
A Little Linear Algebra
Read this before coming to class on Monday.

1. Let A be an n× n real symmetric matrix. We say A is positive definite if

vTAv > 0

for each vector v 6= 0. The following are equivalent:

(i) A is positive definite

(ii) All eigen-values of A are positive.

2. Show that if A is a real symmetric matrix

inf
‖v‖=1

(vTAv)

equals the smallest eigen-value of A and the infimum is attained at an eigen-vector. Hint: Call
f(v) = vtAv over the unit sphere. The infimum exists and is attained (by compactness) at say
v0. Then, look at the function

φ(t) =
( v0 + tej
‖v0 + tej‖

)T
A
( v0 + tej
‖v0 + tej‖

)
and compute its derivative at t = 0.

3. Two square matrices A and B of size n × n are congruent if there exists a non-singular matrix
P of size n× n such that

P TAP = B.

Show that congruence is an equivalence relation. Show that congruent matrices have the same
nullity and the same rank.

4. If A is a real symmetric matrix, the triple (p, q, ν) where p is the number of positive eigen-values,
q is the number of negative eigen-values and ν is the number of zero eigen-values is called the
inertia of A. Sylvester’s Law of inertia asserts that Congruent Real Symmetric Matrices have
the same inertia. So if one of them is positive definite then all matrices congruent to it also are
positive definite.

5. Suppose you perform an elementary row operation and the “same” column operation on a matrix.
For example on the matrix A we add to first row twice the second row and after that add to the
first column twice the second column to obtain B. Explain why B is congruent to A. Prove that
every real symmetric matrix is congruent to a diagonal matrix.

6. Discuss how to compute determine the inertia of a real symmetric matrix by performing only
row and column operations (which means only rational operations and not having to solve higher
degree equations or using intermediate value theorem).
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Spectral theorem and such

Type of Matrix over R Type of Matrix over C

Real Symmetric A = AT Hermitian A = A∗

Orthogonal AAT = I Unitary AA∗ = I

AAT = ATA (no special name) AA∗ = A∗A (Normal Matrix)

Spectral Theorem (Real): A commuting family of real symmetric matrices can be simultaneously
orthogonally diagonalized.

Spectral Theorem (Complex): A commuting family of hermitian matrices can be simultaneously
unitarily diagonalized.

Structure of Normal Matrices: Suppose N is a n×n complex matrix, the following are equivalent:

1. N is normal

2. There exists Hermitian matrices A and B such that N = A + iB and AB = BA. Note that A
and B need not be real.

3. There exists a unitary matrix U such that

U∗NU = Diagonal Matrix

Proof: To prove (1) implies (2), simply take

A =
1

2
(N +N∗), B =

1

2i
(N −N∗)

and verify that A and B are hermitian and do the job. Note that A and B are NOT real !
To prove (2) implies (3) use the spectral theorem. Proof of (3) implies (1) is an easy exercise.

Note: The class of normal matrices contain all the others listed above and also skew symmetric and
skew hermitian matrices.

We shall use these ideas to prove that the orthogonal groups SO(n,R) are path connected in the
discussion sessions.
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Tensor Product of Vector Spaces and their basic properties

In this course we shall only work with tensor products of finite dimensional vector spaces over the
real numbers. The tensor product defined here is NOT the standard definition but for finite dimensional
vector spaces (over any field) this is easily seen to be equivalent to the standard definition.

Definition: Let V and W be finite dimensional real vector spaces. The tensor product of V and W
denoted by V ⊗W is the set of all bilinear maps

V ∗ ×W ∗ −→ R

Notations: Given vector spaces V,W,Z, it is convenient to have a separate notation for the set of
all bilinear maps

V ×W −→ Z

and we use the notation B(V,W ;Z).
Further if V = W and Z = R we shall simply write F2(V ∗) in place of B(V, V,R). While we are

on the subject, we denote by Fk(V ∗) the set of all k−linear real valued maps V × V × · · · × V −→ R.
The notation is such that F1(V ∗) = V ∗.

V ⊗W = B(V ∗,W ∗;R) and V ⊗ V = F2(V )

Replacing V by V ∗ and W by W ∗ we get

V ∗ ⊗W ∗ = B(V,W ;R) and V ∗ ⊗ V ∗ = F2(V ∗).

The following result is now clear from the definition.

Theorem: Dim(V ⊗W ) = Dim(V ∗ ⊗W ∗) = (Dim V )(Dim W ).
In this course we shall mostly work with V ∗ ⊗W ∗ and rarely use V ⊗W . The space V ⊗W will

be used heavily in the course on Representation theory of finite groups. Further, the spaces V and W
would both be equal to the tangent space TpM of a manifold so that V ∗ ⊗ V ∗ would be the tensor
product of two copies of the cotangent space at p.

Let us now find a basis for V ∗ ⊗W ∗ in terms of bases for the individual spaces V ∗ and W ∗. The
student must be clear about the notion of a basis for a vector space and the dual basis. The student
must be clear that the double dual V ∗∗ is naturally identified with V .

Notation: Let V and W be finite dimensional vector spaces and f ∈ V ∗, g ∈ W ∗. Then f ⊗ g is the
bilinear map

f ⊗ g : V ×W −→ R, (f ⊗ g)(v, w) = f(v)g(w).

It is now natural to take a basis f1, f2, . . . , fn of V ∗ and a basis g1, g2, . . . , gm of W ∗ and construct the
set of mn elements

S = {fi ⊗ gj : 1 ≤ i ≤ n, 1 ≤ j ≤ m}

Theorem: the set S is linearly independent and hence forms a basis of V ∗ ⊗W ∗.
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Proof: Assume that for a set of mn scalars cij, 1 ≤ i ≤ n, 1 ≤ j ≤ m, we have

n∑
i=1

m∑
j=1

cijfi ⊗ gj = 0 (1)

Fix i0 and j0. Choose a vector v ∈ V and a vector w ∈ W such that

fi0(v) = 1, gj0(w) = 1,

and fi(v) = 0 if i 6= i0, gj(w) = 0 if j 6= j0. Evaluate both sides of (1) at (v, w) and we see that the
LHS gives ci0j0 whereas the RHS gives the values 0. Thus

ci0j0 = 0

and this must hold for each 1 ≤ i0 ≤ n, 1 ≤ j0 ≤ m. The proof is complete.

Exercises: Prove that if f, g, h ∈ V ∗,

f ⊗ (g + h) = f ⊗ g + f ⊗ h
(g + h)⊗ f = g ⊗ f + h⊗ f

Theorem (Associativity of the Tensor Product): V ∗⊗ (V ∗⊗V ∗) and (V ∗⊗V ∗)⊗V ∗ are both
naturally isomorphic to F3(V ∗).

Proof: For f, g, h ∈ V ∗, let φ(f, g, h) be the trilinear map

(v1, v2, v3) 7→ f(v1)g(v2)h(v3).

Consider the canonical assignment

f ⊗ (g ⊗ h) 7→ φ(f, g, h).

This will do the job. We need to check that is the map is well defined and injective. Well-definedness
means that whenever ∑

i,j,k

cijkfi ⊗ (gj ⊗ hk) = 0,

we must have ∑
i,j,k

cijkfi(v1)gj(v2)hk(v3) = 0, for all v1, v2, v3 ∈ V.

Exercise: Do this using a basis of V ∗ and explain why this does not violate our basic requirement that
the isomorphism be canonical.

Under this identification both f⊗(g⊗h) and (f⊗g)⊗h represent the same tri-linear map φ(f, g, h).
We see that the tensor product V ∗ ⊗ V ∗ ⊗ V ∗ is unambiguously defined as the space F3(V ∗).

Definition (Higher Tensor powers): The k−fold tensor product V ∗⊗V ∗⊗ · · ·⊗V ∗ is the vector
space Fk(V ∗).
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Symmetric and skew-symmetric tensors:

The set of all symmetric k−linear maps V × V × · · · × V −→ R is denoted by Sk(V ∗) and the set of
all skew-symmetric k−linear maps V × V × · · · × V −→ R is denoted by Λk(V ∗)

Exercises:

1. Determine the dimensions of the spaces S2(V ∗) and Λ2(V ∗).

2. Show that
Fk(V ∗) = Sk(V ∗)⊕ Λk(V ∗)

provided k = 2 and explain why this fails when k ≥ 3?

3. Let K ′ be the linear span of f ⊗ g+ g⊗ f and K ′′ be the linear span of f ⊗ g− g⊗ f . Prove that

Fk(V ∗)/K ′ = Λ2(V ∗), Fk(V ∗)/K ′′ = S2(V ∗)

The image of f⊗g in the quotient Fk(V ∗)/K ′ is denoted by f ∧g. Show that f ∧g is the bilinear
map

(v, w) 7→ f(v)g(w)− f(w)g(v).

Find a basis of Λ2(V ∗) in terms of a basis of V ∗.

4. Suppose f1, f2, f3 ∈ V ∗. Define f1 ∧ f2 ∧ f3 to be the trilinear map

(u1, u2, u3) 7→ Det(fi(uj))

Show that the space Λ3(V ∗) is the linear span of elements of the form f ∧g∧h where f, g, h vary
over V ∗. Generalize this and state the corresponding theorem for Λk(V ∗) and specify a basis for
it in terms of a basis for V ∗.

5. Let φ1, φ2, . . . , φn be a basis of V ∗. Call an k−tuple (i1, i2, . . . , ik) is said to be standard if
i1 < i2 < · · · < ik and the corresponding

φi1 ∧ φi2 ∧ · · · ∧ φik

a standard monomial. How many such distinct monomials are there? Are they linearly indepen-
dent?

6. Suppose θ ∈ Λk(V ∗) and η ∈ Λl(V ∗) then explain how to define θ ∧ η. First define them when θ
and η are standard monomials. At first one would obtain a non-standard monomial that needs
to be “straightened out” through a certain number of transpositions of adjacent factors. For
example let us consider

(f2 ∧ f5 ∧ f6) ∧ (f1 ∧ f3 ∧ f4) = f2 ∧ f5 ∧ f6 ∧ f1 ∧ f3 ∧ f4

= (−1)3f1 ∧ f2 ∧ f5 ∧ f6 ∧ f3 ∧ f4

Note that the factor f1 had to move left through three transpositions. Next we need to bring
f3 next to f2 through two transpositions. The process is referred to as the “straightening out”
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process leading to a standard monomial or a monomial in which two factors are identical in which
case it is zero. Extend it linearly in θ and η. Prove that

θ ∧ η = (−1)klη ∧ θ

We call it the wedge product of θ and η. It is by construction distributive over addition.

(a) Compute θ ∧ θ for a simple case θ = f1 ∧ f2 + f3 ∧ f4 where f1, f2, f3, f4 are elements of V ∗.

(b) Consider a 2n−dimensional space V ∗ and let {p1, p2, . . . , pn, q1, q2, . . . , qn} be a given ordered
basis. Let η be given by

η = p1 ∧ q1 + p2 ∧ q2 + · · ·+ pn ∧ qn

Compute η∧η∧· · ·∧η (n-fold wedge product). The η above is called a symplectic two-form.

It is clearly of interest to know whether the wegde product is associative:

θ ∧ (η ∧ ζ) = (θ ∧ η) ∧ ζ.

The proof of this is not entirely trivial due to the straightening out involved in it.

7. Prove that a subset {f1, f2, . . . , fk} ⊂ V ∗ is linearly independent if and only if f1∧f2∧· · ·∧fk 6= 0
as an element of Λk(V ∗).

8. Effect of linear transformation: Let {f1, f2, . . . , fn} and {g1, g2, . . . , gn} be bases of V ∗.

(a) Let ∑
i,j

aijfi ⊗ fj =
∑
s,t

bstgs ⊗ gt

be the same element of V ∗ ⊗ V ∗ expressed in the two bases. Express the coefficients bst in
terms of the coefficients aij.

(b) For expressing a tensor in Λ2(V ∗) we have two options:∑
i,j

aijfi ∧ fj, where aij = −aji

or else ∑
i<j

aijfi ∧ fj.

How do the coefficients transform under a non-singular linear transformation in each of the
two cases?

(c) Discuss the situation with a symmetric tensor f � g ∈ S2(V ∗).

(d) Take the special case V = Tp(M), V ∗ = T ∗p (M) and the pair of bases

dx1(p), . . . , dxn(p), dy1(p), . . . , dyn(p)

where (U, x) and (V, y) are two overlapping coordinate charts containing p. Write down the
formulas for the transformation of components of a two tensor.
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(e) Discuss the transformation of coefficients under non-singular linear transformations for el-
ements of Fk(V ∗), Λk(V ∗) and Sk(V ∗).

9. In classical mechanics, in the context of spinning tops, one sometimes hears of the Inertia tensor
which is actually a 3× 3 real symmetric matrix I. The rotational kinetic energy is the quadratic
form

1

2
(ωT Iω)

where ω is the “angular velocity vector”. Is this a misleading terminology? If V is a vector
space, is there a way to interpret a quadratic form as a symmetric tensor of order two?

10. Let V be a vector space of dimension n and {v1, v2, . . . , vn}, {w1, w2, . . . , wn} be ordered bases
for V . Define

{v1, v2, . . . , vn} ∼ {w1, w2, . . . , wn}

if the matrix transforming {v1, v2, . . . , vn} to {w1, w2, . . . , wn} has positive determinant. Show
that this is an equivalence relation and there are two equivalence classes. A choice of one of
these equivalence classes is called an orientation of V and if an equivalence class is selected, we
say that V is an oriented vector space.

11. Prove that a choice of orientation of V is equivalent to a choice of a non-zero element of Λn(V ∗).

Remark: Now let M be a smooth manifold. At each point p ∈ M we assign the vector space
Λk(T ∗pM). The disjoint union of all these vector spaces is denoted by

Λk(T ∗M) =
⋃
p∈M

Λk(T ∗pM)

and we have the obvious projection map

π : Λk(T ∗M) −→M.

Exactly as was done for the tangent and cotangent bundle, one can topologize Λk(T ∗M) and
infact make it a smooth manifold. A smooth section of π is called a smooth differential k−form.
Smoothness can also be defined directly and we can also define a smooth k− form to be a family
of smooth maps indexed by charts satisfying certain consistency conditions. We shall take these
things up in detail in the next chapter. But we state here the theorem that is to come.

Theorem: For a smooth connected manifold M of dimension n the following are equivalent:

(1) The complement
Λn(T ∗M)− Image of the zero section

is dis-connected

(2) There exists a nowhere vanishing smooth n-form on M .

(3) There is a compatible atlas A such that whenever (U, φ) and (V, ψ) are overlapping charts,
the derivative of the transition map D(ψ ◦ φ−1) has positive determinant.

7



All books discuss the equivalence of conditions (2) and (3) above but most do not mention
condition (1).

We shall see a couple more equivalent conditions in the algebraic topology course. A manifold
that satisfies one and hence all the above conditions is said to be orientable. There are also one
sided conditions namely conditions that are necessary but not sufficient and conditions that are
sufficient but not necessary.

12. Let V and W be two vector spaces and T : V −→ W be a linear transformation. Then,
remembering that Λ1(V ∗) = V ∗, we have the linear map

T ∗ : Λ1(W ∗) −→ Λ1(V ∗)

given by f 7→ f ◦ T for f ∈ W ∗. Take V = W and A be the matrix of T with respect to a basis
of V . What is the matrix of T ∗ with respect to the dual basis? What is the relation between
trace of T and trace of T ∗? Suppose we change basis of V , how does the matrix of T ∗ change?
What would be a basis of eigen-vectors of T ∗ if we have a basis of eigen-vectors of T

13. Continuing with the notation as above, we define T ∗⊗ T ∗ : V ∗⊗ V ∗ −→ V ∗⊗ V ∗ to be the map
given by

(T ∗ ⊗ T ∗)(f ⊗ g) = (T ∗f)⊗ (T ∗g)

What can you say about the trace of T ∗ ⊗ T ∗? Generalize to k−fold tensor products.

14. Continuing from the previous exercises if T : V −→ W , define Λ2(T ∗) : Λ2(W ∗) −→ Λ2(V ∗) via
the prescription

Λ2(T ∗)(f ∧ g) = T ∗f ∧ T ∗g.

what can you say about the trace of Λ2(T ∗)? Generalize to k−fold tensor products.

15. Suppose V is an n− dimensional vector space and ω is an alternating n−form that is, an element
of Λn(V ∗) and T : V −→ V be a diagonalizable linear transformation. Determine T ∗(ω) in terms
of ω by fixing an appropriate basis for V ∗.

16. Suppose f, g ∈ V ∗ then show that f � g : f ⊗ g+ g⊗ f ∈ S2(V ∗). Take a basis for V ∗ and write
down a basis for S2(V ∗). If T : V −→ V is a linear transformation, discuss the induced map on
S2(V ∗).
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Orientation of a manifold. Theorems characterizing orientability

We begin with some point set topology. Recall from MA 403 that if C is a connected subset of a
topological space then the closure of C is also connected. If X is a topological space then the maximal
connected subsets are called the connected components of X. This can also be obtained as follows.
For x, y ∈ X, define x ∼ y if there is a connected subset of X containing both x and y. This is easily
seen to be an equivalence relation and the equivalence classes are the connected components of X
(Exercise).

Since a component C is a maximal connected subset and C̄ is connected and contains C we infer
that

C = C̄,

which means the components are closed subsets of X. However they need not be open.

Examples: (i) If X is the set of rationals with the usual topology then the components of X are
singletons.

(ii) If we take X = R− {0} then X has two connected components.

Definition (Path connected space): A topological space X is said to be path connected if given
any two points p, q ∈ X there is a path in X joining p and q. That is to say there is a continuous map
γ : [0, 1] −→ X such that γ(0) = p and γ(1) = q.

Recall that a topological space is locally compact if each point has a neighborhood base consisting
of compact neighborhoods.

Definitions: A topological space is said to be locally connected if each point has a neighborhood
base consisting of connected neighborhoods. A topological space is said to be locally path connected
if each point has a neighborhood base consisting of connected neighborhoods.

Exercise: Show that a connected, locally path connected space is path connected.
The set of rationals with the usual topology is neither locally compact nor locally connected. An

open set in Rn is locally connected and locally compact. A manifold is both locally compact as well
as locally connected

Theorem: If X is locally connected then the connected components of X are open.

Proof: Let C be a connected component and p ∈ C. Then there is a neighborhood N of p which is
connected and so C ∪N is connected. Now since C is a maximal connected subset of X we infer that

C ∪N ⊂ C

which means N ⊂ C and the proof is complete.
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Theorem: Assume that M is connected and locally path connected. Given any two points p, q ∈M
one can construct a finite sequence of connected open sets C1, C2, . . . , Ck such that

(i) p ∈ C1, q ∈ Ck

(ii) Cj ∩ Cj+1 6= ∅, j = 1, 2, . . . k − 1

Figuratively speaking, we can find a chain from p to q with finitely many links.
Recall that we have defined an orientation of a vector space V to be an equivalence class of an

ordered basis. The equivalence relation was defined earlier.

Definition (Orientatable manifold): An orientation of a manifold is

(i) an assignment
p 7→ µp

assigning to each p ∈ M an orientation µp (an equivalence class of ordered basis) of TpM . The
map p 7→ µp must satisfy the following coherence condition

(ii) For each p ∈M there is a chart U and n−smooth linearly independent vector fieldsX1, X2, . . . , Xn

(where n is the dimension of M) such that

µp = [X1(p), X2(p), . . . , Xn(p)], for all p ∈ U (1)

Remark: An ordered set of n linearly independent vector fields on U is called a local-frame on U .

Theorem 1: Let M be a manifold. Then M is orientable if and only if there is a compatible atlas
A0 such that whenever (U, φ) and (V, ψ) are overlapping charts in A0,

Det(D(ψ ◦ φ−1)) > 0, on U ∩ V. (2)

An atlas such as A0 is called an orientation atlas.

Proof: Let M be orientable and p ∈ M . Pick a connected chart U containing p and a local frame
X1(p), X2(p), . . . , Xn(p) satisfying (1). Consider the local frame

∂

∂x1

,
∂

∂x2

, . . . ,
∂

∂xn
.

If

µp = [X1(p), X2(p), . . . , Xn(p)] =
[ ∂

∂x1

∣∣∣
p
,
∂

∂x2

∣∣∣
p
, . . . ,

∂

∂xn

∣∣∣
p

]
(3)

then retain U as it is. If not then interchange the first two coordinates of U and continue to denote the
resulting chart U and we refer to it as a corrected chart. Thus after “correction” equation (3) holds.
We claim that The family of all such corrected charts is an orientation atlas. Well, suppose that U
and V are overlapping corrected charts then for p ∈ U ∩ V ,[ ∂

∂x1

∣∣∣
p
,
∂

∂x2

∣∣∣
p
, . . . ,

∂

∂xn

∣∣∣
p

]
=
[ ∂

∂y1

∣∣∣
p
,
∂

∂y2

∣∣∣
p
, . . . ,

∂

∂yn

∣∣∣
p

]
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both being µp. So the matrix of transition between these two bases must have positive determinant
and (2) holds.

Conversely suppose there is an orientation atlas A0. On U ∈ A0 we have the local frame

∂

∂x1

,
∂

∂x2

, . . . ,
∂

∂xn

and declare µp to be the equivalence class of the above at p. By construction the coherence condition
holds but we must check that the map p 7→ µp is well-defined namely if p lies in two overlapping charts
U and V in A0 then [ ∂

∂x1

∣∣∣
p
,
∂

∂x2

∣∣∣
p
, . . . ,

∂

∂xn

∣∣∣
p

]
=
[ ∂

∂y1

∣∣∣
p
,
∂

∂y2

∣∣∣
p
, . . . ,

∂

∂yn

∣∣∣
p

]
This holds because of condition (2) and the theorem is proved.

Theorem 2: Let M be a connected smooth manifold. The following are equivalent:

(i) M is orientable

(ii) The set
Λn(T ∗M)− Image of the zero section

is disconnected.

Proof: (ii) implies (i) Suppose that

N = Λn(T ∗M)− Image of the zero section

is dis-connected. Let G0 be a connected component of N . Then since a manifold is locally connected,
G0 is open. The map

ω 7→ −ω
is a homeomorphism of N onto itself and let G′0 be the image of G0 under this homeomorphism. Then
G′0 is also a connected component whereby

G0 = G′0 or G0 ∩G′0 = ∅.

We shall rule out the first case by showing that it implies G0 = N and so N would be connected which
is false.

Take a point ω ∈ G0 and let π(ω) = p. Take a connected chart U in M containing p and
ξU(ω) = (p, a) say and assume a > 0. Observe that since ξU is a homeomorphism,

ξ−1
U (U × R+)

is connected and contains the point ω ∈ G0 whereby

G0 ∪ ξ−1
U (U × R+)

is connected and in view of the maximality of G0,

ξ−1
U (U × R+) ⊂ G0.
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If G0 = G′0 then G0 also contains −ω which means we also have

ξ−1
U (U × R−) ⊂ G0,

and so
π−1(U) ∩N = ξ−1

U (U × (R− {0})) ⊂ G0.

If V is another connected chart of M overlapping with U then ξ−1
V (V ×R±) are each connected, have

non-empty intersections with ξ−1
U (U × (R − {0})) and hence non-empty intersection with G0 which

means
π−1(V ) ∩N = ξ−1

V (V × (R− {0})) ⊂ G0

Exercise: Explain how it follows that G0 = N . Hint: Given ANY two charts U and W we can
“chain up” U and V through finitely many links.

Next, ξU must map π−1(U) ∩ G0 into U × R+ or U × R− but not both - otherwise the connected
set G0 meets both the connected sets ξ−1

U (U × R±) and so

π−1(U) ∩N = ξ−1(U × R+) ∪ ξ−1
U (U × R−) ⊂ G0

So G0 contains ω as well as −ω contradiction.
To construct the orientation atlas A0, let U be a chart. If ξU maps π−1(U)∩G0 into U ×R+ then

we retain U as it is. In the opposite case we permute the first two coordinates of U and continue to
denote the resulting chart as U and call it a corrected chart. The family A0 of all corrected charts
covers M and is the atlas we seek. To see this let U and V be overlapping charts in A0 then pick
ω ∈ G0 such that ω(p) ∈ U capV . Expressed in coordinates of U and V ,

ω(p) = adx1(p) ∧ x2(p) ∧ · · · ∧ xn(p) = bdy1(p) ∧ dy2(p) ∧ · · · ∧ dyn(p).

Here a > 0 and b > 0 whereby

Det
(∂xi
∂yk

)
> 0.

The proof is complete. Turning to the converse assume that the manifold is orientable and A0 is an
orientation atlas. Let ω ∈ N . Declare ω > 0 if π(ω) = p and with respect to a chart U containing p,

ω = adx1(p) ∧ dx2(p) ∧ · · · ∧ dxn(p)

with a > 0. We see that there is no ambiguity in this definition since choosing a different chart
containing p would simply

ω = aDet
(∂xi
∂yk

)
dy1(p) ∧ dy2(p) ∧ · · · ∧ dyn(p)

and the coefficient is again positive. Declare ω < 0 if −ω > 0. Now consider

G0 = {ω ∈ N : ω > 0}, G′0 = {ω ∈ N : ω < 0}.

then G0 is open (why?) and have the disconnection.

N = G0 ∪G′0.

The proof is complete.
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Theorem 3: Suppose M is a manifold of dimension n. The following are equivalent:

(i) M is orientable

(ii) There is a smooth no-where vanishing n-form on M .

Proof: Suppose ω is a smooth nowhere vanishing n form on M . Let U be a connected chart.
If

ω(p)
( ∂

∂x1

∣∣∣
p
,
∂

∂x2

∣∣∣
p
, . . . ,

∂

∂xn

∣∣∣
p

)
> 0 (4)

then retain U as it is. Otherwise interchange the first two coordinates of U and continue to
denote the chart as U and refer to it as the corrected chart. We claim that the family A0 of such
corrected charts is an orientation atlas. Well, suppose U and V are overlapping charts in A0.
Then in addition to (4) we also have

ω(p)
( ∂

∂y1

∣∣∣
p
,
∂

∂y2

∣∣∣
p
, . . . ,

∂

∂yn

∣∣∣
p

)
> 0 (5)

But we have
∂

∂yk
=

n∑
j=1

∂xj
∂yk

∂

∂xj
(6)

Substituting (6) in (5), using the alternating property of ω and the positivity conditions (4) and
(5) we infer

Det
(∂xi
∂yk

)
> 0

and the proof is complete.

Turning to the converse assume that the manifold is orientable and A0 is an orientation atlas. We
must construct a smooth nowhere vanishing n form using a smooth partition of unity subordinate
to A0. So select a family of smooth functions {ψα : α ∈ S} (S is some indexing set) such that

(i) 0 ≤ ψα ≤ 1 for each α ∈ S
(ii)

∑
ψα = 1 (sum is over S).

(iii) The family {supp(ψα) : α ∈ S} is locally finite.

(iv) For each α, the support of ψα is compact and contained in one of the open sets in A0.

Now pick a chart U ∈ A0 and look at

ωU = (
′∑
α

ψα)dx1 ∧ dx2 ∧ · · · ∧ dxn = ψUdx1 ∧ dx2 ∧ · · · ∧ dxn (7)

where the prime over the summation symbol indicates that the sum is over all those indices α
such that support of ψα is contained in U . The sum is locally finite and the differential form
as such is defined on U and has support in U . Define it to be zero outside U and we have
a differential form ωU with support in U . We do this for each U ∈ A0 obtaining a family of
differential n forms on M that we shall sum and look at

ω =
∑
U∈A0

ωU (8)

13



We show that this is nowhere vanishing.

Observe that ψU in (7) is non-negative and remains non-negative in any overlapping coordinate
chart since the condition

Det
(∂xi
∂yk

)
> 0

holds. Also if the coefficient is positive then it remains so in any other coordinate system as well.

Let p ∈ M be arbitrary. There is at least one α for which ψα(p) > 0 and at least one chart
U containing p so that ψU in (7) is strictly positive. However in general p would belong to
other charts from A0 as well and in order to compute (8) at p we must express all the relevant
summands in terms of the coordinates of U . Thus if V is one of them we must express ωV (p) in
terms of the coordinates of U namely

ωV = Det
(∂xi
∂yk

)
ωU = Det

(∂xi
∂yk

)
ψV dx1 ∧ dx2 ∧ · · · ∧ dxn

Adding over all such terms (V = U being one of them)

ω(p) = (
∑
p∈V

Det
(∂xi
∂yk

)
ψV )dx1 ∧ dx2 ∧ · · · ∧ dxn.

We see that the coefficient is strictly positive. The proof is complete.
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1. Show that if M and N are orientable manifolds then M×N is orientable. Thus the torus S1×S1

is orientable.

2. Suppose M is a smooth manifold with a compatible atlas consisting of two charts U, V such that
U ∩ V is connected. Show that M is orientable.

3. Consider the circle S1 given by x2 + y2 = 1. Take the atlas consisting of two charts

U = S1 − {(0,−1)}, V = S1 − {(0, 1)}

On U we have the smooth function f(z) = Arg(z) and on V we have the argument function
g(z) taking values in (0, 2π). At each point p ∈ U we have the elements of T ∗p (S1) given by the
equivalence class of (the germ of)

f(z)− f(p)

in the space I/I2. Similarly on V we have the class of (the germ of) g(z) − g(p) in I/I2. Does
this assignment define a smooth one form on S1?

4. Express the smooth one form of the previous example in terms of the charts (x, y) 7→ x, (x, y) 7→ y
(two each making four charts in all).

5. In the previous chapter we introduced the space of symmetric tensors Sk(V ∗). Take V = TpM ,
look at the case k = 2 and take two bases of T ∗pM

{dx1(p), . . . , dxn(p)}, {dy1(p), . . . , dyn(p)}.

Express the symmetric tensor ∑
i,j

aijdxi � dxj (10)

in terms of the basis {dyi(p)� dyj(p) : i, j = 1, 2, . . . n} of S2(T ∗pM).

6. Consider the disjoint union

Sk(T ∗M) =
⋃
p∈M

Sk(T ∗p )

with the projection map π that maps the entire vector space Sk(T ∗pM) to the point p. A smooth
section of this bundle is called a symmetric covariant tensor of order k. How would you precisely
define the notion of smoothness? For the case k = 2, explain how such a tensor can be defined
in terms of a family of smooth real valued functions indexed by (U, i, j) where U varies over the
charts of an atlas and i, j are indices taking values from 1 to n.

Remark: A symmetric tensor of order two assigns to each point p ∈ M a symmetric bilinear
form on TpM . If this symmetric bilinear form is positive definite then this tensor is called a
metric tensor (or a Riemannian Metric) on M . The coefficients of this with respect to a basis
(10) are usually denoted by gij. We shall return to this in the differential geometry course.

7. Explain how to put a topology on the space Sk(T ∗M) and make it into a smooth manifold. For
notational convenience work with the case k = 2.
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8. Consider the first order differential equation

n∑
j=1

aj
∂u

∂xj
+ bu+ c = 0

where the coefficients are smooth functions on Rn. Explain how the principal symbol can be
thought of as a differential one form and the principal part can be regarded as a vector field.

Proof: subject the PDE to a coordinate transformation

x = ψ(y)

where ψ is a diffeomorphism. The tranformed equation reads:

n∑
j,k=1

aj
∂yk
∂xj

∂u

∂yk
+ l. o. t =

n∑
k=1

bk
∂u

∂yk
+ l. o. t

where l.o.t refer to lower order terms. Denoting by a and b the coefficients of the principal parts,

b = [
∂yk
∂xj

]a

Thus the principal part is a contravariant tensor of rank one. This is not surprising since the
principal part may be identified with the operator

n∑
j=1

aj
∂

∂xj

and we know that such operators are Vector Fields. Now the principal symbol is the linear form

n∑
j=1

aj(x)ξj,

or in other words a linear map Rn −→ R given by

ξ 7→
n∑
j=1

aj(x)ξj = 〈a, ξ〉.

Now for the transformed equation the linear form is

η 7→
n∑
k=1

bk(y)ηj = 〈b, η〉 = 〈[∂yk
∂xj

]−1a, η〉 = 〈a, T [
∂yk
∂xj

]−1η〉

Thus the principal symbol transforms as a covariant tensor of rank one.

9. Consider a second order differential operator and show that the principal part and principal
symbol behave like a symmetric tensor of order two - covariant or contravariant? What do you
think would be the case for the principal part/symbol of a PDE of order k?
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Densities on a smooth manifold: To define the integral of a k on a k dimensional manifold
it is essential that the manifold be orientable (we work with an orientation atlas). What can one
do with a non-orientable manifold of dimension k? The objects that can be integrated on ANY
k dimensional manifold are smooth densities. To understand what is a smooth density recall the
material on integration we covered before midsem.

10. Let Σ be a parametrized surface in R3 given as the image of a smooth injective map

G : R −→ R3

where R is open in R2 and DG has rank two throughout R and image of R under G is Σ. If
f : Σ −→ R is continuous and bounded we define∫

Σ

fdS =

∫
R

f(G(u, v))‖Gu ×Gv‖dudv

Suppose we reparametrize the surface via a diffeomorphism φ : R′ −→ R and use G′ = G ◦ R′.
What happens to the above formula. Show that that the expressions

‖Gu ×Gv‖, dudv and ‖Gu ×Gv‖dudv (11)

behaves almost like a differential two form. What is the difference? We call them smooth
densities1 on Σ (of different orders)

11. What would be the analogue of (11) for a k dimensional manifold in Rn? We have looked at
important examples of entities that are susceptible to generalization leading to the important
notion of densities. We have no time for any further discussion on densities.

12. Consider the one form in R2 − {0} given by

ω =
ydx− xdy
x2 + y2

Compute dω. Is there a smooth zero form f such that df = ω? That is to say is ω exact?

13. Consider the n− 1 form on Sn−1 defined locally in terms of charts as:

ω = x1dx2 ∧ · · · ∧ dxn − x2dx1 ∧ dx3 ∧ · · · ∧ dxn + · · ·+ (−1)n−1xndx1 ∧ dx2 ∧ · · · ∧ dxn−1.

Here it is understood that we have an atlas of 2n charts. On the northern and southern hemi-
spheres we need to regard xn = ±

√
1− x2

1 − · · · − x2
n−1 as a zero form and dxn its exterior

derivative. Carry out this computation and express it in terms of dx1∧ . . . dxn−1. Show that this
form is always positive throughout Sn−1.

14. A smooth one form ω is said to admit an integrating factor if there is a smooth function f such
that fω is in the image of d : Ω0(M) −→ Ω1(M). That is if there is a f ∈ C∞(M) such that
fω is exact. Show that the necessary condition for ω to be exact is

ω ∧ dω = 0.

1Referred to as relative tensors in L. P. Eisenhart, Introduction to differential Geometry, Princeton University Press,
p.
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Differential Forms and the Exterior Derivative

In low dimensions at least, differential forms made their appearance in analysis more than three
centuries ago originating in the works of Euler, Lagrange, Clairut and others. For arbitrary orders
they were introduced by Poincaré and E. Cartan. The interesting historical development is available
in the papers of Samelson [8], Katz [6], [5] and a fragment of a paper of J. Dieudonne [3]. A significant
role was played by Pfaff (thesis advisor of C. F. Gauss), Jacobi and many other mathematicians. The
final form in which this topic is currently is the culmination of efforts a few centuries.

The Exterior Derivative Recall that we defined the important concept of Lie brackets on the
family of smooth vector fields on M . We shall introduce a related notion on differential forms called
the exterior derivative. The exterior derivative is one of the most important ideas in the theory of
differential manifolds leading directly to the de Rham cohomology of manifolds - that is to algebraic
topology ! It was used by Cartan in his formulation of differential geometry via moving frames (see
[1]).

The exterior derivative plays a role dual to the one played by Lie bracket in the context of vector
fields. In fact the Poincare lemma

d2 = 0

is the analogue of Jacobi’s identity.

[X, [Y, Z]] + [Y, [Z,X]] + [Z, [X, Y ]] = 0, X, Y, Z ∈ X(M)

The exterior derivative of k-forms as defined in Hicks [//] is completely coordinate free and described
as a k + 1 linear form acting on the C∞(M) module X(M). The defining formula (stated here for
simplicity only for k = 2) as used by Hicks is:

dω(X, Y ) = X(ω(Y ))− Y (ω(X))− ω([X, Y ]).

Though the ultimate goal has been reached, the treatment in Hicks is somewhat austere. This formula
is also available in Chern et al.,[2] as well as Lee [7]. The proofs in [2] and [7] on the existence and
uniqueness of the exterior differential operator (satisfying certain conditions) employs a mixture of
local and global arguments (see also [9]). Although the construction of the exterior derivative carried
out in [2] or [7] (through its characterization in terms of its properties) is elegant we feel it is unsuitable
for the present audience and masks certain features that we would like to see. Specifically the exterior
derivative is an example of a covariant derivative resulting in a tensor. Thus when changing coordiantes,
certain undesirable terms ought to cancel out and we would like to see this happen explictly.

We show that the essential ingredient needed for defining the exterior derivative is a basic calculus
identity involving determinants. This is not surprising and seems more natural than the other standard
proofs inasmuch as when changing coordinates we actually witness the internal cancellations of terms
involving the second derivatives of the transition maps.

In the following lemma J would denote an ordered k−set {j1, j2, . . . jk}, 1 ≤ j1 < j2 < · · · < jk ≤ n.
We shall consider pairs (s, J) such that 1 ≤ s ≤ n and s 6= j1, j2, . . . , jk. Let N be the total number
of such pairs. For a given pair (s, J) and jp ∈ J denote by (jp, J

′) the complementary pair (jp, J
′)

obtained by removing jp from J and inserting s in the right place.
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Lemma: Let φ1, φ2, . . . , φk be k smooth functions of z1, z2, . . . , zn. Then∑
s,J

∂

∂zs

∂(φ1, φ2, . . . , φk)

∂(zj1 , zj2 , . . . , zjk)
dzs ∧ dzj1 ∧ · · · ∧ dzjk = 0.

Proof: Assume jq−1 < s < jq so that dzs would need to move through q − 1 transpositions to
bring the monomial in standard form leading to a factor of (−1)q−1. Also carrying out the indicated
differentiation would produce k determinats out of each summand leading to kN monomials in all.
We need to show that the monomials can be paired off in such a way that the sum is ultimately zero.

Let us consider the terms coming from the complementary pairs (s, J) and (jp, J
′). We may assume

at the outset that s < jp for in the opposite case we can interchange the roles of (s, J) and (jp, J
′).

The determinant will be written in such a way that the second derivatives appear in the first column
which necessitates a book-keeping of the number of column exchanges.

Computing the derivative of the determinant, the term wherein the pth column is differentiated is:

(−1)p−1

∣∣∣∣∣∣∣
∂2φ1

∂zs∂zjp

∂φ1
∂zj1

. . . ∂φ1
∂zjk

. . . . . . . . . . . .
∂2φ1

∂zs∂zjp

∂φ1
∂zj1

. . . ∂φ1
∂zjk

∣∣∣∣∣∣∣
Together with the differentials, we get the monomial:

(−1)p+q−2

∣∣∣∣∣∣∣
∂2φ1

∂zs∂zjp

∂φ1
∂zj1

. . . ∂φ1
∂zjk

. . . . . . . . . . . .
∂2φ1

∂zs∂zjp

∂φ1
∂zj1

. . . ∂φ1
∂zjk

∣∣∣∣∣∣∣ dzj1 ∧ · · · ∧ dzjq−1 ∧ dzs ∧ dzjq ∧ · · · ∧ dzjk (∗)

Now we consider the term arising out of the complementary pair (jp, J
′) and look at the relevant

monomial namely the one in which the second derivatives

∂2φi
∂zjp∂zs

, i = 1, 2, . . . , k

appear in the determinant. These second derivatives appear in the qth column (jq−1 < s < jq) and so
we need q − 1 column exchanges to bring them to the first column thereby producing a (−1)q−1 sign.
We also have in addition the factor

dzjp ∧ dzj1 ∧ · · · ∧ dzjq−1 ∧ dzs ∧ dzjq ∧ · · · ∧ dzp−1 ∧ dzp+1 ∧ · · · ∧ dzjk , (s < jp).

Owing to the presence of dzs, the dzjp has to now move through p transpositions to get this in
standard form. Thus we get the term (*) but with (−1)p+q−1 instead. Thus the terms arising from
complementary pairs cancel out. The proof is complete.

Definition (The exterior derivative d): We introduce the R-linear map

d : Ωk(M) −→ Ωk+1(M).

Let ω be a differential k form and on the chart U let ω be given by

ω =
∑
i

aUi1i2...ikdxi1 ∧ · · · ∧ dxik
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We define on each chart
dω =

∑
i

daUi1i2...ik ∧ dxi1 ∧ · · · ∧ dxik . (∗∗)

The notation
∑
i

stands for the sum over all standard k−tuples (i1, i2, . . . , ik) with i1 < i2 < · · · < ik.

However we now have the job of verifying consistency on overlapping charts.

Theorem: The operator d given by (**) is a well-defined element of Ωk+1(M).

Proof: Let U and V be two overlapping charts. Need to check that∑
i

daUi1i2...ik ∧ dxi1 ∧ · · · ∧ dxik =
∑
j

daVj1j2...jk ∧ dyj1 ∧ · · · ∧ dyjk , on U ∩ V.

Since

aVj1j2...jk =
∑
i

aUi1i2...ik
∂(xi1 , xi2 , . . . , xik)

∂(yj1 , yj2 , . . . , yjk)

our job is to check that∑
i

daUi1i2...ik ∧ dxi1 ∧ · · · ∧ dxik =
∑
i

∑
j

d
(
aUi1i2...ik

∂(xi1 , xi2 , . . . , xik)

∂(yj1 , yj2 , . . . , yjk)

)
∧ dyj1 ∧ · · · ∧ dyjk

Well, the right hand side breaks up into two sums:∑
i

∑
j

d
(
aUi1i2...ik

∂(xi1 , xi2 , . . . , xik)

∂(yj1 , yj2 , . . . , yjk)

)
∧ dyj1 ∧ · · · ∧ dyjk = I + II.

The first sum I displayed below is tensorial namely,∑
i

∑
j

daUi1i2...ik

(∂(xi1 , xi2 , . . . , xik)

∂(yj1 , yj2 , . . . , yjk)

)
∧ dyj1 ∧ · · · ∧ dyjk =

∑
i

daUi1i2...ik ∧ dxi1 ∧ · · · ∧ dxik

which is the desired result and so we must show that the second (non-tensorial) term II is identically
zero namely,

II =
∑
i

∑
j

aUi1i2...ikd
(∂(xi1 , xi2 , . . . , xik)

∂(yj1 , yj2 , . . . , yjk)

)
∧ dyj1 ∧ · · · ∧ dyjk = 0.

We shall in fact show that each of the pieces∑
j

d
(∂(xi1 , xi2 , . . . , xik)

∂(yj1 , yj2 , . . . , yjk)

)
∧ dyj1 ∧ · · · ∧ dyjk

individually vanishes. That is to say for each fixed i1 < i2 < · · · < ik we have∑
j

∂

∂ys

(∂(xi1 , xi2 , . . . , xik)

∂(yj1 , yj2 , . . . , yjk)

)
dys ∧ dyj1 ∧ · · · ∧ dyjk = 0.

But this exactly the calculus lemma. The proof is complete.
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X - Manifolds with boundary

We now introduce a notion we need for the formulation of Stokes’ theorem. Observe that the closed
ball

B = {(x1, x2, x3) ∈ R3 : x2
1 + x2

2 + x2
3 ≤ 1}

is NOT a manifold in the sense we have defined since the points on the unit sphere x2
1 + x2

2 + x2
3 = 1

do not have a neighborhood homeomorphic to an open subset of Rn. The closed ball B is a manifold
with boundary.

To define these we introduce the closed half space

H = {(x1, . . . , xn) ∈ Rn : xn ≥ 0} (10.1)

and its boundary
∂H = {(x1, . . . , xn) ∈ Rn : xn = 0} (10.2)

A point p = (p1, . . . , pn) ∈ H with xn = 0, that is p ∈ ∂H, has a neighborhood Np which is the union
of the open half ball centered at p together with the flat piece included (hereafter referred to as the
base of Np):

∂Np = {(p1, . . . , pn−1, 0) : p2
1 + p2

2 + · · ·+ p2
n−1 < ε2}

where ε is the radius. Thus ∂Np ⊂ Np. Observe that ∂Np is NOT the boundary of Np in the sense
of general topology (why?). We shall refer to such a Np as a half open ball or more often simply a
half-ball.

Pictures

Let Up denote the full open ball centered at p and radius ε.

Exercise: Show that Up is not homeomorphic to Np. Recall the statement of the Brouwer’s theorem
on invariance of domain from chapter 3.

Definition 10.1: A map f : Np −→ Rm on the half closed open ball is said to be smooth if there
exists a smooth map F : Up −→ Rm such that F = f on the half closed ball Np. That is to say F
is said to be smooth if it has a smooth extension to the full open ball Up. If there is an extension F
which is a diffeomorphism we say that f is a diffeomorphism of Np onto its image.
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Exercise: Suppose F,G are two smooth extensions of f such that

F
∣∣∣
NP

= G
∣∣∣
Np

then at any point q on the base of Np,

DF (q) = DG(q)

and we may take this to be the derivative of f at p. Thus

Df(p) : Rn −→ Rm

is a linear transformation on Rn.

Definition 10.2 (Manifolds with boundary): A manifold with boundary is a metric space M
with the following data:

(i) To each point p ∈M there is a neighborhood Gp of p in M and a homeomorphism

φ : Gp −→ G

onto a full open ball G with center φ(p) or a half-ball G with center φ(p). If the ball or half-ball
has dimension n then we say M has dimension n.

(ii) Further, whenever we have two such homeomorphisms

φ : Gp −→ G, ψ : G′p −→ G′

the transitions maps
ψ ◦ φ−1 : φ(Gp ∩G′p) −→ ψ(Gp ∩G′p)

is smooth diffeomorphism.

The collection of all pairs (Gp, φ) satisfying the two stated conditions is called an atlas and its members
are called charts.

Theorem 10.1: Suppose there are two homeomorphisms as above. Then both G and G′ are full
open balls with centers φ(p) and ψ(p) respectively or they are both half-balls with these centres.

Proof: Suppose that G is a full open ball and G′ is a half ball. Then φ(p) is the interior point of
a full open ball in Rn whereas ψ(p) is in the base of a half-ball. Let us write the components of the
diffeomorphism ψ ◦ φ−1:

ψ ◦ φ−1 = (η1, η2, . . . , ηn)

Since ηn ≥ 0 and equals zero at φ(p) we see that ηn has a local minimum at φ(p) and so all its partials
must vanish at φ(p). Thus

D(ψ ◦ φ−1)

fails to be invertible at φ(p) which is a contradiction.
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Remarks: (i) We are proving this result using the differentiability of the transition maps which is
the case of interest here. We are avoiding the use of Brouwer’s theorem on invariance of domain which
is why we refrain from proving it in the purely topological setting.

(ii) The above theorem also makes the following definition meaningful.

Definition 10.3 (Boundary of a manifold): Suppose M is a smooth manifold with boundary,
boundary of M is the subspace ∂M consisting of all points p ∈ M such that there is a chart (Gp, φ)
such that φ(Gp) is a half-ball.

Example: (i) As per this definition, H is a manifold with boundary and the boundary ∂H is

{(x1, x2, . . . , xn−1, 0) : x1, . . . , xn−1 ∈ R}.

(ii) Let B be the closed unit ball in Rn. Then the boundary ∂B is the sphere Sn−1.
(iii) Can you find an example of a manifold M with boundary such that ∂M is not the topological
boundary of M . That is to say ∂M is not the boundary of M in the sense of general topology.

Theorem 10.2: Suppose M is a smooth manifold of dimension n with boundary then ∂M is a
smooth manifold of dimension n− 1 without boundary.

Proof: Exercise. Hint: Take a point p ∈ ∂M and take a chart (U, φ) containing p. Look at

φ
∣∣∣
U∩∂M

: U ∩ ∂M −→ H.

An Important Example: Consider the half ball

B+ = {(x1, x2, . . . , xn) ∈ Rn : x2
1 + x2

2 + · · ·+ x2
2 ≤ 1, xn ≥ 0} (10.3)

The points on Sn−1∩{xn = 0} form a sharp edge of B+ and we shall remove these points and consider

B+
0 = B+ − Sn−1 ∩ {xn = 0} (10.4)

The base of this half ball is

{(x1, x2, . . . , xn−1, 0) : x2
1 + x2

2 + · · ·+ x2
n−1 < 1}

We must exhibit charts around points p of Sn−1 with xn > 0 that map the curved part to the flat
piece xn = 0. That such charts exist is intuitively clear but honesty demands that we work out at
least one example in detail by explicitly exhibiting the charts. For this purpose consider the family of
hyper-surfaces

(x1, x2, . . . , xn−1) 7→ (x1, x2, . . . , xn−1, (1− xn)
√

1− x2
1 − x2

2 − · · · − x2
n−1) (10.5)

This map depends on xn and so must denote it by fxn(x1, x2, . . . , xn−1). Let D be the cylinder

D = {(x1, x2, . . . , xn) : x2
1 + · · ·+ x2

n−1 < 1, 0 ≤ xn ≤ 1}. (10.6)

Thus we can consider the map

D −→ B+
0 , (x1, x2, . . . , xn) 7→ fxn(x1, . . . , xn−1) (10.7)

φ : B+
0 −→ D be the inverse map.
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Exercises:

1. Check that φ−1 given by (10.7) is continuous, bijective and open mapping. Thus φ is a homeo-
morphism providing us the desired chart. Also φ maps the curved part of ∂B+

0 onto a portion
of xn = 0.

2. Show that the paraboloid
{(x, y, z) ∈ R3 : z ≥ x2 + y2}

is a manifold with boundary.

3. Show that the closed unit disc in R2 is a manifold with boundary. Use complex analysis (Möbuis
maps) to construct an atlas with two charts.

Definition 10.4 (The tangent space at a point): Suppose M is a manifold with boundary and
p ∈M − ∂M . then TpM has the usual meaning. If p ∈ ∂M then Tp(∂M) has the usual meaning since
∂M is a manifold without boundary of dimension n− 1. However if p ∈ ∂M then we shall define TpM
as a n− dimensional vector space containing Tp(∂M) as a vector subspace.

If p ∈ ∂M a curve through p is a smooth map

γ : [0, ε) −→M

such that γ(0) = p, meaning φ ◦ γ : [0, ε) −→ H is smooth. Recall that this means φ ◦ γ has a
smooth extension to (−ε, ε). As observed in the beginning of this chapter we can take any extension,
differentiate it at the origin and declare it as (φ ◦ γ).(0). A tangent vector is then an equivalence class
under the equivalence relation

γ1 ∼ γ2 if γ1(0) = p = γ2(0) and (φ ◦ γ1).(0) = (φ ◦ γ2).(0)

TpM is then the equivalence class of all curves through p under the above equivalence relation. As
before TpM is a vector space but this is best seen via the physicist’s definition. One establishes a
bijective correspondence between the physicist’s and geometer’s definition and simply transfers the
algebraic operations via this. The physicist’s definition and algebraist’s definition go through easily.

Note that the dimension of TpM is n and not n− 1 since the curve in general originates at p but
need not be tangential to ∂M .

Exercise: Discuss scalar multiplication with respect to negative scalars.
Observe that if the image of γ lies completely inside ∂M then the equivalence class of γ lies in

Tp(∂M) so that
Tp(∂M) ⊂ TpM.

Despite the fact that p ∈ ∂M and the chart maps into a half ball, the derivations are as usual

∂

∂x1

∣∣∣
p
, . . . ,

∂

∂xn

∣∣∣
p

and they operate on smooth functions f◦φ−1 defined on half balls but then they have smooth extensions
to a full ball as per our definition of differentiability. After all we compute derivatives at p and they
are independent of the choice of the extension.
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Definition 10.5 (The cotangent space T ∗pM and differential forms): This is the dual of TpM
and its exterior powers can be defined. Differential forms are smooth sections of the exterior powers.
A differential k-form is then locally given by

ω =
∑
i

aUi1i2...ikdxi1 ∧ . . . dxik

The coefficients are smooth functions on the chart U . If U maps to a half ball then the coefficients are
smooth functions on half ball and hence with a smooth extension on the full ball.

Exercise: Discuss whether the exterior derivative is well defined? Will there be issues such as
dependence on the extension chosen? discuss the notion of pull back via a smooth function F : M −→
M .

Definition 10.6 (Orientability): A manifold with boundary is said to be orientable if there exists
a compatible atlas A such that for (U, φ), (V, ψ) ∈ A,

Det(D(ψ ◦ φ−1)) > 0, U ∩ V.

Exercise: Is this well-defined? For example will the Jacobian of the transition map ψ ◦ φ−1 depend
on the choice of the smooth extension in case the charts map onto half balls?

As in the case of manifolds without boundary, we can easily show that orientability is equivalent
to the existence of a smooth nowhere vanishing n−form.

Lemma 10.3: Suppose Φ : H −→ H is a diffeomorphisn with everywhere positive Jacobian then Φ
induces a map

Φ̃ : ∂H −→ ∂H (10.8)

which also has positive Jacobian.

Proof: Let
xj = Φj(y1, y2, . . . , yn), j = 1, 2, . . . , n. (10.9)

Observe that xn = 0 whenever yn = 0 that is to say

Φn(y1, y2, . . . , yn−1, 0) = 0. (10.10)

Thus at each point of ∂H,

∂Φn

∂yj
(y1, y2, . . . , yn−1, 0) = 0, j = 1, 2, . . . , n− 1. (10.11)

The Jacobian of Φ at (y1, y2, . . . , yn−1, 0) is then∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂Φ1

∂y1

∂Φ1

∂y2
. . . ∂Φ1

∂yn−1

∂Φ1

∂yn

. . . . . . . . . . . . . . .

∂Φn−1

∂y1

∂Φn−1

∂y2
. . . ∂Φn−1

∂yn−1

∂Φn−1

∂yn

0 0 . . . 0 ∂Φn

∂yn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(10.12)
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Now (10.12) is given to be positive and if we show that

∂Φn

∂yn
> 0 (10.13)

our job will be over because its cofactor which is the Jacobian of Φ̃ will also be positive. Suppose that

∂Φn

∂yn
< 0

then for any fixed positive values of y1, y2, . . . , yn−1, the function

yn 7→ Φn(y1, y2, . . . , yn)

is strictly decreasing at yn = 0 and Φn(y1, y2, . . . , 0) = 0. So for small positive values of yn and the
same values of the other arguments,

Φn(y1, y2, . . . , yn) < 0

which is not possible since Φ maps H into H. The proof is complete.

Corollary 10.4: If M is orientable then ∂M is also orientable.

Proof: We take an orientation atlas A for M and for each chart (U, φ) ∈ A containing points of
∂M , consider the chart (U0, φ0) obtained by restricting φ to U0 = U ∩ ∂M . The theorem shows that
the collection of all such (U0, φ0) forms an orientation atlas for ∂M . We shall call this orientation on
∂M the orientation obtained from M through restriction to ∂M or simply the restricted orientation
for short. Equivalently

Integrating a differential n form on a manifold of dimension n. Let us begin with a simple
example of integrating

ω = dx1 ∧ d2 ∧ dxn
say on a single bounded open set G in Rn.

We may try to define it as ∫
G

ω =

∫
G

dx1dx2 . . . dxn.

Here we are tacitly working with the single coordinate chart G with the identity map on it. However
if we switch two of the coordinates of G and get a chart G′, the differential form with respect to G′

would change sign and therewith value of the integral also reverses sign. Here one may argue that G
with the identity map is the preferred chart but on a general manifold there is no preferred chart.

Suppose that we have an orientable manifold M of dimension n and A is an orientation atlas. Let
ω be a differential n form with compact support inside a chart U ∈ A. On U , we express ω as

ω = adx1 ∧ dx2 ∧ · · · ∧ dxn (10.14)

and declare ∫
M

ω =

∫
U

adx1dx2 . . . dxn (10.15)
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Suppose that the form ω has support inside U ∩ V where U, V are two overlapping charts. On V we
express ω as

ω = bdy1 ∧ dy2 ∧ · · · ∧ dyn (10.16)

and we must now ensure that the value (10.15) agrees with∫
M

ω =

∫
V

bdy1dy2 . . . dyn (10.17)

Recall that

b =
∂(x1, x2, . . . , xn)

∂(y1, y2, . . . , yn)
a

and since the Jacobian factor in the above equation is positive the change of variables formula proved
earlier in the course confirms that the values of the integrals in (10.17) and (10.15) agree and the
integral is well defined for forms supported inside a chart belonging to an orientation atlas.

Thus the issue of integrating a differential n−form on an orientable manifold of dimension n seems
tractable once we fix an orientation atlas on M . However on a connected manifold if A is an orientation
atlas then we can switch the first two coordinates of each chart and recover another orientation atlas
and so we see that certain apriori choice has to be made before defining the integral.

Exercise: Prove that fixing an orientation atlas on an orientable manifoldM is equivalent to choosing
a nowhere vanishing n form θ on M . Hint: Take a connected chart U and look at the sign of

θ(
∂

∂x1

, . . . ,
∂

∂xn
) (10.18)

If this sign is positive retain U as it is. Else switch the first two coordinates of U and take the collection
of all corrected charts.

Definition 10.7 (Integral of an n form on an n-dim manifold): Let M be an orientable
manifold with a given orientation atlas A and ω be an n form with compact support. Choose a
partition of unity {ρα} subordinate to the atlas A. Define∫

M

ω =
∑
α

∫
M

ραω. (10.19)

Note that each ραω has support inside some chart in A and for these the integral has been defined.

Theorem 10.5: The value of the integral (10.19) does not depend on the choice of the partition of
unity.

Proof: Suppose {σβ} is another partition of unity subordinate to the atlas A. Then so is the
collection of products{σβρα}.

For each ρα, ∫
M

ραω =
∑
β

∫
M

ρασβω
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and so summing over α we get ∑
α

∫
M

ραω =
∑
α

∑
β

∫
M

ρασβω

Similarly we get reversing the roles of the two partitions of identity,∑
β

∫
M

σβω =
∑
β

∑
α

∫
M

ρασβω

from which the result follows.

Remark: The same arguments go through for manifolds with boundary.

Induced orientation on the boundary: Let us consider a simple example. Look at the differential
(n− 1)−form

ω = yndy1 ∧ · · · ∧ dyn−1

in H and we see that
dω = (−1)n−1dy1 ∧ · · · ∧ dyn.

Writing this in terms of the coordinates that we have meticulously set up in (10.7),

dω = (−1)n−1dx1 ∧ dx2 ∧ · · · ∧ dxn−1 ∧ d((1− xn)
√

1− x2
1 − · · · − x2

n−1)

= (−1)n
√

1− x2
1 − · · · − x2

n−1dx1 ∧ dx2 ∧ · · · ∧ dxn

Integrate this over the domain D over which (x1, x2, . . . , xn) vary, we get∫
B+

0

dω = (−1)n
∫
D

√
1− x2

1 − · · · − x2
n−1dx1dx2 . . . dxn−1dxn

Using Fubini theorem we get finally∫
B+

0

dω = (−1)n
∫
U

√
1− x2

1 − · · · − x2
n−1dx1dx2 . . . dxn−1, (10.19)

Where U is the open unit ball in Rn. On the other hand let us integrate ω over the boundary of this
half ball. That is to say, we compute ∫

∂B+
0

i∗(ω)

where i : ∂B+
0 −→ B+

0 is the inclusion map. Since we need to understand the relation between the
form on B+

0 in relation to its boundary explicitly, we shall have to write this also in terms of the
coordinates (10.7). Along the base ω = 0 and so we need to worry only about the part of the sphere
Sn−1. Along the curved part we use the chart map (10.7) and write the differential form in this chart
and integrate leading to:∫

∂B+
0

i∗(ω) =

∫
U

√
1− x2

1 − · · · − x2
n−1dx1dx2 . . . dxn−1. (10.20)

where U is the open unit disc in Rn−1. We have simply used the form dx1 ∧ · · · ∧ dxn−1 to prescribe
an orientation on U .
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Exercise: Compute the integral on the right hand side of (10.20) and check that it equals Vol(B+
0 ).

Thus we see that the basic equation (Stokes’ theorem)∫
M

dω =

∫
∂M

i∗(ω) (10.21)

holds only up to sign if we arbitrarily choose the orientations on M and ∂M . We need to set down
certain conventions in order that (10.21) holds.

Definition 10.8 (Induced Orientation on ∂M): Suppose M is an orientable manifold of di-
mension n with boundary and assume that an orientation on M has already been chosen either by
specifying an orientation atlas or equivalently by prescribing a nowhere vanishing n-form. We have
two choices for the orientation of ∂M and this can be done locally say at any chosen point2 of ∂M .

We pick a point p ∈ ∂M and a chart (U, φ) mapping into a half ball contained in H. Suppose that
the orientation on M is given by the form

λdx1 ∧ dx2 ∧ · · · ∧ dxn,

on U then on the boundary ∂U the orientation is given by the form

(−1)nλdx1 ∧ dx2 ∧ · · · ∧ dxn−1.

The sign (−1)n is chosen to free the statement of Stokes’ theorem of a sign depending on the dimension
of the manifold. In terms of orientation atlas A if U ∈ A and the local frame[ ∂

∂x1

∣∣∣
p
,
∂

∂x2

∣∣∣
p
, . . . ,

∂

∂xn

∣∣∣
p

]
decides the orientation on M , the induced orientation on ∂M is given by the local frame[ ∂

∂x1

∣∣∣
p
,
∂

∂x2

∣∣∣
p
, . . . ,

∂

∂xn−1

∣∣∣
p

]
, if n is even. (10.22)

and [ ∂

∂x2

∣∣∣
p
,
∂

∂x1

∣∣∣
p
, . . . ,

∂

∂xn−1

∣∣∣
p

]
, if n is odd. (10.23)

Definition (The inward and outward pointing transversals/normals at a boundary point):
Let M be a manifold with boundary. We have seen that if p ∈ ∂M , we have the inclusion of vector
spaces

Tp(∂M) ⊂ TpM.

Since the dimension of Tp(∂M) is one less than the dimension of TpM the complement

TpM − Tp(∂M)

2It may happen that M is connected but ∂M has many connected components in which case each component of ∂M
has to be consistently oriented and so we select a representative point on each component of ∂M .
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breaks off into two pieces. Let v ∈ TpM − Tp(∂M) and use the physicist’s convention to write (with
respect to a chart (U, φ))

v =


a1

a2

. . .
an−1

c


and call v an inward pointing transversal if c > 0 and outward pointing if c < 0. Equations (10.12)
and (10.13) confirm that these are independent of the choice of the coordinate charts.

Exercises:

1. Check that c = 0 if and only if v ∈ Tp(∂M).

2. Show that the set of inward/outward pointing transversals are closed under addition and multi-
plication by positive scalars.

3. Show that v is inward pointing if and only if there exists a curve γ : [0, ε) −→ M such that
γ(0) = p and (φ ◦ γ).(0) = c > 0.

4. Show that the induced orientation on Tp∂M is characterized by the property. An ordered basis
[v1,v2, . . . ,vn−1] of Tp(∂M) is in agreement with the induced orientation of ∂M if and only if
for every outward pointing transversal v at p, the orientation on TpM is given by

[v,v1, . . . ,vn−1] (10.24)

Hint: Write (10.22) and (10.23) in physicist’s convention.

Theorem 10.6 (Stokes’s theorem): Let M be an orientable manifold of dimension n with bound-
ary, ω be a n− 1 form with compact support. Assume that an orientation on M is prescribed and ∂M
is assigned the induced orientation. then ∫

M

dω =

∫
∂M

i∗(ω) (10.25)

Note that since the pull back i∗(ω) is the restriction of ω to ∂M , we often see Stokes’s theorem being
stated as ∫

M

dω =

∫
∂M

ω (10.26)

Proof: Case (i): M = Rn. By linearity we may assume that

ω = fdx1 ∧ dx2 ∧ · · · ∧ dxn−1

Then

dω = (−1)n−1 ∂f

∂xn
dx1 ∧ dx2 ∧ · · · ∧ dxn−1 ∧ dxn
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Now it is a matter of appealing to the Fubini theorem and the fundamental theorem of calculus:∫
M

dω = (−1)n−1

∫
Rn

∂f

∂xn
dx1dx2 . . . dxn−1dxn

= (−1)n−1

∫
Rn−1

dx1dx2 . . . dxn−1

∫
R

∂f

∂xn
dxn = 0

since f has compact support. On the other hand since for this case ∂M = ∅, the right hand side of
(10.25) is also zero and the theorem is verified in this case.

Case (ii) M = H. Let

ω = a1dx2 ∧ · · · ∧ dxn − a2dx1 ∧ dx3 ∧ · · · ∧ dxn + · · ·+ (−1)n−1andx1 ∧ dx2 ∧ · · · ∧ dxn−1.

Then

dω =
(∂a1

∂x1

+
∂a2

∂x2

+ · · ·+ ∂an
∂xn

)
dx1 ∧ dx2 ∧ · · · ∧ dxn (10.27)

Let us compute the left hand side of (10.25). If 1 ≤ j ≤ n− 1∫
H

∂aj
∂xj

dx1dx2 . . . dxn = 0

using Fubini theorem and the fundamental theorem of calculus. The only surviving term is∫
H

∂an
∂xn

dx1dx2 . . . dxn =

∫
Rn−1

dx1dx2 . . . dxn−1

∫ ∞
0

∂an
∂xn

dxn

=

∫
Rn−1

(an(x1, . . . , xn−1,∞)− an(x1, . . . , xn−1, 0))dx1 . . . dxn−1

= −
∫
Rn−1

an(x1, . . . , xn−1, 0)dx1 . . . dxn−1

Let us now compute the right hand side of (10.25) and verify the theorem. Since xn = 0 along ∂H we
see that the terms involving dxn are all zero and so the only surviving term is (−1)n−1andx1∧· · ·∧dxn−1

and recalling that the orientation convention,∫
∂H

ω = (−1)n−1

∫
∂H

an(x1, . . . , xn−1, 0)dx1 ∧ · · · ∧ dxn−1

= (−1)n−1(−1)n
∫
Rn−1

an(x1, . . . , xn−1, 0)dx1dx2 . . . dxn−1

and the proof of this case is complete.
Case (iii): The general case. Take an orientation atlas {Uα} on M and a partition of unity {ρα}

subordinate to this cover. Thus
ω =

∑
α

ραω

We have to prove ∫
M

d(ραω) =

∫
∂M

ραω (10.28)

Since support of ραω is contained in Uα, the chart Uα is diffeomorphic to a full open ball in Rn or a
half-ball and ραω assumes one of the forms in case (i) or (ii) the result holds for each α. the proof is
complete.
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The classical version of Stokes’ theorem - Gauss’s Divergence Theorem: We now show
how the general Stokes’ theorem proved above reduces to the classical version of the Stokes’s theorem
namely the Gauss divergence theorem. The student may have guessed this by looking at equation
(10.27). A smooth bounded domain in Rn is by definition a bounded open set such that its topological
closure in the ambient space has smooth boundary (forming a smooth manifold of dimension n − 1
without boundary). Let us consider a smooth map

F : Ω −→ Rn

defined on a smooth bounded domain Ω. We create the n− 1 form

ω = F1dx2 ∧ dx3 ∧ · · · ∧ dxn − F2dx1 ∧ dx3 ∧ · · · ∧ dxn + · · ·+ (−1)n−1Fndx1 ∧ dx2 ∧ · · · ∧ dxn−1.

Let Ω be assigned the natural orientation namely dx1 ∧ . . . dxn and we see that the left hand side of
(10.23) reads ∫

Ω

(Div F )dx1dx2 . . . dxn. (10.29)

To compute the right hand side, let us consider a parametrization of the manifold ∂Ω:

G : R −→ ∂M, G(t1, t2, . . . , tn−1) = (x1, x2, . . . , xn).

where R is an open set in Rn−1 and DG has rank n− 1 throughout R. This G is the inverse of a chart
map where the chart comes from an atlas compatible with the induced orientation on ∂Ω (that is a
chart which is corrected according to (10.22)-(10.23)).

Note that the partial derivatives of G form a basis for the tangent space Tp(∂Ω) and we shall
assume that the induced orientation on ∂M is in agreement with the (n− 1)−tuple(∂G

∂t1
, . . . ,

∂G

∂tk−1

)
.

Exercise (4) shows that for an outward pointing normal v, the ordered basis(
v,
∂G

∂t1
, . . . ,

∂G

∂tk−1

)
(10.30)

agrees with the natural orientation on Ω.

Lemma: The (n−1)× (n−1) signed-minors of DG form a vector v = (ν1, ν2, . . . , νn) that is normal
to ∂Ω and the determinant (10.30) is positive which means that the (n − 1) × (n − 1) signed-minors
of DG form the components of the outward pointing normal (need not be a unit vector).

Proof: Exercise in linear algebra. Suppose A is an n× (n− 1) matrix of rank n− 1. Write down a
system of equations for a vector (y1, y2, . . . , yn) to be orthogonal to each column of A and argue that
the signed (n− 1)× (n− 1) minors must be a basis of the solution space.

Now we are ready to compute the right hand side of (10.25)

i∗(dxk) = dGk =
n−1∑
l=1

∂Gk

∂tl
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so that

i∗(F1dx2 ∧ dx3 ∧ · · · ∧ dxn) = (F1 ◦G)
∂(G2, G3, . . . , Gn−1)

∂(t1, t2, . . . , tn−1)
dt1 ∧ · · · ∧ dtn−1

= (F1 ◦G)ν1dt1 ∧ · · · ∧ dtn−1, etc.,

whereby ∫
∂Ω

i∗(ω) =

∫
R

(F ◦G) · vdt1dt2 . . . dtn−1

But if we recall the formula for surface element on ∂Ω,

dS = ‖v‖dt1dt2 . . . dtn−1

we get finally denoting v/‖v‖ = n,∫
Ω

(Div F )dx1dx2 . . . dxn =

∫
∂Ω

F · ndS (10.31)

Remark: Note that we are only addressing the issue of how the classical theorem of Gauss follows
from the Stokes’ theorem. How does one ensure that the (n− 1)−tuple of partial derivatives of G are
in agreement with the induced orientation? This is a matter that cannot be resolved universally via
formulas but rather needs to be addressed at a notional or conceptual level. One chooses a convenient
point p on each connected component of the boundary ∂M and selects3 an outward pointing normal
v at p. One must check the sign of the determinant (10.30) and if found negative switch two the
coordinates t1 and t2.

Corollary (Rule for integration by parts): Let Ω be the closed of a bounded domain with
smooth boundary in Rn and u, v be smooth real valued functions defined on the closure of Ω then∫

Ω

u
∂v

∂xj
dx1dx2 . . . dxn = −

∫
Ω

v
∂u

∂xj
dx1dx2 . . . dxn +

∫
∂Ω

uvνjdS (10.32)

where (ν1, ν2, . . . , νn) is the unit outer normal to Ω and dS is the area element on the boundary of Ω.

1. Prove the rule for integration by parts

2. Show that the Gauss’s theorem in the plane is equivalent to Green’s theorem. Hint. Let us
denote by t the unit tangent vector in the direction of bounding curve traced counter clockwise
and n the outward unit normal. Then t× k = n.

3. Suppose that ∆u = 0 in Ω. Show that ∫
∂Ω

∂u

∂ν
dS = 0.

3Theoretically this means we choose an appropriate curve γ : [0ε) −→M going into M , compute its derivative at 0
and then attach a negative sign. However in practice this would be done by inspection.
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4. Apply the previous to a ball and prove the mean value property for harmonic functions on spheres
and balls.

5. Show that if ∆u = 0 in Ω and u = 0 on ∂Ω then∫
Ω

|∇u|2dx1dx2 . . . dxn = 0

Brouwer’s Fixed Point Theorem As an application of Stokes’ theorem, we prove the Brouwer’s
fixed point theorem first for smooth maps of the closed unit ball and later extend it to continuous
maps. D denotes the closed unit ball in Rn and Sn−1 denotes its boundary.

Definition: A map r : D −→ Sn−1 is said to be a retraction if r(x) = x when |x| = 1. More generally
if A is a closed subspace of X a map r : X −→ A is said to be a retraction of X onto A if r(a) = a for
all a ∈ A.

No Retraction Theorem: There is no smooth retraction of D onto its boundary Sn−1.

Proof: Suppose F : D −→ Sn−1 is a smooth retraction ofD onto its boundary, let F = (f1, f2, . . . , fn).
Now ∇f1, . . . ,∇fn are everywhere linearly dependent for if at some point p in the interior of D they
are linearly independent, by inverse function theorem F is a local diffeomorphism of a neighborhood N
of p and so its image would contain a full open ball which is not the case since the image is contained
in Sn−1. Thus,

df1 ∧ df2 ∧ · · · ∧ dfn = 0, in D.

Consider now the n− 1 form ω on D given by

ω =
n∑
j=1

(−1)jfjdf1 ∧ dfj−1 ∧ dfj+1 · · · ∧ dfn

A simple calculation gives dω = 0. Applying Stokes’ theorem we get∫
Sn−1

i∗(ω) = 0. (10.33)

Since F (x) = x along Sn−1, we see that i∗(ω) is given by

i∗(ω) =
n∑
j=1

(−1)jxjdx1 ∧ dxj−1 ∧ dxj+1 · · · ∧ dxn, (10.34)

Exercise: Compute this integral and show that∫
Sn−1

n∑
j=1

(−1)jxjdx1 ∧ dxj−1 ∧ dxj+1 · · · ∧ dxn = n

∫
D

dx1 ∧ dx2 ∧ · · · ∧ dxn = nvol(D)

which is a contradiction.
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Theorem: The following are equivalent:

(i) There is no smooth retraction of D onto its boundary

(ii) Every smooth map f : D −→ D has a fixed point.

Proof: Assume (i). Suppose f : D −→ D has no fixed point. Then f(x) 6= x for any x ∈ D. Let the
line segment joining x and f(x) meet the boundary at the point y(x). We show that y(x) is a smooth
retraction of D onto its boundary. First note that

y = tf(x) + (1− t)x.

The condition |y| = 1 gives

t2|f(x)|2 + (1− t)2|x|2 + 2t(1− t)x · f(x) = 1,

which can be recast as
t2|x− f(x)|2 − 2tx · (x− f(x)) + |x|2 − 1 = 0.

Consider the negative root of this quadratic (this means of the two points of intersection of the line
segment with the boundary we are taking the point y for which x lies between f(x) and y):

t =
x · (x− f(x))−

√
(x · (x− f(x))2 + |x− f(x)|2(1− |x|2)

|x− f(x)|2

With this choice of t we see that y(x) is a smooth map of D to Sn−1. We now show that it is a
retraction. Let |x| = 1 so that t = 0 and hence that y(x) = x. Note that this would not be so if we
take the root with positive sign in front of the radical!

Assume (ii) and that (i) is false. Then there is a smooth retraction f of D onto the boundary. The
map −f(x) is a smooth map of D to D without fixed points.

Corollary (Brouwer’s fixed point theorem): Every smooth map of D to itself has a fixed point.

Proof: We have proved that there is no smooth retraction of D onto its boundary. The result follows
from the previous theorem.

Exercises:

1. Show that if B is the unit ball in Rn and ω is any differential n−form, show that ω is exact.
Deduce that Hn(B) = 0.

2. Prove that if ω is a closed two-form on the closed unit ball B in R3 then ω is exact. See Rudin’s
principles. Deduce that H2(B) = {0}.

3. Suppose M is a compact orientable manifold of dimension n without boundary, show that
Dim(Hn(M)) 6= 0. Use Stokes’ theorem. In fact the dimension equals one whereas if M is
a compact non-orientable manifold of dimension n without boundary, the dimension of Hn(M)
is zero. This is related to the so called Poincaré Duality.

4. Use the last two exercises to provide another proof of the no retraction theorem. Hint: Suppose
r is a retraction and i : S2 −→ B is the inclusion map then r ◦ i is the identity map on S2. Now
look at the maps induced on cohomology. The proof generalizes easily to any dimension.
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