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Abstract

The Cauchy-Binet formula is one of the most important and substantially non-trivial
result on the theory of determinants. We provide an interesting geometric proof of this
important result obtaining it as a corollary of a new proof of the formulas for the volume
of a k-parallelpiped in n—dimensional space.
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81 Introduction

The Cauchy-Binet formula asserts that if A is a m x n matrix and B is an n X m matrix where
m < n, then
Det(AB) = sum of the principal m x m minors of BT AT (1.1)

the superscript T° denoting the transpose. The formula is of an ancient vintage going back
more than two centuries (see [8]). The case m = 2 which reads:

Z(aibj —a;b;)? = ||al]?|b]|* = (a1by + ... + anbn)?, (1.2)

1<J

(the norm being the Euclidean norm) is perhaps even older and is sometimes known as the
“Lagrange identity”.

Despite its importance, the result, with a few exceptions is conspicuously absent in most
linear algebra books except ones a slant towards combinatioral applications such as Marcus
and Minc [7]. Among the exceptional books containing an account of it are the classic works
of [2], [6] and the recent and important book of Denis Serre [9] - rich in analytic content. Thus
it is not surprising that the result has resurfaced often with remarkable proofs many with a
combinatorial flavor. In the recent paper [1] the author has given a proof of the result with
numerous references and some further ramifications as well. The expression on the right hand
side of (1.1) should suggest an approach through determining eigen-values of a certain matrix
which is the approach followed here.



A closely related issue is the formula for the volume of the k—parallelpiped spanned by

k vectors vi,vg,..., vy in R™. The volume is defined inductively as follows. Denoting by

Vol(vy,Vva,...,Vi_1) the volume of the (k—1) parellelpiped spanned by the first £ — 1 vectors,
we define

Vol(vy, v, ..., vi) = |lag|| Vol(vi, va, ..., Vik_1) (1.3)

where q; = v — px and py is the orthogonal projection of v on the linear subspace spanned
by vi,Vva,...,Vi_1. It is not apriori clear that the volume so defined is independent of the
ordering of the vectors but it follows as a consequence of the formula for the volume in terms
of the Gram determinant or Grammian namely,

G(vy,...,vi) = Det((v4,v;)) (1.4)
It follows at once from (1.1) that

Vol(vy,...,vi) = G(vy,..., Vi) := sum of squares of the principal m x m minors of M* M
(1.5)
where M denotes the n X k matrix given by

M = [vy, ..., Vg
The right hand side of (1.5) is usually denoted by
Vi Ava AL AV (1.6)

The expression (1.5) is “quadratic” in nature and arises by taking A = B = M in (1.1).
The latter being “bilinear” in nature, we could recover (1.1) from (1.5) through polarization.
Thus it suffices to prove (1.5) and in this paper we do this geometrically thereby providing yet
another proof of the Cauchy-Binet formula. In [5] the author has discussed (1.5) in the light
of singular value decomposition of M and writes the volume as the product of the singular
values. For completeness we also provide a proof (with minimal details) that the volume of
the k—parallelpiped is the square root of the Gram determinant.

The importance of (1.5) in analysis becomes transparent if we recall the definition of the
k—volume of an immersed k— dimensional manifold in R", given parametrically by a smooth
map

P I—>Rn, (tl,tg,...,tk) |—>(I)(t17t2,...,tk), (].7)

of rank k£ where I is an open set in R¥. The k— volume is given by

/\/G(¢tl,®t2,...,(I)tk)dtldtg . dty. (1.8)
I

It is of immediate concern to decide whether the formula given by (1.8) is invariant under a
diffeomorphic change of parametrization:

veod— 1, (s1,...,8) = (t1,...,tx) = U(s1,...,Sk)
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This is at once clear if we use the expression (1.6) since

Ot 2
chtl /\CI)t2 /\.../\CI)tkH2 = H\Ijtl /\\Ith /\"'/\\Ijtk”2<Det<a_;)>

whereas the use of the alternate expression given by the Grammian has the disadvantage of
having to work in the ambiant space R™ in which the k—dimensional manifold is immersed.
Formulas (1.1) and (1.5) could be of potential use in the study of higher curvatures of space
curves [3], [4].

82 Proofs of the results:

For completeness we briefly indicate the proof that the volume of the k— parallelpided is given
by (1.4)

Theorem 2.1. The volume of the k—parallelpiped spanned by vy, vs,..., Vv, equals the
Gram determinant G(vy,va,...,vy) := Det((v;,v;)). In particular it is independent of the
ordering of the vectors. Also, the Gram determinant is non-negative.

Proof: Using the notation explained in the introduction, we show that
||q]‘||2:G(Vl,VQ,...,Vj)/G(Vl,VQ,...7Vj_1), j:2,3,...7k37 (21)

This is clear for j = 2. Proceeding by induction on j, we have the following system of equations
characterizing q;:
q;, =V; — (clvl + v+ ...+ Cj,1Vj,1), (22)

where the coefficients are subject to the constraints:
(qj,vi) =0, i=1,2,...,5—1, (2.3)

Taking the dot product of (2.2) with v; at once leads to a system of linear equations for the
coefficients which can be determined by Crammer’s rule. Finally using the obvious fact

la;|I> = (v, q;)

we quickly get by using the expression for the ¢; obtained via Crammer’s rule, we obtain (2.1)
and the theorem follows from the inductive definition (1.3).
We now prove the important formula (1.5).

Theorem 2.2 For vectors vy, vy, ..., v,y € R", we have
G(Vl,Vg,...,Vk>IH(Vl,VQ,...,Vk) (24)
where we have used the notation H(vy,va,...,Vvy) to denote the right hand side of (1.5).
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Proof: Observe that both the functions G and H satisfy the following properties
(i) They are both invariant under permutation of the vectors.

(ii) They both vanish if the set of vectors are linearly dependent. For the Grammian this
follows from theorem (2.1).

(iif) If v; is replaced by c¢v; both get scaled by a factor of ¢*.
(iv) If v; is replaced by v; + cv; with i # j then both G and H remain invariant.
We proceed by assuming that the vectors are linearly independent and
H(vi,va,...,vi) = H(|vi|ui,va, ..., vi) = [|[Vi|*H(ui, va, ..., vi) = G(vi)H(uy, v, ..., vi).

where u is the unit vector vi/||vy||. Replace vy by q2 = va — (vo, ui)u; and we get using (iv),
(iii) and equation (2.1) that

H(ulvv% S 7Vk) = G(Vl)”qQHQH(ulauQa s 7Vk) = G(V17V2)H(u17u27 S 7Vk)'

where, uy = q2/||qz||. Proceeding thus we finally get

H(uy,va, ..., vi) = G(v1, Vo, ..., Vi) H(ug, ug, ... uy). (2.5)
where {uy, ..., u) is an orthonormal k—frame in R™. To complete the proof we merely have
to show that

H(uj,ug,...,u;) = 1. (2.6)

The symmetric n X n matrix
A=[ug,uy, ..., ulu,uy,. .., ul”

has rank k& and so zero is an eigen-value with geometric (and hence algebraic) multiplicity
n —k. It is also clear that the vectors uy, us, ..., u; are all eigen-vectors of A with eigen-value
one. Thus one is an eigen-value with geometric (and hence algebraic) multiplicity k. Thus
the k—th symmetric function of the eigen-values of A is one which in turn is the sum of the
k x k principal minors of A and in this in turn agrees with the sum of the squares of all the
k x k minors of [uy,ug,...,u;]. Thus (2.6) has been established and the proof of the theorem
is complete.

Corollary 2.3 (Cauchy-Binet): if A is a m x n matrix and B is an n X m matrix where
m < n, then

Det(AB) = sum of squares of the principal m x m minors of BT A”



Proof: Successive polarization of the quadratic form to the associated bilinear form in the
variables vi, ..., vy (taken one at a time) would produce the result.
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