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Existence of n-th root of a positive real number: This concept is extremely important

for instance in the statement of Cauchy’s theorem on means. It is essential to provide a

treatment of this from scratch and not rely on intermediate value theorem or exponentials and

logarithms.

Theorem: Let k ∈ N be arbitrary. Every positive real number has a unique positive k-th

root.

Proof: Let a > 0. Suppose b and c are both k−th positive roots of a and b < c then bk < ck

(how?). Thus a < a and we get a contradiction. Likewise c < b is not possible and the

uniqueness is established.

Existence Consider the set

S = {x ∈ Q : xk < a}.

Note that we could work with real x. We have chosen this approach in order to exhibit a

Dedekind cut for a1/k. The set S is bounded above. To see this by Archimedean property

select n > a and then nk serves as an upper bound. Let supS = l. We show that lk = a.

Suppose lk < a we shall arrive at a contadiction by showing that for some m ∈ N,(
l +

1

m

)k
< a (1.1)

and then picking a rational number q between l and l + 1
m we get q ∈ S and q > l which is

impossible.

Now we seek a m ∈ N such that (1.1) holds. Instead of (1.1) we shall secure a better

inequality

lk +
c1

m
+
c2

m
+ · · ·+ ck

m
< a,

where c1, c2, . . . , ck are the binomial coefficients that appear when we expand (l + 1/m)k.

Letting C = c1 + c2 + · · ·+ ck we need m such that

C

m
< a− lk

This is evidently possible by virtue of the Archimedean property. The case lk > a is left as an

exercise.

Kronecker’s theorem: If α is irrational then the set of fractional parts

nα− [nα], n = 1, 2, 3, . . .

are dense in [0, 1].
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proof: We construct the set

S = {nα+m : m,n ∈ Z and n > 0}

We show that S is dense in R. Let

ξn = nα− [nα] (1.1)

and observe that since α is irrational the numbers ξn for n = 1, 2, 3, . . . are pairwise distinct.

For any arbitrary N ∈ N one of the intervals

[0,
1

N
], [

1

N
,

2

N
], . . . , [

N − 1

N
, 1]

must contain at least two of the numbers in the list (1.1) say ξn and ξm with m < n. Thus the

difference

ξ = ξn − ξm

belongs to S. We have shown

For each N ∈ N there exists ξ ∈ S such that

0 < |ξ| < 1

N

Let us assume ξ > 0 and complete the proof. Let us consider an interval (t − η, t + η) in R
where η > 0. We have to show that this interval contains a point of S and this is already done

if t = 0. Assume that t > 0 and take an N ∈ N such that 0 < 1/N < η. Then a simple use

of the Archimedean property and well ordering property gives a least natural number k0 such

that

t < k0ξ.

Note that we are assuming that t > 0 here. Obviously then

(k0 − 1)ξ ≤ t

which implies k0ξ ≤ ξ + t < 1/N + t < η + t. The requisite element of S is k0ξ.

Exercises: Discuss the cases ξ < 0 and t < 0. For ξ < 0 let l be the least natural number

such that lξ < −1. Then

−1 ≤ (l − 1)ξ

which means

0 < 1 + (l − 1)ξ <
1

N
(check)

Work with 1 + (l − 1)ξ which is also in S. Discuss the case t < 0.

Now if T is the set of fractional parts nα − [nα] where n = 1, 2, 3, . . . then S ∩ [0, 1] = T

from which follows that T is dense in [0, 1].
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Remarks:

1. There are many refinements and generalizations of this result. The most well known

being Weyl’s equi-distribution theorem:

Theorem (H. Weyl): Suppose α is irrational and J is any subinterval of [0, 1] of

length |J |, and if kn is the number of times

jα− [jα]

lies in interval J when j ranges from 1 to n, then

lim
n→∞

kn
n

= |J |.

Thus the numbers nα− [nα] enter every subinterval J with the same aymptotic relative

frequency namely |J | and is independent of the location of J .

Once the result has been recast in terms of asymptotic frequency of hits in an interval

we see that the result is a part of a large group of theorems of a similar kind. We now

state another result which is also quite classical. Let us consider a real number x ∈ [0, 1]

and look at its decimal expansion:

x = 0.a1a2a3 . . .

and kn be the number of times a specific digit say 7 appears among the first n digits

a1, a2, . . . , an and then

lim
n→∞

kn
n

(1.2)

would be the asymptotic frequency of occurence of 7 in the number x. Likewise one can

ask for the asymptotic relative frequency of occurence of each of the ten digits.

Definitions: (1) A number x ∈ [0, 1] is said to be normal if all digits in the decimal

expansion occur with the same asymptotic relative frequence namely 1/10.

(2) A set of real numbers E has zero measure if for every ε > 0 we can cover E by a

countable collection of open intervals of total length less than ε. We shall see later that

Q has measure zero.

We are now ready to state the famous theorem of E. Borel:

Borel’s theorem on normal numbers: The set of numbers in [0, 1] which are not

normal form a set of measure zero.

Consider the interval J = [7/10, 8/10). The first digit a1 is 7 if and only if x ∈ J . The

second digit a2 is 7 if and only if 10x ∈ J and the third digit is 7 if and only of 102x ∈ J .

Thus kn counts the number of hits in J of the sequence x, 10x, . . . , 10n−1x.
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Exercises: Exhibit a number for which the limit (1.2) does not exist. Explain why 1/3

and 3/4 are not normal. Are there normal rational numbers?

2. A proof of Borel’s theorem along classical lines is available in Hardy and Wright and also

in the first chapter of P. Billingsley, Probability theory. Borel’s theorem is often deduced

as a corollory of the more powerful strong law of large numbers. These are the starting

points of a huge subfield of analysis called Ergodic theory.

3. The fact that α is irrational can be restated as the set {1, α} is linearly independent over

Q. This suggests the following generalization:

Theorem(Multi-dimensional Kronecker’s theorem): Suppose α1, α2, . . . , αm are

linearly independent over Q the the set

S = {(k1α1 − [k1α1], k2α2 − [k2α2], . . . , kmαm − [kmαm])}

as k1, k2, . . . vary over all the natural numbers, is dense in the unit cube [0, 1]×[0, 1]×[0, 1]

in Rm?

This matter is quite non-trivial. A discussion can be found in Hardy and Wright’s famous

book on number theory. The book of Hlawka et al., is highly recommended.

Exercise: Let α be irrational. Is the set

S = {nα+ 2m : n ∈ N, m ∈ Z}

dense in R? What if 2m is replaced by 2m+ 1?

Exercise: What is the supremum of the set

{sin 1, sin 2, . . . , sinn, . . . }?

The number 1 is clearly an upper bound. To see that it is the least upper bound, for each

ε > 0 we need an n such that

1− ε < sinn.

Well, by uniform continuity of sin function there exists a δ > 0 such that∣∣∣π
2
− x
∣∣∣ < δ implies 1− sinx < ε

Note that sinn = sin(2πk + n). Use Kronecker’s theorem.
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Exercise: Show that the image of the curve x = sin t, y = sin
√

2t is dense in [0, 1] × [0, 1].

Hint: For a given point (p, q) in the square pick a x0 such that sinx0 = p and then look at the

sequence of points on the curve corresponding to the following values of t:

x0 + 2πk, k ∈ Z

What can you say about the sequence

sin
√

2(x0 + 2πk)?

First note that
√

2k + s (k ∈ N and s ∈ Z) is dense in R and hence so is

√
2x0 + 2π(

√
2k + s)

Exercise (Lissajous figures): Sketch the curves

1. x = sin t and y = sin 2t.

2. x = sin t and y = cos 3t.

3. x = sin t and y = sin 3t.

Exercise: A function f : R −→ R is said to be periodic if there exists a p > 0 such that

f(t+ p) = f(t), for all t ∈ R.

The number p is called a period. Show that the set of periods together with zero forms a

subgroup of R. Show that if a subgroup of R has zero as a limit point then the subgroup must

be dense in R. Deduce that a continuous function with arbitrarily small positive periods must

be constant.

Exercise: Discuss whether the following functions are periodic. If so what are the periods?

1. f(t) = sin t+ cos 3t

2. f(t) = sin t+ sin
√

2t
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Cauchy’s theorem on means: Given a set of n positive real numbers a1, a2, . . . an their

arithmetic mean An is defined as

An =
1

n
(a1 + a2 + · · ·+ an)

Their geometric mean Gn is defined as

Gn =
(
a1a2 . . . an

)1/n

Their harmonic mean Hn is the reciprocal of the arithmetic mean of the reciprocals. That is,

Hn =
n

1
a1

+ 1
a2

+ · · ·+ 1
an

Theorem (Cauchy): Hn ≤ Gn ≤ An

Proof: The first inequality follows from the second (check). We now prove the first inequality

using backwards induction. Check the result for n = 2 (exercise). Thus√
b1b2 ≤

b1 + b2
2

Replace b1 and b2 by (a1 + a2)/2 and (a3 + a4)/2 respectively and we get√
(a1 + a2)

2

(a3 + a4)

2
≤ 1

4
(a1 + a2 + a3 + a4)

Using the result proved for n = 2 we get√√
a1a2
√
a3a4 ≤ A4

or G4 ≤ A4. Now show that the result holds for n = 8 and generally when n is a power of two.

Thus the result is true for a sequence of values of n increasing to infinity. We now show

that if the result holds for n ≥ 2 then it holds for n− 1 numbers as well. Assume for any set

of n numbers and Gn ≤ An and let a1, a2, . . . an−1 be a given set of n− 1 positive reals.

We shall select now an such that for the n numbers a1, a2, . . . an we have

Gn = Gn−1 (2.1)

Well if we write out (2.1) and raise it to the n-th power we get

(a1a2 . . . an−1)an = (a1a2 . . . an−1)n/(n−1)

which gives

an = Gn−1

Now using (2.1) and the result for n namely Gn ≤ An we get

Gn−1 = Gn ≤ An =
1

n
(a1 + a2 + · · ·+ an−1 +Gn−1)

Hence

(1− 1

n
)Gn−1 ≤

1

n
(a1 + a2 + · · ·+ an−1)

which upon simplfying gives the desired result Gn−1 ≤ An−1.
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Theorem (The sandwich theorem): Suppose (an), (bn) and (cn) are three real sequences

such that

an ≤ bn ≤ cn, for all n ∈ N.

Assume further that (an) and (cn) both converge and converge to the same limit l. Then (bn)

also converges to l.

This theorem is quite easy to prove and is available in all texts and so will not be reproduced

here.

Theorem:

1. Suppose a > 0 then a1/n −→∞ as n −→∞.

2. n1/n −→ 1 as n −→∞

3. The sequence (an) given by (
1 +

1

n

)n
is monotone increasing and the sequence (bn) given by(

1− 1

n

)−n
is monotone decreasing.

4. The sequences (an) and (bn) above both converge to a common limit. This limit is

denoted by e.

Proofs:

1. consider first the case when a ≥ 1 and apply Cauchy’s theorem of means to the set of n

numbers

a, 1, 1, . . . , 1.

Next apply sandwich theorem and complete the argument.

2. Apply Cauchy’s theorem of means to the set of n numbers

√
n,
√
n, 1, 1, 1, . . . , 1

and invoke the sandwich theorem.

3. Apply Cauchy’s theorem of means to the n numbers

1,
(

1 +
1

n

)
,
(

1 +
1

n

)
, . . . ,

(
1 +

1

n

)
.

We immediately see that (an) is monotone increasing. The case of (bn) is equally easy.
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4. Observe that

a2 ≤ an ≤ bn ≤ b2, for all n ≥ 2.

It is clear that both sequences converge and the limits are positive. To show that the

limits are equal, look at their ratio:

an
bn

=
(

1− 1

n2

)n
=
((

1− 1

n2

)n2)1/n
= 1/(bn2)1/n

But then

a2 ≤ bn2 ≤ b2

and hence taking the n-th root and invoking sandwich theorem we conclude that

lim
n→∞

(bn2)1/n −→ 1.

From this we conclude that an/bn −→ 1 as n→∞.

Theorem: The sequence (an) given by

an = 1 +
1

1!
+

1

2!
+ · · ·+ 1

n!

is monotone increasing and bounded above. Further the sequence converges to e.

Proof: It is quite easy (exercise) to check that the sequence is monotone increasing and

bounded above. Let us assume it converges to f . Expanding using the binomial theorem,(
1+

1

n

)n
= 1+1+

1

2!

(
1− 1

n

)
+

1

3!

(
1− 1

n

)(
1− 2

n

)
+· · ·+ 1

n!

(
1− 1

n

)(
1− 2

n

)
. . .
(

1−n− 1

n

)
. (2.2)

Thus we get the inequality (
1 +

1

n

)n
≤ 1 + 1 +

1

2!
+ · · ·+ 1

n!
≤ f.

Since the sequence (an) monotonically increases to f . So we conclude

e ≤ f

To obtain the reverse inequality we cannot simply take the limit term by term in (2.2) (why?).

Instead a careful argument is needed. Fix m ∈ N and let n > m. Then from (2.2) we get

e ≥
(

1+
1

n

)n
geq1+1+

1

2!

(
1− 1

n

)
+

1

3!

(
1− 1

n

)(
1− 2

n

)
+· · ·+ 1

m!

(
1− 1

n

)(
1− 2

n

)
. . .
(

1−m− 1

n

)
.

(2.2)

Letting n tend to infinity which is clearly permissible since n > m, we conclude

e ≥ 1 + 1 +
1

2!
+ · · ·+ 1

m!
, for all m ∈ N,

whence e ≥ f and the proof is complete.
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Remark: The errenous passage to the limit as n→∞ in (2.2) is unfortuately carried out in

many classical texts. The matter is carefully handled in G. Chrystal (part II). Hobson in his

famous, Theory of functions of a real variable invokes Tannary’s theorem (as for instance T.

J. I. Bromwhich).

Theorem (Cauchy’s first limit theorem:) Suppose (an) is a sequence of real numbers

such that an −→ l as n −→∞ then the sequence of arithmetic means

1

n

(
a1 + a2 + · · ·+ an

)
also converges to l.

Proof: Since (an) converges, it is bounded and hence there exists M > 0 such that

|an| ≤M, for all n ∈ N.

Second, let ε > 0 be arbitrary. There exists n1 ∈ N such that

|an − l| <
ε

2
, for all n ≥ n1. (2.3)

We now set up the stage and estimate:∣∣∣ 1
n

(
a1 + a2 + · · ·+ an

)
− l
∣∣∣ ≤ 1

n

(
|a1 − l|+ |a2 − l|+ · · ·+ |an − l|

)
(2.4)

Assume n > n1 and split the sum in the paranthesis in two pieces and note that

|an1+1 − l|+ |an1+2 − l|+ · · ·+ |an − l| < (n− n1)ε/2 < nε/2. (2.5)

On the other hand

|a1 − l|+ |a2 − l|+ · · ·+ |an1 − l| ≤ n1(M + |l|) (2.6)

Now since n1(M + |l|)/n tends to zero as n −→∞, there exists n2 ∈ N such that

n1(M + |l|)/n < ε

2
, for all n > n2. (2.7)

Now let n0 = n1 + n2 and we use (2.5), (2.6) and (2.7) in (2.4) and conclude that∣∣∣ 1
n

(
a1 + a2 + · · ·+ an

)
− l
∣∣∣ ≤ ε, for all n > n0.

Corollary: Suppose (an) is a sequence of positive real numbers converging to l then the

sequence of geometric means

(a1a2 . . . an)1/n

also converges to l.
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Proof: If l = 0 then let An and Gn be the arithemtic and geometric means of the numbers

a1, a2, . . . , an and we have

0 < Gn < An.

But An −→ 0 as n −→∞ by Cauchy’s first limit theorem. Invoking the sandwich theorem we

conclude that Gn −→ 0 as n −→∞.

We now turn to the case l > 0. Then we also have 1/an −→ 1/l. Apply Cauchy’s first limit

theorem to both the sequences (an) as well as (1/an) and for the latter take reciprocals. We

obtain immediately

An −→ l, and Hn −→ l.

where Hn is the harmonic mean of a1, a2, . . . an. Now invoking Cauchy’s theorem of means

and the sandwich theorem we obtain the desired result.

Corollary (Cauchy’s second limit theorem): Suppose (bn) is a sequence of positive real

numbers such that

lim
n→∞

bn+1

bn
= l

then

lim
n→∞

(bn)1/n = l

Proof: Define a1 = b1, a2 = b2/b1 . . . , bn = an/an−1. Then we see that an −→ l as n −→∞.

Now use the previous corollary that the sequence of geometric means (a1a2 . . . an)1/n converges

to l.

Example: Prove that

lim
n→∞

(n!)1/n

n
=

1

e
. (2.8)

Well let us write
(n!)1/n

n
=
( n!

nn

)1/n
.

and define

bn =
n!

nn

A little algebra gives
bn+1

bn
=
(

1 +
1

n

)−n
which converges to 1/e hence b

1/n
n also converges to 1/e.
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Remarks: We may rewrite (2.8) as

(n!)1/n ∼ n/e (2.9)

It is tempting to raise both sides to the power n and write

n! ∼ nne−n (2.10)

However (2.10) is WRONG. The reason is that since (p(n))1/n −→ 1 as n → ∞ for any

polynomial p(x) in place of (2.9) we may also write

(n!)1/n(p(n))1/n ∼ n/e (2.11)

The CORRECT replacement for (2.10) is given by the following remarkable result going back

to James Stirling in his Methodus Differentialis published in 1730. The result is definitely

the marvelous theorems in classical analysis. Its importance was immediately recognized and

numerous proofs as well as generalizations appeared. It was used by Laplace in his monumental

treatise on Probability theory in establishing the De Moivre Laplace theorem. A good starting

point to learn about these topics is the book of H. L. Rietz, Mathematical Statistics.

A proof of Stirling’s formula due to Robbin’s is given in Feller’s book. We shall discuss

Robbin’s proof later in the course.

Theorem (Stirling’s Approximation Formula, James Stirling, Methodus Differen-

tialis, 1730) For large values of n we have

n! ∼ nne−n
√

2πn

More precisely

lim
n→∞

n!

nne−n
√

2πn
= 1 (2.12)

Exercises:

1. Show that the sequence (an) given by

an =
1

n+ 1
+

1

n+ 2
+ · · ·+ 1

n+ n

is monotone increasing and bounded above. Further show that the limit lies between 1/2

and 1.

2. Is the sequence (an) given by

an =
(

1 +
x

n

)n
monotonic for any real x? Denoting by f(x) the limit of this sequence, show that f(x+

y) = f(x)f(y).
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3. Let a and α be a positive real numbers. How would you define

aα

and establish the basic rules of indices? Remember we have not yet introduced the notion

of logarithms.

4. A dyadic rational number is a rational number a/b where a, b ∈ Z and b > 0, such

that the denominator b is a power of 2. Show that the dyadic rationals are dense in R.

Explicitly find a sequence of dyadic rationals converging to 1/3.

5. Show that if (an) is a monotone increasing/decreasing sequence of real numbers then the

sequence of arithemtic means (An) given by

An =
1

n
(a1 + a2 + · · ·+ an)

is also monotone increasing/decreasing. What can you say about the sequence of geo-

metric means?

6. Let k be a fixed positive natural number and (an) be a sequence of positive reals con-

verging to l then show that

a1/k
n −→ l1/k.

7. Let a and b be two positive real numbers. Define two sequences (an) and (bn) inductively

as follows. Set a1 = a, b1 = b. For n ≥ 2

an =
1

2
(an−1 + bn−1), bn =

√
an−1bn−1

Discuss the convergence of the sequences (an) and (bn).
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Limit Superior and limit inferior: Throughout this section we shall work with a given a

real sequence (an).

Definition: We say that the sequence (an) converges1 to +∞ if for any real number T > 0,

there exists an n0 such that

an > T, for all n ≥ n0.

Likewise we say (an) converges to −∞ if for any real number T < 0, there exists an n0 such

that

an < T, for all n ≥ n0.

Exercise: Suppose that a real sequence (an) does not converge to −∞ and is bounded above,

then show that there is a subsequence which converges to a finite limit.

Definition (Limit Superior): Now suppose that the given sequence (an) is unbounded

above, we declare the limit superior of (an) to be +∞. If on the othe hand the sequence (an)

converges to −∞ we simply declare the limit superior of (an) to be −∞. Turning now to the

remaining case we know that there are subsequences that converge to finite limits. So let

E = {p ∈ R : some subsequence of (an) converges to p}

Then the supremum of E is called the limit superior of (an).

We now provide an alternate formulation of the notion of limit superior. For this we

introduce for each n ∈ N,

Mn = sup{an, an+1, an+2, . . . }

Then notice that the sequence (Mn) is monotone decreasing. Each Mn is +∞ if and only if

the sequence (an) in unbounded above and we see that (Mn) converges to +∞ which is the

limit superior of the given sequence.

Exercise: Show that if the sequence (an) converges to −∞ then so does (Mn).

The case that remains is when (an) is bounded above and does not converge to −∞ in

which case supE is finite and by the exercise above l is also finite. Denoting supE by λ and

by l the limit of the sequence (Mj) we shall show that λ = l. Let ε > 0 be arbitrary. There

exists a j0 ∈ N such that

Mj < l + ε, for all j ≥ j0.

Thus

sup{aj0 , aj0+1, . . . } < l + ε.

1Note that the use of the phrase “converges to plus infinity”is consistent with the notion of convergence

in point-set toplogy since the stated notion is precisely convergence in the extended real line - with its usual

topology making it homeomorphic to [0, 1].
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This means there can only be finitely many terms of the sequence (an) that exceed l + ε and

so every convergent subsequence must have a limit less than or equal to l+ ε. Thus l+ ε is an

upper bound for E and so λ ≤ l + ε. Since ε > 0 was arbitrary, we get

λ ≤ l.

Suppose the inequality is strict. Then choose ε > 0 such that

λ < l − ε

Select n′1 such that

l ≤Mn′
1
< l + ε/2.

Since l − ε/2 < Mn′
1
, there exists n1 ≥ n′1 such that

l − ε/2 < an1 ≤Mn′
1
< l + ε/2

We now select n′2 > n1 such that

l ≤Mn′
2
< l + ε/4

and as above an n2 ≥ n′2 such that

l − ε/4 < an2 ≤Mn′
2
< l + ε/4

and continuing thus construct a subesequence (ank) converging l > λ which gives a contradic-

tion. Thus in all cases (that is including the ones where λ = ±∞) we have λ = l.

Exercise: Formulate the notion of limit inferior and carry out a detailed analysis as above.

Show that

lim inf
n→∞

an ≤ lim sup
n→∞

an

Further show that equality holds if and only if (an) converges (cases of convergence to ±∞ are

included).

Limit superior and limit inferior of sets: This is a very useful notion in measure theory

and probability theory and this seems to be a good place for discussion. Assume given a

sequence of subsets (An) of some universal set X. The supremum of a family of sets ought to

be the smallest set that contains all the given sets namely the union of the family. Likewise

the infimum of a family of sets ought to be the largest set contained in each member of the

family. Thus

Mj = sup{Aj , Aj+1, Aj+2 . . . } =

∞⋃
n=j

An

The sets Mj decrease as j increases and we define

lim sup
n→∞

An =

∞⋂
j=1

∞⋃
n=j

An.
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Similarly we define the limit inferior of the sequence of sets (An) to be

lim inf
n→∞

An =

∞⋃
j=1

∞⋂
n=j

An.

Exercise: Show that lim supAn is the set of points in X that lie in infinitely many of the

sets An and lim inf An is the set of points of X that lie in all but finitely many of the An. Thus

lim inf
n→∞

An ⊂ lim sup
n→∞

An

The Ratio test and root test: We state and prove two of the most important results

on series. Although these are weak tests, they are convenient for computing the radius of

convergence of power series.

Theorem (D’Alembert’s Ratio Test): (i) Suppose that (an) is a sequence of non-zero

complex numbers and

lim sup
n→∞

∣∣∣an+1

an

∣∣∣ < 1

then the series
∑
an converges absolutely.

(ii) If on the other hand ∣∣∣an+1

an

∣∣∣ ≥ 1

for ALL BUT FINITELY MANY n then the series
∑
an diverges.

Remark: We see here the elegance and precision of Rudin’s writing. Reformulation of the

second part in the language of liminf is not useful since that would be subsumed in the above

formulation. Nevertheless try it out as an excuse to review liminf. Suppose that

lim inf
n→∞

|an+1

an

∣∣∣ > 1

then the series diverges. In particular if

lim
n→∞

|an+1

an

∣∣∣
exists and has a value greater than one or plus infinity2 then the series diverges.

If

lim inf
n→∞

|an+1

an

∣∣∣ = 1

the test is in-conclusive.

2Remember the convention that when dealing with real sequences we considered “a sequence converging to

plus infinity”.
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Proof: (i) Call the limit superior α and take any number β such that α < β < 1. Then there

can only be finitely many values of n for which∣∣∣an+1

an

∣∣∣ ≥ β
So there is an n0 ∈ N such that ∣∣∣an+1

an

∣∣∣ < β, n ≥ n0

From this it follows that

|an| ≤ |an0 |βn−n0 = cβn, n ≥ n0

for some positive constant c. Since 0 < β < 1, we infer that
∑
|an| is dominated by a convergent

geometric series from which the conclusion follows.

(ii) If on the other hand there is an n0 such that∣∣∣an+1

an

∣∣∣ ≥ 1, n ≥ n0

then multiplying out (n− n0) of the above inequalities we get

|an| ≥ |an0 |, n ≥ n0

which means the n−th term of the series
∑
an does not go to zero and the series cannot

converge.

Exercises on sequences and series:

1. Construct a number in [0, 1] whose decimal expansion has the property that only the

digits 0 and 1 appear and further if kn is the number of occurrences of 1 in the first n

digits,

lim sup
n→∞

kn
n

= 1, lim inf
n→∞

kn
n

= 0.

Find a number again only with zeros and ones as digits but with limsup being 2/3 and

lininf being 1/3.

2. Prove that
(

log
(

1 +
1

n

))1/n
−→ 1 as n −→ 1.

3.

4. Use the result 1 + z + z2 · · ·+ zn = (zn+1 − 1)/(z − 1) to sum the series (to n-terms)

1 + cos θ + cos 2θ + . . . , and sin θ + sin 2θ + . . . .

Show that the partial sums of the series
∑

cosnθ and
∑

sinnθ are bounded when 0 <

θ < π/2.
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5. Show that if (an) is monotone decreasing positive and converges to zero as n→∞ then

the series ∑ (−1)n

n

(
a1 + a2 + · · ·+ an)

converges.

6. Suppose
∑
an and

∑
bn are two series of positive real numbers such that

an+1

an
<
bn+1

bn
, for all n ∈ N

Show that if
∑
bn converges then

∑
an also converges.

7. Show that if
∑
an is a series of positive reals such that

an+1

an
= 1− p

n
+
kn
n2

where (kn) is a bounded sequence then
∑
an converges if p < −1 and diverges if p ≥ −1.

Hint: Take
∑
bn appropriately.

8. Let p1, p2, . . . pk be the first k primes. Using the expression

1

1− x
= 1 + x+ x2 + . . . , 0 < x < 1

, show that
1

1− 1
p1

1

1− 1
p2

. . .
1

1− 1
pk

is precisely the sum of 1/n where n ranges over 1 and all those natural numbers whose

prime factors are powers of p1, p2, . . . , pk. Deduce that if we assume that there are only

finitely many primes then the above expression would equal

1 +
1

2
+

1

3
+ . . .

thereby arriving at a contradiction. This proof of the infinitude of primes is due to Euler.

9. Show that if k ∈ N and k ≥ 4.
(kn)!

(n!)k
∼ C

n(k−1)/2

for some constant C. Hence prove that the power series

∞∑
n=1

(kn)!zn

(n!)k

converges everywhere on the boundary of the disc of convergence.
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Special functions of mathematical analysis:

Exercises: These have to be done from first principles starting from the definition of the

exponential function as an infinite series and the exponential addition theorem. The functions

expx, sinx and cosx are all defined via infinite series.

1. Prove that for all x ∈ R,

expx =
(

1 +
x

n

)n
.

Show further, that if k ∈ N then exp(1/k) is the unique positive k-th root of e. For

rational values of x we thus have expx = ex. For x irrational define

S = {eq : q ∈ Q, q < x}

and define ex = supS. Show that ex = expx.

2. Prove that if x < y then

0 < exp y − expx ≤ (y − x) exp y

Hint: Begin by estimating the difference(
1 +

y

n

)n
−
(

1 +
x

n

)n
3. Prove that if a > 0 then there exists a unique b ∈ R such that exp b = a. Define

S = {x ∈ R : expx < a}

Then S is non-empty and bounded above since expx tends to 0 as x −→ −∞ and

expx −→ ∞ as x −→ ∞. Let b = supS and use the preceeding to prove that exp b > a

and exp b < a both lead to contradictions. Deduce that

exp : R −→ (0,∞)

is surjective as well as injective

Definition: The b obtained above is called the logarithm of a and denoted by ln a or

log a.

4. Use the exponential addition theorem to prove that

log(a1a2) = log a1 + log a2, a1 > 0, a2 > 0.

Thus we have a function log : (0,∞) −→ R which is the inverse of the exponential

function.
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5. Prove that expx > 1 + x for x > 0 and hence

(i) log(1 + x) < x for x > 0.

(ii) x− log(1 + x) < x2 for 0 < x ≤ 1/2. Hint: For the second, we need to show

expx < (1 + x) expx2, for all 0 < x ≤ 1.

and clearly, it is enough to show expx < 1 + x+ x2 if 0 < x < 1.

Well, (1 + x) expx2 = (1 + x+ x2 + . . . ) where the dots refer to positive quantities.

Next,

expx = 1 + x+ x2 +
x2

2

(x
3

+
x2

3 · 4
+ . . .

)
− x2

2

The series within paranthesis is dominated by the geometric series

x

3
+
x2

32
+ · · · = x

3− x
.

It is enough to show

x/(3− x) < 1, 0 < x < 1.

6. Use the above result to discuss the convergence of

∞∑
n=1

( 1

n
− log

(
1 +

1

n

))
7. Prove that the sequence (an) given by

an = 1 +
1

2
+ · · ·+ 1

n
− log(n+ 1)

is monotone increasing.

8. Show that the sequence (an) defined above is bounded. Try employing the grouping idea

used to prove that the harmonic series diverges. This will just about miss the target !

Try using the inequality x− log(1 + x) < x2 for 0 < x ≤ 1/2

Definition: The limit

lim
n→∞

(
1 +

1

2
+ · · ·+ 1

n
− log(n+ 1)

)
is called Euler’s constant. It is denoted by γ and as of today it is not known whether γ

is rational or irrational.

9. Show that the sequence

an =
1

n+ 1
+

1

n+ 2
+ · · ·+ 1

n+ n

converges to log 2. Hint: Use the previous exercise.
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10. Prove that

1− 1

2
+

1

3
− 1

4
+ · · · = log 2

11. Discuss whether the series

1 +
1

3
− 1

2
+

1

5
+

1

7
− 1

4
+ . . .

converge and if the series is convergent, find its sum. Hint: Take first the sum of 3n

terms and group them in brackets of threes and find the general term in the nth bracket.

12. Prove that

cos(x+ y) = cosx cos y − sinx sin y

sin(x+ y) = sinx cos y + cosx sin y

13. Prove that

cosx− cos y = 2 sin
(x+ y

2

)
sin
(y − x

2

)
sinx− sin y = 2 sin

(x− y
2

)
cos
(x+ y

2

)

Theorem: (i) If 0 < x <
√

6, sinx > 0.

(ii) If 0 ≤ x ≤
√

2 then cosx > 0.

Proof: The second is an exercise. The first one follows from the fact that each paran-

thesis in the following is positive

sinx = x
(

1− x2

6

)
+
x5

5!

(
1− x2

6 · 7

)
+ . . .

14. Show that if 0 < x <
√

20 then sinx < x. Write out the series and do a re-grouping:

sinx = x− x3

3!

(
1− x2

4 · 5

)
− . . .

Prove that sinx is strictly increasing and positive on the interval (0,
√

2) and cosx is

strictly decreasing on (0,
√

2).

15. Prove that cos 2 < 0. Again, group the series for cos 2 appropriately:

cos 2 = −1 +
24

4!

(
1− 4

5 · 6

)
+

28

8!

(
1− 4

9 · 10

)
+ . . .
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16. Show that there exists a real number ω ∈ (1, 2) such that cosω = 0. Look at

S = {t > 0 : cosx > 0 for all x ∈ [0, t)}

Note that 1 ∈ S and S is bounded above by 2. Let ω = supS and show that this does

the job. You will need the fact established above that sin η < η for small positive values

of η.

The number ω whose existence has been established is denoted by π/2.

17. Show that sinπ/2 = 1 and sinπ = 0 and hence cosπ = ±1. Prove the following:

sin(x+
π

2
) = cosx, cos(x+ π/2) = − sinx

sin(π − x) = − cosπ sinx, cos(π − x) = cosx cosπ

Deduce that cosπ = −1.

18. Show that sinx is positive on (0, π). Show that cosx is positive on [0, π/2) and negative

on (π/2, π]. Show that sinx and cosx are periodic with period 2π. Do they have any

smaller positive periods?

19. Definition: The functions sinh z and cosh z are defined by

sinh z = z +
z3

3!
+
z5

5!
+ . . .

cosh z = 1 +
z2

2!
+
z4

4!
+ . . .

Show that these series converge absolutely for all complex values of z. Further sinhZ

and cosh z are real when z is real. Prove that

cos z = cosx cosh y − i sinx sinh y

where x and y are the real and imaginary parts of z. Find the real and imaginary parts

of sin z. Show that sin z and cos z have only real zeros.

20. Discuss the convergence and find the sum of the following series (θ ∈ R in the following)

(a) 1 + cos θ +
1

2!
cos 2θ + . . . (b) sin θ +

1

2!
sin 2θ + . . .

(c) 1 +
1

4!
cos 4θ +

1

8!
cos 8θ + . . . (d)

1

4!
sin 4θ +

1

8!
sin 8θ + . . . (E. W. Hobson)

21. Show that the coefficient of zn in the expansion of ez cos z is

√
2n

n!
cos
(nπ

4

)
Expand

cos z cosh z in powers of z. Hint: First prove that

cos z cosh z ∓ i sin z sinh z =
1

2

∞∑
n=0

2n/2{1 + (−1)n} exp
(
± nπi

4

)zn
n

(G. H. Hardy)
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22. Show that for 0 < x ≤ 1, exp(−x) < 1− x
2 . Replace x by 2x and we get

(1− x)−1 < e2x, 0 < x ≤ 1/2

For a given N ∈ N, let p1, p2, p3, . . . pk be the list of prime numbers that divide atleast

one of the numbers 1, 2, . . . , N . Taking x = p1, p2, . . . , pk in succession in the above

inequality and multiplying out show that

1

2
+

1

3
+

1

5
+ . . .

diverges.

Remark: This result goes back to Euler in a memoir published in 1737. Euler was

aware that the n-th partial sum grows like log log n. Mertens sharpened this result in

1874. In this connection see the paper by M. B. Villarino, Merten’s Proof of Merten’s

theorem.
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Basic Topology

Definition (Compact Sets): Let (X, d) be a metric space. A subset A of X is said to be

compact if every open cover of A has a finite subcover.

Theorem: A compact subset of a metric space is closed.

Proof: Suppose A is a compact subset of a metric space (X, d) and p is a limit point of A.

Select a sequence (an) of distinct points of A converging to p. We shall assume p /∈ A and

arrive at a contradiction. The sets

Sn = {p} ∪ {an, an+1, an+2, . . . }, n = 1, 2, 3, . . . .

is closed and hence its complement X − Sn is open for each n = 1, 2, 3, . . . . The family

{X − Sn : n = 1, 2, 3, . . . } is an open cover of A (why?). This collection has no finite

subcover because the open sets X − Sn increase with n and none contains A. We thus have a

contradiction.

A Basic lemma: Suppose (X, d) is a metric space, Y is a closed subset of X with induced

metric dY and A is a subset of Y . Then A is closed in (X, d) if and only if A is closed in

(Y, dY ).

Example: Let us consider the metric space Q with the metric induced from R. Consider the

set

S = {x ∈ Q : x > 0, 2 < x2 < 3}

Then S is closed in Q but not closed in R. Thus the property of being closed depends heavily

on the ambient space. Here X = R, Y = Q is not closed in X. We shall show that in stark

contrast compactness is a property that is independent of the ambient space which is one of

the pleasant features of compactness.

Finite intersection property of sets: A family of sets {Aα : α ∈ Λ} indexed by Λ is said

to have the finite intersection property if every finite subcollection has non-empty intersection.

Theorem: Let (X, d) be a metric space. Then X is compact if and only if for every family

F of closed subsets of X having the finite intersection property the intersection we have,⋂
C∈F

C 6= ∅
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Proof: This is simply a reformulation of the definition of compactness.

One would like to have a formulation of this result for the case when A is a subset of X.

We shall do this after proving the following result.

Theorem: Suppose (X, d) is a metric space and Y is a subset of X endowed with the induced

metric dY and A ⊂ Y . Then A is compact in (X, d) if and only if A is compact in (Y, dY ).

Thus the notion of compactness is independent of the ambient space.

Proof: This is immediate from the fact to be proved that sequential compactness and com-

pactness are identical notions for metric spaces.

The theorem can be directly proved by elementary arguments which we merely sketch

leaving the details for the student. All you need is the fact that if a subset G of X is open in

(X, d) then G ∩ Y is open in (Y, dY ) and conversely any open set in Y is of the form Y ∩ G
for some open set G in X (Exercise). Now suppose A is compact in Y . To show that A is

compact in X take an arbitrary open cover {Gα} of A and look at the family {Gα ∩ Y } which

is a covering of A by open subsets of Y . Now extract a finite subcover and complete one half

of the theorem. Similarly prove the converse.

Theorem: Let X be a metric space and A be a subset of X. Then A is compact if and only

if for every family F of closed subsets of A having the finite intersection propery, we have⋂
C∈F

C 6= ∅

Proof: The proof is left as an exercise. However we must insert an important note. We are

vague here as to whether the sets in the family F are closed in X or closed in A with respect

to the induced metric dA. In one direction namely, if A is compact then A is closed in X and

there is really no ambiguity by the basic lemma. In the converse direction, if we assume that

all the sets are closed in X then the argument is completely trivial whereas if the sets are all

closed in A then we infer first that the metric space (A, dA) is compact and so A is compact

in X as well and again there is no issue. We shall say no more on this matter.

Theorem: Suppose K is a compact subset of a metric space X and A is a closed subset of

K then A is also compact in X.

Proof: Thanks to the lemma it is immaterial whether A is closed in X or closed in K with

respect to the induced metric. Let G be an open cover of A. Include in this family the open

set X −A and we get an open cover G ∪ {X −A} for X and hence of K. Since K is compact

we can extract a finte subcover G0 ⊂ G∪{X−A} of K. From this finite subcover delete X−A
(in case X −A belongs to it) and we get a finite subcover for A.
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Theorem:

Definition (Sequential compactness): A subset A of a metric space is compact if and

only if every sequence of points in A has a convergent subsequence converging to a point in A.

This property is called the Bolzano Weierstrass property.

Remark: It is a fact that IN A METRIC SPACE compactness and sequential compactness

are equivalent notions but we have to wait a while to see this completely.

Theorem (Compactness implies sequential compactness): Suppose the A is a compact

subset of a metric space then A is sequentially compact.

Proof: First, A is closed in X. Let (an) be a sequence of points of A if this sequence has

a convergent subsequence then its limit will automatically be in A since A is closed and the

second part of the theorem is proved. We show that there is a convergent subsequence of (an).

Suppose the given sequence has NO convergent subsequence then the sets

Sn = {an, an+1, an+2, . . . }, n = 1, 2, 3, . . . .

are closed and their complements form an open cover for A without a finite subcover whereby

we arrive at a contradiction.

Exercise: Suppose that (X, d) is sequentially compact and A is sequentially compact in X.

Assume {Gn : n = 1, 2, 3, . . . } is a sequence of open sets covering A then there is a finite

subcover.

Hint: First it is enough to show that one of the sets

G1, G1 ∪G2, G1 ∪G2 ∪G3, . . .

contains A. Well suppose not. Pick a point an ∈ A and not belonging to G1 ∪G2 ∪ · · · ∪Gn.

We get a sequence (an) in A which must have a convergent subsequence (ank) converging to

say p ∈ A. Then since the family {Gn : n ∈ N} covers A, one of them say GN contains p.

Then there exists k0 such that

ank ∈ GN for all k ≥ k0.

Choose k ≥ k0 such that nk > N . Then

ank ∈ GN ⊂ G1 ∪G2 ∪ · · · ∪Gnk

which contradicts the choice of ank .
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Main Issue: We have shown that if A is sequentially compact then every countable cover of

A has a finite subcover. We must now show that every open cover has a countable subcover.

This theorem, known as the Lindelöf covering lemma, requires some preparations.

Definition (A finite ε net): Let X be a metric space and A be a subset of X. A finite

subset E of A is called a finite ε net if every point of A is within ε distance from some point

of E.

Theorem: Suppose A is a non-empty sequentially compact subset of a metric space X then

for every ε > 0 there is a finite ε net for A.

Proof: Suppose not. Then pick a point a1 ∈ A. Then the singleton {a1} is not an ε net so

there must be a point a2 ∈ A such that d(a1, a2) ≥ ε. Now the two element set {a1, a2} is not

a finite ε net and so there exists a3 ∈ A such that d(a1, a3) ≥ ε and d(a2, a3) ≥ ε. Again the

three element set {a1, a2, a3} is not an ε net and so we can continue the process. The sequence

(an) so obtained is such that

d(am, an) ≥ ε, for all n > m.

It is clear that this sequence cannot have a convergent subsequence contradicting the hypothesis

that A is sequentially compact.

Definition (Separable metric space): A metric space (X, d) is separable if it has a count-

able dense subset. That is to say if it has a countable subset D such that D = X.

Example: (i) In R, the countable set Q is dense and so R with the usual metric is separable.

(ii) Endow R with the discrete metric. Show that every set is closed and so there cannot be

a countable dense subset. That is to say R endowed with the discrete metric is not separable.

(iii) Explain why the circle {z ∈ C : |z| = 1} is separable. Exhibit a countable dense

subset. Here the circle inherits the metric from the ambient space C.

Theorem: A sequentially compact metric space is separable.

Proof: This is very easy. Take ε = 1/n. Then there is a finite 1/n net say En. Now show

that the countable union of finite sets

D =

∞⋃
n=1

En

is provides a countable dense subset.
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Lindelöf covering lemma: In a metric space (X, d) let A be a sequentially compact subset.

Then every open cover of A has a countable subcover.

Proof: Let D be a countable dense subset of A. Consider the set B of all open balls with

centers at points of D and positive rational radii. The collection B is obviously countable.

Now let G be a covering of A by open subsets of X. As an exercise, prove that for each point

p ∈ A, there exists a G ∈ G and a Bp ∈ calB such that

p ∈ Bp ⊂ G.

Thus there are balls in the collection B that are contained in atleast one member of G. Take

the subcollection C ⊂ B of ALL such balls. Then C is also countable. Enumerate the members

of C as a sequence:

B1, B2, . . .

Now for each n pick one open set Gn from G such that Bn ⊂ Gn. Thus we get a countable

subcollection H out of G. This subcollection H then covers A (why?).

Corollary (Sequential compactness implies compactness): In a metric space, a se-

quentially compact subset is compact.

Theorem (Existence of Lebesgue Number): Let X be a metric space and A be a com-

pact subset of X. Then every open cover of A has a Lebesgue number.

Proof: Suppose there is an open cover U for which there is no Lebesgue number. In particular

1/n is not a Lebesgue number. So there is a ball B1/n(xn) centered at a point of A that is not

contained in any open set in U . We thus obtain a sequence (xn) (consisting of the centers of

these open balls). Extract a convergent subsequence (xnk) converging to say p ∈ A. Now p

must lie in some open set U and then there exists r > 0 such that

p ∈ Br(p) ⊂ U

and there exists k0 ∈ N such that 1/k0 < r/3 and

xnk ∈ Br/3(p) ⊂ U, k ≥ k0.

Now we shall arrive at the contradiction that for k ≥ k0, B1/nk(xnk) ⊂ U . Well, if z ∈
B1/nk(xnk),

d(z, xnk) < 1/nk ≤ 1/k ≤ 1/k0 < r/3, k ≥ k0.

and d(xnk , p) < r/3 so that

d(z, p) <
r

3
+
r

3
< r

so that z ∈ Br(p) ⊂ U .
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1. Show that in the metric space Q with the usual metric (given by absolute value), the set

{x ∈ Q : x > 0, 2 < x2 < 3}

is both closed and open.

2. Determine the set of all limit points of{1

k
+

1

m
+

1

n
: k,m, n ∈ N

}
3. How would you prove that the set{

(x, y) ∈ R2 :
x2

4
+
y2

9
< 1
}

is open?

4. Theorem: In R with the usual metric, the only subsets of R that are simultaneously

closed and open are ∅ and R.

Proof: The details are left as exercises. Here are the main points. Assume that A is

a non-empty subset of R that is both open and closed. Then A cannot be a singleton

(why?). We now show

(i) A is an interval. That is if p, q ∈ A then the closed interval [p, q] is contained in A.

(ii) A = R.

To prove (i) construct the set

S = {t ∈ R : p < t < q, (p, t) ⊂ A}

Then show that S is non-empty and bounded above by q. Let l = supS. Then l ≤ q.

Show that l = q and then (p, l) ⊂ A so that [p, q] ⊂ A.

Remark: What we have really established is that if X is a set with a total order which

is dense and Dedekind complete then X endowed with the order topology is connected.

This fact is often useful. For instance if X is a compact connected metric space with

exactly two non cut points then X is [0, 1] (that is homeomorphic to the closed unit

interval in R).

5. Show that the only subsets of R2 that are simultaneously open and closed are ∅ and R2.

Hint: Suppose A is a non-empty subset of R2. Pick p ∈ A and assume that A 6= R2.

Then there exists q ∈ Ac. Now look at the line segment joining p and q and adapt the

idea used in the previous exercise.
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6. Here is another example employing the same ideas. Show that every odd degree monic

polynomial has a real root. Let f(x) be a monic odd degree polynomial. First show that

for any polynomial (odd or even degree), given any x0 there exists r > 0 and Mx0 > 0

such that

|f(x)− f(x0)| ≤Mx0 |x− x0|, |x− x0| < r

Deduce that if f(x0) > 0 there is an interval (x0− δ, x0 + δ) throughout which f(x) stays

positive. Now let

S = {t ∈ R : f(x) > 0 for all x > t}

Show that S is bounded below and x0 = inf S. Then f(x0) = 0.

7. Prove that if A is open and B is an arbitrary subset of Rn then

A+B = {x+ y : x ∈ A, y ∈ B}

is open. Show that if A and B are closed subsets of R then A+B need not be closed.

8. Show that if A and B are closed subsets of Rn and one of them is compact then A+ B

is closed.

9. Let C be the Cantor set. Show that the set

C + C = {x+ y : x, y ∈ C}

is the interval [0, 2].

10. Find an open cover for R that has no Lebesge number.

11. Think of an n × n matrix with real entries as a point in Rn2
. Thus the set of all n × n

matrices (this set is denoted by Mn(R)) is a metric space. Show that the set of all

orthogonal matrices is compact.

12. Show that the set of all invertible n×n matrices with real entries (this set is denoted by

GLn(R) is an open set in Mn(R).

13. Show that a connected subset of a metric space with atleast two points must be uncount-

able.

14. A subset K of Rn is convex if given x, y ∈ K,

tx+ (1− t)y ∈ K, for all 0 ≤ t ≤ 1.

Show that the interior of the ellipse given by

x2

4
+
y2

9
< 1

is convex. Show that a convex subset of Rn is connected.
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15. Suppose a, b, c are positve real numbers such that a+ b ≥ c then show that

a

1 + a
+

b

1 + b
≥ c

1 + c

Prove that if (X, d) is a metric space and D : X ×X −→ R is given by

D(x, y) =
d(x, y)

1 + d(x, y)

is also a metric. Prove that any set that is open with respect to D is also open with

respect to d and vice-versa.

16. Let (X, d) be a metric space and D : X ×X −→ R is given by

D(x, y) = min{1, d(x, y)}

Show that D is also a metric. Any set that is open with respect to D is also open with

respect to d and vice-versa.

17. Distance between two sets: Let A and B be subsets of a metric space. The distance

between A and B denoted by d(A,B) is defined as:

inf{d(a, b) : a ∈ A, b ∈ B}

In particular if B is a singleton set we talk of the distance between a point and a set.

Show that if x, y ∈ X then

|d(x,A)− d(y,A)| ≤ d(x, y).

Find two disjoint closed subsets A and B of R2 such that d(A,B) = 0. Find such a pair

in R.

18. Show that if A is closed and p is a point of X then p lies in A if and only if d(p,A) = 0.

Show that the result fails if A is not closed. If A and B are disjoint closed sets then

d(x,A) + b(x,B)

is never zero. Thus we have a function f : X −→ R

f(x) =
d(x,A)

d(x,A) + d(x,B)

with the following properties:

(i) 0 ≤ f(x) ≤ 1

(ii) f(x) = 0 if and only if x ∈ A

(iii) f(x) = 1 if and only if x ∈ B

(iv) f(x) is continuous (we shall discuss this aspect in the next chapter).
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Continuity

Theorem (Tietze’s extension theorem): Suppose A is a closed subset of a metric space

X and f : A −→ R is a continuous function then there exists a continuous function F : X −→ R
such that

F
∣∣
A

= f

that is to say f has a continuous extension to whole of X. Further, in case f is bounded

above/below, then so is F with the same bounds.

Note that it is essential that A be closed. For example the function f : (0,∞) −→ R given

by

f(x) = sin(1/x)

has no continuous extension to R. We shall not prove the Tietze’s extension theorem here. It

will be proved in the general topology course.

We now prove a useful lemma

Pasting lemma: Suppose {Gα}α∈Λ is a collection of open subsets of a metric space X and

for each α, assume we have a continuous function fα : Gα −→ Y such that

fα(x) = fβ(x), x ∈ Gα ∩Gβ

whenever Gα ∩Gβ is non-empty. Then there exists a continuous function

f :
⋃
α∈Λ

−→ Y

such that for each α ∈ Λ,

f
∣∣
Gα

= fα

Locally finite collection: A family of (distinct) subsets {Sα}α∈λ of a metric space is said

to be locally finite if for each point p there is a open ball Br(p) such that

Br(p) ∩ Sα

is non-empty for only finitely many α.

Is the set of all singletons locally finite? Is the set of all intervals of length 2 centered at

points of Z locally finite? Show that if each set Sα in a locally finite collection is closed then

the union is also closed.
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Exercises on continuity:

1. Show that 1− e−x < x for all x > 0. Note that the inequality is trivial if x ≥ 3.

2. Let ζ : (1,∞) −→ R be given by

ζ(x) =
∞∑
n=1

1

nx
.

Show that the function ζ is continuous. Hint: n−x = exp(−x log n)

3. Show that the map exp : R −→ (0,∞) is surjective.

4. Discuss injectivity and surjectivity of the functions sin and cos on the intervals [−π, π],

(0, π/2), [0, π/2], [0, π] and (0, π) with the codomain [−1, 1] for all cases.

5. Show that the function exp : C −→ C is not surjective. Show that it misses the value

zero and no other value. The little Picard theorem states that an entire function that

misses two or more values is a constant.

6. Use the little Picard’s theorem to show that the functions sin and cos assume all complex

values.

7. Show that the function f : R −→ R given by

f(x) = x sin(1/x), x 6= 0,

and f(0) = 0 is continuous but not Lipschitz.

8. Examine whether the function f : R −→ R given by

f(x) = |x|1/3, x 6= 0,

is Lipschitz.

9. Show that if a continuous function has a set of periods having zero as a limit point then

the function must be identically zero.

10. The set of all real valued continuous functions on R forms a vector space. Are the

functions cosx, sinx, cos
√

2x and sin
√

2x linearly independent? Is the function f :

R −→ R given by

f(x) = sinx+ sin
√

2x

periodic?

11. Use the existence of Lebesgue number for open covers of a compact metric space to prove

that a continuous function on a compact domain is uniformly continuous.
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12. Show that every open set in a metric space is an Fσ set and every closed set is a Gδ set.

For any closed set F in R is there a continuous function which is continuous at points of

F and discontinuous at points in R− F?

13. Find a continuous function from R to R such that the image of Z is Q.

14. show that a connected metric space with at least two points must be uncountable.

15. Let A be a subset of a metric space. Show that the function f : X −→ R given by

f(x) = dist(x,A)

is continuous. Is this Lipschitz (in the case when X = Rn?)

16. Suppose X is a metric space and A and B are disjoint closed sets in X then there is a

continuous function f : X −→ [0, 1] such that f(x) = 0 for all x ∈ A and f(x) = 1 for

all x ∈ B. Hint: You must consult one of the exercises in the last chapter. Deduce that

there are disjoint open sets U and V in X such that A ⊂ U and B ⊂ V .

17. Suppose X is a metric space and A and B are non-empty subsets of X such that A∩B = ∅
and A ∩ B = ∅. Then show that there are disjoint open sets U and V such that A ⊂ U

and B ⊂ V . Hint: Look at the subset Y = X − A ∩B which contain the sets A and B.

The sets A and B have disjoint closures in Y and so we get open sets U and V in Y as

in the preceeding exercise.

Conversely show that if A and B are non-empty subsets of X such that there exists

disjoint open sets U and V containing A and B then {A,B} is a disconnection of A∪B.

18. Suppose {An} is a sequence of connected subsets such that An∩An+1 6= ∅ for each n ∈ N

then

∞⋃
n=1

An is connected.

19. Show that a decreasing sequence of non-empty compact and connected sets is compact

and connected. I have indicated a proof in class and said that we shall return to it. Now

prove this using the Tietze’s extension theorem.

20. Show that there is a function from R to R which is discontinuous at each rational and

continuous at each irrational.

21. Show that it is impossible to construct a function from R to R which is continuous at

rationals and discontinuous at irrationals. Use the Baire Category theorem.

22. Show that the pasting lemma also holds if instead of functions defined on open sets we

have continuous functions defined on closed sets Sα such that on the overlaps Sα ∩ Sβ
the functions agree and the collection of sets {Sα} is locally closed.
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Let F be a closed subset of R. Then there exists a function whose set of points of discon-

tinuities is exactly F .

The easiest way to see this is to take a countable dense subset S of F and declare f(x) = 1

on S and zero outside S. Then since the function is zero on R − F and R − F is open, the

function is continuous on R− F . If now p ∈ F − S, pick a sequence of points in S converging

to p and we see at once that f is discontinous at p. If p ∈ S then since S has empty interior,

we can find a sequence of points outside S converging to p and using this we againg see that

f is discontinuous at p.
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Cauchy’s Mean Value theorem : Suppose f and g are continuous on [a, b] and differen-

tiable on (a, b), then there exists a c ∈ (a, b) such that

f ′(c)(g(b)− g(a)) = g′(c)(f(b)− f(a)).

Proof: We select h(x) = 1 in the corollary and consider the function φ : [a, b] −→ R given

by

φ(x) =

∣∣∣∣∣∣∣
f(x) g(x) 1

f(b) g(b) 1

f(a) g(a) 1

∣∣∣∣∣∣∣ .
This is differentiable on (a, b) and φ(a) = φ(b). Applying Rolle’s theorem we conclude

φ′(c) =

∣∣∣∣∣∣∣
f ′(c) g′(c) 0

f(b) g(b) 1

f(a) g(a) 1

∣∣∣∣∣∣∣ = 0

for some c ∈ (a, b). Expand the determinant and we get

f ′(c)(g(b)− g(a)) = g′(c)(f(b)− f(a)).

The proof is complete.

Corollary (The L’Hospital’s Rule): Suppose that f and g are differentiable at each point

of (a, b) and for p ∈ (a, b) assume that

(i) f(p) = g(p) = 0, and g(x) does not vanish at any other point x ∈ (a, b).

(ii)

lim
x→p

f ′(x)

g′(x)

exists and equals l then

lim
x→p

f(x)

g(x)

exists and equals l.

Proof: Let (xn) be a sequence of points in (a, b) converging to p and xn 6= p for any n. Then

we apply Cauchy’s Mean Value theorem to the interval [xn, p] (or [p, xn]) and we get

f(xn)− f(p)

g(xn)− g(p)
=
f ′(cn)

g′(cn)
(1)

for some cn lying strictly between xn and p and so (cn) also comverges to p. By hypothesis (ii)

we see that the right hand side of (1) converges to l and so by virtue of (i)

lim
n→∞

f(xn)

g(xn)
= l.

The proof is complete.
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Convex functions: Convexity plays a central role in many parts of analysis. Many im-

portant and frequently used inequalities such as the inequality of arithmetic and geometric

means are special cases of convexity of the exponential function. Yet another case in point

is the characterization of the Gamma function due to Bohr and Mollerup (see Rudin). We

gather here a few basic facts about convex functions of one variable that we shall occasionally

use. The reference for this is Rudin, Principles of Mathematical Analysis. We begin with the

definition

Definition: A real valued function defined on an interval I is said to be convex if

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y), x, y ∈ I, 0 ≤ λ ≤ 1.

The parabola y = x2 serves as an excellent paradigm for a convex function. The reader is

encouraged to draw the figure of this parabola and take three points P,Q and R in that order

along the curve and conjecture the following:

Basic slope lemma: Suppose that P,Q and R are three points on the graph of a convex

function with Q between P and R, and P to the left of Q. Then the following hold:

(i) Slope PQ ≤ Slope QR.

(ii) Slope PQ ≤ Slope PR.

(iii) Slope PR ≤ Slope QR.

Proof: Let p, q and r be in the interval I with p < q < r. The proof proceeds along pre-

dictable lines. Then (it may be useful to recall the section formula from elementary coordinate

geometry)

q =
(r − q
r − p

)
p+

(q − p
r − p

)
r,

so that

f(q) ≤
(r − q
r − p

)
f(p) +

(q − p
r − p

)
f(r), (1)

Now we subtract off f(p) on both sides after noting that

f(p) =
(r − q
r − p

)
f(p) +

(q − p
r − p

)
f(p)

and we get

f(q)− f(p) ≤
(q − p
r − p

)
(f(r)− f(p))

from which (ii) follows. Now to prove (i) we subtract off f(q) from either side of (1) after

writing

f(q) =
(r − q
r − p

)
f(q) +

(q − p
r − p

)
f(q)
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and we get

0 ≤
(r − q
r − p

)
(f(p)− f(q)) +

(q − p
r − p

)
(f(r)− f(q)),

which after rearrangement gives (i). Finally we subtract off f(r) from either side of (1) after

writing

f(r) =
(r − q
r − p

)
f(r) +

(q − p
r − p

)
f(r)

to get

f(q)− f(r) ≤
(r − q
r − p

)
(f(p)− f(r)),

which after rearrangement proves (iii).

We now proceed to derive all the basic properties of convex functions out of the basic slope

lemma.

Theorem: Suppose f : I −→ R is convex then,

(i) f is continuous on I

(ii) The left and right hand derivatives of f exist at each point of I.

(iii) At each point p ∈ I, f ′(p−) ≤ f ′(p+).

(iv) If p < q then f ′(p+) ≤ f ′(q−).

(iv) If f has one sided derivatives at each point of I and satisfies (iv) then f is convex.

(v) If f ′′ exists and is non-negative then f is convex. Conversely if f is convex and twice

differentiable then f ′′ is non-negative.

Proof: Let p ∈ I and we pick q, r ans s in the interval I such that s < p < q < r. The basic

slope lemma gives
f(s)− f(p)

s− p
≤ f(q)− f(p)

q − p
≤ f(q)− f(r)

q − r
Fix s, r and let q → p+ to get continuity from the right. Repeat the argument with s < q <

p < r and we get continuity from the left. To prove (ii),

Theorem (Support theorem):

Exercises:

1. Show that a convex function on an open interval is locally Lipschitz.

2. Show that if F : I −→ R is convex then the epi-graph

{(x, y) ∈ R2 : y > f(x)}

is convex.
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3. Show that if ψ is a strictly increasing convex function and φ is convex then ψ ◦ φ is

convex.

4. Suppose {φα}α is a family of convex functions on an interval I and φ = sup
α

is finite on

I then φ is also convex. Deduce that − log+ is convex on the real line.

5. Show that if f is convex on an interval I and x1, . . . , xk are k points in I and λ1, . . . , λk

are k non-negative reals such that λ1 + λ2 + · · ·+ λk = 1 then

f(λ1x1 + λ2x2 + · · ·+ λkxk) ≤ λ1f(x1) + λ2f(x2) + · · ·+ λkf(xk)

6. Show that expx is a convex function on the real line

7. Prove the inequality of means, namely if a1, a2, . . . , an are n positive numbers then

(a1 · a2 · · · · · an)1/n ≤ 1

n

(
a1 + a2 + · · ·+ an

)
8. Show that if u1, u2, . . . , un are n non-negative numbers and p1, p2, . . . , pn positive reals

such that
1

p1
+

1

p2
+ · · ·+ 1

pn
= 1 then

u1 · u2 · · · · · un ≤
u1
p1

p1
+ · · ·+ un

pn

pn

9. Show that − sin is convex on (0, π/2) and so

sinx >
2x

π
, 0 < x < π/2

This is known as Jordan’s inequality. This will be needed in MA 412 in order to prove

that ∫ ∞
−∞

sinxdx

x
= π

There the issue would be to prove that

lim
R→∞

∫ π

0
exp(−R sin θ)dθ = 0

and Jordan’s ienquality can be used.

10. Given a positive function f in an interval I, prove that if ecxf(x) is convex on I for every

c ∈ R then log f(x) is convex. Prove also that f(x) must be monotone increasing. (P.

Montel) Note: Convexity of log f(x) is already a very powerful condition since log is a

highly concave function. In particular if log f(x) is convex then f(x) must be convex.

The above problem is from the Berkeley Problems in Math.

11. Show that exp(expx), secx and coshx are examples of functions whose logarithms are

convex. The following exercise provides yet another.
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Exercises on derivatives:

1. Use the LMVT to prove that if f : I −→ R is differentiable throughout I and f ′(x) = 0

for every x ∈ I then f is constant. Deduce that if f and g are a pair of differentiable

functions on I such that f ′(x) = g′(x) for every x ∈ I then f − g is a constant.

2. Prove that on (−1,∞), the derivative of (1 + x)α is α(1 + x)α−1.

3. Determine the intervals over which the function f : R −→ R given by

f(x) =
1− x+ x2

1 + x+ x2

is increasing/decreasing. Over what intervals is it convex? What is the range of the

function?

4. Consider the function f(x) = x3 − 3x. Determine the number of elements in f−1(a)

for various values of a. Determine the maxima and minima of f . Discuss similarly the

function f(x) = x5 − 5x.

5. We have seen that the Taylor polynomial Pk(x) of log(1 + x) is

Pk(x) = x− x2

2
+
x3

3
− · · ·+ (−1)k−1xk

k

and the remainder Rk(x) is
(−1)k−1xk+1

(k + 1)(1 + c)k+1

If −1 < x < 0 then we have no information on c to decide whether or not Rk(x) −→ 0

as k →∞. However if 0 < x < 1 then prove that Rk(x) −→ 0 as k →∞.

6. Prove that on the interval (−1, 1),

log(1 + x) = x− x2

2
+
x3

3
− . . .

Hint: Differentiate and use exercise (1).

7. Use the same idea to prove that on the interval (−1, 1),

tan−1(x) = x− x3

3
+
x5

5
− . . .

8. Prove that if |x| < 1,

(1 + x)α = 1 + αx+ α(α− 1)x2/2! + α(α− 1)(α− 2)x3/3! + . . . .

9. Prove that on the interval (−1, 1),

(tan−1(x))2 = x2 − (1 +
1

3
)
x4

2
+ (1 +

1

3
+

1

5
)
x6

3
− . . .
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10. Prove Leibnitz’ theorem for the nth derivative of a product:

(uv)(n) =

n∑
k=0

(
n

k

)
u(n−k)v(k)

11. The function sin is strictly increasing on (−π/2, π/2). Denote the inverse function by

sin−1 with domain (−1, 1). What is the derivative of sin−1? Compute the nth derivative

of sin−1 x at the origin and write down the Taylor expansion. Show that the function

sin(p sin−1 x) satisfies the Tchebychev’s ODE

(1− x2)y′′ − xy′ + p2y = 0

Hence deduce a series expansion for sin px as a series in powers of sinx. Can you write

down a formula for the nth Tchebychev’s polynomial and its three term recursion for-

mula? What can you say about the zeros of Tn(x)? Do the zeros of Tn+1(x) interlace

the zeros of Tn(x)?

12. Prove the following result. If I is an open interval and f : I −→ R is twice differentiable

at some point p ∈ I,

f ′(p) = 0, f ′′(p) > 0

then show that f has a local minumum at p. Formulate and prove a corresponding

sufficient condition for local maxima. Hint: The first derivative is strictly increasing at

p and hence positive on (p, p+ δ). Use LMVT on [p, p+ δ].

13. Note that in the last exercise we only assumed that the function has a second derivative

at p. Assume more, namely that f is twice differentiable throughout I and the second

derivative is continuous. Then offer a simpler proof of the fact that if f ′(p) = 0 and

f ′′(p) > 0 then f has a local minimum at p.

14. Let f : R −→ R be given by

f(x) = exp(−1/x2), x 6= 0, f(0) = 0.

Show that the function f is differentiable infinitely often on R. Does the Taylor series

for f converge to f in a neighborhood of the origin?

15. Show that for any k,m ∈ N,

lim
x→∞

xm
dk

dxk
exp(−x2) = 0

16. Let S be the set of all C∞ functions f : R −→ R such that

lim
x→∞

xm
dk

dxk
(f(x)) = 0

for all non-negative integers m, k. Show that S is a vector space over the reals. Show

that it is infinite dimensional by exhibiting an infinite linearly independent subset. Is

the function 1/(coshx) in S?
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17. Show that if p(x) is continuous throughout an open interval I and y(x) is a non-trivial

solution of

y′′ + p(x)y = 0

then the zeros of y(x) do not have a limit point in I.

18. Show that if u and v are two solutions of the ODE in the previous exercise then the

function W (x) = u(x)v′(x) − v(x)u′(x) is constant throughout I. Prove that W (x) is

zero if and only if u and v are linearly dependent.

19. Prove that if u and v is a pair of linearly independent solutions of the ODE

y′′ + p(x)y = 0

where p(x) is continuous on I, then between two successive zeros of u there is precisely

one zero of v.

20. Imitate the above idea to show that if u and v are non-trivial solutions of a pair of ODEs

y′′ + p(x)y = 0, y′′ + q(x)y = 0

where q(x) > p(x) throughout I then between two successive zeros of u there is atleast

one zero of v.

21. Use Rodrigues formula to prove that the nth Legendre polynomial has n distinct real

roots in [−1, 1]. Hint: Use Rolle’s theorem. Further deduce that between two zeros of

Pn(x) there is precisely one zero of Pn+1(x).

22. Manipulating power series, obtain estimates of the form

1− cosx

x
≤ ax, x− sinx

x
≤ bx2

valid for all x > 0 with positive constants a and b. Would it be easier to use Taylor series

with remainder terms? Can the L’Hospital’s rule be used for this purpose?

23. Compute using the L’Hospital’s rule, lim
x→e

log(log x)

cos(πe/(2x))

24. Use the previous exercise to show that the function f : R −→ R given by

f(x) =
∞∑
n=1

sinnx

n3

is differentiable and its derivative is the same as the series of derivatives:

∞∑
n=1

cosnx

n2
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Exercises on Integration

1. Suppose that f : [a, b] −→ R is bounded. Show that∫ b

a
f(t)dt

exists if and only if for every ε > 0 there is a δ > 0 such that for every partition P with

mesh less than δ,

U(f, P )− L(f, P ) < ε.

Discuss whether the corresponding result hold for Stieltjes integrals with a monotone

integrator α : [a, b] −→ R. Hint: Suppose the function is integrable. Then, begin with a

partition {a = t0 < t1 < · · · < tn = b} for which U(f, P )−L(f, P ) < ε/2. Now pass to a

refinement by enclosing the points tk by tiny open intervals Jk. We then have two sets

of open intervals (tj−1, tj) and Jk together forming an open cover for [a, b]. Let δ be a

Lebesgue number for this cover.

2. Suppose that f : [a, b] −→ R is Riemann integrable over [a, b] then, in order to compute

the integral it is enough to take a partition Pn of [a, b] into n equal parts and calculate

lim
n→∞

U(f, Pn).

Use the last exercise. Could this result be proved without using the previous exercise?

Is the previous exercise a convenient reformulation of the basic necessary and sufficient

condition for integrability?

3. Prove that f : [a, b] −→ R is Riemann integrable if and only if there is a sequence of

partitions Pn such that

lim
n→∞

(U(f, Pn)− L(f, Pn)) = 0

4. Prove that

(i) lim
n→∞

(n!)1/n

n
=

1

e

(ii) lim
n→∞

( n

n2 + 1
+

n

n2 + 4
+ · · ·+ n

n2 + n2

)
=
π

4

5. Suppose f : [a, b] −→ R is non-negative, f(c) > 0 for some c ∈ [a, b] and is continuous

there. Show that ∫ b

a
f(t)dt > 0.

6. If f is integrable over [a, c] as well as [c, b] then is it integrable over [a, b]. This has been

done in BSc courses for Riemann integrals. Discuss whether this also holds for Stieltjes

integrals.
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7. Is the sum of the infinite series
∞∑
n=1

nx− [nx]

n2

Riemann integrable over [0, 1]?

8. Show that the function f(x) = x sin(1/x) for x 6= 0 and f(0) = 0 is NOT of bounded

variation over [0, 1].

9. Prove that if f and g are integrable functions over I and f ≤ g throughout I then∫
I
f ≤

∫
I
g

Discuss whether the result would hold for improper integrals and Stieltjes integrals of

positive functions with respect to a monotone increasing function.

10. Suppose that f : [0,∞) −→ R is Riemann integrable over [0, T ] for every T > 0 then the

improper integral ∫ ∞
0

f(t)dt

converges if and only given any ε > 0 there exists an n0 > 0 such that∣∣∣ ∫ T

S
f(t)dt

∣∣∣ < ε, for S > T > n0.

Formulate and prove a comparison test for improper integrals.

11. Suppose that the improper intergal ∫ ∞
0

f(t)dt

converges, show that it is not necessary that f(t) −→ 0 as t −→ ∞. Recall that if an

infinite series
∑
an converges then the nth term goes to zero. The corresponding result

for improper integrals fails. Even if we assume that f is non-negative and the improper

integral converges, it is still not true that f(t) −→ 0 as t −→∞.

12. Show that the improper intergals∫ ∞
π

sin t

t
dt,

∫ ∞
π

cos t

t
dt,

∫ ∞
π

sin t√
t
dt,

∫ ∞
π

cos t√
t
dt

all converge but none absolutely. The issue here is that in the integral∫ T

1

sin t

t
dt

there are internal cancellations happening exactly as in the case of

1− 1

2
+

1

3
− 1

4
+ . . .
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keeping the partical sums in control. Demonstrate this by splitting the integral as a sum

of integrals over [π, 2π], [2π, 3π], . . . and using the alternating series test. Show also that

over of these intervals In the absolute value of the integral satisfies

a

n
≤
∣∣∣ ∫

In

sin t

t

∣∣∣ ≤ b

n

for certain fixed constants a and b.

13. Prove that the improper integrals in the last exercise converge using integration by parts

over [π, T ]. The reason why this works is that the integrand (sin t)/t can be written as∫ T

π

d

dt

(∫ t

π
sinudu

)dt
t
.

and the integral ∫ t

π
sinudu

remains bounded while the other factor goes to zero. This idea can be carried over to

the study of the infinite series

∞∑
n=1

sinnx

n
, and

∞∑
n=1

sinnx√
n

Here (like the integral
∫ T
π sinudu of the previous exercise) the partial sums

sinx+ sin 2x+ · · ·+ sinnx

remains bounded for x ∈ (0, π/2) while the other factor 1/n or 1/
√
n goes to zero. To

complete the job we need an analogue of the rule for integration by parts for infinite

series. We do have such an analogue namely the formula for summation by parts (see

below).

14. Let φ(s) be given by

φ(s) =

∫ ∞
0

exp(−st)sin t

t

Show that φ is differentiable on (0,∞) and continuous on [0,∞). Compute the derivative

of φ and hence determine the value of∫ ∞
0

sin t

t
dt.

For proving the continuity of φ apply the mean value theorem to the integral representing

φ(s)− φ(0). However be careful. The “c” in Lagranges Mean-Value theorem applied to

the function g(s) = exp(−st) can depend on t. The integral from 0 to 1 poses no

problems. On [1,∞) the way around the difficulty is to integrate by parts first a few

times to obtain a t3 in the denominator. The problem is typical of how conditionally

convergent (and some oscillatory integrals ought to be dealt with).
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15. Discuss the convergence of the improper integrals∫ ∞
0

sin(t2)dt,

∫ ∞
0

cos(t2)dt

16. Suppose f : [0,∞) −→ R is monotone decreasing and positive, prove that∫ ∞
0

f(t)dt, and

∞∑
n=1

f(n)

behave alike. That is to say, either both converge or both diverge.

17. Suppose that f and g are integrable on an interval I (either as a proper Riemann integral,

or an improper integral or as a Stieltjes integral with respect to a monotone function)

and p, q are conjugate exponents then∫
I
|fg| ≤

(∫
I
|f |p

)1/p(∫
I
|g|q
)1/q

.

This is Hölder’s inequality for integrals. You need to review the proofs of the the result

for lp and lq spaces we proved earlier.

18. Formulate and prove a version of Minkowski inequality for integrals.

19. On the set C[a, b] define for 1 ≤ p <∞,

‖f‖p =
(∫ b

a
|f(t)|pdt

)1/p

Show that d(f, g) = ‖f − g‖p is a metric on C[a, b]. Show that this metric space is not

complete. Remark: It is unpleasant to work with incomplete metric spaces and one needs

to complete them. The process is analogous to the construction of R from Q and the

resulting space is unique (in a suitable sense). The resulting complete metric space is

Lp[a, b]. But these would be studied in greater detail in MA 408 course.

20. Suppose that f : [0, 1] −→ R is Riemann integrable and φ : R −→ R is convex then show

that

φ
(∫ 1

0
f(t)dt

)
≤
∫ 1

0
(φ ◦ f)(t)dt

Hint: The result is completely trivial for the case of a “linear function” φ(t) = at + b.

Can you think of some theorem on convex functions that we can use? Also observe that

the result holds if φ is defined on any open interval containing the range of f .

21. Prove that if f : [0, 1] −→ R is continuous (this can be weakened but we at the moment

we are not interested in generalities) and 1 ≤ p < q then

‖f‖p ≤ ‖f‖q ≤ sup{|f(t)| : t ∈ [0, 1]}

Further show that

lim
p→∞

‖f‖p = sup
0≤t≤1

|f(t)|

This is the reason why the right hand side is denoted by ‖f‖∞

46



22. Prove that ∫ π/2

0
sinn θdθ =

n− 1

n

∫ π/2

0
sinn−2 θdθ

Now use the pair of inequalities

sin2n θ ≤ sin2n−1 θ, sin2n−1 θ ≤ sin2n−2 θ

to obtain Wallis product formula for π:

π

2
=

2 · 2
1 · 3

4 · 4
3 · 5

6 · 6
5 · 7

. . .

The infinite product is the limit of finite products obtained by truncations.

23. Explain how to compute ∫ ∞
0

exp(−x2)dx

without involving double integrals. Hint: What happens to (1 ± x2

n )n when n tends to

infinity? Try out the intergal of one of these over [0,
√
n]. The other must be considered

over [0,∞].

24. Compute the integral

I(s) =

∫ ∞
0

exp(−ax2) cos(xs) dx,

where a and s are real positive. Obtain an ODE for I(s).

25. Discuss for convergence the integral∫ ∞
0

exp
(
− t− 1

t

) dt√
t

and show that the value of the integral is
√
πe2.

26. Summation by parts. Prove the following result which is the discrete analogue of the

rule for integration by parts.

Given two sequences (Un) and (An),

n∑
j=1

Uj(Aj −Aj−1) +
n∑
j=1

Aj−1(Uj − Uj−1) = UnAn − U1A1.

The result hardly warrents a proof. One can see this by inspection. Here are two

applications

(i) Suppose that
∑
un is a series with bounded partial sums and (an) is a monotone

decreasing sequence of positive reals converging to zero then the series
∑
anun

converges.

(ii) Suppose that
∑
un is a convergent series and (an) is a monotone decreasing sequence

of positive reals then the series
∑
anun converges.
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Hints: Let Un be the nth partial sum of
∑
un. Apply the rule for summation by parts.

Use these results to prove that
∑

(sinnx)/n converges for all x ∈ (0, π/2) but at π/4 for

instance the convergence is conditional.

27. Suppose that
∑
anx

n is a power series with unit radius of convergence and sum f(x).

Further assume that
∑
an converges to say s. Denoting by Sn the nth partial sum of∑

an, use the summation by parts formula to prove that

f(x) = (1− x)
∞∑
n=0

snx
n.

Next, since (1− x)
∑
xn = 1 multiplying by s and subtracting we get

f(x)− s = (1− x)
∞∑
n=0

(sn − s)xn

Let ε > 0 be arbitrary. Choose n0 such that

|sn − s| < ε/2, n ≥ n0.

Then,

f(x)− s = (1− x)

n0∑
n=0

(sn − s)xn + (1− x)
∞∑

n=n0+1

(sn − s)xn

Let us estimate the second piece

|(1− x)
∞∑

n=n0+1

(sn − s)xn| ≤
ε

2
(1− x)

∞∑
n=n0

xn < ε/2

Now we select δ > 0 such that

|(1− x)

n0∑
n=0

(sn − s)xn| < ε/2, |1− x| < δ

so conclude that

lim
x→1−

f(x) = s =
∑

an.

This is Abel’s limit theorem.

28. Show that

1− 1

2
+

1

3
− · · · = log 2, and 1− 1

3
+

1

5
− · · · = π/4

29. Improper Integral Test: Suppose f : [1,∞) −→ R is a positive monotone decreasing

function, then show that the infinite series
∑
f(n) converges if and only if the improper

integral

∫ ∞
1

f(t)dt converges.
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Exercises: Uniform Convergence and Beta-Gamma functions.

1. Let fn : [0, 1] −→ R be given by

fn(x) = xn(1− x)

Does the sequence fn converge uniformly?

2. Discuss for convergence the series

∞∑
n=1

(−1)n−1

n

(
1 +

1

3
+ · · ·+ 1

2n− 1

)
.

Prove that the sum of the series equals π2/16.

3. Assume that fn : [a, b] −→ R is a sequence of functions converging uniformly to [a, b] and

α : [a, b] −→ R is monotone increasing. Show that fn ∈ R(α) for each n then f ∈ R(α).

4. Does the series
∞∑
n=1

sinnx

n

converge uniformly on compact subsets of (0, π/2)? Use the rule for summation by

parts to show that the sequence of partial sums Sn(x) is uniformly Cauchy. Thus Sn(x)

converges uniformly. Does S′n(x) even converge pointwise? By imitating this, can you

formulate and prove a “uniform” version of the Dirichlet’s test for convergence?

5. Discuss for convergence (absolute and uniform) the series

∞∑
n=1

(−1)n(x2 + n)

n2

Hinh: For any sequence of constant functions pointwise convergence implies uniform

convergence !

6. Show that if a power series
∑
an(z − p)n has radius of convergence R and converges

absolutely on one point of its boundary then the series converges uniformly on the closed

disc {z ∈ C : |z − p| ≤ R}.

7. Consider the binomial series

(1− x)α = 1− αx+
α(α− 1)

2!
x2 − . . .

Show using Stirling’s approximation formula, if α = 1/2 then the series converges ab-

solutely at x = ±1 and hence uniformly on |x| ≤ 1. Prove that on [−1, 1] there is a

sequence of polynomials converging uniformly to |x|. Further prove that on any interval

[a, b] there is a sequence of polynomials converging to |x− c| uniformly.
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8. Let P = {a = t0 < t1 < · · · < tn = b} be a fixed partition of [a, b] and V be the vector

space of all piecewise linear continuous functions w.r.t P namely, continuous functions

f : [a, b] −→ R such that the restriction of f to each [tj−1, tj ] is given by

f(x) = ajx+ bj , tj−1 ≤ x ≤ tj .

Continuity demands that ajtj + bj = aj+1tj + bj+1 for j = 1, 2, . . . , n − 1. What is the

dimension of the vector space V ?

9. Show that

1, t, |t− tj |, j = 1, 2, 3, . . . , n− 1

belong to V . Do they form a basis for V ?

10. Prove that any continuous, piecewise linear function on [a, b] is the uniform limit of a

sequence of polynomials. Deduce that any continuous function on [a, b] is the uniform

limit of a sequence of polynomials ! This is the famous Weierstrass’s approximation

theorem. Hint: If f is continuous on [a, b] then uniform continuity implies for every ε > 0

there exists a continuous piecewise linear function g such that

sup
a≤x≤b

|f(x)− g(x)| < ε

2

Now approximate g by a polynomial using the preceeding exercises.

11. Show that the set of polynomials is dense in the metric space C[a, b] with the sup norm.

Further show that the metric space C[a, b] is separable and complete. It is a fact that if

X is a compact metric space then C(X) is separable but we shall not discuss this here

in this course.

12. Suppose that f is a continuous function on [a, b] such that∫ b

a
f(t)tndt = 0, n = 0, 1, 2, . . .

then f(t) = 0 for all t ∈ [a, b].

13. Let X be a compact metric space and M be the set of real valued continuous functions

on X vanishing at a given point p ∈ X. Show that M is an ideal in the ring C(X).

Conversely show that if M is any maximal ideal in C(X) then there exists p ∈ X such

that all the members of M vanish at p.

14. Suppose X is a compact metric space and f : X −→ (0, 1) is continuous then the sequence

of functions

1− (1− f)n

converges uniformly to the constant function 1. Can you explain what is happening

geometrically? How does the graph of 1− (1− t)n look for large n?
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Deduce that if A is an algebra of continuous functions separating points of X the the

following are equivalent:

(i) A contains all the constant functions.

(ii) There is NO point p ∈ X such that all the functions of A simultaneously vanish at

p.

Thus the version of Stone’s theorem given in Rudin is equivalent to the version we have

proved in class.

15. Show that if fn : [0,∞) −→ R (n = 1, 2, 3, . . . ) is a sequence of functions converging

uniformly to f : [0,∞) −→ R then it is NOT necessary that

lim
n→∞

∫ ∞
0

fn(x)dx =

∫ ∞
0

lim
n→∞

fn(x)dx

16. Show that if a > 0, the improper integral∫ ∞
0

e−tta−1dt

converges and its value is denoted by Γ(a). You need to worry about what happens near

the lower end of the integral when 0 < a < 1. Prove that if a > 0 then

Γ(a+ 1) = aΓ(a), Γ(1) = 1, Γ(1/2) =
√
π.

17. Note that the function Γ(x) cos(4πx) also satisfies the properties of the last exercise.

Hence it is not true that if a function f : (0,∞) −→ (0,∞) satisfies these properties then

f(x) = Γ(x). The situation can be compared with the following exercise:

Construct a function φ : R −→ R such that φ(x + y) = φ(x) + φ(y) but there is NO

constant a such that φ(x) = ax. If in addition φ is continuous then it is true that

φ(x) = ax for some constant a. What is the situation with Γ(x)? What additional

conditions must we impose on a function f : (0,∞) −→ (0,∞) such that the conditions

f(x+ 1) = xf(x) and f(1) = 1 imply that f(x) = Γ(x)? We shall answer this presently.

18. Let ε > 0 show that there exists a n0 such that∫ n

n0

(
1− t

n

)n
ta−1dt < ε/3, for all n ≥ n0.

19. Use Dini’s theorem to prove that

Γ(a) = lim
n→∞

∫ n

0

(
1− t

n

)n
ta−1dt.

Compute the integral appearing on the right hand side. The resulting formula is called

the Gauss’s product formula for the gamma function:

Γ(a) = lim
n→∞

n!na

a(a+ 1)(a+ 2) . . . (a+ n)
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Remark: This may appear as a nice application of Dini’s theorem. But Dini’s theorem

can easily be avoided by using a more important result namely the Monotone convergence

theorem from Lebesgue theory. So what is the use of Dini’s theorem? Why is it important

in MA 403?? There is one place where it is used namely in the proof of the Cartan-Thullen

theorem in the theory of functions of several complex variables. Besides this the Dini

theorem is important because it is the simplest representative of a group of theorems all

of which are of the following type:

For sequences of functions (fn) coming from certain spaces and with monotonocity hy-

pothesis, a very weak form of convergence of (fn) implies a strong form of convergence.

A notable example is the Harnack type convergence theorem, theorems on Subharmonic

functions (complex analysis/PDEs) and sequences of convex functions.

20. Prove that the function f : (0, 1) −→ R given by

f(x) = Γ(x)Γ(1− x) sinπx

has finite limits as x approaches 0 and 1.

Remark: It turns out that f(x) is constant and has value π. The formula

Γ(x)Γ(1− x) =
π

sinπx

is called Euler’s reflection formula.

21. Use the Gauss’s product formula to prove the Duplication formula of Legendre:

2a−1Γ
(a

2

)
Γ
(a+ 1

2

)
=
√
πΓ(a)

22. Use the Gauss’ product formula to prove that log(Γ(a)) is convex on (0,∞). Provide

also a second and direct proof of log-convexity using Hölder’s inequality.

23. The Bohr-Mollerup theorem (You will be a guided through the proof in class): Suppose

that f : (0,∞) −→ (0,∞) is a function such that

(i) f(x+ 1) = xf(x)

(ii) f(1) = 1 and

(iii) log(f(x)) is convex.

Then f(x) = Γ(x).

Proof: It is enough to prove this for the range 0 < x < 1. Then

n < n+ x < n+ 1 (i)
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So find a λ ∈ [0, 1] such that n+ x = λn+ (1− λ)(n+ 1). Since log f is convex,

f(x+ n) ≤ (f(n))λ(f(n+ 1))1−λ

From this obtain an inequality of the type

(x+ n)f(x)/n ≤ n!nx

x(x+ 1)(x+ 2) . . . (x+ n)

Now we need another inequality in order to apply the sandwich theorem. Note that we

started out with (i) where x+n was flanked on either side by n and n+ 1. Now we need

an inequality with n flanked between n+ x and n− 1 + x namely

n+ x < n+ 1 < n+ x+ 1

Again find a λ ∈ [0, 1] such that n + 1 = λ(n + x) + (1 − λ)(n + x + 1) and repeat the

same steps and you get another inequality. The sandwich theorem now can be used to

show:

lim
n→∞

n!nx

x(x+ 1)(x+ 2) . . . (x+ n)
(ii)

exists and equals f(x). So if an f satisfying the conditions of the theorem exists then it

must be the limit in (ii). Since Γ(x) satisfies these conditions we get the result. We have

incidentally given yet another proof of the Gauss’s product formula.

24. The Beta Function: Suppose that x, y are both positive real numbers, the integral∫ 1

0
tx−1(1− t)y−1dt

converges and the value is denoted by B(x, y). The notation is due to Binet (1839).

It has since then been called the beta function. Prove the following (here x and y are

positive):

(i) B(x, y) = B(y, x)

(ii) B(x+ 1, y) +B(x, y + 1) = B(x, y)

(iii) xB(x, y + 1)− yB(y, x+ 1) = 0

(iv) B(x, y) =
(x+ y

y

)
B(x, y + 1)

25. Prove the following relations (assume x > 0 and y ≥ 1).

(i) lim
n→∞

nxB(x, y + n) = Γ(x). Explain how to relax the assumption y ≥ 1 to y > 0.

(ii) B(x, y)B(x+ y, n) = B(x, y + n)B(y, n)

(iii) Use (i) and (ii) to establish the Famous Beta-Gamma relation namely

Γ(x)Γ(y) = B(x, y)Γ(x+ y).
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The remarkable feature about this proof is that it avoids the use of multiple integrals and

uses only single integrals. The argument is due to Burkhardt 3 though vestiges of such

an argument can be traced back to Dirichlet’s Vorlesungen über die Lehre von einfachen

und mehrfachen bestimmten Integralen, Druck und Verlag von Friederich Vieweg und

Sohn, Braunschweig, 1904.

26. Prove that

Γ(x)Γ(1− x) =

∫ ∞
0

tx−1dt

1 + t
, 0 < x < 1.

Discuss how to evaluate the integral on the right hand side for rational values of x ∈ (0, 1)

by reducing it to the integral of a rational function. The integral of any rational function

can in principle be computed via partial fractions but the computation can get messy

unless you are clever ! For instance try evaluating the integral for x = 1/8. Putting

t1/8 = u we are are led to computing ∫ ∞
0

du

1 + u8

In principle, and with some cleverness, the Euler’s reflection formula can be verified for

rational values of x. For irrational values one appeals to continuity. This approach is

due to Dirichlet (See his Vorlesungen cited above).

27. Prove that

B(p, q) =

∫ ∞
−∞

e(p−q)x + e(q−p)x

(ex + e−x)p+q
dx

28. Stirling’s formula for the gamma function:

lim
x→∞

Γ(x+ 1)

xxe−x
√

2πx
= 1.

As an application prove that if α > 0 then the binomial series

(1− x)α = 1− αx+
α(α− 1)

2!
x2 − . . .

Converges absolutely when x = ±1. You may also need Euler’s reflection formula.

Deduce that the series converges uniformly on [−1, 1].

29. Integral representation for the Bessel functions. We begin with the series

J0(x) =

∞∑
n=0

(−1)n

n!2

(x
2

)2n
.

Compute the integral ∫ π

−π
sin2n θdθ

3Zur Theorie der Gammafunktionen, Jahrbericht der Deutschen Mathematiker Vereinigung, 22 (1913) 223-

224.
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to show that

J0(x) =
1

2π

∞∑
n=0

(−1)n

(2n)!

∫ π

−π
(x sin θ)2ndθ

Explain why the summation and integral can be exchanged and deduce that

J0(x) =
1

2π

∫ π

−π
cos(x sin θ)dθ

30. Prove using the differentiation theorem for power series that

xJn+1(x) = nJn(x)− xJ ′n(x).

Use induction to prove that

Jn(x) =
1

2π

∫ π

−π
cos(x sin θ − nθ)dθ. (i)

31. Here is an alternate argument: We start with the two identities(
xpJp(x)

)′
= xpJp−1(x),

(
x−pJp(x)

)′
= −xpJp+1(x).

These follow easily from the differentiation theorem for power series. The series for

Bessel functions converge for all complex values of x. Now for convenience we declare

Jn(x) = (−1)nJn(x) and let

G(x, t) =

∞∑
n=−∞

tnJn(x) (ii)

This function is called the generating function for the sequence {Jn(x) : n ∈ Z}. We now

let t vary over a fixed compact subset L of C − {0} and x vary over a compact subset

K of R. Discuss whether for a fixed t 6= 0, the series can be differentiated term by term.

First obtain an estimate |Jn(x)| ≤ exp |x|. Obtain a first order ODE for G and then

show that

G(x, t) = exp
(xt

2
− x

2t

)
(iii)

Put t = exp(iθ) in (ii), multiply by exp(−imθ) and integrate term by term and prove (i)

32. Let f : [a, b] −→ R be continuous. Show that

lim
n→∞

∫ b

a
f(x) cosnxdx = 0, lim

n→∞

∫ b

a
f(x) sinnxdx = 0

Hint: The result is true if f(x) is a polynomial. Use the Weierstrass’ approximation

theorem. The result is called the Riemann Lebesgue lemma.

33. Show that if f : [a, b] −→ R is Riemann integrable then given any ε > 0, there is a

continuous function g : [a, b] −→ R such that∣∣∣ ∫ b

a
f(x)dx−

∫ b

a
g(x)dx

∣∣∣ < ε.

Extend the Riemann Lebesgue lemma to Riemann-integrable functions.
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34. Prove that if ∫ ∞
0
|f(t)|dt

converges, show that

(i)

lim
ξ→∞

∫ ∞
0

f(t)e−itξdt = 0.

This is the Riemann Lebesgue Lemma for Fourier transforms.

(ii)

lim
ξ→∞

∫ ∞
0

f(t)e−stdt = 0.

This is the Riemann Lebesgue Lemma for Laplace transforms.

First you may begin by assuming that f is continuous.
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Exercises: Ascoli-Arzela theorem:

1. We have proved that if X is compact metric and S is a subset of C(X) which is equicon-

tinuous and pointwise bounded then S is pre-compact. Show conversely that if S is

precompact then S is equicontinuous and uniformly bounded. Hint: Let ε > 0 be arbi-

trary. Pick an ε/3 net for the closure of S.

2. Suppose X is compact metric and S is a subset of C(X) that is pointwise bounded and

equi-continuous then it is uniformly bounded. This follows at once from Ascoli-Arzela

theorem but give a direct proof by taking ε = 1 and a suitable δ net of X.

3. Let F : [0, 1]× [0, 1] −→ R be a continuous function and for each f ∈ C[0, 1], Tf denotes

the function

Tf(x) =

∫ 1

0
F (x, y)f(y)dy.

Show that the family {Tf : sup0≤t≤1 |f(t)| ≤ 1} is equi-continuous and uniformly

bounded.

4. Let us consider the set of all solutions on the fixed interval [0, 1] of

y′′ + k2y = f, y(0) = 1, y′(0) = 0,

as f varies over C[0, 1] with absolute value bounded by 1. Show that the family is

equicontinuous.
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