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Abstract. In this note we provide a geometrical interpretation for the
basic assumptions made in the method of variation of parameters applied
to second order ordinary differential equations. We also discuss a physical
motivation drawn from celestial mechanics.

1. Introduction. The method of osculating elements popularly
known as the method of variation of parameters has its origins in Celestial
Mechanics. The method is credited to J. L. Lagrange who systematized it
and used it extensively in his research on Celestial Mechanics, particularly
the motion of comets. It is important to note, and this is not emphasized in
modern texts, that Lagrange employed this method to nonlinear differential
equations as well [2] and [3].

The purpose of this note is to motivate the basic assumptions, (2.3)
and (2.4) below, in the case of a linear second order equation. Most modern
texts justify the seemingly ad hoc hypothesis (2.4) on grounds that since
two functions c1(t) and c2(t) have to be determined, it is reasonable to im-
pose condition (2.4), noting further that this leads to the correct solution
as may be verified a posteriori. This justification however, seems arbitrary,
especially to students, and we provide here a simple geometric interpreta-
tion. These ideas are implicit in the classical works on Celestial Mechanics
[1] and we hope the note will be useful in the teaching of this method to
undergraduates.

2. The Method and Its Geometric Meaning.

Details of the Method. We describe briefly the method and then pro-
ceed to the motivation behind the method. We consider a second order
linear differential equation

y′′ + P (t)y′ + Q(t)y = R(t). (2.1)

Throughout this paper the coefficient functions P (t), Q(t), and R(t) are
continuous in a fixed open interval. We assume that the associated homo-
geneous equation

y′′ + P (t)y′ + Q(t)y = 0 (2.2)

has been solved completely and two linearly independent solutions y1(t) and
y2(t) have been found. The basic assumption in the method of variation of
parameters is that a particular solution to (2.1) may be found in the form

yp(t) = c1(t)y1(t) + c2(t)y2(t). (2.3)
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Differentiating (2.3) once, postulating

c′1(t)y1(t) + c′2(t)y2(t) = 0 (2.4)

and substituting into (2.1) we get the pair of equations

c′1(t)y1(t) + c′2(t)y2(t) = 0, c′1(t)y
′

1 + c′2(t)y
′

2(t) = R(t). (2.5)

Equations (2.5) may be uniquely solved for c′1(t) and c′2(t), integrated and
substituted into (2.3) to yield a particular solution of (2.1).

Physical and Geometrical Interpretations. To motivate the basic as-
sumption (2.3) let us recall the governing equations for a planet revolving
around the sun under the sun’s gravitational influence. (See chapter 17 of
[5] for a delightful account of the two body problem.) Denoting by y(t) the
position vector of the planet at time t, the differential equations of motion
are

y′′ =
−ky

|y|3
, (2.6)

where k is a positive constant. Here, the origin is placed at the center of
mass of the planet and the sun. Since time does not enter explicitly into
the system (2.6), y(t + a) is a solution whenever y(t) is a solution. Thus,
one of the constants in the general solution may be eliminated through a
time translation and the complete solution, denoted by

y = y(t, c), (2.7)

involves five arbitrary constants c = (c1, c2, . . . , c5). It is well-known [5]
that the motion described by (2.7) is a conic and in fact, a fixed ellipse in
the case of a planet. In the presence of a perturbing third body, the ellipse
(2.7) will not be fixed but would slowly precess, causing the parameters
c1, . . . , c5 to be slowly varying functions of time. Thus, one is led to make
the basic assumption

y = y(t, c(t)) (2.8)

for the solution of the perturbed problem. A case in point is the residual
precession of 43′′ per century in the orbit of Mercury, due to relativistic
correction terms to the Newtonian force field [4]. Note that (2.8) is the
exact analogue of (2.3) for the system (2.6). Let us assume that at time
t = ξ the disturbing function is shut off, causing the original trajectory
y = y(t) to deviate tangentially to a new trajectory y = Y (t, ξ) with

y(ξ) = Y (ξ), y′(ξ) =
dY

dt
(t, ξ)

∣

∣

∣

t=ξ
, (2.9)
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the second condition being the tangency condition. Since the full solution to
the unperturbed problem (2.6) is assumed known, it is possible to determine
Y (t, ξ) for t > ξ. The actual trajectory (2.8) may therefore be obtained as
the envelope of the one parameter family of fictitious trajectories Y (t, ξ).

We now illustrate this idea in the case of a linear system (2.1). We
have in this case,

Y (t, ξ) = c1(ξ)y1(t) + c2(ξ)y2(t),

and so
Yt(ξ, ξ) = c1(ξ)y

′

1(ξ) + c2(ξ)y
′

2(ξ).

Conditions (2.9) read

y(ξ) = c1(ξ)y1(ξ) + c2(ξ)y2(ξ), y′(ξ) = c1(ξ)y
′

1(ξ) + c2(ξ)y
′

2(ξ). (2.10)

These must hold for all values of ξ in the interval on which the differential
equation is defined and uniquely solvable for c1(ξ) and c2(ξ). Moreover,
c1(ξ) and c2(ξ) are both once continuously differentiable. Differentiating
with respect to ξ the first of (2.10) and subtracting from the second we get

c′1(ξ)y1(ξ) + c′2(ξ)y2(ξ) = 0. (2.11)

Thus, the seemingly arbitrary hypothesis (2.4) assumes a clear geometrical
meaning namely, it is precisely the envelope condition ∂Y/∂ξ = 0 at the
point of tangency. From the ODEs (2.1) and (2.2), the accelerations satisfy

lim
t→ξ+

(y′′(t) − Y ′′(t)) = R(ξ),

that is
y′′(ξ) − c1(ξ)y

′′

1 (ξ) − c2(ξ)y
′′

2 (ξ) = R(ξ).

Using the second equation in (2.10) we get

c′1(ξ)y
′

1(ξ) + c′2(ξ)y
′

2(ξ) = R(ξ). (2.12)

The pair (2.11)-(2.12) determining c1(ξ) and c2(ξ) is identical to the pair
(2.5).

Concluding Remarks. Note that the functions c1(t) and c2(t) in
(2.3) may not only be altered by adding arbitrary constants but, due to the
identity

c1(t)y1(t) + c2(t)y2(t) = (c1(t) − y2(t)λ(t))y1(t) + (c2(t) + y1(t)λ(t))y2(t),
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may also be altered by the addition of −y2(t)λ(t) and y1(t)λ(t), respectively.
If we choose

λ(t) =
c′1(t)y1(t) + c′2(t)y2(t)

y1(t)y′

2(t) − y2(t)y′

1(t)
,

then (2.4) is seen to hold with c1(t)−y2(t)λ(t) and c2(t)+y1(t)λ(t) in place
of c1(t) and c2(t). We have provided a geometrical interpretation for the
seemingly ad hoc hypothesis (2.4), obtaining both the equations (2.5) as a
natural geometric consequence.
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