.7)

The required homotopy is η ◦ F where F is a map of a rectangle onto a suitable annulus (see exercise
(1)). Introducing a β−1 ∗ β we get

i∗[γ] = [β ∗ Γ ∗ β−1][β ∗ Γ ∗ β−1] (26.8)

or in additive notation it is the map Z −→ Z given by n 7→ 2n. We conclude from corollary (26.7)
that π1(RP 2) is the cyclic group of order two.
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Figure 19: Computing π1(RP 2)

The torus and the Klein’s bottle: We proceed along the same lines using the convenient form
(25.5). Denoting by X either the torus or the Klein’s bottle and p to be the origin, we see that X−{p}
deformation retracts to the figure eight loop and, in analogy with (26.6), the generators for the free
group π1(X − {p}) are given by

Γ1(t) = η(exp(iπt/2)), Γ2(t) = η(exp(iπ(t+ 1)/2)), 0 ≤ t ≤ 1

We take U to be the open unit disc, V to be X − {p} and the class of (26.5) as the generator for
π1(U ∩ V, y0) where the base point y0 is 1/2. Taking an auxiliary path β joining y0 and the point
x0 = 1 common to both Γ1(t) and Γ2(t), we get the generators

[β ∗ Γ1 ∗ β−1] and [β ∗ Γ2 ∗ β−1] (26.9)

for π1(X − {p}, y0). The deformation of the previous example (exercise (1)) can be employed here
again and this time we get

i∗[γ] = [β ∗ Γ1 ∗ β−1][β ∗ Γ2 ∗ β−1][β ∗ Γ−1
1 ∗ β−1][β ∗ Γ−1

2 ∗ β−1] (26.10)

for the torus whereas for the Klein’s bottle we get instead

i∗[γ] = [β ∗ Γ1 ∗ β−1][β ∗ Γ2 ∗ β−1][β ∗ Γ1 ∗ β−1][β ∗ Γ−1
2 ∗ β−1] (26.11)

One could also work with the other models described in example (25.3) where the spaces are obtained
by identifying the opposite edges of a square. The homotopy η ◦ F of the last example would have
to be modified to η ◦G ◦ F where G is a certain homeomorphism from the unit disc onto the square
[0, 1] × [0, 1].

Denoting the generators (26.9) of π1(V, y0) by S and T we are ready to apply corollary (26.7) since
(26.10) gives us the image of the map i∗. The fundamental group of the torus is then

〈S, T : ST = TS〉 ∼= Z × Z (26.12)

and the fundamental group of the Klein’s bottle is

〈S, T : TST = S〉 ∼= Z n Z. (26.13)
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The double torus: By writing out the attaching map S1 −→ S1 ∨ S1 ∨ S1 ∨ S1 akin to (25.5) or
else using the identification of the sides of a regular octagon as described in lecture 4, the reader is
invited to prove that the fundamental group of the double torus is

〈a, b, c, d | abcda−1b−1c−1d−1 = 1〉 (26.14)

Fundamental groups of some adjunction spaces: The method used in the last few examples
may be adapted to prove a general theorem about the fundamental group of the adjunction space
X tf Ek obtained by attaching Ek to a given space X via a map f : Sk−1 −→ X. As in the case of
the projective plane, Klein’s bottle and torus the crucial point is to obtain some specific information
about the induced map f∗. We shall merely state the result and suppress the proof.

Theorem 26.8: Let X tf Ek be the space obtained by attaching a k cell to a path connected space
X via a map f : Sk−1 −→ X. Then for any choice of base point in f(Sk−1),

(i) π1(X tf Ek, x0) = π1(X, x0) if k ≥ 3.

(i) π1(X tf E2, x0) = π1(X, x0)/〈im f∗〉.

Exercises

1. Fill in the details in the computation of the fundamental group of the projective plane, Klein’s
bottle and the torus done in the lecture by providing a careful proof of equations (26.8), (26.10)
and (26.11). Hint: Use polar coordinates. Continuously shrink the path β to the point x0.

2. Show that the fundamental group of the wedge of n copies of S1 is the free group on n generators.
Calculate the fundamental group of the truncated grid

{(x, y) ∈ R2/x ∈ Z or y ∈ Z, 0 ≤ x ≤ n, 0 ≤ y ≤ n}.

3. Determine the generators of double torus by expressing it as a union of open sets each of which
is a torus from which a tiny closed disc has been removed.

4. Let C be the union of the two unlinked circles

(x− 2)2 + y2 = 1, z = 0,

(x+ 2)2 + y2 = 1, z = 0.

in R3. Show that π1(R3 − C) is the free group on two generators.

5. Calculate the fundamental groups of the following spaces

(i) R4 minus a line.

(ii) R4 minus a two dimensional linear subspace.

(iii) R4 minus two parallel lines.

(iv) R4 minus two intersecting lines.
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(v) R3 minus the coordinate axes

(vi) C2 − {(z1, z2)/z1z2 = 0}

(vii) R3 minus finitely many points.
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Lecture - XXVII (Test IV)

1. Use the Seifert Van Kampen theorem to compute the fundamental group of the double torus.

2. Let K be a compact subset of R3 and regard S3 as the one point compactification of R3. Show
that π1(R3 −K) = π1(S

3 −K).

3. If C is the circle in R3 given by the pair of equations

x2 + z2 = 1, z = 0,

show that π1(R3 − C) = Z. Let C ′ be the circle given by

(y − 1)2 + z2 + 1, x = 0.

Show that π1(R3 − C ∪ C ′) = Z ⊕ Z. Hint: Use stereographic projection.

4. Show that the complement of a line in R4 is simply connected.

5. Calculate the fundamental group of C2 − {(z1, z2)/z1z2 = 0}.
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Solutions to Test IV

1. The procedure parallels the computation of the fundamental groups of the projective plane,
Klein’s bottle and the torus worked out in lecture 26.

2. See theorem (26.6)

3. First recall the details of stereographic projection from lecture 2. Observe that S3 minus a is
homeomorphic to R3 and by symmetry any point may be chosen as the north pole to carry out
the stereographic projection. It is easily verified that under the stereographic projection a circle
(intersection of S3 ⊂ R4 with a two dimensional linear subspace of R4) through the north pole
is mapped onto a straight line in R3 × {−1}. Regard S3 as the one point compactification of R3

with q as the point at infinity. By theorem (26.6),

π1(R
3 − C) = π1(S

3 − C).

To calclulate π1(S
3−C), we take a point p ∈ C as the point at infinity and apply theorem (26.6).

Check that the conditions of theorem (26.6) are satisfied. Then S3 − C is homeomorphic to R3

minus a straight line and this deformation retracts to S1. Hence

π1(S
3 − C) = Z.

For the second part the same argument shows that

π1(R
3 − C ∪ C ′) = π1(R

3 − (C ′ ∪ Z))

where Z = {(x, y, 0) ; x, y ∈ R}.

4. Take the line to be the {(x, 0, 0, 0) : x ∈ R} and denote by X the complement of the line in R4.
The map F : X × [0, 1] −→ X given by

F (x, t) =
tx

‖x‖ + (1 − t)x

is a deformation retraction from X onto S3 minus a circle and so π1(X) = Z.

5. The argument used in the previous example shows that the space in question deformation retracts
to S3 minus two simply linked circles and so the fundamental group is Z ⊕ Z.
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Lecture - XXVIII Introductory remarks on homology theory

In the first part of the course we focused on the fundamental group and its basic properties. We
discussed an elegant solution of the lifting problem for covering projections in terms of the fundamental
group. While the theory of fundamental groups and covering spaces is fairly adequate for many
applications in low dimensional geometry and other parts of mathematics such as the theory of function
of one complex variable, it is quite ineffective when higher dimensional objects are involved. For
instance the ball Bn and the sphere Sn−1 both have trivial fundamental group (n ≥ 3) which renders
it useless for proving the higher dimensional analogues of the Brouwer’s fixed point theorem.

Homology theory provides a functor that is quite convenient for understanding the geometry of
“higher dimensional objects” which has the added advantage of being easily computable (at least
for a large class of interesting spaces). While the fundamental group functor respect products, the
homology groups of X × Y are not so easily described in terms of the homology groups of X and Y .
A covering projection is a very special case of a fiber bundle with discrete fibers. We have seen that
in the case of a covering projection p : X̃ −→ X we have a relationship between π1(X) and π1(X̃).
The story is decidedly more complicated with homology groups. For instance some work is required
to compute the homology groups of the real projective spaces RP n. Homotopy theory is better suited
for studying fibrations where the use of homology would entail the formidable machinery of “spectral
sequences”. However, on the computational side there is a very useful substitute for the Seifert Van
Kampen theorem in homology known as the Mayer Vietoris sequence. We shall use it to calculate
efficiently the homology groups of a large number of spaces.

There are several approaches to the homology theory, the oldest being the simplicial theory. Ho-
mology theory evolved over several decades through the early part of the twentieth century becoming
progressively abstract.

The theory we discuss in this course is known as the singular homology theory and would appear
somewhat non-intuitive in the beginning but we hope that the examples and applications presented
would enable the students to digest the material. Singular homology theory appeared rather late in
the development of algebraic topology and is a culmination of efforts spanning a few decades by several
eminent topologists. In the intervening years several seemingly different homology theories developed
the oldest and most intuitive being simplicial homology theory that applies to the restricted class of
simplicial complexes. However the topological invariance is highly non-trivial and beset with technical
complications.

Some motivation for singular homology: Let us recall some of the notions in the theory of
contour integrals in elementary complex analysis. Given a holomorphic function f : Ω −→ C one
defines a line integral ∫

γ

f(z)dz (28.1)

along a path5 γ : [a, b] −→ Ω lying in the domain Ω. If the path γ is the juxtaposition of several paths
γ1, γ2, . . . , γk then one knows that

∫

γ

f(z)dz =

∫

γ1

f(z)dz +

∫

γ2

f(z)dz + · · ·+
∫

γk

f(z)dz (28.2)

5The path would have to satisfy some regularity condition such as being piecewise continuously differentiable. However
since this is merely supposed to be a motivation we shall brush aside these technicalities.
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Thus one can break the path γ into several pieces, compute the integral over the individual pieces and
add the results. One can also reparametrize the pieces and regard all the pieces γj as being maps from
[0, 1]. In view of all these, it seems meaningful to write

γ1 + γ2 + · · ·+ γk (28.3)

in place of
γ1 ∗ γ2 ∗ · · · ∗ γk.

We see that the rigidity present in the theory of the fundamental group where one deals with homotopy
classes of loops all of which are based at a given point, is now significantly relaxed.

Also, one checks that integration along the inverse path reverses the sign:
∫

γ−1

f(z)dz = −
∫

γ

f(z)dz (28.4)

Taking a specific example with f(z) = 1/z and integrating along two concentric circles γ1, γ2 traced
counter clockwise, we see that ∫

γ1

f(z)dz =

∫

γ2

f(z)dz. (28.5)

Figure 20:

Using (28.1) and (28.4) this may be rewritten as

∫

γ1−γ2

f(z)dz = 0, (28.6)

where, in keeping with the additive notation (28.3) we have written −γ2 in place of γ−1
2 . Equation

(28.6) is interesting since γ1 and γ2 are the two pieces of the boundary of the annular region A bounded
by them, where the function f is holomorphic. Equation (28.6) suggests that the two paths γ1 and
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γ2 ought to be regarded as being equivalent with regard to f or more precisely with regard to A since
nothing changes if f is replaced by any other function holomorphic in an neighborhood of A. However
(28.6) fails for f(z) = (z − p)−1, where p is any point in the interior of A. This is a reflection of the
fact that the paths γ1 and γ2 do not constitute the full boundary of the punctured annulus A − {p}
which is where (z − p)−1 is holomorphic.

In doing contour integrals one occasionally introduces auxiliary paths such as σj (j = 1, 2) indicated
in the figure below and writes the integral (28.6) over γ1 − γ2 as the sum

(γ′1 + σ1 − γ′2 + σ2) + (γ′′1 − σ1 − γ′′2 − σ2) (28.7)

Each of the two parenthesis indicates a boundary of one of the halves of the annulus and so each ought
to equivalent to a null path or in other words, the equivalence of γ1 and γ2 translates to γ1 − γ2 being
equivalent to a null path. We write γ1 ∼ γ2 to indicate the equivalence of γ1 − γ2 to a null-path.

These considerations suggest an underlying calculus of paths bounding regions in the plane. Indeed
homology theory does develop such a calculus of paths as well as its higher dimensional analogues.
Perhaps the student has encountered these higher dimensional analogues in connection with the Gauss’
divergence theorem in vector calculus6.

Note that the sum indicated in (28.3) is a formal sum we are lead to the free abelian group generated
by the set of all piecewise smooth functions from [0, 1] to Ω called the group of one chains. Thus γ1−γ2

in (28.6) and γ1 + γ2 + · · · + γk displayed in (28.3) are examples of one chains. Note that the one
chain appearing in (28.2) is different from γ though in the final stage of construction they would be
identified. The Cauchy theory suggests that the chains whose pieces are all closed curves would play
a distinguished role and these are examples of one cycles - a certain subgroup of the group of chains
called the group of one cycles Z1. If a chain such as γ1−γ2 appearing in equation (28.6) is the oriented
boundary of a sub-domain we would regard it as being equivalent to zero and we would call such chains
as boundaries. These form a subgroup of Z1 known as the group of boundaries B. The equivalence
relation is thus γ1 ∼ γ2 if and only if γ1 − γ2 ∈ B. Passing to the quotient of Z via this equivalence
relation or in algebraic terms, passing to the quotient group Z/B would give us the first homology
group of the space Ω. All these heuristics are rigorously defined in the next couple of lectures. We
shall of course have to dispense with the notion of piecewise smoothness and talk of continuous paths
γ : [0, 1] −→ X called singular one simplexes and and their formal linear combinations with integer
coefficients called singular one chains . To develop a calculus of higher dimensional chains, one has
the option of introducing singular cubes namely continuous maps [0, 1]n −→ X, which is the approach
taken by W. Massey. This however necessitates certain preliminary reductions but has some distinct
advantages later particularly in applications of homology theory to the study of homotopy groups. We
shall follow the traditional approach, as in J. Vick’s book and use singular simplices instead.

6For a discussion along the lines of vector calculus see [11]
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Lectures - XXIX/XXX The singular chain complex and homology groups

The program of developing a calculus of chains is now formalized in this lecture. We introduce
a new algebraic category of chain complexes and maps between them and prove the fundamental
theorem about these algebraic gadgets. In particular, to each chain complex is associated a sequence
of groups called the homology groups. Given a topological space X we associate a chain complex to
it and obtain the homology functors from the category Top to the category AbGr. Thus we lay in
this lecture the foundations for a systematic calculus of chains and cycles putting the heuristic ideas
of the last lecture on a rigorous footing.

Definition 29.1 (The standard simplex): The standard n−simplex denoted by ∆n is the con-
vex hull of the n + 1 the standard unit vectors in Rn+1. Denoting the standard unit vectors by
e1, e2, . . . , en+1, their convex hull is the set

∆n = {(t1, t2, . . . , tn+1), t1 ≥ 0, t2 ≥ 0, . . . , tn+1 ≥ 0, t1 + t2 + · · ·+ tn+1 = 1}.

We take the standard zero simplex ∆0 to be the point e1.
Thus ∆2 is the equilateral triangle with vertices (1, 0, 0), (0, 1, 0) and (0, 0, 1) and the one simplex

∆1 is the line segment in R2 joining the points (1, 0) and (0, 1).
Note that ∆2 contains three copies of ∆1 namely the sides of the equilateral triangle. Likewise

∆3 contains four copies of ∆2, the four faces of the regular tetrahedron. To formalize this idea, we
introduce (n + 1) affine maps ∆n−1 −→ ∆n called the face maps. For i = 1, 2, 3, the i−th face of
∆2 is the face opposite to vertex ei and consists of all points (t1, t2, t3) with non-negative entries and
t1 + t2 + t3 = 1 such that the i−th coordinate ti vanishes.

Now suppose that (t1, t2, . . . , tn+1) denotes denotes a typical point on the last face of ∆n. Then
since tn+1 vanishes, we see that (t1, t2, . . . , tn) is a typical point on ∆n−1. Turning the argument around
we define the map

∆n−1 −→ ∆n

(t1, t2, . . . , tn) 7→ (t1, t2, . . . , tn, 0),

where the ti are all non-negtive and
∑
ti = 1, and call it the standard n-th face map. The i−th face

map (0 ≤ i ≤ n) would be

Φn
i : ∆n−1 −→ ∆n

(t1, t2, . . . , tn) 7→ (t1, t2, . . . , ti−1, 0, ti, . . . , tn), (29.1)

We leave it to the reader to write down explicitly the maps Φn
j ◦ Φn−1

i : ∆n−2 −→ ∆n and prove the
following result:
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Lemma 29.1: Suppose that 0 ≤ j < i ≤ n then

Φn
j ◦ Φn−1

i−1 = Φn
i ◦ Φn−1

j (29.2)

Definition 29.2 (Singular chains): A singular n−simplex in a topological space X is a continuous
map σ : ∆n −→ X. The free abelian group generated by the set of all singular n−simplices in X is
called the group of singular n−chains in X. This group is denoted by Sn(X) and a typical element of
Sn(X) is thus a formal sum

n1σ1 + n2σ2 + · · ·+ nkσk, (29.3)

where the coefficients n1, n2, . . . , nk are integers. For convenience we define S−1(X) to be the zero
group.

The most important notion in homology theory is the algebraization of the notion of a boundary
which applies to arbitrary singular simplices in an arbitrary topological space and not merely polyhedra
in Euclidean spaces obtained by gluing together affine simplices. It is precisely this algebraization which
provides considerable flexibility towards applications of homology theory.

Definition 29.3 (Boundary of a singular simplex): Given a singular n−simplex σ : ∆n −→ X,
its j−th singular boundary is the singular (n− 1) simplex σ ◦ Φn

j and the boundary ∂nσ of σ is then
the (n− 1) chain given by the algebraic sum of its singular faces:

∂nσ =

n∑

j=0

(−1)j(σ ◦ Φn
j ). (29.4)

The map ∂n then extends as a group homomorphism σn : Sn(X) −→ Sn−1(X). When n = 0 we define
the boundary map ∂0 to be the zero map.

The most important property of the maps ∂n is the vanishing of ∂n−1 ◦ ∂n which we now prove.

Theorem 29.2: For each n ≥ 1, we have

∂n−1 ◦ ∂n = 0. (29.5)

Proof: It clearly suffices to check the result on the generators of Sn(X). So let σ be an arbitrary
singular n simplex. Using equation (29.4),

(∂n−1 ◦ ∂n)σ = ∂n−1

( n∑

i=0

(−1)iσ ◦ Φn
i

)
=

n∑

i=0

n−1∑

j=0

(−1)i+jσ ◦ (Φn
i ◦ Φn−1

j ).

To use lemma (29.1) we break the double sum in two pieces and write

(∂n−1 ◦ ∂n)σ =
∑

i≤j

(−1)i+jσ ◦ (Φn
i ◦ Φn−1

j ) +
∑

j<i

(−1)i+jσ ◦ (Φn
i ◦ Φn−1

j )

Using (29.2) in the second piece we get

(∂n−1 ◦ ∂n)σ =
∑

i≤j

(−1)i+jσ ◦ (Φn
i ◦ Φn−1

j ) +
∑

j<i

(−1)i+jσ ◦ (Φn
j ◦ Φn−1

i−1 )
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It may be noted that each of the two pieces is a sum of n(n+ 1)/2 terms (why?). Renaming i− 1 as
k in the second sum gives

(∂n−1 ◦ ∂n)σ =
∑

i≤j≤n−1

(−1)i+jσ ◦ (Φn
i ◦ Φn−1

j ) +
∑

j≤k≤n−1

(−1)k+j−1σ ◦ (Φn
j ◦ Φn−1

k ) = 0

as desired.
Now suppose that X and Y are two topological spaces and f : X −→ Y is a continuous map then

f ◦ σ is a singular n−simplex in Y whenever σ is a singular n−simplex in X.

Definition 29.4: Given a continuous map f : X −→ Y , the map f] : Sn(X) −→ Sn(Y ) is the group
homomorphism which is defined on singular n simplices σ via the prescription

f](σ) = f ◦ σ, (29.6)

and extended as a group homomorphism from Sn(X) to Sn(Y ). We ought to denote this map by fn]
but we shall suppress the superscript to enhance readability.

Theorem 29.3: (i) For a continuous map f : X −→ Y , the maps f] : Sn(X) −→ Sn(Y ) satisfy

∂n ◦ f] = f] ◦ ∂n (29.7)

The f] on the right hand side obviously refers to the map Sn−1(X) −→ Sn−1(Y ) and ∂n refers to the
boundary operator on Sn(Y ) on the left hand side whereas it refers to the boundary operator on Sn(X)
on the right hand side.

(ii) If f : X −→ Y and g : Y −→ Z are two continuous maps then the maps f] : Sn(X) −→ Sn(Y )
and g] : Sn(Y ) −→ Sn(Z) satisfy

(g ◦ f)] = g] ◦ f] (29.8)

Proof: We shall only prove (29.7). It suffices to check these on singular simplices. So let σ : ∆n −→ X
be a singular n simplex in X. Using (29.4) we get

(f] ◦ ∂n)σ = f]

( n∑

i=0

(−1)iσ ◦ Φn
i

)
=

n∑

i=0

(−1)i((f ◦ σ) ◦ Φn
i ) = ∂n(f ◦ σ) = ∂n(f](σ)) = (∂n ◦ f])σ.

The category of chain complexes: We have associated to each topological space X a sequence
{Sn(X)} of free abelian groups and group homomorphisms ∂n : Sn(X) −→ Sn−1(X) satisfying (29.7).
It is useful to describe these in an abstract setting where the groups in question need not be free
abelian and prove some general results about them. This paragraph serves as an algebraic prerequisite
for the study homology theory.

Definition 29.5: (i) A differential chain complex is a sequence {Gn/n = 0, 1, 2 . . . } of abelian groups
together with a sequence of group homomorphism ∂n : Gn −→ Gn−1 called the boundary operator

satisfying the condition
∂n ◦ ∂n+1 = 0, n = 0, 1, 2, . . . (29.9)

with the convention G−1 = {0} and ∂0 = 0. We shall use the letter G to denote this chain complex.
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(ii) For a chain complex G, we define the subgroup Zn(G) of n-cycles to be the kernel of ∂n namely,

Zn(G) = {z ∈ Gn/∂n(z) = 0} (29.10)

and the subgroup of n-boundaries as the image of ∂n+1 namely

Bn(G) = {∂n+1(x)/x ∈ Gn+1}. (29.11)

From (29.9) it is clear that Bn(G) ⊂ Zn(G) and also Z0(G) = G0.
(iii) The quotient group

Hn(G) = Zn(G)/Bn(G) (29.12)

is called the n-th homology of the chain complex G. If zn ∈ Zn(G) is a cycle the symbol zn refers
to the coset of zn in the quotient group Hn(G), called the homology class of zn. We shall simplify
notations whenever feasible and write Zn in place of Zn(G), Bn instead of Bn(G) and sometimes ∂z
in place of the cumbersome ∂n(z).

Given two chain complexes G and K one would like to study maps between them. These are the
chain maps which we now define.

Definition 29.6: Given two chain complexes G and K with boundary maps ∂ ′ : Gn −→ Gn−1 and
∂′′ : Kn −→ Kn−1, a chain map φ : G −→ K is a sequence of group homomorphisms φn : Gn −→ Kn

(n = 0, 1, 2, . . . ) such that
∂′′n ◦ φn = φn−1 ◦ ∂′n (29.13)

Equation (29.13) may be summarized by declaring that the following diagram commutes:

Gn
∂′n−−−→ Gn−1

φn

y
yφn−1

Kn
∂′′n−−−→ Kn−1

(29.14)

Theorem 29.4: A chain map φ : G −→ K induces for each n = 0, 1, 2, . . . , a group homomorphism
Hn(φ) : Hn(G) −→ Hn(K) given by

x 7→ φn(x).

Proof: Thanks to (29.7), φn maps Zn(G) into Zn(K) and Bn(G) into Bn(K). Thus the map induced
on the quotient groups is a well defined group homomorphism.

Theorem 29.5: Suppose given a pair of chain maps φ : L −→ G and G −→ K, then the composite
ψ ◦ φ : L −→ K is a chain map and

Hn(ψ ◦ φ) = Hn(ψ) ◦Hn(φ), n = 0, 1, 2, . . . (29.15)

In other words for each n we get a covariant functor Hn from the category of chain complexes to the
category AbGr.
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Proof: For each x ∈ Zn(L),

Hn(ψ ◦ φ)(x) = ψn ◦ φn(x) = Hn(ψ)(φn(x)) = Hn(ψ) ◦Hn(φ)(x).

We shall at some point as we go along, drop the primes and denote both sets of boundary maps by ∂n
or even ∂. Observe that if z ∈ ker φn then

φn−1(∂nz) = ∂n−1φn(z) = 0,

whereby we conclude that ∂n maps ker φn into ker φn−1 and we get a chain complex

−−−→ ker φn+1
∂n+1−−−→ ker φn

∂n−−−→ ker φn−1 −−−→
which we denote by ker φ. Likewise we get the chain complex

−−−→ Im φn+1
∂n+1−−−→ Im φn

∂n−−−→ Im φn−1 −−−→
which we denote by Im φ. It is clear from (29.13) that ∂n maps Im φn into Im φn−1.

The long exact homology sequence: We are now ready to prove the most basic result on chain
complexes and their homologies. The symbol 0 in any diagram involving chain complexes refers to the
zero chain complex in which all groups are zero and the boundary maps are all zero.

Definition 29.7: A short exact sequence of chain complexes consists of three chain complexes of
abelian groups L,G and K and chain maps f : L −→ G and g : G −→ K such that

(i) For each n, the map fn is injective.

(ii) For each n, the map gn is surjective.

(iii) For each n, ker gn =Im fn.

Thus for each n we have the diagram

{0} −−−→ Ln
fn−−−→ Gn

gn−−−→ Kn −−−→ {0} (29.16)

We now write out two more parallel rows with n replaced by n− 1 and n+ 1 and the boundary maps
going across the rows:

y
y

y

0 −−−→ Ln+1
fn+1−−−→ Gn+1

gn+1−−−→ Kn+1 −−−→ 0y∂n+1

y∂n+1

y∂n+1

0 −−−→ Ln
fn−−−→ Gn

gn−−−→ Kn −−−→ 0y∂n

y∂n

y∂n

0 −−−→ Ln−1
fn−1−−−→ Gn−1

gn−1−−−→ Kn−1 −−−→ 0y
y

y

We now state and prove the fundamental result.
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Theorem 29.6: A short exact sequence of complexes (29.16) induces a long exact sequence in
homology

−−−→ Hn(L)
Hn(f)−−−→ Hn(G)

Hn(g)−−−→ Hn(K)
δn−−−→ Hn−1(L) −−−→ (29.17)

where the map δn : Hn(K) −→ Hn−1(L) known as the connecting homomorphism is given by the
formula

δnkn = f−1
n−1∂ng

−1
n (kn), kn ∈ Zn(K) (29.18)

Here kn refers to the homology class of kn ∈ Zn(K) and g−1(kn) refers to any pre-image of kn.

Proof: We must first show that displayed formula (29.18) gives a well-defined map since several
choices are being made. First, for kn ∈ Zn(K) surjectivity of gn shows that there exists xn ∈ Gn such
that gn(xn) = kn. Applying the boundary map ∂n we see that gn−1(∂xn) = ∂kn = 0 which, by virtue
of exactness of (29.16) and injectivity of fn−1, shows there is a unique yn−1 ∈ Ln−1 such that

fn−1(yn−1) = ∂xn. (29.19)

We have to now show that yn−1 is a cycle in L. This is clear if n = 1 and so we assume n ≥ 2.
Applying the boundary map to (29.19) gives fn−2(∂yn−1) = 0 from which we conclude, since fn−2 is
injective, that yn−1 ∈ Zn−1(L). Hence the assignment

kn 7→ yn−1, kn ∈ Zn(K) (29.20)

is well defined once we show that it is independent of the choice of xn ∈ g−1
n (kn).

Second, we suppose that for a given kn ∈ Zn(K), x′n and x′′n are two members of g−1
n (kn) then

x′n − x′′n ∈ ker gn = im fn.

So there is a un ∈ Ln such that x′n−x′′n = fn(un). On the other hand, for these two choices there exist
y′n−1 and y′′n−1 in Ln−1 such that (29.19) holds and so

fn−1(y
′
n−1) − fn−1(y

′′
n−1) = ∂(x′n − x′′n) = ∂fn(un) = fn−1(∂un).

Injectivity of fn−1 implies y′n−1 and y′′n−1 differ by a boundary and so define the same homology class.
Third, we must show that the same homology class results if we begin with two homologous cycles

k′n and k′′n. In this there exists vn+1 ∈ Kn+1 and xn+1 ∈ Gn+1 such that

k′n − k′′n = ∂vn+1 = ∂gn+1(xn+1) = gn(∂xn+1).

Let x′n and x′′n be chosen from g−1
n (k′n) and g−1

n (k′′n) respectively so that gn(x
′
n − x′′n − ∂xn+1) = 0. By

exactness of (29.16) there is a wn ∈ Ln such that x′n − x′′n − ∂xn+1 = fn(wn). Applying ∂ to this and
and recalling (29.19) we see that the corresponding cycles y ′n−1 and y′′n−1 satisfy

fn−1(y
′
n−1 − y′′n−1) = ∂fn(wn) = fn−1(∂wn).

Since fn−1 is injective we see that the cycles y′n−1 and y′′n−1 are homologous.
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Exactness of (29.17): We first check the exactness at the junction Hn(G). Since (29.15) implies
Hn(g) ◦Hn(f) = 0, it suffices to prove ker Hn(g) ⊂ im Hn(f). So let gn(xn) = ∂n+1kn+1 for some xn ∈
Zn(G) and kn+1 ∈ Kn+1. Since gn+1 is surjective we can find xn+1 ∈ Gn+1 such that kn+1 = gn+1(xn+1)
and

gn(xn) = ∂n+1gn+1(xn+1) = gn(∂n+1xn+1),

from which we conclude there exists yn ∈ Ln such that xn−∂n+1xn+1 = fn(yn). Applying the operator
∂n and using injectivity of fn−1 we see that yn ∈ Zn(L) and the result is established.

We now turn to the exactness at the junction Hn(K). It is clear from (29.18) that δn(gnxn) = 0
for any xn ∈ Zn(G) so that δn ◦Hn(g) = 0. To prove ker δn(g) ⊂ im Hn(g) let kn ∈ Zn(K) such that
δn(kn) = 0. Equation (29.18) then implies, for any xn ∈ g−1

n (kn) there is ln ∈ Ln such that

f−1
n−1∂nxn = ∂nln.

From this we get xn − fn(ln) = x′n ∈ Zn(G). Applying gn we see that kn = gn(xn) = gn(x
′
n) whereby

we conclude kn ∈ im Hn(g).
Finally we come to the exactness at the junction Hn−1(L). From (29.18) follows Hn−1(f) ◦ δn = 0.

To show ker Hn−1(f) ⊂ im δn, pick a cycle ln−1 such that fn−1(ln−1) is a boundary say ∂nxn for some
xn ∈ Gn. Applying gn−1 to the equation

fn−1ln−1 = ∂nxn

gives a cycle kn = gn(xn) ∈ Zn(K). From (29.18) we infer δn(kn) = ln−1 and this suffices for a proof.

Exercises

1. Sketch ∆n for n = 1, 2, 3. Show that ∆n is a compact and connected subspace of Rn+1.

2. Discuss the continuity of the maps (29.1). Prove lemma (29.1). what about the cases i ≤ j?

3. Verify equation (29.8).

4. Determine the values of n (n = 1, 2, . . . ) for which a constant function ∆n −→ X an n−cycle.

5. Show that the family of all chain complexes forms a category in which the set of morphisms
Mor(G,K) between any two chain complexes G and K is the set of all chain maps from G to K.

6. Naturality of (29.17)-(29.18). Assume given a commutative diagram of chain complexes with
exact rows:

0 −−−→ L
f−−−→ G

g−−−→ K −−−→ 0yφ

yψ

yη

0 −−−→ L′ f ′−−−→ G′ g′−−−→ K ′ −−−→ 0

Denoting by δn and δ′n the connecting homomorphisms, sketch relevant diagrams and prove that

δ′n ◦Hn(η) = Hn(ψ) ◦ δn
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Lecture - XXXI The homology groups and their functoriality

Having laid the algebraic foundations in the previous lecture we shall formally define the homology
functors Hn, n = 0, 1, 2, . . . from the category Top to the category AbGr. We shall discuss H0(X)
completely and show that H0(X) is free abelian of rank equal to the number of path components of
X. The groups Hn(X) (n ≥ 1) vanish when X is a convex subset of Rn. We shall prove this result
using a technique that would be be considerably generalized in lecture 33. However the special case
proved here for convex subsets would be needed in lecture 33. In the next lecture we shall see examples
of topological spaces X for which H1(X) is non-trivial. However the reader would have to wait till
lecture 34 to see more interesting examples.

The homology groups Hn(X): Definitions (29.3)-(29.6) and theorems (29.2)-(29.5) from the pre-
vious lecture show that given a topological space X, the sequence of groups Sn(X) and group homo-
morphisms ∂n : Sn(X) −→ Sn−1(X) provide an example of a chain complex called the singular chain

complex. If f : X −→ Y is a continuous function, the sequence f] : Sn(X) −→ Sn(Y ) (n = 0, 1, 2, . . . )
defines a chain map from the chain complex S(X) to S(Y ). The general results on chain complexes
when applied to this special case gives us the homology functors from Top to AbGr.

Definition 31.1: (i) The homology groups Hn(X) of the space X are by definition the homology
groups of the chain complex S(X) namely

Hn(X) = Zn(X)/Bn(X),

where Zn(X) is the kernel of the homomorphism ∂n : Sn(X) −→ Sn−1(X) and Bn(X) is the image of
the homomorphism ∂n+1 : Sn+1(X) −→ Sn(X).

(ii) Given a continuous map f : X −→ Y , the induced maps Hn(f) : Hn(X) −→ Hn(Y ) in
homology are the homomorphisms

Hn(f) : σ 7→ f](σ), σ ∈ Zn(X).

Theorem (29.5) in this context is reproduced below:

Theorem 31.1: (i) Suppose f : X −→ Y and g : Y −→W are continuous functions,

Hn(g ◦ f) = Hn(g) ◦Hn(f), n = 0, 1, 2, . . . .

The identity map on X induces the identity map on Hn(X):

Hn(idX) = idHn(X)

In other words the {Hn/n = 0, 1, 2, . . .} is a sequence of covariant functors from Top to AbGr. An
immediate consequence is the following result.
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Corollary 31.2: Suppose X and Y are homeomorphic, the groups Hn(X) and Hn(Y ) are isomorphic
for every n = 0, 1, 2, . . . .

Another important consequence is the following result that parallels lemma (9.3).

Theorem 31.3: Suppose r : X −→ A is a retraction, then for every n = 0, 1, 2, . . .

Hn(r) : Hn(X) −→ Hn(A)

is surjective and
Hn(j) : Hn(A) −→ Hn(X)

is injective, where j : A −→ X is the inclusion map.

The augmentation map ε : S0(X) −→ Z : Since the standard Euclidean simplex ∆0 is a singleton,
each singular zero simplex ∆0 −→ X can be identified with a point of X namely the image of the
singular zero simplex. Thus we may think of a singular zero chain as an element of the free abelian
group generated by the points of X, that is a formal expression

c1p1 + c2p2 + · · · + ckpk, (31.1)

where p1, p2, . . . , pk are points of X and the coefficients c1, c2, . . . , ck are integers.

Definition 31.2: The augmentation map ε : S0(X) −→ Z is the group homomorphism given by

c1p1 + c2p2 + · · ·+ ckpk 7→ c1 + c2 + · · · + ck.

If X is non-empty, the augmentation map is surjective. Since by definition, ∂0 is the zero map and
Z0(X) = S0(X), we have to determine B0(X). The following theorem provides the answer.

Theorem 31.4: Suppose X is a path connected space then B0(X) = ker ε. That is to say a singular
zero chain (31.1) is a boundary if and only if the sum of its coefficients is zero. Thus, for a path
connected space X,

H0(X) ∼= Z.

Proof: We shall denote the ends of ∆1 by a and b. If σ : ∆1 −→ X is a singular one simplex then
∂1σ = σ(b) − σ(a) which is obviously in ker ε and we conclude that B0(X) ⊂ ker ε. To prove the
reverse inclusion, let σ be an arbitrary element of ker ε given by (31.1). That is, the coefficients satisfy
c1 + c2 + · · ·+ ck = 0. Pick any point p ∈ X and for each j let σj : ∆1 −→ X be a path in X joining
p and pj. We claim that σ is the boundary of the one chain τ = c1σ1 + c2σ2 + · · ·+ ckσk.

∂1τ = c1(σ1(b) − σ1(a)) + c2(σ2(b) − σ2(a)) + · · ·+ ck(σk(b) − σk(a))

= (c1p1 + c2p2 + · · · + ckpk) − (c1 + c2 + · · ·+ ck)p = σ.

The last part follows from the fundamental theorem on group homomorphisms.

Theorem 31.5: If {Xα/α ∈ Λ} is the family of path components of a topological space, then for
each k = 0, 1, 2, . . .

Hk(X) =
⊕

α∈Λ

Hk(Xα)
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Proof: We shall only sketch the proof leaving the details as an exercise. Note that if σ is a singular
k−simplex, the image of σ must be contained in one of the components Xα ofX and so may be regarded
as a singular k−simplex in Xα. This gives a natural decomposition of Sk(X) as a direct sum of the
family Sk(Xα). To see that the boundary map ∂k respects the decomposition note that the boundary
of a singular simplex σ is a sum of finitely many k− 1 singular simplexes each of which must map into
the same component as σ. It is easy to deduce from this the decompositions Zk(X) =

⊕
Zk(Xα) and

Bk(X) =
⊕

Bk(Xα).

Convex sets and barycentric coordinates: Let v1,v2, . . . ,vk ∈ Rn be given points. The convex
hull of these points is the set consisting of all convex combinations t1v1 + t2v2 + · · ·+ tkvk, that is the
coefficients t1, t2, . . . , tk are non-negative and t1 + t2 + · · · + tk = 1. The convex hull of these points
is clearly a convex set. The points v1,v2, . . . ,vk ∈ Rn are said to be affinely independent if the k − 1
vectors v1 − vk,v2 − vk, . . . ,vk−1 − vk are linearly independent (see exercise 4). The convex hull of a
set of k affinely independent points is called the affine k− simplex spanned by these points. The proof
of the following result is left as an exercise.

Theorem 31.6: If v1,v2, . . . ,vk ∈ Rn are affinely independent then every point x in the convex hull
of v1,v2, . . . ,vk can be uniquely expressed as

x = t1v1 + t2v2 + · · · + tkvk, (31.2)

where the coefficients tj (1 ≤ j ≤ k) are non-negative and t1 + t2 + · · ·+ tk = 1. These coefficients are
called the barycentric coordinates of x.

We consider the standard n simplex ∆n in Rn+1 with summit S = en+1. The figure below depicts
a general point Q on the face ∆n−1 opposite to S and P an arbitrary point on the line segment joining
Q and S. The reader may check that if λ1, λ2, . . . , λn+1 are the barycentric coordinates of P then the
coordinates of Q are given by the n−tuple

U(λ1, . . . , λn+1) =
( λ1

1 − λn+1

,
λ2

1 − λn+1

, . . . ,
λn

1 − λn+1

)
(31.3)

Note that U is bounded but not continuous when λn+1 −→ 1. As P approaches S the pyramid with

Figure 21:

base ∆n−1 and summit P fills up ∆n. We are now in a position to prove the following theorem.
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Theorem 31.7: Suppose X is a convex subset of a Euclidean space, Hk(X) = 0 for k ≥ 1.

Proof: Choose a point x0 ∈ X and F : X×[0, 1] −→ X be the homotopy F (x, t) = (1−t)x+tx0. We
shall define a group homomorphism T : Sn−1(X) −→ Sn(X) satisfying a certain property (31.6) below.
This is a special case of a chain homotopy that we shall encounter later in a more general context.
Since Sn−1(X) is a free abelian group generated by singular (n − 1) simplicies, it suffices to define T
these. For a singular (n − 1) simplex σ : ∆n−1 −→ X, define the continuous map Tσ : ∆n −→ X in
terms of the barycentric coordinates using the expression (31.3) namely

(Tσ)(λ1, . . . , λn+1) = F ((σ ◦ U)(λ1, . . . , λn+1), λn+1). (31.4)

The continuity of Tσ is left as an exercise. Let us calculate the boundary of Tσ using equations (29.1)
and (29.4). Recalling the notations used in lecture 29, one checks that (Tσ) ◦ Φn

n = σ.
For 0 ≤ j ≤ n− 1, the j−th singular face is given by

(Tσ) ◦ Φn
j (t1, . . . , tn) = F ((σ ◦ U)(t1, . . . , tj−1, 0, tj, . . . , tn), tn). (31.5)

On the other hand when 0 ≤ j ≤ n− 1,

T (σ ◦ Φn−1
j )(t1, . . . , tn) = T

(
σ
( t1

1 − tn
, . . . ,

tj−1

1 − tn
, 0,

tj
1 − tn

, . . . ,
tn−1

1 − tn

)
, tn

)
,

which may be rewritten as T ((σ ◦ U)(t1, . . . , ti−1, 0, ti, . . . , tn−1), tn), in agreement with the right hand
side of (31.5). From equation (29.4) it follows that for n ≥ 1,

∂n(Tσ) − T (∂nσ) = σ, σ ∈ Sn(X), (31.6)

whereby we conclude that if σ ∈ Zn(X) then σ = ∂n(Tσ) ∈ Bn(X). That is Zn(X) = Bn(X).

Exercises

1. Prove theorem (31.3).

2. Show that for a path connected space X, every singleton {p} with p ∈ X is a basis for H0(X).

3. Complete the proof of theorem (31.5).

4. Show that the set v1,v2, . . . ,vk ∈ Rn is affinely independent if the vectors

v1 − vj, . . . ,vj−1 − vj,vj+1 − vj, . . . ,vk−1 − vk

are linearly independent for any j (1 ≤ j ≤ k).

5. Prove theorem (31.6). Show that the barycentric coordinates are continuous functions of x. All
but the j-th barycentric coordinates of vj vanish. The set of points in (31.2) obtained by setting
tj = 0 and varying the other coefficients is called the j−th face of the simplex spanned by the
given points.

6. Check the continuity of the map Tσ in theorem (31.7).
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Lecture - XXXII The abelianization of the fundamental group

In this lecture we shall establish a basic result relating the fundamental group π1(X, x0) and the first
homology group H1(X). The result is elegant and states that H1(X) is the abelianization of π1(X, x0)
when X is a path connected space. Further, the abelianization map is natural in the following sense.
Suppose that f : (X, x0) −→ (Y, y0) is a continuous map we have the following commutative diagram:

π1(X, x0)
f∗−−−→ π1(Y, y0)

ΠX

y
yΠY

H1(X)
H1(f)−−−→ H1(Y )

(32.1)

where ΠX : π1(X, x0) −→ H1(X) and ΠY : π1(Y, y0) −→ H1(Y ) are the quotient maps onto the
respective abelianizations. We shall prove the main theorem (32.1) through a series of lemmas.

Theorem 32.1: Let X be a path connected topological space. There is a surjective group homo-
morphism

ΠX : π1(X, x0) −→ H1(X) (32.2)

whose kernel is the commutator subgroup [π1(X, x0), π1(X, x0)]. Thus

H1(X) = π1(X, x0)/[π1(X, x0), π1(X, x0)] (32.3)

Before taking up the proof which will be completed in several steps, we set up the map ΠX . Note
that if γ is a loop in X based at x0 then γ is a one cycle, that is to say γ ∈ Z1(X) and we denote its
homology class in the quotient H1(X) by γ. This suggests that we define ΠX : π1(X, x0) −→ H1(X)
as

ΠX : [γ] 7→ γ (32.4)

We shall show that the map is a well-defined surjective group homomorphism and determine its kernel.
We do each of these as a separate lemma. Since homotopy of loops is a map from the square [0, 1]×[0, 1]
whereas a singular two simplex is a map from ∆2 to X we must first set up some standard maps from
∆2 to the square with specific properties. The usual proofs seem slightly tricky and we shall try an
approach that would be useful in the next lecture.

Divide the square [0, 1] × [0, 1] into two triangles by drawing a diagonal from (0, 0) to (1, 1). Let
Ti (i = 1, 2) be two affine homeomorphisms mapping ∆2 onto the these two triangles given by

T1(ê1) = (0, 0), T2(ê1) = (0, 0),

T1(ê2) = (1, 0), T2(ê2) = (0, 1),

T1(ê3) = (1, 1), T2(ê3) = (1, 1).

We shall regard the maps Ti (i = 1, 2) as maps from ∆2 into I2 and use them to prove the following:
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Figure 22:

Lemma 32.2: The map ΠX given by (32.4) is well defined.

Proof: Let γ1 and γ2 be two homotopic loops based at x0 and let F : I × I −→ X be the homotopy
fixing the base point x0. Then σi = F ◦ Ti (i = 1, 2) are two singular two simplicies. It is an exercise
to compute the boundary of these two singular simplicies and we find easily

∂(σ1) = ∂(F ◦ T1) = εx0 + γ1 − F (t, t)

∂(σ2) = ∂(F ◦ T2) = εx0 + γ2 − F (t, t).

The one chain γ1 − γ2 is the boundary of the two chain σ1 − σ2 whence γ1 = γ2.

Lemma 32.3: The map ΠX given by (32.4) is a group homomorphism.

Proof: Let γ1 and γ2 be two loops in X based at x0. We have to show that the one chain

γ1 + γ2 − γ1 ∗ γ2

is a boundary of some singular two chain σ. The idea behind the construction is simple. We first
define a map F̃ : I × I −→ X whose restrictions to the four sides of the square are γ1, γ2, εx0 and
γ1 ∗ γ2. As in the previous lemma we shall employ the maps T1, T2 to construct our two chain σ.

We proceed as in lecture 7 by defining F̃ from the boundary of I×I to [0, 1], using Tietze’s theorem
to extend it to the whole of I × I and then composing with γ1 ∗ γ2. So we define

F̃ (0, s) =
s

2

F̃ (t, 1) =
t+ 1

2

F̃ (t, 0) = t

F̃ (1, s) = 1

and extend it continuously to I × I. Let F : I × I −→ X be given by F = (γ1 ∗ γ2) ◦ F̃ . The figure
below depicts F along the boundary of I2:
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Figure 23:

It is now an easy matter to verify that the boundary of the two chain σ given by

σ = F ◦ T1 − F ◦ T2

is the one chain
γ1 + γ2 − εx0 − γ1 ∗ γ2 (32.5)

Now, if σ′ : ∆2 −→ X be the constant map taking value x0 then ∂σ′ = εx0 whereby we conclude that

γ1 + γ2 − γ1 ∗ γ2 = ∂σ + ∂σ′, (32.6)

which implies ΠX([γ1][γ2]) = ΠX([γ1 ∗ γ2]) = ΠX([γ1]) + ΠX([γ2]). �

Lemma 32.4: The map ΠX given by (32.4) is surjective.

Proof: Let λ be a singular one cycle say λ =
∑
njγj, where nj ∈ Z and γj : [0, 1] −→ X. Since

∂λ = 0,
k∑

j=1

nj(γj(1) − γj(0)) = 0. (32.7)

The idea is to complete each of the paths γj into a loop at x0 by means of paths joining x0 to the ends
γj(0) and γj(1). The only non-trivial part is the book-keeping which has to be done carefully. Let S
denote the set of endpoints

S = {γj(1), γj(0)/ j = 1, 2 . . . , k}.
For each p ∈ S, if mp denotes the sum of the coefficients of p in (32.7) then mp must be zero. Taking
a path βp in X joining x0 and p ∈ S we construct for each j a loop ηj in X based at x0 namely,

ηj = βγj(0) ∗ γj ∗ β−1
γj(1)

.

Finally

ΠX(ηn1
1 ∗ ηn2

2 ∗ · · · ∗ ηnk

k ) =
k∑

j=1

njγj −
k∑

j=1

nj(βγj(1) − βγj(0)) = λ

since
k∑

j=1

nj(βγj(1) − βγj(0)) =
∑

p∈S

mpβp = 0.
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Lemma 32.5: Suppose G is a group and x1, x2, . . . , xk are distinct elements of G such that xi 6= x−1
j

if i 6= j. Let w be a word involving integer powers of x1, x2, . . . , xk such that the sum of the exponents
of each xi is zero. Then w lies in the commutator subgroup of G.

Proof: We leave the easy proof for the student to work out.

Lemma 32.6: The kernel of the map ΠX is the commutator subgroup [π1(X, x0), π1(X, x0)].

Proof: Since the ΠX is a map into an abelian group, its kernel contains the commutator subgroup.
To prove the converse suppose that γ is a loop based at x0 such that [γ] ∈ Ker ΠX . When considered
as a singular one cycle it is a boundary of a singular two chain

∑
njσj where σj : ∆2 −→ X. Writing

the boundary ∂σj as a sum of its faces

∂σj = λj + µj + νj

we see that
k∑

j=1

nj∂σj =
k∑

j=1

nj(λj + µj + νj) = γ. (32.8)

We proceed as in lemma (32.4). Let S be the set distinct singular one simplicies in the list

λj, µj, νj j = 1, 2, . . . , k. (32.9)

and choose auxiliary paths βp joining x0 and the endpoints p of each of the one simplicies in S. The
loop γ also appears in the list (32.9) but since its ends are both x0 there is no need to take the auxiliary
paths β in this case. As in lemma (32.4), for each θ in the list (32.9), we denote by mθ the sum of the

Figure 24:
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coefficients of θ in (32.8) so that,

mθ =

{
0 if θ 6= γ
1 if θ = γ

(32.10)

For each two simplex σj we have the three loops (suppressing the subscript j)

βλ(0) ∗ λ ∗ β−1
λ(1), βµ(0) ∗ µ ∗ β−1

µ(1), βν(0) ∗ ν ∗ β−1
ν(1),

whose juxtaposition ηj is easily seen to be homotopic to the trivial loop. For proving this one uses the
equations λ(1) = µ(0), µ(1) = ν(0) and ν(1) = λ(0). Corresponding to (32.8) we form the loop

ηn1
1 ∗ ηn2

2 ∗ · · · ∗ ηnk

k ∗ γ−1 (32.11)

which is homotopic to γ−1 since the piece ηn1
1 ∗ ηn2

2 ∗ · · · ∗ ηnk

k is a juxtaposition of loops homotopic to
the constant loop. On the other hand if we write out the expression (32.11) completely, we see that for
each θ in the list (32.9), the factor β ∗ θ ∗β−1 appears, probably in several positions, but the sum of its
exponents is mθ. In view of (32.10) and lemma (30.5) we see that the element of π1(X, x0) represented
by (32.11) lies in the commutator subgroup, that is to say, [γ]−1 lies in the commutator subgroup of
π1(X, x0). The proof is complete.

Definition 32.1 (Natural transformation): Given a pair of functors π : T −→ G and H : T −→
G, a natural transformation T between π and H is a function which assigns to each object X of T a
morphism ηX : π(X) −→ H(X) such that for each morphism f : X −→ Y in T , the following diagram
commutes

π(X)
π(f)−−−→ π(Y )

ηX

y
yηY

H(X)
H(f)−−−→ H(Y )

(32.12)

The notation used in this definition is quite suggestive. The Poincaré-Hurewicz map provides a natural
transformation between the functors π1 and H1.

Exercises

1. Verify the displayed results for ∂σ1 and ∂σ2 in lemma (32.2).

2. By writing out the boundary formula in detail verify equations (32.5) and (32.6).

3. Prove lemma (32.5).

4. Verify the naturality of ΠX by proving that the diagram (32.1) commutes.

5. Determine the first homology group of the Klein’s bottle.

6. Determine the first homology groups of all the spaces described in the exercises to lecture 26.

7. In lecture 26 the fundamental group of the double torus was determined (see equation 26.14).
Write the element abcda−1b−1c−1d−1 as a product of commutators and deduce that its abelian-
ization is the free abelian group of rank four.
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Lecture - XXXIII Homotopy invariance of homology

Homotopy of maps is one of the most important notions in topology and it is of interest to know
what is its effect on the induced maps in homology. The result is simple and direct namely, if f :
X −→ Y and g : X −→ Y are a pair of homotopic maps then they induce the same maps in homology
in every dimension. The further advantage here is that no base points are involved unlike the situation
encountered in lecture 11 with the fundamental group. However the proof is not direct as one must
algebraize the notion of homotopy in the context of chain maps. This leads to the notion of chain

homotopy that we first define. We establish the purely algebraic result that a pair of chain homotopic
maps induce equal maps in homology. We then proceed to relate the topological notion of homotopy
of a pair of continuous maps f, g as above with the chain homotopy between the induced chain maps
f] : Sn(X) −→ Sn(Y ) and g] : Sn(X) −→ Sn(Y ). Some of these ideas have been implicitly used
in the last lecture in the construction of the singular two chain σ in lemma (32.2). We shall follow
the treatment in the book by T. Dieck7 defining first the notion of the cross product which seems
more transparent. The student who is familiar with differential forms may notice some similarities
with wedge products and the exterior derivative. As in the theory of differential forms where the
construction of the exterior derivative d is forced upon us through some of its properties, the cross
product is determined by its properties described in theorem (33.1), as soon as one chooses for each
pair (p, q) a model chain namely, the p+ q chain z in (33.4).

The cross product: This construction lies at the heart of the proof of Kunneth formula which
relates the homology groups of X × Y in terms of the homologies of X and Y . The first step would
be to relate the singular chain complex of X × Y with those of X and Y . This construction will be
carried out naturally. Given a zero simplex x ∈ X and a q simplex σ : ∆q −→ Y in Y , x× σ denotes
the singular q simplex in X × Y given by

x× σ : ∆q −→ X × Y

t 7→ (x, σ(t)).

Likewise given a q simplex τ in X and a zero simplex y in Y , one defines a q simplex τ × y in X × Y .
For a pair of singular simplices σ ∈ ∆p(X) and τ ∈ ∆q(Y ) we call p + q the total degree of the pair
(σ, τ).

Theorem 33.1: There exists a bilinear map

Sp(X) × Sq(Y ) −→ Sp+q(X × Y )

(σ, τ) 7→ σ × τ,

7See also R. Stöcher and H. Zeischang, Algebraische Topologie, B. G. Teubner, Stuttgart (1988) 306-325.
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with the following properties

(i) For zero simplices x ∈ X, y ∈ Y and singular simplices σ : ∆p −→ X and τ : ∆q −→ Y the
products x× τ , σ × y are already defined above.

(ii) Naturality: Suppose that f : X −→ X ′ and g : Y −→ Y ′ are two continuous maps and
f × g : X × Y −→ X ′ × Y ′ denotes the product map (f × g)(x, y) = (f(x), g(y)), then

(f × g)](σ × τ) = f](σ) × g](τ) (33.1)

(iii) Generalized Leibnitz’ rule: If σ ∈ Sp(X) and τ ∈ Sq(Y ) then

∂(σ × τ) = ∂σ × τ + (−1)p(σ × ∂τ) (33.2)

Proof: The construction proceeds by induction on the total degree p + q on pairs (σ, τ). It has
already been carried out for the case when one of σ or τ is a zero simplex and in particular when the
total degree p + q is zero. Further, and for this case, conditions (ii) and (iii) hold trivially. Assume
that the cross product

Sp(X) × Sq(Y ) −→ Sp+q(X × Y ) (33.3)

has been defined for all pairs (p, q) such that p+ q < k satisfying (ii) and (iii). Now if σ ∈ Sp(X) and
τ ∈ Sq(Y ) are such that p+ q = k then the right hand side of the formula in (iii) already makes sense
and in particular this is so with the pair ιp and ιq. Thus we need a singular p+ q chain z such that

∂z = ∂ιp × ιq + (−1)p(ιp × ∂ιq). (33.4)

Applying Leibnitz rule again to the right hand side one checks that it is a cycle. Since ∆p × ∆q is
convex this cycle is also a boundary and so (33.4) has a (non-unique) solution z ∈ Sp+q(∆p × ∆q).
Once this choice is made the construction proceeds further as follows. Each σ ∈ Sp(X) can be realized
as σ](ιp) where σ : ∆p −→ X and likewise for a singular q simplex τ in Y . But now equation (33.1)
forces upon us the definition

σ × τ = σ](ιp) × τ](ιq) = (σ × τ)](ιp × ιq) = (σ × τ) ◦ z, (33.5)

where the σ × τ appearing on the extreme left of (33.5) is the object we are defining whereas the σ
and τ appearing in the middle and on the extreme right of (33.5) denote the functions σ : ∆p −→ X
and τ : ∆q −→ Y . The easy verification of (33.1) is left for the reader. Proof of (33.2) runs as follows:

∂(σ × τ) = ∂
(
(σ × τ)](ιp × ιq)

)

= (σ × τ)]∂(ιp × ιq)

= (σ × τ)]∂z

= (σ × τ)]

(
∂ιp × ιq + (−1)p(ιp × ∂ιq)

)

Applying (33.1), which holds by induction hypothesis, and using the pair of equations σ]∂ = ∂σ],
τ]∂ = ∂τ] we continue with our calculation:

∂(σ × τ) = σ](∂ιp) × τ](ιq) + (−1)p(σ](ιp) × τ](∂ιq))

= ∂σ × τ + (−1)p(σ × ∂τ).

Having defined σ × τ for singular simplices σ and τ , we can extend it as a bilinear map Sp(X) ×
Sq(Y ) −→ Sp+q(X × Y ) since Sp(X) and Sq(Y ) are free abelian groups.
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Homotopy and chain homotopy: Chain homotopy is the algebraization of the topological notion
of homotopic maps. Let F : I×X −→ Y be a homotopy between two continuous functions f : X −→ Y
and g : X −→ Y . We use this map to define a sequence of maps

Ln : Sn(X) −→ Sn+1(Y ) (33.6)

satisfying the condition
∂ ◦ Ln + Ln−1 ◦ ∂ = f] − g]. (33.7)

Let u : ∆1 −→ I be the unique one simplex. For a singular n simplex σ in X, define

Ln(σ) = F](u× σ).

Then we compute using (33.1)-(33.2),

∂(Ln(σ)) = F](∂u× σ) − F](u× ∂σ)

= F](∂u× σ) − Ln−1(∂σ)

∴ ∂(Ln(σ)) + Ln−1(∂σ) = F]({1} × σ) − F]({0} × σ)

∴ ∂(Ln(σ)) + Ln−1(∂σ) = F (1, σ(·))− F (0, σ(·)).

So we have the important equation

∂(Ln(σ)) + Ln−1(∂σ) = g](σ) − f](σ), σ ∈ Sn(X). (33.8)

completing the proof of (33.7). The reader must go back to lemma (32.2) to observe some analogies.
After these preparations we are ready to prove the following important result. Unlike theorems (11.2)
- (11.5) we do not have to worry here about base points which makes life a lot easier.

Theorem 33.2: Homotopic maps f : X −→ Y and g : X −→ Y induce equal maps in homology.
That is to say for each n we have

Hn(f) = Hn(g). (33.9)

Proof: Taking σ ∈ Zn(X) in (33.8), the term Ln−1(∂σ) drops out and we immediately see that the
cycles f](σ) and g](σ) differ by a boundary. The proof is complete.

We see that equation (33.7) is the algebraic analogue of homotopy of continuous maps. As this
phenomenon would recur often, we give a formal definition and a name for it.

Definition 33.1: Given chain maps φn : Cn −→ Dn and ψn : Cn −→ Dn (n = 1, 2, . . . ) between
chain complexes C and D, a chain homotopy between φ and ψ is a sequence Ln : Cn −→ Dn+1 of
group homomorphisms such that

∂ ◦ Ln + Ln−1 ◦ ∂ = φn − ψn (33.10)

It is easy to see that that chain homotopy is an equivalence relation on the family of chain maps.
Recalling now the definition of homotopy equivalence (see lecture 11, definition 11.2) we state the very
useful result which follows immediately from theorem (33.2).
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Corollary 33.3: If X and Y have the same homotopy type, then Hn(X) = Hn(Y ) for n = 0, 1, 2, . . . .

Exercises

1. Show that the p + q − 1 chain on the right hand side of (33.4) is a cycle.

2. Check that σ × τ as defined by equation (33.5) satisfies (33.1).

3. Show that the product in theorem (33.1) defines a bilinear map Hp(X)×Hq(Y ) −→ Hp+q(X×Y ).

4. Determine explicitly the two/three chain z satisfying (33.4) when

(i) p = 1 and q = 1.

(ii) p = 1 and q = 2.

Hint: In the proof of lemma (32.2), we chopped the square into two triangles. When q = 2 we
need to chop a prism into three pieces and map ∆3 affinely onto each of them.

5. Use the map ΠX of the previous lecture to calculate the generators of H1(S
1 × S1).

6. Use equation (33.1) to determine the image of the pair of generating one cycles of the previous
exercise under the map H1(S

1) ×H1(S
1) −→ H2(S

1 × S1).
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Lecture - XXXIV Small simplicies

Recall that the Goursat lemma in complex analysis is proved by subdividing a triangle into four
smaller triangles determined by the midpoints of the sides of the given triangle. The integral over
the given triangle is then the sum of the integrals over the four little pieces. Likewise, in the proof
of the classical Green’s theorem (of which Cauchy’s theorem is really a special case) one employs a
subdivision into tiny squares. The contributions to the integral from an edge common to a pair of
abutting triangles/squares cancel out.

A similar idea underlies the method of small simplicies where we perform a systematic subdivision
operation known as barycentric subdivision. The barycentric subdivision enables us to replace a singu-
lar chain by a homotopic one in which the constituent singular simplicies are small. A �small simplex
is one whose image lies in an open set belonging to a prescribed open cover of the space. One achieves
this through iterated barycentric subdivisions a process reminiscent of one used in the proof of the
Goursat lemma. The fundamental theorem on small simplicies quickly leads us to the two fundamental
results on algebraic topology - the excision theorem discussed in lecture 39 and the Mayer Vietoris
sequence that we shall derive here and use in the next lecture.

Affine simplicies and barycentric subdivision: Given points v1,v2, . . . ,vp+1 in the standard
n−simplex ∆n, the continuous map σ : ∆p −→ ∆n given in terms of the barycentric coordinates

p+1∑

i=1

λiei 7→
p+1∑

i=1

λivi (34.1)

is called an affine p−simplex and is denoted by [v1,v2, . . . ,vp+1]. Note that the given need not be
affinely independent. Each such σ is an element of Sp(∆n) and the subgroup generated by them is
called the group of affine p−simplicies in ∆n denoted by Ap(∆n). Thus Ap(∆n) is the set of all formal
linear combinations with integer coefficients of affine simplicies. Since the face maps (29.1) are affine
maps we conclude from exercise 2 that the boundary homomorphism ∂p : Sp(∆n) −→ Sp−1(∆n) maps
Ap(∆n) into Ap−1(∆n) and so we get a subcomplex {Ap(∆n)/p = 0, 1, 2, . . .} with boundary maps as
the restrictions of ∂p to Ap(∆n).

If b ∈ ∆n is a given point the cone over the affine simplex σ = [v1,v2, . . . ,vp+1] with vertex apex
b is denoted by Kbσ and is defined as

Kbσ = [b,v1,v2, . . . ,vp+1] (34.2)

The cone Kbσ is thus an affine p + 1 simplex. If we start with a zero simplex namely, a point
v ∈ Sn(∆n), the cone over it is the line segment [b,v]. Since Ap(∆n) is a free abelian group generated
by the affine p simplicies, we obtain by extension a group homomorphism Kb : Ap(∆n) −→ Ap+1(∆n).
As in the proof of theorem (29.7) it is easy to compute the boundary of the cone Kbσ for any affine p
simplex.
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For a zero simplex σ = [v] we evidently have ∂1Kb(σ) = σ− [b]. We now calculate the faces of the
affine p+ 1 simplex Kb(σ). If j ≥ 1,

(Kbσ ◦ Φp
j)(λ1, λ2, . . . , λp+1) = Kbσ(λ1, . . . , λj, 0, λj+1, . . . , λp+1)

= [b,v1, . . . ,vj−1,vj+1, . . . ,vp+1].

This is the cone over the j−th face of [v1,v2, . . . ,vp+1]. Turning to the case j = 0,

(Kbσ ◦ Φp
0)(λ1, λ2, . . . , λp+1) = Kbσ(0, λ1, . . . , λp+1) = [v1, . . . ,vp+1].

Using equation (29.4) we immediately get the following result.

Theorem 34.1: The boundary of the cone Kbσ = [b,v1,v2, . . . ,vp+1] is given by

∂Kbσ = σ −Kb∂σ (34.3)

Hitherto the choice of the apex b of the cone was arbitrary but now we shall specialize it to be the
barycenter of [v1,v2, . . . ,vp+1] that we now define.

Definition 34.1 (Barycenter of an affine simplex): (i) The barycenter of a zero simplex, that
is a point, is the zero simplex itself.

(ii) The barycenter of an affine p-simplex [v1,v2, . . . ,vp+1] is the point

1

p+ 1

(
v1 + v2 + · · · + vp+1

)
(34.4)

The barycenter of a one simplex is its midpoint and the barycenter of a two simplex is the centroid of
the triangle determined by the vertices. Roughly speaking, the barycentric subdivision of a one simplex
is obtained by subdividing the segment at its midpoint, or equivalently constructing the cone of each
of the two endpoints with apex as the barycenter. To subdivide a two simplex, we first subdivide
each of its three sides resulting in six one simplicies and taking the cone of each of the six pieces with
apex as the barycenter of the two simplex. Figure below depicts these subdivisions. More precisely

Figure 25:

the result of subdividing an affine p−simplex is a p−chain. The rough description above suggests an
inductive definition.

Definition 34.2: The subdivision map B : Ap(∆n) −→ Ap(∆n) is defined inductively as follows:
(i) For a zero simplex σ we define Bσ = σ.
(ii) For p ≥ 1, we assume that B is defined on Ak(∆n) for each k ≤ p−1. For a p−simplex σ define

Bσ = Kb(B(∂σ)), (34.5)

the cone over the chain B(∂σ) with apex b as the barycenter of σ.
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Theorem 34.2: The map B : Ap(∆n) −→ Ap(∆n) is a chain map which is chain homotopic to the
identity map.

Proof: If p = 0 and σ is a zero chain then B∂σ = 0 whereas ∂Bσ = ∂σ = 0. To handle the case
p > 0 we assume inductively that for any k−chain σ with k ≤ p− 1, the equation ∂Bσ = B∂σ holds.
To prove it for p chains, let σ be an arbitrary affine p−simplex. Equations (34.5) and (34.3) combine
to give

∂Bσ = ∂Kb(B∂σ) = B∂σ −Kb(∂B∂σ) = B∂σ −Kb(B∂∂σ) = B∂σ.

Note that induction hypothesis justifies ∂B∂σ = B∂∂σ. We have now shown that for every p chain σ,

B∂σ = ∂Bσ. (34.6)

We now construct a chain homotopy J : Ap(∆n) −→ Ap+1(∆n) between B and the identity map.
Equation (34.3) suggests a formula of the type

Jσ = Kbf(σ),

where b is the barycenter of σ and f : Ap(∆n) −→ Ap(∆n) is to be determined. The condition that J
is a chain homotopy between B and the identity now forces

f(σ) −Kb∂f(σ) = Bσ − σ − J(∂σ). (34.7)

Clearly f(σ) = 0 for a zero simplex σ. If we assume inductively that J : Ak(∆n) −→ Ak+1(∆n) has
already been defined for k ≤ p− 1, the right hand side of (34.7) is then a known function. Let us refer
to the term Kb∂f(σ) in equation (34.7) as junk. Exercise 3 invites the reader to check that retaining
the junk term is unnecessary. We set it equal to zero and define formally for a p−simplex σ,

Jσ =

{
0 if p = 0,
Kb(Bσ − σ − J(∂σ)) if p ≥ 1.

Let us now verify that this formula does the job. The case p = 0 is trivial and let us assume

∂Jσ + J(∂σ) = Bσ − σ

for any k chain such that k ≤ p− 1. Using the formula of J we see that

∂Jσ = Bσ − σ − J(∂σ) −Kb(∂Bσ − ∂σ − ∂J(∂σ)). (34.8)

By induction hypothesis ∂J(∂σ) = −J(∂∂σ) +B(∂σ)− ∂σ. Inserting this in (34.8) we get the desired
result

∂Jσ = Bσ − σ − J(∂σ). (34.9)

We shall now transfer the barycentric subdivision operator and the chain homotopy J to a chain map
B : Sp(X) −→ Sp(X) and a chain homotopy J : Sp(X) −→ Sp+1(X). This will be unique subject to
naturality.
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Theorem 34.3: For each topological space X, there exists a unique chain map BX : Sp(X) −→
Sp(X) and a chain homotopy JX : Sp(X) −→ Sp+1(X) between B and the identity map, which
satisfies the following two conditions.

(i) For a continuous map f : X −→ Y between topological spaces X and Y ,

B ◦ f] = f] ◦ B, J ◦ f] = f] ◦ J .

(ii) B and J when restricted to the affine simplicies reduce to B and J respectively.

Proof: Let ιp be the element of Ap(∆p) given by the identity map from ∆p to itself. Since an
arbitrary σ ∈ Sp(X) can be written as σ = σ]ιp, condition (i) forces

Bσ = (B ◦ σ])ιp = σ](Bιp) = σ]Bιp (34.10)

since Bιp = Bιp by (ii). Thus the conditions (i) and (ii) determine B uniquely on the generators of the
free abelian group Sp(X). The same argument applies to J .

We use (34.10) and (34.5) to show that B and B agree on any affine simplex σ ∈ Ap(∆n). Denoting
by g the barycenter of ιp and by b the barycenter of σ,

Bσ = σ]Bιp = σ](Kg(∂pιp)).

Using exercise 2, this may be rewritten as

Bσ = Kσ(g)(σ](∂pιp)) = Kb(∂pσ]ιp) = Kb(∂pσ) = Bσ.

The verification for J is similar. We now run through the proof that B is a chain map, which is now
automatic. For an arbitrary σ ∈ Sp(X), ∂Bσ = ∂(σ]Bιp) = σ](∂Bιp). Since ∂ιp is an affine chain and
B is a chain map on the subcomplex of affine chains we get ∂Bιp = B∂ιp. Applying σ] to this gives
∂Bσ = σ](B∂ιp). Working from the other end using the fact that σ] is a chain map and B satisfies (i),
we get

B∂σ = B∂(σ]ιp) = B(σ]∂ιp) = σ]B(∂ιp) = σ]B(∂ιp).

Finally we show that J is a chain homotopy between B and the identity operator. For σ ∈ Sp(X),

J ∂σ = J ∂σ]ιp = J σ]∂ιp = σ]J ∂ιp = σ]J∂ιp

∂J σ = ∂J σ]ιp = ∂σ]J ιp = σ]∂J ιp = σ]∂Jιp.

We have used (i) and (ii) and the fact that σ] is a chain map. Subtracting and using (34.9) we get the
desired result. �

Theorem 34.4: (i) The diameter of an affine p−simplex σ = [v1,v2, . . . ,vp+1] is the length of its
longest side namely,

max
i6=j

‖vi − vj‖.

(ii) The diameter of any constituent simplex in the chain Bσ is
( p

p+ 1

)
diam (σ).
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Proof: We leave (i) as an exercise for the reader. To prove (ii) we use induction on p setting aside
the cases p = 1, 2 for the reader to investigate. Denoting by b the barycenter of σ, the reader may
check that ‖b−x‖ ≤ p(p+1)−1(diam σ) for any point x of σ. Let τ be one of the simplicies appearing
in the chain Bσ. Then the diameter of τ equals ‖w− z‖ where w and z are two vertices of τ . If one of
these is b then the result follows from the assertion in the previous sentence. If neither w nor z is b
then they are both vertices of a face τ ′ of τ lying on a face σ′ of σ. But τ ′ is then a constituent (p− 1)
simplex of B(σ′) and by induction hypothesis, the result follows (how?). �

Definition 34.3: Given an open covering U of X, S U
n (X) denotes the subgroup of Sn(X) generated

by all the singular simplicies σ : ∆n −→ X such that σ(∆n) ⊂ Uσ for some open set Uσ in the covering
U . That is to say, S U

n (X) is the free abelian group generated by small simplicies, namely those with
images contained in one of the open sets in the given covering. It is clear that that the boundary
homomorphism ∂n maps S U

n (X) into S U
n−1(X) and the resulting subcomplex is denoted by S U(X).

The homology groups of the complex S U(X) will be denoted by H U
n (X).

Lemma 34.5: (i) Given an open cover U of X and a singular simplex σ ∈ Sp(X), there exists a
k ∈ N such that Bkσ ∈ S U

p (X). In other words each of the simplicies occurring in Bkσ has its image
in one of the open sets of the cover U .

(ii) If σ is a singular p simplex whose image lies in an open set U ∈ U then J σ ∈ S U
p+1(X) where

J is the chain homotopy constructed in theorem (34.3).

Proof: (i) Choose a Lebesgue number for the open cover {σ−1(U) /U ∈ U}. According to theorem
(34.3), the images of the simplicies occurring in the chain Bkσ are the same as the images under σ of
the affine simplicies occurring in Bkιp, where ιp is the identity map of ∆p. However, theorem (34.4)
states that the simplicies occurring in Bkιp have diameters less than (p(p+ 1)−1)k. Thus, if we choose
k sufficiently large the image of each of the simplicies in Bkσ would lie in one of the open sets of U .

To prove (ii) we use the naturality of J and proceed as in the proof of theorem (34.4). Let
σ : ∆p −→ X have its image in U ∈ U . Then J σ = σ](Jιp). But we see immediately from the
definition of J in theorem (34.3) that Jιp is a Z−linear combination:

Jιp =
∑

ckλk

where each λk is a (degenerate) affine (p+1) simplex contained in ∆p and hence σ](λk) is a singular
(p+ 1) simplex with image contained in U . �

Theorem 34.6: The inclusion maps S U
n (X) −→ Sn(X) (n = 0, 1, 2, . . . ) define a chain map of

complexes. Further, these inclusion maps induce isomorphisms in homology:

H U
n (X)

∼=−−−→ Hn(X), n = 0, 1, 2, . . .

Proof: The first assertion follows from the comments preceding lemma (34.5). To show that the
inclusion maps induce an injective map on homologies, let σ ∈ S U

p (X) be a singular chain such that
σ = ∂η for some η ∈ Sp+1(X). Choose k ∈ N such that Bkη ∈ S U

p+1(X). We have to show that Bkη
is a boundary in S U . By exercise 5, Bk is chain homotopic to the identity via a homotopy Tk say.
Applying ∂ to

Bkη − η = Tk∂η + ∂Tkη,
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we see that ∂(Bkη)−σ = ∂Tkσ. By (ii) of lemma (34.5), ∂Tkσ ∈ S U
p (X) which means σ is a boundary

in S U
p (X). To prove surjectivity, let σ be a cycle in S(X) and k ∈ N be such that Bkσ ∈ S U(X).

From Bkσ − σ = ∂Tkσ we conclude that σ is homologous to the cycle Bkσ in S U(X). �

Theorem 34.7 (Mayer Vietoris sequence): (i) Let {U, V } be an open covering of X,

κ′ : Hk(U ∩ V ) −→ Hk(U), κ′′ : Hk(U ∩ V ) −→ Hk(V )

be the maps induced by inclusions. Further, let qn : Hn(U) ⊕Hn(V ) −→ Hn(U ∪ V ) be the map:

(a, b) 7→ j1∗a+ j2∗b,

where j1∗ and j2∗ are induced by the respective inclusions j1 : U −→ U ∪ V and j2 : V −→ U ∪ V .
Then, the following long exact sequence known as the Mayer Vietoris sequence holds:

−−−→ Hn(U ∩ V )
(κ′,−κ′′)−−−−−→ Hn(U) ⊕Hn(V )

qn−−−→ Hn(U ∪ V )
δn−−−→ Hn−1(U ∩ V ) −−−→

(ii) A cycle ζ ∈ Zn(U ∪V ) may be represented (modulo boundaries) as ζ = ζ1 +ζ2 for some ζ1 ∈ Sn(U)
and ζ2 ∈ Sn(V ) and the connecting homomorphism δn is given by

δn : ζ 7→ ∂ζ1 = −∂ζ2.

Proof: In the diagrams below, the Left hand square depicts a push-out square of inclusions which
goes over to a push-out square of complexes on the right:

U ∩ V i1−−−→ U

i2

y
yj1

V
j2−−−→ U ∪ V

S(U ∩ V )
i1−−−→ S(U)

i2

y
yj1

S(V )
j2−−−→ S U(U ∪ V )

The reader may check that the latter may be recast as a short exact sequence of chain complexes
namely

0 −−−→ S(U ∩ V )
(i1,−i2)−−−−→ S(U) ⊕ S(V )

j1+j2−−−→ S U(U ∩ V ) −−−→ 0. (34.11)

The corresponding long exact sequence in homology gives

−−−→ Hn(U ∩ V )
(κ′,−κ′′)−−−−−→ Hn(U) ⊕Hn(V )

Qn−−−→ H U
n (U ∪ V )

Dn−−−→ Hn−1(U ∩ V ) −−−→

The definition of κ′, κ′′ and exercise 6 enables us to replace Qn and Dn by the composites

qn : Hn(U) ⊕Hn(V )
Qn−−−→ H U

n (U ∪ V )
λ−−−→ Hn(U ∪ V )

δn : Hn(U ∩ V )
λ−1

−−−→ H U
n (U ∪ V )

Dn−−−→ Hn(U ∩ V ) (34.12)

where λ is the isomorphism given by theorem (34.6). The final result is the Mayer Vietoris sequence
stated in the theorem. The second part is clear from (29.18). �
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Theorem 34.8 (Naturality of the Mayer Vietoris sequence): Given a continuous map of pairs
f : (U, V ) −→ (A,B) where {U, V } and {A,B} are open coverings of topological spaces, the following
diagram commutes where the vertical maps are induced by f .

−−−→ Hn(U ∩ V ) −−−→ Hn(U) ⊕Hn(V ) −−−→ Hn(U ∪ V )
δn−−−→ Hn−1(U ∩ V ) −−−→y

y
y

y
−−−→ Hn(A ∩B) −−−→ Hn(A) ⊕Hn(B) −−−→ Hn(A ∪ B)) −−−→ Hn−1(A ∩ B) −−−→

(34.13)

Proof: The proof is left for the reader. The non-trivial part concerns only the squares involving the
connecting homomorphism for which (ii) of the previous theorem may be employed. �

Exercises

1. Show that the map defined by (34.1) is the restriction to ∆p of an affine map. Note: An affine
map is the composition of a linear map and a translation.

2. Suppose T : Rn+1 −→ Rm+1 is an affine map such that T (∆n) ⊂ ∆m, then T] maps the subgroup
Ap(∆n) into Ap(∆m) and is a chain map from the complex {Ap(∆n)} to {Ap(∆m)}. Further
prove the following:

(i) If b ∈ ∆n and σ ∈ Ap(∆n) then T](Kbσ) = KTb(T]σ).

(ii) If b is the barycenter of σ then b is the barycenter of T]σ.

What happens if we consider a degenerate two simplex where the points v1,v2,v3 are not affinely
independent? Discuss the case of the two simplex [v1,v2,v2].

3. Examine what happens if the term referred to as junk in equation (34.7) is retained.

4. Complete the details of the proof of theorem (34.4).

5. Show that Bk is chain homotopic to the identity map. What is the chain homotopy?

6. Suppose that the maps g and h in the exact sequence

A −−−→ B
g−−−→ C

h−−−→ D −−−→ E

are replaced by the composites

g̃ : B
g−−−→ C

λ−−−→ X, h̃ : X
λ−1

−−−→ C
h−−−→ D

the result is again an exact sequence.

7. Fill in the details in the proof of theorem (34.8). See exercise 6 of lecture 29.
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Lecture - XXXV The Mayer Vietoris sequence and its applications

The proof of Mayer Vietoris sequence is reminiscent of the Seifert Van Kampen theorem. While
the Seifert Van Kampen theorem enables us to relate the fundamental group of a union U ∪V in terms
of the fundamental groups of U, V and U ∩V , the situation here is slightly more involved. The precise
relationship between the homologies of U, V, U ∩ V and U ∪ V is described in terms of the long exact
sequence of theorem (34.7).

As in the Seifert Van Kampen theorem we obtain from a push-out diagram of topological spaces
a push out diagram of chain complexes which turns into a short exact sequence of complexes. The
corresponding long-exact sequence gives, after an application of the excision theorem of the last lecture,
the Mayer Vietoris sequence. It is one of the most efficient tools available for the computation of
homology groups. We restate here the theorem for convenience.

Theorem 35.1: Suppose U and V are subsets of a topological space such that Int U ∪ Int V = X.
Then there is a long exact sequence

−−−→ Hn(U ∩ V )
(κ′,−κ′′)−−−−−→ Hn(U) ⊕Hn(V )

qn−−−→ Hn(U ∪ V )
δn−−−→ Hn−1(U ∩ V ) −−−→

Interpretation of the connecting homomorphism: We use equation (29.18) to describe explic-
itly the connecting homomorphism in the Mayer Vietoris sequence. Take a representative cycle ζ in
Hn(U ∪ V ). Theorem (34.6) implies that an arbitrary element of Hn(U ∪ V ) can be represented as a
sum of chains

ζ = ζ1 + ζ2

where ζ1 ∈ Sn(U) and ζ2 ∈ Sn(V ). Note that we are resorting to an abuse notation in writing ζ1

instead of i](ζ1). We conclude that ∂ζ1 = −∂ζ2. Thus ∂ζ1 and ∂ζ2 are both cycles in U ∩V . According
to (29.18), the homomorphism δn is given by

δn(ζ) = ∂ζ1

Corollary 35.2: The homology groups of the spheres Sn (n ≥ 1) are given by

Hm(Sn) =

{
0 if m 6= 0, m 6= n
Z if m = 0, m = n

Proof: We take U = Sn− {en+1} and V = Sn−{−en+1} and note that U ∩ V deformation retracts
to Sn−1. Consider the portion of the Mayer Vietoris sequence

−−−→ Hn(U) ⊕Hn(V ) −−−→ Hn(U ∪ V )
δn−−−→ Hn−1(U ∩ V ) −−−→ Hn−1(U) ⊕Hn−1(V ) −−−→
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Since U and V are contractible spaces, we get for the case n ≥ 2,

0 −−−→ Hn(U ∪ V )
δn−−−→ Hn−1(U ∩ V ) −−−→ 0,

and hence Hn(S
n) ∼= Hn−1(S

n−1) (n ≥ 2). By induction the result would follow as soon as we prove it
for the case n = 1. For this case let us take a look at the end of the Mayer Vietoris sequence:

0 −−−→ H1(S
1)

δ1−−−→ H0(U ∩ V )
(κ′,−κ′′)−−−−−→ H0(U) ⊕H0(V ) −−−→ H0(U ∪ V ) −−−→

Since δ1 is injective,
H1(S

1) ∼= im δ1 = ker (κ′,−κ′′).
To understand the map (κ′,−κ′′) we take a basis of H0(U ∩ V ) consisting of a pair of points a ∈ U
and b ∈ V . The singleton {a} generates H0(U) and

k′(ma+ nb) = ma + nb = n(b− a) + (m + n)a

which is a boundary in H0(U) if and only if m + n = 0. Likewise k′′(ma + nb) = 0 in H0(V ) if and
only if m + n = 0. Thus the kernel of (κ′, κ′′) is the infinite cyclic group generated by the zero chain
a− b. Hence we get

H1(S
1) ∼= Z.

To calculate Hn(S
1) for n ≥ 2 we look at the portion of the Mayer Vietoris sequence

−−−→ Hn(U) ⊕Hn(V ) −−−→ Hn(U ∪ V )
δn−−−→ Hn−1(U ∩ V ) −−−→

and observe that since Hn(U) = Hn(V ) = Hn−1(U ∩ V ) = 0 when n ≥ 2,

Hn(S
1) = {0}, n ≥ 2.

Corollary 35.3: For m,n ∈ N with m < n, the spheres Sm and Sn are non-homeomorphic. Also
Rm and Rn are non-homeomorphic.

Proof: The first part follows from the fact that the homology groups Hn(S
m) and Hn(S

n) are non-
isomorphic. If Rm and Rm were homeomorphic then their one-point compactifications would also be
homeomorphic which means Sn and Sm would be homeomorphic leading to a contradiction.

Homology groups of adjunction spaces: We shall now consider the space Y = X tf Ek obtained
by attaching a k−cell En to X via an attaching map

f : Sk−1 −→ X.

We shall closely follow the method used in lecture 26 to compute the fundamental groups of the
projective plane and Klein’s bottle. We do not have to keep track of base points and use the Mayer
Vietoris sequence instead of the Seifert Van Kampen theorem. We shall use the same notations and
denote by p the center of Ek, the interior of Ek by U and the space Y − {p} by V . The space U ∩ V
deformation retracts to a space homeomorphic to Sk−1. Since V deformation retracts to X, the spaces
V and X have the same homology groups and Hn(U) = {0} when n ≥ 1. We are ready to prove the
following result:
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Figure 26: Adjucntion space

Theorem 35.4 Hn(X tf Ek) = Hn(X) if n 6= k, k − 1.

Proof: Looking at the portion of the Mayer Vietoris sequence

−−−→ Hn(U ∩ V ) −−−→ Hn(U) ⊕Hn(V ) −−−→ Hn(Y ) −−−→ Hn−1(U ∩ V ) −−−→

we get the result directly when n ≥ 2. If n = 1 then necessarily k ≥ 3 and we look at the portion of
the Mayer Vietoris sequence

−−−→ H1(U ∩ V ) −−−→ H1(U) ⊕H1(V ) −−−→ H1(Y ) −−−→ H0(U ∩ V )
∼=−−−→ H0(U) ⊕H0(V ).

Observe that H1(U ∩ V ) = {0} and we get the exact sequence

0 −→ H1(V ) −→ H1(Y ) −→ 0,

establishing the result when n = 1. �

The cases n = k, k − 1 are more technical and we shall merely state the relevant results.

Theorem 35.5: With notations as in theorem (35.4),

Hk−1(X tf Ek) = Hk−1(X)/im Hk−1(f), Hk(X tf Ek) = Hk(X) ⊕ ker Hk−1(f)

Corollary 35.6 (Homology groups of RP 2): H0(RP 2) = Z, H1(RP 2) = Z2. All other homology
groups vanish.

Proof: Recall example (25.4) that RP 2 arises from S1 by attaching a two cell using the attaching
map f : S1 −→ S1 given by f(z) = z2. Since H1(f) : Z −→ Z is given by n 7→ 2n the result
immediately follows from theorems (35.4)-(35.5).

Exercises

1. Prove that a homeomorphism En onto itself maps each boundary point of En to a boundary
point.

2. Determine the homology groups of the Klein’s bottle.
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3. Determine the homology groups of the double torus.

4. Establish the isomorphism H0(U ∩ V ) −→ H0(U) ⊕H0(V ) in the proof of theorem (35.4)

5. Let Ck be the disjoint union of k copies of S1 in R3. Determine the homology groups of the
complement R3 − Ck.

6. Determine the homology groups of RP 3. Try computing the homology groups of RP 4.

7. Determine the homology groups of Sn ∨ Sm. Use exercise 4 of lecture 25. to calculate the
homology groups of S2 × S4.
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Lecture - XXXVI Maps of spheres

We are now in a position to prove the general Brouwer’s fixed point theorem as well as a few other
surprising results concerning maps of spheres. As demonstrated in lecture 10, these higher dimensional
analogues were inaccessible via the theory of the fundamental group. We shall introduce the notion of
the degree of a map of spheres generalizing the notion introduced in lectures (12-13).

Theorem 36.1 (No retraction theorem): The sphere Sn−1 is not a retract of the closed unit ball
En.

Proof: Assume n ≥ 2. A retraction r : En −→ Sn−1 would imply that Hn−1(r) : En −→ Sn−1 is
surjective which is plainly false since Hn−1(E

n) = {0} whereas Hn−1(S
n−1) = Z. The case n = 1 is

left to the reader.

Corollary 36.2 (Brouwer’s fixed point theorem): Every continuous map f : En −→ En has a
fixed point.

Proof: The proof is similar to the one given in lecture 10 for the case n = 2.

Degree of a map: We now generalize the notion of the degree of a map f : S1 −→ S1 that we
have defined earlier in lectures 12-13. We shall show later that for each n ∈ N, there is a continuous
function having degree n.

Definition 36.1: For n ≥ 1, the degree of a continuous map f : Sn −→ Sn is defined to be the
integer m such that

Hn(f)(η) = m η (36.1)

where η is a generator for the infinite cyclic group Hn(S
n). Since Hn(f) : Hn(S

n) −→ Hn(S
n) is a

group homomorphism the choice of either of the two generators would yield the same result.

Theorem 36.3: Suppose that f : S1 −→ S1 is a continuous map such that f(1) = 1 then the degree
of f as defined above agrees with the notion of degree as defined in lectures (12-13). Moreover the
generator for the group H1(S

1) is the homology class of the cycle

η : t 7→ exp(2πit), 0 ≤ t ≤ 1. (36.2)

Note that we have tacitly identified the standard one simplex ∆1 with [0, 1].
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Proof: Since π1(S
1, 1) is abelian, the abelianization Π : π1(S

1, 1) −→ H1(S
1) is an isomorphism and

hence maps a generator of π1(S
1, 1) to a generator of H1(S

1). Since (36.2) represents a generator for
π1(S

1, 1) we infer that the cycle (36.2) is a generator for H1(S
1). We deduce from the diagram (32.1)

that
f∗ = Π−1 ◦H1(f) ◦ Π. (36.3)

From (12.6) and (36.3) we see that

H1(f)Π[η] = (Π ◦ f∗)[η] = Π((deg f)[η]) = (deg f)Π[η].

Appealing to the definition (36.1) we see that m = deg f .

Corollary 36.4: The map f : S1 −→ S1 given by f(x, y) = (x,−y) has degree −1.

Proof: The induced map f∗ : π1(S
1, 1) −→ π1(S

1, 1) is multiplication by −1.

Theorem 36.5: The degree satisfies the following properties.

(i) The degree of the identity map Sn −→ Sn is +1.

(ii) If f and g are two continuous maps from Sn to itself then deg (g ◦ f) = (deg g)(deg f).

(iii) Homotopic maps from Sn into itself have the same degree.

(iv) If f : Sn −→ Sn is a homotopy equivalence then degree of f is ±1.

(v) Any map homotopic to the constant map has degree zero.

(vi) Any two maps Sn −→ Sn having the same degree are homotopic (Theorem of H. Hopf).

Proof: The first five are easy exercises for the reader. We shall not prove (vi).

The anti-podal map and its properties: Let us now calculate the degree of the anti-podal map
A : Sn −→ Sn given by A(x) = −x. The anti-podal map is the composite of reflections in the
coordinate hyperplanes and so it suffices to compute the degree of one of them say

Rn : (x1, x2, . . . , xn+1) 7→ (−x1, x2, . . . , xn, xn+1). (36.4)

Theorem 36.6: The degree of the map (36.4) is −1 and hence the degree of the antipodal map
A : Sn −→ Sn is (−1)n+1.

Proof: From corollary (36.4) the case n = 1 follows (exercise 1). The general case is done by
induction. Let us consider the covering {U, V } where U = Sn − {en+1}, and V = Sn − {−en+1}. The
map Rn fixes U and V but when restricted to the equator Sn−1 gives Rn−1. The naturality of the
Mayer Vietoris sequence gives us the commutative diagram

Hn(U ∪ V )
δn−−−→ Hn−1(U ∩ V )

Hn−1(r)−−−−−→ Hn−1(S
n−1)

Hn(Rn)

y
yHn(Rn)

yHn−1(Rn−1)

Hn(U ∪ V )
δn−−−→ Hn−1(U ∩ V )

Hn−1(r)−−−−−→ Hn−1(S
n−1).
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The map Hn−1(r) is isomorphism induced by the retraction of U ∩ V onto the equator Sn−1. The
connecting homomorphisms δn are isomorphisms as we have seen in the last lecture. Since the map
Hn−1(Rn−1) : Z −→ Z on the extreme right is given by multiplication by −1, the same is the case with
the map Hn(Rn) on the extreme left whereby we conclude that Rn has degree −1.

Corollary 36.7: The antipodal map A : Sn −→ Sn is homotopic to the identity map if and only if
n is odd.

Proof: If n is even then the identity map and the anti-podal map have different degrees and so
cannot be homotopic. The converse is done in exercise 3.

Theorem 36.8: If f and g are a pair of continuous maps from Sn to itself such that f(x) 6= g(x)
for every x ∈ Sn. Then g is homotopic to A ◦ f .

Proof: Since f(x) 6= g(x) the reader may verify that tAf(x) + (1 − t)g(x) 6= 0 for any t ∈ [0, 1].
Normalizing we get the desired homotopy:

F : (t,x) 7→ tAf(x) + (1 − t)g(x)

‖tAf(x) + (1 − t)g(x)‖ , t ∈ [0, 1], x ∈ Sn.

Corollary 36.9: If n is odd then any continuous map f : Sn −→ Sn has a fixed point or sends a
point to its antipode. Hence the pair {f(x),x} cannot be linearly independent for every x ∈ Sn.

Proof: Suppose f(x) 6= x for any x ∈ Sn, we see by theorem (36.8) that f is homotopic to the
antipodal map. Further, if also f(x) 6= −x for every x ∈ Sn, theorem (36.8) implies f is homotopic to
the identity map. This contradicts corollary (36.7).

Corollary 36.10 (Hairy ball theorem): If n is even, any continuous tangent vector field on Sn

must have a zero.

Proof: A continuous, non-vanishing tangent vector field upon normalization yields a continuous map
f : Sn −→ Sn such that the pair of vectors {f(x), x} is every where orthonormal which contradicts
corollary (36.9).

Suspension: Given a topological space X, the suspension of X denoted by ΣX, is obtained from
X × [0, 1] by passing to a quotient (see the figure that follows equation (36.6)):

ΣX = (X × [0, 1])/(X × {0} ∪X × {1})

Using polar coordinates we can see that ΣSn−1 ∼= Sn via the homeomorphism φ : Sn−1 × [0, 1] −→ Sn

(ω, t) 7→ ((sin πt) ω, cos πt), t ∈ [0, 1], ω ∈ Sn−1 ⊂ Rn. (36.5)

With this identification, given f : Sn−1 −→ Sn−1 continuous we define Σf : Sn −→ Sn by

(Σf)((sin πt) ω, cos πt) = ((sin πt)f(ω), cosπt) (36.6)
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Figure 27: Suspension

Theorem 36.11: Given a continuous map f : Sn −→ Sn, the degree of Σf equals deg f . For every
m ∈ Z there is a continuous map f : Sn −→ Sn with degree m.

Proof: The argument parallels the one used to prove theorem (36.6) and is left for the reader.

Exercises

1. Show that if R′ and R′′ are two reflections (each with respect to a coordinate plane) then they
are conjugate by a homeomorphism. Deduce that both R′ and R′′ have degree −1.

2. Show that if a continuous map f : Sn −→ Sn misses a point of Sn then f is homotopic to the
constant map and so has degree zero.

3. Show that if n is odd then the antipodal map of Sn is homotopic to the identity map. Hint:
Do it first for the case n = 1 and show that the homotopy may be achieved via a continuous
rotation. The general case follows along similar lines by working with pairs of coordinates.

4. Show that RP 2n has the fixed point property.

5. Let η : S2n −→ RP 2n be the covering projection. Show that H2n(η) is the zero map.

6. Show that the map (36.5) is a homeomorphism and (36.6) defines a continuous map. More
generally given a continuous map f : X −→ Y show that the composite

X × [0, 1]
f×id−−−→ Y × [0, 1] −−−→ ΣY

induces a map Σf : ΣX −→ ΣY . Imitate the computation in theorem [//] of lecture [//] to
show that Hn+1(ΣX) = Hn(X) when n ≥ 1. What happens when n = 0?

7. Prove theorem (36.11). Note that the map f : S1 −→ S1 given by f(z) = zm has degree m.

8. Determine the degree of a polynomial as a map from S2 to itself. Reprove the fundamental
theorem of algebra.
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Lecture - XXXVII Relative homology

The homology groups Hn(X) we have hitherto been studying are called the absolute homology
groups. The relative homology groups Hn(X,A) that we define here provide us a tool for understanding
the geometry of a space X in relation with its subspace A. This is facilitated by a long exact sequence
in homology for the pair (X,A). For instance if A is a retract of X, this sequence breaks off into a
bunch of short exact sequences each of which splits. The groups Hn(X,A) are related to the absolute
homology groups Hn(X/A) for sufficiently well behaved pairs (X,A) but we shall not get into this
discussion here (see [16], p. 50).

Recall that if A is a subspace of X and z is a non-trivial n−cycle in A then it may be a boundary
when viewed as a cycle in X. In other words, the inclusion map i : A −→ X need not induce an
injective map in homology. The relative homology group measures Hn+1(X,A) the deviation from
injectivity of the map Hn(i).

Definition 37.1: (i) Given a topological space X and a subspace A, Sn(A) may be regarded as a
subgroup of Sn(X) and the group Sn(X,A) of relative n−chains is the quotient group Sn(X)/Sn(A).

(ii) For each n = 1, 2, . . . , we define the boundary maps ∂n : Sn(X,A) −→ Sn−1(X,A) as

∂nc = ∂nc (37.1)

It is readily verified that ∂n−1 ◦ ∂n = 0 leading to the quotient complex S(X)/S(A) consisting of the
sequence of groups {Sn(X,A)} and the boundary maps (37.1).

(iii) The homology groups of the quotient complex S(X)/S(A) are called the relative homology
groups and are denoted by the symbol Hn(X,A).

For a slightly more explicit description of these groups we introduce the group Zn(X,A) of relative
n−cycles and the group Bn(X,A) of relative boundaries. The group Zn(X,A) is the subgroup of
Sn(X) consisting of chains c ∈ Sn(X) such that the boundary ∂nc is a chain in A. That is,

Zn(X,A) = {c ∈ Sn(X)/∂nc ∈ Sn−1(A)}. (37.2)

In keeping with the convention that S−1(A) = {0} (see definition (29.5)), Z0(X,A) = S0(X). We
see that c ∈ Zn(X,A) if and only if c is in the kernel of ∂n. Likewise the group Bn(X,A) of relative
boundaries is defined to be the subgroup of Sn(X) consisting of chains c ∈ Sn(X) such that

c = ∂n+1c
′ mod(Sn(A)),

for some c′ ∈ Sn+1(X). In other words there exists c′ ∈ Sn+1(X) and a ∈ Sn(A) such that

c− ∂n+1c
′ = a.

Obviously c ∈ Bn(X,A) if and only if c belongs to the image of ∂n+1 whereby we conclude
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Theorem 37.1: Hn(X,A) = Zn(X,A)/Bn(X,A).
We now consider the short exact sequence of complexes induced by the inclusion i and p denoting

the projection onto the quotient:

0 −−−→ S(A)
i]−−−→ S(X)

p−−−→ S(X,A) −−−→ 0.

Equation (37.1) states that p is a chain map and exactness of this sequence is an easy exercise. Theorem
(29.6) now gives

Theorem 37.2: For a pair (X,A) of topological spaces there is a long exact sequence in homology:

−−−→ Hn(A)
Hn(i)−−−→ Hn(X)

Hn(p)−−−→ Hn(X,A)
δn−−−→ Hn−1(A) −−−→ (37.3)

We remark that the connecting homomorphism has a simple geometrical description in this case. If
we take a relative n−cycle namely an element c ∈ Zn(X,A) then ∂nc is an element of Sn−1(A) and
i−1(∂nc) is simply ∂nc viewed as a chain in A. We summarize this observation as a lemma:

Lemma 37.3: For a pair (X,A) of spaces the connecting homomorphism δn : Hn(X,A) −→ Hn−1(A)
is given by

δnc = ∂nc, c ∈ Zn(X,A). (37.4)

Despite the notation, ∂nc in (37.4) is not a boundary in Sn−1(A) since c is not a chain in Sn(A) but a
chain in Sn(X). If ζ is a cycle in A then for sure, it is a cycle in X as well but then it may be actually
be a boundary X, in other words Hn(i)ζ = 0. This happens precisely when ζ is in the image of δn+1

by exactness of (37.3). Figure below depicts a cycle in A (annulus) which is a boundary in X (the
polygonal region).

Figure 28:

The long exact sequence in the preceding theorem is natural in the following sense.

Theorem 37.4 (Naturality): Given a map of pairs f : (X,A) −→ (Y,B) the following diagram
commutes
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−−−→ Hn(A)
i−−−→ Hn(X)

p−−−→ Hn(X,A)
δn−−−→ Hn−1(A) −−−→

Hn(f)

y
yHn(f)

yHn(f)

yHn−1(f)

−−−→ Hn(B)
i−−−→ Hn(Y )

p−−−→ Hn(Y,B) −−−→ Hn−1(B) −−−→

(37.5)

Proof: From theorem (29.6) or the specific description of δn given above, (37.5) follows immediately.

Retraction: We shall now define the notion of a split exact sequence and show that whenever A is
a retract of X, the long exact sequence (37.3) breaks off into a bunch of short exact sequences each of
which splits.

Definition 37.2: A short exact sequence of abelian groups/chain complexes

0 −−−→ L
f−−−→ G

g−−−→ K −−−→ 0, (37.6)

splits on the right if there exists a group homomorphism (respectively a chain map) φ : K −→ G such
that g ◦φ = idK. The short exact sequence (37.6) splits on the left if there exists group homomorphism
(respectively a chain map) θ : G −→ L such that θ ◦ f = idL.

Lemma 37.5: Given a short exact sequence (37.6), the following are equivalent:

(i) The sequence splits on the left.

(ii) The sequence splits on the right.

(iii) G is isomorphic to imf ⊕K.

Proof: We begin by proving (ii) implies (iii). Note that φ is injective and so im φ is isomorphic to
K. Let x ∈ G be arbitrary and observe that

x− φ ◦ g(x)

lies in the kernel of g and hence in the image of f . Thus,

x = (x− φ ◦ g(x)) + φ ◦ g(x) ∈ imf + im φ.

We leave it to the reader to check that the sum (imf + im φ) is direct. It is easy to show that (iii)
implies (i). We now show that (i) implies (ii). Let k ∈ K and choose any x ∈ G such that k = g(x).
Define φ(k) = x − (f ◦ θ)(x). To check that this is well defined, suppose that k = g(x′) = g(x′′) for
a pair of elements x′, x′′ ∈ G. There exists y ∈ L such that x′ − x′′ = f(y). Applying f ◦ θ to this
equation we get

(f ◦ θ)(x′) − (f ◦ θ)(x′′) = f ◦ θ ◦ f(y) = f(y) = x′ − x′′,

from which we see that (f ◦ θ)(x′) − x′ = (f ◦ θ)(x′′) − x′′. It is trivial to see that the map φ that we
have defined is a group homomorphism and satisfies the requirement g ◦ φ = idK. �
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Theorem 37.6: A retraction r : X −→ A gives for each n = 0, 1, 2, . . . a short exact sequence

0 −−−→ Hn(A)
Hn(i)−−−→ Hn(X)

Hn(p)−−−→ Hn(X,A) −−−→ 0. (37.7)

Each of these short exact sequences splits. Thus

Hn(X) = Hn(A) ⊕Hn(X,A), n = 0, 1, 2, . . .

Proof: We show that δn = 0 for every n which would give us the sequences (37.7). For c ∈ Zn(X,A)
we have the chains r](c) ∈ Sn(A) and ∂nc ∈ Sn−1(A). Now,

∂nr](c) = r](∂nc) = (r] ◦ i])(∂nc) = (r ◦ i)](∂nc) = ∂nc

Hence ∂nc is the boundary of the chain r](c) ∈ Sn(A) and so represents the zero element in Hn−1(A).
From lemma (37.3) we conclude that δn is the zero map. The short exact sequence (37.7) splits on the
left since Hn(r) ◦Hn(i) is the identity map on Hn(A). �

Example 37.1 Let us calculate the relative homology groups Hn(X,A) where X is the Möbius
band and A is its boundary. Since the central circle is a deformation retract of X, we see that
Hn(X) = Hn(A) = 0 when n ≥ 2 and we infer from (37.3) that Hn(X,A) = 0 when n ≥ 3. We now
recall that the map i∗ : π1(A) −→ π1(X) induced by inclusion is the group homomorphism of Z into
itself given by x 7→ 2x. Since the fundamental groups are abelian the map H1(i) = i∗ and so the kernel
of H1(i) is trivial. The portion of the exact sequence (37.3) with n = 2 gives H2(M,A) = 0. Finally
since H0(i) : H0(A) −→ H0(M) is an isomorphism (why?), we conclude from (37.3) (with n = 0) that
the map H1(X) −→ H1(X,A) is surjective with kernel 2Z. Hence H1(X,A) = Z2.

Exercises

1. Verify that the diagram (37.5) commutes.

2. Determine Hn(X,A) when A = ∅, and when A is a singleton and n ≥ 1. What happens if n = 0?

3. ComputeHn(S
1×S1, S1∨S1) and compare it with the absolute homologyHn((S

1×S1)/(S1∨S1)).

4. Compute Hk(E
n, Sn−1) and compare it with Hk(E

n/Sn−1).

5. In example (35.1), prove that X/A is homeomorphic to RP 2. Compare the groups Hn(X,A) with
the groups Hn(X/A). Hint: To set up the homeomorphism note that (x, y) 7→ (x

√
1 − y2, y)

maps each [−1, 1] × {y} homeomorphically onto the chord at height y.
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Lecture - XXXVIII Excision theorem

In this lecture we prove the most important theorem homology theory known as the excision
theorem. We shall conclude the lecture with the definition of local homology groups that play an
important role in the theory of orientability of topological manifolds. We begin with the ubiquitous
five lemma.

Theorem 38.1 (The five lemma): Assume given a commutative diagram of abelian groups with
exact rows:

A1
α1−−−→ A2

α2−−−→ A3
α3−−−→ A4

α4−−−→ A5

ψ1

y
yψ2

yη

yφ1

yφ2

B1
β1−−−→ B2

β2−−−→ B3
β3−−−→ B4

β4−−−→ B5

If ψ1, ψ2, φ1 and φ2 are isomorphisms then so is η.

Proof: We shall prove that η is injective, leaving surjectivity as an exercise. Assume η(a3) = 0 for
some a3 ∈ A3 so that β3 ◦ η(a3) = 0. The commutativity of the third square now gives φ1 ◦α3(a3) = 0.
Using injectivity of φ1 and exactness of the top row we arrive at

a3 = α2(a2) (38.1)

for some a2 ∈ A2. Again, 0 = η(a3) = η ◦ α2(a2) = β2 ◦ ψ2(a2) showing that ψ2(a2) ∈ im β1. Thus
ψ2(a2) = β1(b1) for some b1 ∈ B1 and using the surjectivity of ψ1 we get for some a1 ∈ A1,

ψ2(a2) = β1 ◦ ψ1(a1) = ψ2 ◦ α1(a1).

Injectivity of ψ2 now gives a2 − α1(a1) = 0. Substituting into (38.1) we conclude a3 = 0.

Theorem 38.2 (Excision): Let (X,A) be a pair and U be a subset of A such that the closure of U
is contained in the interior of A. Then, the homomorphism

Hn(i) : Hn(X − U, A− U) −→ Hn(X,A)

induced by inclusion i : (X − U,A − U) −→ (X,A) is an isomorphism for every n = 0, 1, 2, . . . . In
other words the set U may be excised from the pair (X,A) without affecting the homology groups of
the pair.
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Proof: The hypothesis implies that the pair U = {int A, X − U} is an open cover of X, where
U denotes the closure of U . Likewise V = {int A, A − U} is an open cover of A and S V(A) is a
subcomplex of S U(X). By theorem (29.6) the short exact sequence of complexes

0 −−−→ S V(A) −−−→ S U(X) −−−→ S U(X)/S V(A) −−−→ 0

gives rise to a long exact sequence in homology:

−−−→ H V
n (A) −−−→ H U

n (X) −−−→ Hn(S
U(X)/S V(A)) −−−→ H V

n−1(A) −−−→
On the other hand there is an obvious map of complexes induced by the inclusion maps namely

j : S U(X)/S V(A) −−−→ S(X)/S(A),

resulting in a commutative diagram of chain complexes

0 −−−→ S V(A) −−−→ S U(X) −−−→ S U(X)/S V(A) −−−→ 0yi

yi

yj

0 −−−→ S(A) −−−→ S(X) −−−→ S(X)/S(A) −−−→ 0

Since the long exact sequence in homology is natural (exercise 6 of lecture 29), we get the commutative
diagram:

−−−→ H V
n (A)

i−−−→ H U
n (X)

p−−−→ Hn(S
U(X)/S V(A)) −−−→ H V

n−1(A) −−−→ H U
n−1(X) −−−→

i∗

y
yi∗

yj∗

yi∗

yi∗

−−−→ Hn(A)
i−−−→ Hn(X)

p−−−→ Hn(S(X)/S(A)) −−−→ Hn−1(A) −−−→ Hn−1(X) −−−→
where we the subscript star indicates the map induced in homology. The five lemma enables us to
conclude that

j∗ : Hn(S
U(X)/S V(A)) −→ Hn(S(X)/S(A)) = Hn(X,A).

is an isomorphism. Note the inclusion

k : S(X − U) −→ S U(X)

maps S(A− U) into S V(A) whereby we get an isomorphism (exercise 2)

k : S(X − U)/S(A− U) = S U(X)/S V(A). (38.2)

The composite j ◦ k is also induced by the inclusion map (X −U, A−U) −→ (X,A) and we have the
desired isomorphism

(j ◦ k)∗ : Hn(X − U,A− U) −→ Hn(X,A), n = 0, 1, 2, . . .

Example 38.1: Let X = Sn and A = Sn − en+1. We take U to be the complement of the polar ice

cap namely the set of all x ∈ Sn such that xn+1 ≤ 2/3 (reader is invited to draw a picture). Applying
the excision theorem, and denoting the polar ice cap by D,

Hn(S
n, Sn − en+1) ∼= Hn(S

n − U, D − en+1) = Hn(D, D − en+1).

Theorem (37.2) gives Hn(S
n, Sn − en+1) ∼= Hn(S

n) and Hn(D,D − en+1) ∼= Hn−1(D − en+1). Since
the polar ice cap is homeomorphic to an open ball,

Hn(S
n) ∼= Hn−1(S

n−1), n ≥ 2.

Using theorem (32.1) we conclude that Hn(S
n) ∼= Z for n ≥ 1.
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Example 38.2: In general, given a pair of open sets {U, V } of a topological space X, let W =
(U ∪ V ) − V . Then, the closure of W in U ∩ V is contained in U and since

(X −W, U −W ) = (V, U ∩ V ),

the excision theorem gives

Hn(U ∪ V, U) ∼= Hn(V, U ∩ V ), n = 0, 1, 2, . . .

Lemma 38.3 (Barrett and Whitehead): Given a commutative diagram with exact rows,

−−−→ An
pn−−−→ Bn

qn−−−→ Cn
rn−−−→ An−1 −−−→

αn

y
yβn

yγn

yαn−1

−−−→ A′
n

p′n−−−→ B′
n

q′n−−−→ C ′
n

r′n−−−→ A′
n−1 −−−→

If each of the maps γn : Cn −→ C ′
n is an isomorphism, then the sequence

−−−→ An
λn−−−→ Bn ⊕ A′

n

µn−−−→ B′
n

δn−−−→ An−1 −−−→

is exact where, the maps are given by

λn = (pn,−αn), µn = βn + p′n, δn = rn ◦ γ−1
n ◦ q′n.

Corollary 38.4 (Mayer Vietoris): If {U, V } are open subsets of a topological space,

−−−→ Hn(U ∩ V )
(κ′,−κ′′)−−−−−→ Hn(U) ⊕Hn(V )

qn−−−→ Hn(U ∪ V )
δn−−−→ Hn−1(U ∩ V ) −−−→

is an exact sequence.

Proof: The long exact sequence for a pair and its naturality gives a commutative diagram with exact
rows.

−−−→ Hn(U ∩ U) −−−→ Hn(V ) −−−→ Hn(V, U ∩ V ) −−−→ Hn−1(U ∩ V ) −−−→y
y

y
y

−−−→ Hn(U) −−−→ Hn(U ∪ V ) −−−→ Hn(U ∩ V, U) −−−→ Hn−1(U) −−−→

Applying the excision theorem to the inclusion (U ∩V, V ) −→ (U ∪V, U), we see that the third arrow
is an isomorphism in the displayed diagram. The result now follows from lemma (38.3).

Definition 38.2 (Local homology groups): Given a topological space X and p ∈ X, the local
homology groups of X at p are the groups Hn(X,X − {p}) (n = 0, 1, 2, . . . ).

Theorem 38.5: Hn(X,X − {p}) = Hn(V, V − {p}) for any open neighborhood of p.

Proof: This follows immediately from the excision theorem by taking U = X − V .
Some applications of the local homology groups are indicated in the exercises below.
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Exercises

1. Prove that the map η in the five lemma is surjective.

2. Show that the map (38.2) is indeed an isomorphism. To prove that it is surjective use the
decompositions S U(X) = S(X − U) + S(intA) and S V(A) = S(A− U) + S(intA).

3. Prove the Barrett-Whitehead lemma.

4. Calculate the local homology groups H2(X,X − {p}) in the following cases:

(i) The space X is the cylinder S1 × [0, 1] and p a point on its boundary.

(ii) The space X is the Möbius band and p is a point on its boundary.

Deduce that the cylinder and the Möbius band are not homeomorphic.

5. A topological manifold is a Hausdorff space in which each point has a neighborhood homeomor-
phic to an open ball in Rn. Show that if p is a point on a topological manifold M ,

Hn(M, M − {p}) ∼= Z.
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Lecture - XXXIX (Test - V)

1. Calculate the homology groups of the double torus.

2. Show that any homeomorphism of En onto itself must preserve the boundary.

3. Show that RP n is not a retract of RP n+1. Use the lifting criterion.

4. Show that RP 2n has the fixed point property. Does RP 3 have the fixed point property?
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Solutions to Test - V

1. Let X denote the double torus. Since X is path connected, H0(X) = Z. In exercise 7 of lecture
32, the student was asked to compute the abelianization of π1(X). Observe that π1(X) is the
quotient of the free group on four elements by the normal subgroup H generated by

abcda−1b−1c−1d−1.

The above element can be written as

(
aba−1b−1

)
bacd(ba)−1(cd)−1cdc−1d−1

which is a product of commutators and so H is contained in the commutator subgroup. Thus
the abelianization of π1(X) is the free abelian group of rank four or in other words H1(X) =
Z ⊕ Z ⊕ Z ⊕ Z. For computing the higher homology groups we use the Mayer Vietoris sequence
with U and V being open sets each homeomorphic to a torus from which a tiny closed disc is
removed (thus, each of the two pieces in figure 5 would have a little collar around boundary)
and U ∩ V is homeomorphic to an open cylinder. We look at the portion of the Mayer Vietoris
sequence

−−−→ H2(U) ⊕H2(V ) −−−→ H2(U ∩ V )
∂2−−−→ H1(U ∩ V ) −−−→

The connecting homomorphism ∂2 must be injective since each of the two pieces U and V
deformation retracts to S1 ∨ S1 (how?) whereby H2(U) = H2(V ) = 0. We now show that ∂2

is surjective using the information already obtained that H1(X) is free abelian of rank four.
Looking to the right of the displayed sequence,

H2(U ∩ V )
∂2−−−→ H1(U ∩ V ) −−−→ H1(U) ⊕H1(V )

q−−−→ H1(U ∪ V )
∂1−−−→

The homomorphism ∂1 is zero since the subsequent map

H0(U ∩ V )
p−−−→ H0(U) ⊕H0(V )

is given by m 7→ (m,m) (why?). Thus q is surjective and since the groups H1(U) ⊕H1(V ) and
H1(U) ∪ V ) are both free abelian of rank four, we see that q is injective as well. Finally we
conclude

H2(U ∪ V ) = H1(U ∩ V ) = Z.

For n ≥ 3 the Mayer Vietoris sequence immediately yields Hn(X) = 0.
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2. Suppose that φ : En −→ En is a homeomorphism that takes a boundary point p to a point q
with ‖q‖ < 1. Then the restriction φ : En − {p} −→ En − {q} is also a homeomorphism but

Hn−1(E
n − {p}) = 0, Hn−1(E

n − {q}) = Z

and that gives a contradiction.

3. We regard Sn as the equator Sn+1 and since the antipodal map preserves the equator we see that
RP n is a subspace of RP n+1 in a natural way. Suppose that r : RP n+1 −→ RP n is a retraction.
Let η′ : Sn+1 −→ RP n+1 be the quotient map and f = r ◦ η′. We then get a commutative
diagram

Sn+1

f

((RRRRRRRRRRRRRRR

η′

��

R
// Sn

η′′

��

RP n+1 r
// RP n

where R is the lift of f with respect to the covering map η ′′. Such a lift exists since Sn+1 is
simply connected when n ≥ 1. Now let x be an arbitrary point on the equator of Sn+1. Then

η′′(Rx) = r(η′(x)) = x,

where the second equality is due to the fact that r is a retraction. Thus Rx = ±x for each x ∈ Sn

By continuity either Rx = x for every x ∈ Sn or else Rx = −x for every x ∈ Sn. In the first case
R is a retraction from Sn+1 onto Sn. In the second case A ◦R is a retraction from Sn+1 onto Sn,
where A is the anti-podal map. In any case we conclude that Sn is a retract of Sn+1 and that is
a contradiction (why?).

4. Let f : RP 2n −→ RP 2n be a continuous map. Consider the following commutative diagram
where the vertical maps are the standard quotient maps and F is the lift of f ◦ η:

S2n

f◦η

((RRRRRRRRRRRRRRR

η

��

F
// S2n

η

��

RP 2n
f

// RP 2n

Note that by corollary (36.9), a continuous map from S2n to itself either has a fixed point or
else sends a point to its antipode. Applying this fact to F and using the commutativity of the
diagram it follows that f has a fixed point. Since RP 3 is homeomorphic to SO(3,R) and the
latter does not have the fixed point property we deduce that RP 3 does not have the fixed point
property.
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Lecture - XL Inductive limits

We have frequently encountered situations where a certain space X is canonically embedded in a
larger space Y . A familiar example the sequence of orthogonal groups and the canonical inclusions

SO(2,R) −→ SO(3,R) −→ SO(4,R) −→ . . . (40.1)

where, the inclusion map SO(n,R) −→ SO(n+ 1,R) is given by

A 7→
(
A 0
0 1

)
, A ∈ SO(n,R)

The inductive limit of a sequence such (40.1) is a space which contains each individual member of the
sequence, and is the smallest such space. The precise meaning of the adjective smallest would be clear
from the formal definition that we shall presently give.

Let us look at a situation in the category of abelian groups. For a fixed prime p let Cpk denote the
cyclic group of order pk. Then for each j ≤ k, the group Cpk contains a (unique) cyclic group of order
pj giving us a sequence of groups

Cp −→ Cp2 −→ Cp3 −→ . . . , (40.2)

in which the arrows inclusion maps. All these groups may be regarded as subgroups of C − {0} or as
subgroups of the smaller group S1. However there is a smallest group containing a copy of each the
groups Cpk namely, the group {

exp
(2πil

pk

)
/ l, k ∈ Z

}
(40.3)

consisting of all pk-th roots of unity (k = 1, 2, . . . ). This group (known as the Prüfer group) would
then be the inductive limit of the family of cyclic groups Cpk (k = 1, 2, . . . ).

We now proceed to the formal definitions and prove the existence and uniqueness (upto isomor-
phism) of the inductive limit of a family of groups. We recall the notion of a directed set.

Definition 40.1 (Directed systems): (i) A directed set is a set Λ with a partial order ≤ such that
for any pair α, β ∈ Λ there exists γ ∈ Λ such that α ≤ γ and β ≤ γ.

(ii) A directed system of abelian groups is a family {Gα / α ∈ Λ} of abelian groups indexed by a
directed set Λ together with a family of group homomorphisms {fαβ : Gα −→ Gβ / α ≤ β} satisfying
the two conditions

(a) fβγ ◦ fαβ = fαγ for any three α, β, γ ∈ Λ such that α ≤ β ≤ γ.

(b) fαα = idGα for each α ∈ Λ.
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(iii) By dropping the adjective abelian from (ii) we obtain a directed system of groups.
(iv) A directed system of topological spaces is a family {Xα / α ∈ Λ} of topological spaces indexed by
a directed set Λ together with a family of continuous maps {fαβ : Xα −→ Xβ / α ≤ β} satisfying the
two conditions (a) and (b) in (ii).

So we shall speak of a directed system in the categories Gr, AbGr or Top.

Example 40.1: The most important example of a directed set is of course N with its usual order and
(40.1)-(40.2) furnish examples of directed systems of topological spaces and abelian groups indexed by
N, where the maps fαβ are inclusions.

We record a lemma whose proof is left for the student to verify

Lemma 40.1: Suppose that {Mα / α ∈ Λ} is directed system in one of the categories Gr, AbGr or
Top, and for some pair xα ∈ Mα and xβ ∈ Mβ there exists γ ∈ Λ such that fαγ(xα) = fβγ(xβ), then
for every δ ≥ γ, fαδ(xα) = fβδ(xβ).

Definition 40.2 (Inductive limit): Given a directed system {Mα / α ∈ Λ} in one of the categories
Gr, AbGr or Top and a family of morphisms {fαβ : Mα −→ Mβ / α ≤ β} in the same category
satisfying the conditions in definition (40.1), an inductive limit is an object M together with a family
of morphisms {fα : Mα −→M} such that the following two conditions hold:

(1) For every pair α, β ∈ Λ with α ≤ β, fβ ◦ fαβ = fα, summarized as a commutative diagram:

Mα

fαβ
//

fα
!!C

CC
CC

CC
C

Mβ

fβ
}}{{

{{
{{

{{

M

(2) Universal property: Given an object L and a family of morphisms gα : Mα −→ L satisfying

gβ ◦ fαβ = gα, α, β ∈ Λ, α ≤ β,

there exists a unique morphism ψ : M −→ L such that

ψ ◦ fα = gα.

Notation: The inductive limit M of the system {Mα /α ∈ Λ} will be denoted by lim−→
α

Mα.

Theorem 40.2: (i) Every directed system of groups or abelian groups has an inductive limit which
is unique upto isomorphism.

(ii) With the notations as in the definition (40.2), assume that fα(x) = 0 for some x ∈ Gα. There
exists β ≥ α such that fαβ(x) = 0.
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Proof: (i) Let G̃ be the coproduct (direct sum) of the abelian groups {Gα} and we regard (for
simplifying notations) the groups Gα as being subgroups of G̃ and iα : Gα −→ G the inclusion maps.
Declare xα ∈ Gα and xβ ∈ Gβ as being equivalent if there exists γ ∈ Λ such that γ ≥ α, γ ≥ β and

fαγ(xα) = fβγ(xβ). (40.4)

Lemma (40.1) states that this is a well defined equivalence relation. We denote by ∼ the equivalence
relation just defined and define N to be the subgroup generated by

{xα − xβ / xα ∼ xβ}.

Finally let G = G̃/N and η : G̃ −→ G be the quotient map. We claim that G is the inductive limit
with respect to the maps fα given by the composition

Gα
iα−−−→ G̃

η−−−→ G̃/N. (40.5)

We now check the conditions (1) and (2) in definition (40.2). For α ≤ β we derive from

(fββ ◦ fαβ)(xα) = fαβ(xα).

the useful piece of information
fαβ(xα) ∼ xα, xα ∈ Gα. (40.6)

Hence fαβ(xα) − xα ∈ N whereby we conclude

η(fαβ(xα)) = η(xα),

which in turn implies fβ ◦ fαβ = fα. Turning to the universal property (2) assume given an abelian
group H and a family of group homomorphisms gα : Gα −→ H such that

gβ ◦ fαβ = gα, α ≤ β. (40.7)

We first use the defining property of the coproduct to get a group homomorphism φ : G̃ −→ H such
that the following diagram commutes:

Gα
iα

//

gα
  

BB
BB

BB
BB

G̃

φ
����

��
��

��

H

That is φ ◦ iα = gα. From (40.4) and (40.7) we get gα(xα) = gβ(xβ), or in view of the fact that
we have identified Gα as a subgroup of G̃, φ(xα) = φ(xβ). Hence there is a group homomorphism
ψ : G̃/N −→ H such that

ψ ◦ η = φ. (40.8)

Upon applying this to an arbitrary xα ∈ Gα we get using (40.5) that ψ ◦ fα = gα for every α ∈ Λ. The
homomorphism satisfying (40.8) is unique since the elements {fα(xα)/α ∈ Λ and xα ∈ Gα} generate
the group G̃/N .

We now prove (ii) which we shall use in the next lecture. Since x ∈ N , there exists a finite set of
indices α1, β1, α2, β2, . . . , αk, βk such that

x =

k∑

j=1

(xαj
− xβj

) (40.9)
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where xαj
∼ xβj

for each j. Thus for each j there is a γj exceeding both αj and βj such that
fαjγj

(xαj
) = fβjγj

(xβj
). Since (40.9) spells out a relation in the direct sum of the groups Gβ, it

decomposes into a bunch of equations namely

x =
∑

αi=α

xαi
−

∑

βi=α

xβi

0 =
∑

αi=λ

xαi
−

∑

βi=λ

xβi
, λ 6= α

The index λ runs through a finite subset of α1, β1, . . . , αk, βk. Taking δ to be sufficiently large and
applying fαδ to the first and fλδ to the second of the above displayed equations and adding we get

fαδ(x) =

k∑

j=1

(fαiδ(xαj
) − fβiδ(xβj

)) (40.10)

Using lemma (40.1) we see that if δ is sufficiently large each of the summands on the right hand side
of (40.10) is in N and so fαδ(x) = 0 as asserted.

Remarks: (1) The construction can be carried out in exactly the same manner in the categories Gr
and Top. In the Category Gr, the coproduct G̃ of the groups Gα is the free product with the group
operation written multiplicatively and the candidate for N is the normal subgroup generated by

{xαx−1
β /xα ∼ xβ},

where as before we regard each Gα to be a subgroup of G̃ to simplify notations.
(2) In the category Top we proceed analogously by taking the coproduct, the disjoint union of

the spaces, and defining the equivalence relation (40.4) on it and passing on to the quotient space.
In applications one uses the defining properties (1) and (2) of definition (40.2) and not these details
involved in the actual construction.

Exercises:

1. Prove lemma (40.1)

2. Show that the Prüfer group (40.3) is the inductive limit of the sequence of multiplicative cyclic
groups Cpk of order pk, where p is a prime number.

3. Discuss the existence of inductive limits of directed systems in the categories Gr and Top.

4. Suppose that {Gα/α ∈ Λ} is a directed system of groups with inductive limit G and associated
maps fα : Gα −→ G, show that G is the set theoretic union of the images fα(Gα), α ∈ Λ.

165



Lecture - XLI The Jordan-Brouwer separation theorem

We conclude the course with a proof of the Jordan Brouwer theorem, a far reaching generalization
of the Jordan curve theorem (theorem 1.1). The most transparent and clear proof of the Jordan
Brouwer theorem uses the notion of inductive limits developed in the previous lecture. We shall follow
closely the treatment in [16] demonstrating the power of the Mayer Vietoris sequence.

Theorem 41.1: Let X be a topological space and {Xα / α ∈ Λ} be a directed system of open
subsets of X such that every compact subset of X lies in some Xα. For a pair of indices α ≤ β, the
map fαβ : Hn(Xα) −→ Hn(Xβ) is the homomorphism induced by inclusion Xα −→ Xβ. Then, the
family {Hn(Xα) /α ∈ Λ} together with the maps fαβ forms an inductive system of abelian groups and

lim−→
α

Hn(Xα) = Hn(X) = Hn

(
lim−→
α

Xα

)
(41.1)

Proof: The fact that {Hn(Xα) /α ∈ Λ} is an inductive system is clear. Let A denote the inductive
limit of this system in AbGr and fα : Hn(Xα) −→ A denote the associated homomorphisms described
in definition (40.2). The inclusion maps Xα ⊂ X induce homomorphisms ια : Hn(Xα) −→ Hn(X). To
simplify notations, we shall suppress the bar and use the same symbol ζ to denote a cycle as well as
the homology class it represents. The proof of (41.1) hinges on two simple facts:

(i) If ζ ′ is an n−chain in X then there exists an α ∈ Λ such that the images of the constituent
simplicies in ζ ′ are all contained in Xα. We shall say that the chain ζ ′ is supported in Xα. Thus
ζ ′ may be viewed as a singular chain in Xα and the latter will be provisionally denoted by ζ in
the proof. Further if ζ ′ is a cycle in X then ζ is a cycle in Xα and ζ ′ = ια(ζ).

(ii) If ζ ′ is a boundary of a chain ω′ in X then there exists a β ∈ Λ such that ζ ′ and ω′ are both
supported in Xβ and the relation ζ = ∂ω holds in Xβ. In other words,

ια(ζ) = 0 implies fαβ(ζ) = 0 for some β ≥ α. (41.2)

To prove these note that the image of each singular simplex is a compact subset of X and each chain
is a finite linear combination of singular simplicies.

Property (2) of definition (40.2) may now be applied to the family of homomorphisms ια. There
exists a group homomorphism φ : A −→ Hn(X) such that

φ ◦ fα = ια, α ∈ Λ (41.3)

To show that φ is surjective, by (i) above, an arbitrary cycle ζ ′ in X with support in Xα representing
an element of Hn(X) may be expressed as ια(ζ) where ζ is a cycle in Xα. By (41.3) we see that
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ζ ′ ∈ im φ. To show that φ is injective, let ζ ′ ∈ A be such that φ(ζ ′) = 0 in X. By exercise 4 of lecture
40, we can write

ζ ′ =
∑

fα(ζα) (41.4)

where the sum is finite and each ζα is a cycle in Xα. Choose a β exceeding all the indices in (41.4)
and for each index α in (41.4), fα(ζα) = fβ ◦ fαβ(ζα) and so using (41.3),

0 = φ(ζ ′) = (φ ◦ fβ)
( ∑

fαβ(ζα)
)

= ιβ
(∑

fαβ(ζα)
)

Invoking (41.2) we arrive at
∑
fαβ(ζα) = 0 (perhaps with a larger β). Applying fβ we see that ζ ′ = 0

as desired. �

Theorem 41.2: Let K be a subset of Sn that is homeomorphic to Ik for some k in the range
0 ≤ k ≤ n. Then

Hj(S
n −K) =

{
Z if j = 0,
0 if j > 0.

Proof: If k = 0 then K is a point and Sn − K is homeomorphic to Rn and the result is true in
this case. The proof now proceeds by induction on k. Assume that the result has been proved for
0 ≤ k ≤ m− 1 and let h : K −→ Im be a homeomorphism. Define the halves I+ and I− as

I+ = {(x1, x2, . . . , xm) ∈ Im / xn ≥ 1/2}, I− = {(x1, x2, . . . , xm) ∈ Im / xn ≤ 1/2}

and note that I+ ∩ I− is homeomorphic to the cube Im−1. We construct the sets K+ = h−1(I+) and
K− = h−1(I−), and use the Mayer Vietoris sequence to the following open cover of Sn− (K+ ∩K−1):

{Sn −K+, Sn −K−}.

Since K+ ∩K− is homeomorphic to Im−1, by induction hypothesis the end terms of the portion

Hj+1(S
n −K+ ∩K−) −−−→ Hj(S

n −K)
(κ′,−κ′′)−−−−−→ Hj(S

n −K+) ⊕Hj(S
n −K−) −−−→

qj−−−→ Hj(S
n −K+ ∩K−)

are zero if j > 0 whereas the left most group is zero if j = 0. In any case (κ′,−κ′′) is injective.
Assume that for some j > 0, Hj(S

n − K) 6= 0. We choose ζ ∈ Hj(S
n − K), ζ 6= 0 and it follows

κ′(ζ) 6= 0 or κ′′(ζ) 6= 0. Let us assume that κ′(ζ) 6= 0. Since K+ is homeomorphic to Im, the process
can be repeated subdividing K+ into two pieces whose intersection is homeomorphic to Im−1. Thus
we construct a nested sequence of subsets

K = K1 ⊇ K2 ⊇ K3 ⊇ . . .

such that for each p, the map κp : Hj(S
n−K) −→ Hj(S

n−Kp) induced by inclusion, maps ζ to a non
zero element. Composing with fp : Hj(S

n −Kp) −→ lim−→Hj(S
n −Kp) one checks that for p, q ∈ N,

fp ◦ κp = fq ◦ κq,

thereby providing a map
f : Hj(S

n −K) −→ lim−→Hj(S
n −Kp).
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Since the intersection
⋂
Ki is homeomorphic to Im−1, by induction hypothesis, lim−→Hj(S

n−Kp) = {0}.
Hence fp(κp(ζ)) = 0 for every p and hence by theorem (40.2) (ii), for some q ∈ N, κq(ζ) = 0 which is
a contradiction.

Turning to the case j = 0, assume that rank of H0(S
n − K) is atleast two. If we select points x

and y lying in distinct path components of Sn −K, the cycle ζ = x− y in Sn −K is not a boundary.
As before we construct a nested sequence of compact sets {Kp} with κp(ζ) 6= 0 for each p ∈ N. But
since Sn − ⋂

Kp has only one path component, ιp ◦ κp(ζ) is a boundary where ιp is the map induced
by the inclusion Sn −Kp −→ Sn − ⋂

Kp whence

fp(κp(ζ)) = 0

by (41.3). This in turn forces κp(ζ) = 0 by theorem (40.2) (ii) and we have a contradiction.

Corollary 41.3: Suppose A is a subset of Sn homeomorphic to Sk for some k, 0 ≤ k ≤ n− 1, then

Hj(S
n − A) =





Z ⊕ Z if j = 0 and k = n− 1
Z if j = 0 and k ≤ n− 2
Z if j = n− k − 1 6= 0
0 otherwise.

(41.5)

Proof: The result is clear if k = 0. We proceed by induction on k and assume the result with
k − 1 in place of k. Let A = A+ ∪ A− where A+ and A− are each homeomorphic to Sk−1 and
A+ ∩ A− is homeomorphic to Sk−1. The Mayer Vietoris sequence may be applied to the open cover
{Sn − A+, Sn − A−} of Sn − A and the reader ought to verify that

Hj+1(S
n − A+ ∩ A−) ∼= Hj(S

n − A), j > 0.

By induction hypothesis we get (41.5) for the case j > 0. Let us now consider the case j = 0. The tail
end of the Mayer Vietoris sequence gives

0 −−−→ H1(S
n − Sk−1) −−−→ H0(S

n − Sk)
r−−−→ Z ⊕ Z

q−−−→ img q −−−→ 0

Since the image of q is isomorphic to Z, we see that the kernel of q must also be isomorphic to Z giving
a short exact sequence

0 −−−→ H1(S
n − Sk−1) −−−→ H0(S

n − Sk)
r−−−→ img r −−−→ 0. (41.6)

Since the image of r is free of rank one, (41.6) splits and we have

H0(S
n − Sk) = H1(S

n − Sk−1) ⊕ Z.

If k = n−1 then 1 = n− (k−1)−1 and so the induction hypothesis gives H1(S
n−Sk−1) = Z whereas

if k ≤ n− 2 then H1(S
n − Sk−1) = 0. �

Corollary 41.4: Suppose A ⊂ Sn and A is homeomorphic to Sn−1, then Sn−A is disconnected and
has precisely two components.

Proof: Equation (41.5) shows that Sn−A has two path components. However since Sn−A an open
set, Sn − A is locally path connected and so the path components are the same as components. Let
these components be C1 and C2.
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Corollary 41.5 (Invariance of domain): Suppose U and V are homeomorphic subsets of Rn.
Then U is open if and only if V is open. In particular if h : A −→ B is a homeomorphism between
subsets of Rn then h maps interior points of A to interior points of B.

Proof: Let h be the homeomorphism between U and V and p ∈ U . We have to show that h(p) is an
interior point of V . Let K be a closed ball centered at p and contained in U so that K ′ = h(K) is a
compact subset of V containing q = h(p). Let B be the (topological) boundary of K and B ′ = h(B).
We regard U and V as subsets of Sn. By theorem (41.2), Sn −K ′ is path connected and Sn −B′ has
two path components. However since the union

Sn − B′ = (Sn −K ′) ∪ (K ′ − B′)

is a disjoint union of connected sets, the pieces Sn −K ′ and K ′ − B′ are the components of Sn − B′.
Hence they are both open in Sn −B′ (why?) and hence are open in Sn. The piece K ′ −B′ is then an
open subset of Sn containing q and since K ′ ⊂ V we see that q is an interior point of V . �

Corollary 41.6 (Jordan Curve theorem): The complement of a simple closed curve C in R2

consists of two disjoint connected components precisely one of which is unbounded. �

Exercises

1. Prove the second equality in equation (41.1).

2. Prove corollary (41.6).

3. Prove that there is no injective continuous mapping from Sn into Rn. ([11], p. 217)

4. Show that no proper subset of Sn can be homeomorphic to Sn. ([11], p. 217)

5. Let Ω be an open subset of Rn and f : Ω −→ Rn be an injective continuous map. Show that f
is a homeomorphism onto its image. ([11], p. 217)
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Mid-Semester Examination

I (i) Prove that if G is a topological group and H is a subgroup such that H and the space of
cosets G/H are connected then G is connected.

(ii) Prove that if V is a vector subspace of Rn of dimension less than or equal to n − 2 then
Rn − V is connected.

II (i) State and prove the reparametrization theorem.

(ii) Prove that the loop γ : [0, 1] −→ S2 given by

t 7→ (cos(2πit), sin(2πit), 0), 0 ≤ t5 ≤ 2π

is null-homotopic by exhibiting a homotopy.

III (i) State the no-retraction theorem and deduce from it the Brouwer’s fixed point theorem.

(ii) Show that if Y is a retract of X and X has the fixed point property then so does Y .

IV (i) Show that S1 ∨ S1 is the retract of S1 × S1 minus a point but is not a retract of S1 × S1.

(ii) Calculate the degree of the map f : S1 −→ S1 given by

f(z) =
z2 − z + 3

2

|z2 − z + 3
2
|

V (i) Provide three different statements each of which is equivalent to the statement that p :
X̃ −→ X is a regular covering space.

(ii) Determine the deck transformations of the covering p : C − {±1,±2} −→ C − {±2}

p(z) = z3 − 3z.

VI (i) Suppose G and G̃ are topological groups and p : G̃ −→ G is a covering projection which is
also a group homomorphism then the kernel of p is the group of deck transformations.

(ii) If p is a prime what can you say about the group of deck transformations of a p−sheeted
covering?

171



Mid-Semester Examination

I (i) Prove that the one point compactification of Rn is homeomorphic to Sn.

(ii) Regard Sn as the one point compactification of Rn and let T : Rn −→ Rn be a linear
transformation. Provide necessary and sufficient conditions for T to extend continuously
as a map from Sn to itself.

II (i) Show that if G is a topological group and N is a discrete normal subgroup then N is
contained in the center.

(ii) Show that the fundamental group of a topological group is abelian.

III (i) Define the term star shaped domain and show that the fundamental group of a star shaped
domain is trivial.

(ii) Prove the fundamental theorem of algebra using the notion of degree of a map and homo-
topy.

V (i) Define the lens spaces and calculate their fundamental groups.

(ii) Determine the fundamental group of the Klein’s bottle.

VI (i) Define the term adjunction space and explain how RP 2 arises as the adjunction space by
attaching a copy of E2 to S1. Specify clearly the attaching map.

(ii) Calculate the fundamental group of

C2 − {(z1, z2) : z1z2 = 0}.

VII (i) State and prove the Barrett–Whitehead lemma.

(ii) State the relative version of the excision theorem and derive from it the relative Mayer
Vietoris sequence.

VIII (i) Prove that the inductive limit of the sequence of inclusion maps

−−−→ Cp −−−→ Cp2 −−−→ Cp3 −−−→

where CP k is the cyclic group of pk-th roots of unity is the multiplicative group

{z ∈ C : |z| = 1, zp
k

= 1 for some k ∈ N}.

(ii) State the Jordan Brouwer separation theorem and use it to show that there is no injective
continuous map from Sn into Rn.
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Prüfer group
Directed systems
Inductive limit

Lecture - XLI Jordan Brouwer separation theorem

Jordan Brouwer theorem
Brouwer’s theorem on invariance of domain

Jordan curve theorem

181


