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Newton, Euler and Cauchy

Equipped with his calculus, Issac Newton,

with his laws of dynamics was
able to explain:

1 The motion of planets.

2 The precession of equinoxes.

3 The formation of tides.

Astronomy hitherto an empirical science transformed into a dynamical
science.
While this was certainly a monumental achievement, calculus remained a
tool in the service of the physical sciences. We now leave this phase
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Metamorphosis from Calculus to Analysis

and turn to the epoch when out of calculus crystalized a distinguished
branch of mathematics whose founder was L. Euler.

Euler’s mathematical
prowess is attested by his works ”Opera Omni” spanning 88 massive
volumes.
Euler’s understanding of infinite processes (theory of convergence) was
deep, his reasoning incisive and often daring and even audacious (for
instance his derivation of the infinite product factorization of the sine
function). His Introductio in Analysin Infinitorum paved way for a
systematic doctorine of limits to be established 75 years later by A. L.
Cauchy.
Let us begin with Euler’s exponential function as set out in chapter 7 of
his book...
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Compound interest formula and the exponential function

Recall the formula for compound interest. Assume that the rate of interest
per annum is r and the principal amount is one unit (say one rupee or one
dollar). We assume that the one year period is divided into n sub-periods
and the interest is compounded over each period. The amount at the end
of a year is then (

1 +
r

n

)n
(1)

So if the interest is compounded monthly n = 12,

if compounded daily n = 365 and
n = 365× 86400 corresponds to interest being compounded every second !
Question: What happens as n increases and goes to infinity?
Exercise: Prove using the Binomial Theorem that if m < n then(

1 +
r

m

)m
<
(

1 +
r

n

)n
(2)
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Monotone increasing sequence bounded above

Next, do the numbers (1) grow unboundedly as n goes to infinity or is
there a finite threshold value that serves as an upper bound?

Exercise: Prove using the Binomial Theorem that(
1 +

r

n

)n
< 1 + r +

r2

2!
+

r3

3!
+

r4

4!
+ . . .

For example if r = 1 then the factorials in the denominators may be
replaced by 2, 22, 23, . . . and we get a geometric series with common
ration 1/2 dominating left hand side for any n however large.
Exercise: How about a general r? For instance if r = 10, then look at
what happens from the 12th term onwards. Replace the factorials in the
denominators by successive powers of 11. Generalize this idea and show
that for any fixed r , the sequence(

1 +
r

n

)n
, n = 1, 2, 3, . . .

steadily increases but does not grow unboundedly but remains always less
that a certain threshold value.
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The exponential function is born !

The sequence converges as n tends to infinity and the limit which would
obviously depend on r is denoted by exp r :

exp r = lim
n→∞

(
1 +

r

n

)n
(3)

Thus we have at our disposal a new function exp r at least defined for all
positive real values of r - though in fact it makes sense for all values of r .

Remark:The exponential function is one of the most important functions
in Mathematics.
Clearly,

exp r < exp s, if r < s (4)

In other words, the exponential function is a strictly increasing function.
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Four Easy Exercises:

Use the idea of monotone increasing/decreasing sequences bounded
above/below and establish

9 If 0 < c < 1 then the sequence of powers 1, c , c2, c3, . . . converges to
zero.

10 Prove that if c > 1 then the sequence of powers increases. Use the
method of contradiction to show that the sequence cannot be
bounded above and so grows unboundedly as n goes to infinity.

11 Use the previous result to prove that if c > 1 then the sequnce of
c1/n, n = 1, 2, 3, . . . decreases and is bounded below. Show that the
sequence must converge to one. Hint: Suppose it converges to a
number l greater than one, then select m such that 1 < m < l and
then argue that all the terms of the sequence must be larger than m
and then appeal to the last exercise.

12 Show that if 0 < c < 1 then the sequence c1/n, n = 1, 2, 3, . . . again
converges to one.
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The exponential addition theorem

Theorem 1

For any two real numbers r and s

exp(r + s) = exp r exp s

(
1 +

r

n

)n (
1 +

s

n

)n
=
(

1 +
r + s

n

)n
(1 + A)n (5)

where A is given by

A =
rs

n2

(
1 +

r + s

n

)−1
∼ rs

n2
, for large n

so that

(1 + A)n ∼
((

1 +
rs

n2

)n2)1/n
, which converges to one

by virtue of the third exercise in the previous slide and the fact that the
inner parenthesis tends to exp(rs). Now the result follows from (5).
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The number e

By induction one deduces,

exp(r1 + r2 + · · ·+ rn) = exp r1 exp r2 . . . exp rn. (6)

and taking r1 = r2 = · · · = rn = 1 we see that

exp n = en (7)

where we have denoted exp 1 by e. Now if p and q are natural numbers,
we deduce

(exp(p/q))q = exp p = ep

so that
exp x = ex , for all rational values x .

Remark: It is not difficult to show that e is irrational.
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Graph of the exponential function

We know that the exponential function is monotone increasing namely
exp r < exp s if r < s for real values of r and s.
Question: How does the graph of the function exp x look?

Imagine the graphs of the functions

f (x) = x2, g(x) =
√

x

The graph of f is convex (when viewed from below the x-axis and this is
the standard convention) whereas the graph of g(x) appears concave.
Definition: A function f (x) defined on an open interval is convex if the
chord joining two points always lies above the graph. For example in the
case of a parabola y = x2 this is so.
However this is not so in case of the inverted parabola - the graph of the
function x(1− x).
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The derivative of a function

Recall that the slope of the tangent to a graph y = f (x) at a point
P = (p, f (p)) on it is the limit (if it exists) of the slopes of chords joining
P and a neighboring point Q taken as Q tends to P. Draw pictures and
convince yourselves that this is a reasonable approach and indeed an
ancient idea !
The limit (if it exists) is called the derivative of the function at p.
Exercise: Compute the derivatives of the functions f (x) = x2 and
g(x) =

√
x . Show further that for the function f (x) = x2 the derivative

increases with x whereas for the function g(x) =
√

x the derivative
decreases as x increases. This suggests the following:
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Convexity and Derivatives

Theorem 2

Suppose f (x) is a function defined on the positive real line (or any open
interval for that matter) then f (x) is convex if its derviative is an
increasing function.

It is not difficult to prove this theorem and in fact it is a simple
consequence of the Lagrange’s Mean Value Theorem. However it is more
important and educative for the student to convince himself/herself of the
plausibilty of this assertion by studying the graphs of the MODEL cases

f (x) = x2, g(x) =
√

x .

Convexity is one of the most important ideas in Mathematics

and the
exponential function is one of the most important functions in
Mathematics and so it is natural to ask:
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What about the Convexity of the exponential function?

Let us try and calculate the derivative of the exponential function as a
limit of the slope of the chords:

exp(x + h)− exp x

h
, as h→ 0.

By the exponential addition theorem this is the same as

(exp x) lim
h→0

(exp h − 1)/h = exp x

if we can convince ourselves that

lim
h→0

(exp h − 1)/h = 1
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A heuristic argument to demonstrate that the limit is one

Well, let us approximate exp h using the definition and look at

1

h

((
1 +

h

n

)n
− 1
)

Factorizing we see the appearence of an arithmetic mean

1

n

((
1 +

h

n

)n−1
+
(

1 +
h

n

)n−2
+ · · ·+ 1

)
which lies between the least 1 and the gretest

(
1 + h

n

)n−1
and the latter is

approximately exp h which in turn approaches 1 as h→ 0.
Remark: The argument is decidedly heuristic but it is not difficult to
tighten it to make it rigorous.
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Convexity of the exponential function

Theorem 3

The derivative of the exponential function at x is again exp x. The
exponential function is convex.

Let us reformulate the notion of convexity in analytic terms. Let us take
two points (x , f (x)) and (y , f (y)) on the graph of a function f (x). The
section formula now says that a point on the chord is given by

(tx + (1− t)y , tf (x) + (1− t)f (y)), 0 ≤ t ≤ 1

whereas the corresponding point in the graph is

(tx + (1− t)y , f (tx + (1− t)y)), 0 ≤ t ≤ 1.

So convexity would require that

f (tx + (1− t)y) ≤ tf (x) + (1− t)f (y), 0 ≤ t ≤ 1. (8)
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Consequence of the convexity of the exponential function:

Take t = 1/2 in (8) and we get

exp
(x + y

2

)
≤ exp x + exp y

2

Take t = 1/3 in (8) and we get

exp
(x + 2y

3

)
≤ exp x + 2 exp y

3

Now replace y by (y + z)/2 and we get

exp
(x + y + z

3

)
≤ exp x + exp y + exp z

3

Exercise: Prove that

exp
(1

n
(x1 + x2 + · · ·+ xn)

)
≤ 1

n

(
exp x1 + exp x2 + · · ·+ exp xn

)
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Cauchy’s theorem on means:

Theorem 4

The Geometric mean of n positive real numbers does not exceed their
Arithmetic mean.

To see this use the last displayed formula and set
a1 = exp x1, a2 = exp x2, . . . , an = exp xn. The exponential function is
continuous and so assumes all positive real values.
Exercise: We have already indicated that exp x is differentiable and hence
continuous. Now use the definition to show that exp x > 1 + x and so
exp x assumes arbitrarily large positive values. Expontial addition theorem
gives (exp x)(exp(−x)) = exp 0 = 1 and so exp x assumes arbitrarily small
positive real values as well. Invoke the intermediate value theorem.
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Cauchy’s theorem on means continued

The harmonic mean of a1, a2, . . . , an is by definition

n
1
a1

+ 1
a2

+ · · ·+ 1
an

That is, the harmonic mean is the reciprocal of the arithmetic mean of the
reciprocals.
Exercise: Prove that the Harmonic Mean is less than or equal to the
Geometric mean (the numbers are all assumed to be positive).
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Cauchy’s first limit theorem:

Theorem 5

Suppose a1, a2, a3, . . . is a sequence of real numbers such that

lim
n→∞

an = l

Then, the sequence of arithemtic means also converges to l namely,

lim
n→∞

1

n

(
a1 + a2 + · · ·+ an

)
= l

Remark: A little contemplation on this would make the result look
plausible - after all, averaging makes the distribution of data smoother and
if the data hasa long tail close to a constant then the mean would be close
to the same constant !
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Let us continue with some ramifications of Cauchy’s first limit theorem for
a sequence of positive reals. Assume that l = 0. Then

0 <
(

a1a2 . . . an
)1/n

≤ 1

n

(
a1 + a2 + · · ·+ an

)
The term on the extreme right tends to l by Cauchy’s first limit theorem
and l = 0 as we have assumed. Hence we conclude that the sequence of
geometric means also converges to l .

Exercise: What about the case l 6= 0? The sequence 1/an converges to 1/l
and so applying Cauchy’s first limit theorem to the sequence of reciprocals,
we deduce that the sequence of harmonic means converges to l .
With the Arithmetic mean and Harmonic means both converging to l the
Geometric mean, which is sandwiched between these two, must also
converge to l . Let us give this the status of a theorem:
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Theorem 6

If a1, a2, a3, . . . is a sequence of positive real numbers converging to l , then

lim
n→∞

(
a1a2 . . . an

)1/n
= l

All this may sound like un-interesting technicality but we shall presently
see that this is not so. We first deduce a useful consequence of this result.
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Cauchy’s Second Limit Theorem:

Suppose b1, b2, b3, . . . is a sequence of positive real numbers such that

lim
n→∞

(bn+1

bn

)
= l

Then,

lim
n→∞

(
bn

)1/n
= l

Exercise: (i) Show that n1/n converges to 1 as n tends to infinity.
(ii) More generally show that if P(n) is a polynomial with leading
coefficient positve then (P(n))1/n converges to 1 as n tends to infinity.
(iii) Show that if A(n) =

√
2πn then A1/n tends to one as n tends to

infinity.

Hint: For (i) take bn = n and apply Cauchy’s second limit theorem. The
other two are similar.
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Theorem 7

lim
n→∞

(n!)1/n

n
=

1

e
(9)

The result for sure can be stated in the more informal style

(n!)1/n ∼ ne−1, as n→∞ (10)

Question: Is it correct to reformulate (10) by raising both sides to the nth
power and state

n! ∼ nne−n, as n→∞ (11)

Equation (11) is WRONG. Recall that if Q(n) is one of n, P(n) (a
polynomial with positive leading coefficient) or

√
2πn then we have three

more valid results:

(n!/Q(n))1/n ∼ ne−1, , as n→∞ (12)

And now raising (12) or (10) to the nth power results in several distinct
possibilities. What then is the correct scenario?
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The Stirling’s Approximation Formula:

This is one of the most remarkable results in classical analysis predating by
two decades Euler’s Introductio in Analysin Infintorum (1748).

Theorem 8

n! ∼ nne−n
√

2πn, as n→∞.

This appeared in James Stirling’s Methodus Differentialis (1730).

The proof may be found for instance in the appendix to the first chapter
of W. Feller: Introduction to the theory of probability, Volume - I, Wiley.
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1 The immense potential of Stirling’s formula was quickly recongized by
the mathematical communituy. For instance, Laplace in his
monumental treatise on Analytic Theory of Probability made essential
use of it to establish what is today known as the De Moirve - Laplace
theorem which is the precursor to the famous central limit theorem.

2 The early twentieth centure witnessed the birth of modern physics,
statistical and quantum mechanics. Here ratios of factorials of large
numbers appear (Order of Avagadros number) and it is of vital
importance to understand the precise order of magnitude of such
ratios. See for instance the book of Arthur Beiser, Perspectives of
Modern Physics, McGraw Hill, 1969.

Exercise: The binomial coefficient

(2n)!

n! n!
∼ cnban; as n→∞.

Find the constants a, b and c.
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The Ubiquitous Euler’s Constant

Let us consider the sequence whose nth term is given by

an = 1 +
1

2
+

1

3
+ · · ·+ 1

n
− log(n + 1) (13)

where the logarithm is to the base e. Often one sees log n insted of
log(n + 1) but this will have no effect on the limit of (13) as n tends to
infinity.
Note that since

ex > 1 + x , for x > 0.

we have
log(1 + x) < x , for x > 0.

Then,

an+1 − an =
1

n + 1
− log

(
1 +

1

n + 1

)
> 0 (14)

which means that the sequence is monotone increasing. We now show
that the sequence converges to a limit.
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Exercises: Show that the sequence

1

1 · 2
+

1

2 · 3
+

1

3 · 4
+ · · ·+ 1

n · (n + 1)

converges as n tends to infinity. Deduce as a consequence that the sum

1 +
1

22
+

1

32
+ . . . (15)

must be finite.

Remark: The Bernoulli brothers John and Jakob tried in vain to find the
sum of (15). It was found in 1736 by Euler.
Let us however return to (14), set n = 1, 2, 3, . . . and add. If we can show
that the sum obtained on the right hand side converges then it follows
that the telescoping sum

(a2 − a1) + (a3 − a2) + (a4 − a3) + · · ·+ (an+1 − an)

converges which means an must converge as n tends to infinity.
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Exercise: Prove that

0 < x − log(1 + x) < x2, if 0 < x < 1/2. (16)

The result is trivial if x is large and we need it for small positive x namely
when x = 1/(n + 1).

Remark: You can of course use calculus. but if you are not yet familiar
with calculus simply take it on faith. One can look for a somewhat
algebraic proof but it would be somewhat tedious.
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Now we are ready. We know

0 < an+1 − an <
1

n + 1
− log

(
1 +

1

n + 1

)
<

1

(n + 1)2

So if we set n = 1, 2, 3 . . . and sum we would get that

an − a1 < 1 +
1

22
+

1

32
+ . . . , which is finite !

Definition: The limit of the convergent sequence

1 +
1

2
+

1

3
+ · · ·+ 1

n
− log(n + 1)

is called Euler’s Constant and is denoted by γ. It has a tendency to pop
up at unexpected places in many important formulas.
It is not yet known whether γ is rational or irrational. There is an
interesting history to this with the names of Mascheronni and Gauss
attached to it
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Euler and the sequence of prime numbers

The analytic study of the distribution of prime numbers has its roots in the
work of Euler. The proof of the infinitude of primes goes back to Euclid
more than 2000 years and is considered as a paradigm for elegance in
mathematical reasoning.
However, the problem of asymptotic distribution of primes presents
challenges and are quite beyond reach through elementary arguments such
as Euclid’s proof of the infinitude of primes. It was Euler who laid the
foundations of an analytic theory of numbers.
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We begin with a simple observation on the behaviour of the harmonic sums

Hn = 1 +
1

2
+

1

3
+ . . .

We use the method of grouping to show that the sums Hn grow
unboundedly as n goes to infinity. Well,

H4 = 1 +
1

2
+

1

3
+

1

4
> 1 +

1

2
+
(1

4
+

1

4

)
> 1 +

2

2
.

Further,

H8 = H4 +
1

5
+

1

6
+

1

7
+

1

8
> 1 +

2

2
+
(1

8
+

1

8
+

1

8
+

1

8

)
> 1 +

3

2
.

Exercise: Show that

H2n > 1 +
n

2
, H2n−1 < n

Estimate how many terms must be added to obtain a sum exceeding 11.
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Infinitude of Primes

Let us begin with a simple observation:

exp x > 1 + x > 1/(1− x

2
), 0 < x < 1.

and hence

exp(2x) > (1− x)−1 = 1 + x + x2 + . . . , 0 < x < 1/2.

The inequality also hold for x = 1/2 as is readily verified. Let us now put
x = 1/pk and

exp(2/pk) >
(

1 +
1

pk
+

1

p2
k

+
1

p3
k

+ . . .
)

Now set k = 1, 2, 3, . . .N and multiply out:
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exp
( 2

p1
+

2

p2
+ · · ·+ 2

pN

)
>

N∏
k=1

(
1 +

1

pk
+

1

p2
k

+
1

p3
k

+ . . .
)

(17)

If we expand the product on the right hand side we get the sum of those
reciprocals of natural numbers j with the property that j is the product of
primes from the list p1, p2, . . . , pN .
Now if there are only finitely many primes take N to be the number of
primes. The right hand side of the last displayed formula must contain
reciprocals of all the numbers of the form

p1
j1p2

j2 . . . pjN
N

and by the unique factorization theorem (fundamental theorem of
arithmetic) these are ALL the natural numbers whereby

exp
( 1

p1
+

1

p2
+ · · ·+ 1

pN

)
> 1 +

1

2
+

1

3
+ . . .

which is false since the left hand side is finite.
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Euler’s argument actually proves more namely

Theorem 9

1

p1
+

1

p2
+

1

p3
+ · · ·+

diverges.

Since the Nth prime is larger than N and any natural number between 2
and N must have prime factors only among the list p1, p2, . . . , pN . So the
sum on the right hand side of (17) is larger than

1 +
1

2
+

1

3
+ · · ·+ 1

N
Hence

exp
( 1

p1
+

1

p2
+ · · ·+ 1

pN

)
cannot remain bounded which in turn implies

1

p1
+

1

p2
+ · · ·+ 1

pN

cannot remain bounded when N tends to infinity.
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The Riemann Zeta function

The method of grouping that was discussed earlier can be used to
establish the fact that

1 +
1

2s
+

1

3s
+ . . .

converges if s > 1 and diverges if s ≤ 1.

Exercise: Prove this. First go
back and take a look at the proof of the unboundedness of the Harmonic
sequence Hn.
The sum of the series is denoted by ζ(s) and is called the Riemann Zeta
function. This function appears in the works of Euler many decades prior
to Riemann. Euler established the factorization

ζ(s) =
(

1− 1

2s

)−1(
1− 1

3s

)−1(
1− 1

5s

)−1
. . . (18)

Exercise: Prove this by first expanding each factor on the right hand side
as a geometric series, multiplying out and using the unique factorization
theorem.
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Birth of Analytic Number Theory

The facotrization (18) is the entry point into the field of Analytic Number
theory. The formula states that the information concerning the primes is in
a sense encoded in the zeta function ζ(s). The study of the distribution of
primes involves a deep study of the zeta function - a study that was
initiated by Euler.

Question: Why then is this function called the Riemann zeta function?
Before answering a few remarks are in order.
Notation: π(x) denotes the number of primes in the interval [1, x ]. The
infinitude of primes is simply the assertion that π(x)→∞ as x →∞. A
close look at Euclid’s argument gives the bound

π(x) ≥ ln(ln x)

but this is ridiculously off the mark. This is one of the principal reason
why Euler’s proof though less elementary is more insightful.
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The Prime Number Theorem

Looking through tables of pimes, Gauss and Legendre observed that the
relative population of primes x/π(x) changed additively by 2.3 when x
changed mulitplicatively by a factor of 10. since 2.3 ∼ ln 10 and ln x
changes by 2.3 when x changes multiplicatively by 10 they made the
daring conjecture in the late 18th century that

x/π(x) ∼ ln x , x →∞

which is more popularly written as

π(x) ∼ x

ln x
, x →∞ (19)

Assertion (19) is called the Prime Number Theorem
The result defied all attempts at proof for more than a century. Ultimately
it was settled independently by J. Hadamard (1896) and De la Valle
Poussin (1898).
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Extending the zeta function à la Euler

Suppose that 0 < s < 1 then the alternating series

h(s) = 1− 1

2s
+

1

33
− 1

4s
+ . . .

converges.
Exercise: First try this out for s = 1/2. by grouping pairs of terms and
rationalizing. The general case can be taken on faith.
Suppose that s > 1 then,

h(s) = ζ(s)− 21−sζ(s)

so that
ζ(s) = h(s)/(1− 21−s)

Since the right hand side makes sense even when 0 < s < 1 it can be
taken as the definition of ζ(s) for these values !

Euler considered only real
values of s and this was insufficient for unveiling the secret of the primes.
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The Riemann Hypothesis

In 1859 there appeared Riemann’s epoch making memoir on the zeta
function where for the first time the zeta function was studied as a
function of the complex variable s. The function makes sense everywhere
except at s = 1 where it has a singularity and

ζ(s) ∼ 1

s − 1
, s → 1.

Euler’s proof of the infinitude of primes essentially is equivalent to the fact
that the zeta function becomes infinite at s = 1.
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Riemann made a careful study of the zeta function proving many
interesting results, sketching some results and a famous unproved
conjecture. Over the next thirty years there was a deafening silence
followed by a flurry of papers by Mertens, Mangoldt and many others. H.
M. Edwards in his famous book on the Riemann’s zeta function remarks
that ”it appears as though it took thirty years for the world to digest
Riemann’s ideas”. Riemann work ulimately made it made it possible to
establish the Prime Number Theorem. In fact the Prime Number Theorem
is completely equivalent to the fact that

ζ(1 + it) 6= 0, t ∈ R.

Riemann conjectured that all the zeros of the zeta function lying in the
right half plane actually lie on the vertical line Res = 1/2, known as the
critical line. The conjecture remains unproved and is one of the most
famous unsolved problems in mathematics.
The speaker wishes good luck to those in audience whose desire happens
to be whetted to solve this problem. Thank You !
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