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Among the higher transcendental functions, Euler’s gamma function enjoys the previlage
of being most popularly studied. The text [4] contains a short but elegant account of it in
the real domain via its characterization due to Bohr and Mollerup. Among its properties the
most striking is the reflection formula of Euler:

Γ(a)Γ(1 − a) = π csc πa, 0 < a < 1, (1)

which is usually proved using Cauchy’s residue theorem or the infinite product expansion
for sin πa. Richard Dedekind wrote his PhD dissertation ([2], [3]) on the gamma function
under the supervision of C. F. Gauss in which he has given an interesting but elementary
real variables proof of (1) by solving an initial value problem for a second order ordinary
differential equation (7). Surprisingly, this proof seems to have escaped notice completely
though it appears among the many exercises in [1]. The purpose of this brief note is to pop-
ularize Dedekind’s proof. For historical details and other approaches to the gamma function
see [5] and the references therein. The exchange of integrals and differentiation under the
integrals carried out here fall within the scope of Fubini’s theorem and Lebesgue’s dominated
convergence theorem.

Recalling the classical beta-gamma identity ([4], p. 193), we denote B(a, 1 − a) by B(a)
and (1) is equivalent to proving

B(a) =

∫
∞

0

xa−1

1 + x
dx = π csc πa. (2)

The proof is broken up into easy lemmas, the first of which recasts (2) in a symmetric
form:

Lemma 1: (i) B(a) =

∫
1

0

xa−1 + x−a

1 + x
dx =

1

2

∫
∞

0

xa−1 + x−a

1 + x
dx. (3)

(ii) The function B(a) has a local minima at a = 1/2 and the minimum value is π. The
function B′(a) is strictly increasing on (0, 1).
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Proof: Break the integral (2) into two integrals, over (0, 1) and (1,∞). In the latter put
x = 1/t and the result follows. To prove (ii), differentiate the identity B(a) = B(1 − a) and
substitute a = 1/2 to get B ′(1/2) = 0. The second derivative is strictly positive on (0, 1)
so that the first derivative is strictly increasing, vanishing exactly once at 1/2. Finally the
integral B(1/2) is elementary and its value is seen to be π.

A rescaling of the variable of integration in (3) produces:

Lemma 2: (i) wa−1B =

∫
∞

0

xa−1dx

x + w
(4)

(ii) w−aB =

∫
∞

0

xa−1dx

1 + xw
(5)

Proof: Setting x = t/w in (2) gives (i) and the substitution x = tw transforms (2) into (ii).

Equation (3) suggests adding (4) and (5), dividing through by 1/(w + 1) and integrating
over (0,∞). The easy calculation results in:

Lemma 3: B2 =

∫
∞

0

xa−1 log xdx

x − 1
(6)

We are now ready to obtain the ODE for B(a).

Lemma 4: B(a) satisfies the following initial value problem for ODEs:

BB′′ = (B′)2 + B4, B(1/2) = π, B′(1/2) = 0. (7)

Proof: Owing to the symmetry B(a) = B(1 − a) there is no loss of generality in assuming
that 0 < a < 1/2. Subtract (5) from (4), divide by (w − 1) and integrate with respect to w
over (0,∞) to get

B

∫
∞

0

wa−1 − w−a

w − 1
dw = 2

∫
∞

0

xa−1 log xdx

x + 1
= 2

dB

da
. (8)

But from (6), the left hand side of the last equation is exactly

B

∫ a

1−a

B2(t)dt,

and (8) assumes the form

B

∫ a

1−a

B2(t)dt = 2
dB

da
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which, in view of the symmetry B(t) = B(1 − t) may be rewritten as

B

∫ a

1/2

B2(t)dt =
dB

da
(9)

Differentiating (9) with respect to a gives immediately (7).

Theorem: For 0 < a < 1, Γ(a)Γ(1 − a) = π csc πa

Proof: The differential equation (7) admits two elementary integrations as we now show.
We work in the in the interval [1/2, 1) and denote B ′ by C. Since B′ > 0 on (1/2, 1) we may
regard C as a function of B. Using the chain rule,

B′′ =
dC

da
=

dC

dB

dB

da
= C

dC

dB
.

This transforms (7) into a simple linear ODE for C2 namely,

1

2

dC2

dB
=

C2

B
+ B3, C(1/2) = 0.

Since C > 0 on (1/2, 1), this gives

C =
dB

da
= B

√
B2 − π2 (a > 1/2)

and the result follows upon integration.
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