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Abstract. In this paper we obtain explicit lower bounds for the radius of conver-

gence of the Painlevé expansions of the Korteweg-de-Vries equation around a movable
singularity manifold S in terms of the sup norms of the arbitrary functions involved.

We use this estimate to prove the well-posedness of the singular Cauchy problem on
S in the form of continuous dependence of the meromorphic solution on the arbitrary

data.

§1 Introduction. Given a holomorphic manifold S described locally by

(1.1) S : x− ψ(t) = 0,

the Painlevé expansion of the Korteweg de Vries (KdV) equation

(1.2) wt = wxxx + wwx

is a formal series solution of the of the form

(1.3) w(x, t) =
∞∑

n=0

un(t)(x− ψ(t))n+ν ,

where ν = −2, and u4(t), u6(t) are arbitrary functions.
Such series expansions were suggested by J.Weiss, M.Tabor and G.Carnevale [7]

as a practical test of the Painlevé property for partial differential equations (PDEs),
i.e. the property that all solutions are single-valued around all noncharacteristic
holomorphic given singularity manifolds. The Painlevé property has become a
widely used indicator for integrability (see [1, 3]) meaning exact solvability through
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an associated linear problem. The KdV equation is well known to be integrable.
Hence it is widely believed that it should possess the Painlevé property.

The convergence of the Painlevé expansions has been discussed in [4, 6]. However,
the issue of estimating their radii of convergence has not been addressed. Here, we
prove a lower bound on the radius of convergence of the Painlevé expansion for
the KdV equation and use it to prove the well-posedness of the singular Cauchy
problem with respect to the arbitrary data given on S.

To describe the well-posedness result in terms of such data we define a collective
name for them:

Definition. The WTC data for the KdV equation is the set {ψ(t), u4(t), u6(t)} of
arbitrary functions describing the Painlevé expansion (1.3).

We restrict our attention to the space of holomorphic WTC data topologized by
uniform convergence on compact sets.

Our results give a lower bound for the radius of convergence in terms of the
sup-norm of the WTC data and, moreover, show that the meromorphic function
given by the (convergent) Painlevé expansion varies continuously, in the sup-norm,
as the WTC data are varied. Before we state our main results, we need to recall
the construction and the convergence result for the Painlevé expansion of the KdV
equation (see Refs [4] or [7]).

Theorem 1.1. Given an analytic manifold S : x − ψ(t) = 0, with ψ(0) = 0, and
two arbitrary analytic functions

(1.4) lim
x→ψ(t)

( ∂

∂x

)4

[w(x, t)(x− ψ(t))2], lim
x→ψ(t)

( ∂

∂x

)6

[w(x, t)(x− ψ(t))2]

there exists in a neighbourhood of (0, 0) a meromorphic solution of the KdV equation
(1.2) of the form

w(x, t) =
−12

(
x− ψ(t)

)2 + h(x, t)

where h is holomorphic.

The expansion (1.3) can be written in terms of the new variable X := x− ψ(t)
as

(1.5) w(x, t) =
∞∑

n=0

un(t)X
n−2.

Substitution into the KdV equation shows that the coefficients un must satisfy the
recursion relation

(1.6) Q(n)un = u′n−3 − (n− 4)ψ′(t)un−2 −
n−1∑

j=1

(j − 2)ujun−j (n > 0),

where Q(n) := (n+1)(n−4)(n−6). It is easily checked that u4 and u6 are arbitrary
and

(1.7) u0 = −12, u1 = u3 = 0, u2 = −ψ′(t), u5 =
ψ′′(t)

6
.

The convergence of the series may then be established by the majorant method of
Ref. [7] or the iteration method of Ref.[4].

The main results of this paper are stated below as Theorems A and B.
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Theorem A (Radius of Convergence of the Series for w). Given WTC data
ψ(t), u4(t), u6(t) analytic in the ball B2ρ+ǫ(0) = {t ∈ C : |t| < 2ρ+ ǫ}, let

(1.8) M = sup
|t|=2ρ

{1, |ψ(t)|, |u4(t)|, |u6(t)|}.

The radius of convergence Rρ = R of the power series (1.5) satisfies

(1.9) R ≥
min{1, ρ}

10M
.

Notice that, because of the Maximum Principle, the supremum over |t| = 2ρ is
the same as the supremum over |t| < 2ρ. To describe the well-posedness result we
need to be slightly more precise in defining our notation for domains. If the WTC
data are given on a connected bounded open set Ω in C and furthermore δ > 0 we
define Ωδ as

Ωδ = {t ∈ Ω : dist(t,C− Ω) ≥ 3δ}.

We will always assume that δ is small enough that the set Ωδ is a connected set.
Note that if t ∈ Ωδ then the closed disk of radius 2δ centred at t is contained in
Ωδ/3. We denote by Mδ, Bδ the numbers

Mδ = sup
t∈Ωδ/3

{1, |ψ(t)|, |u4(t)|, |u6(t)|},

Bδ =
10Mδ

min{1, δ}
,

given by Theorem A and take

Oδ = {(x, t) ∈ C
2 : t ∈ Ωδ and |x− ψ(t)| < B−1

δ },

O =
⋃

δ>0

Oδ .

Theorem B (Continuity as a Function of WTC Data).

(1) Let
(
ψj(t), u4,j(t), u6,j(t)

)
be a sequence of holomorphic WTC data defined

on a bounded connected domain Ω ∈ C and converging uniformly on com-
pact subsets to

(
ψ(t), u4(t), u6(t)

)
. Assume ψj(0) = 0 for every j. Let

wj be the solution of the equation (1.2) given by (1.5) with WTC data(
ψj(t), u4,j(t), u6,j(t)

)
. Then there exists a polydisk

P (r1, r2) := {(x, t) : |x| < r1, |t| < r2} ⊂ N ,

where N :=
⋂
j O(ψj, u4,j, u6,j) ∩O(ψ, u4, u6).

(2) The sequence of functions (x−ψj(t))2wj are all defined on a common open
subdomain G ⊂ N , and converge uniformly on compact subsets of G to
(x− ψ(t))2w, where w is the solution of (1.2) with data

(
ψ(t), u4(t), u6(t).

We prove these two theorems in sections 2 and 3 respectively.
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§2 Proof of Theorem A – Estimate of Radius of Convergence.
In this section, we prove Theorem A. The method we use is a combination of a

majorant method and iteration on a shrinking sequence of disks. Let v := X2w.

Proof. We estimate the sequence of numbers sup|t|=ρ |un(t)|. Define the sequence
Rn as follows:

(2.1) Rn =
6ρ

π2

(π2

3
−

n∑

j=1

1

j2

)
.

Clearly ρ < Rn < Rn−1 < 2ρ for all n and Rn → ρ. Define

(2.2) dn = Rn−1 −Rn =
6ρ

π2n2
, A := π2/6ρ =⇒

1

dn
= An2.

We consider the sequence of recurrence formulae

Q(n)Mn = An2Mn−3 +AnMMn−2 +
n−1∑

j=1

(j − 2)Mn−jMj (n ≥ 7),

(2.3)

Q(n)Un = An2Un−3 + AnMUn−2 +

n−1∑

j=1

(j − 2)Un−jUj .

(2.4)

For 1 ≤ i ≤ 6, choose Mi = Ui = sup|t|=Ri
|ui(t)|. We determine Mn, Un using the

equations (2.3, 2.4).

Claim. Mi ≤ Ui for all i.

Proof of the claim is by induction on n. It is true for 1 ≤ i ≤ 6 by the choice of
Ui.

Q(n)Un = An2Un−3 + AnMUn−2 +

n−1∑

j=1

(j − 2)Un−jUj , using (2.4),

≥ An2Mn−3 +AnMMn−2 +

n−1∑

j=1

(j − 2)Mn−jMj = Q(n)Mn

completing the induction.

Claim. Mn ≥ sup|t|=Rn
|un(t)|.

We prove this by induction on n. It is true for 0 ≤ i ≤ 6 by definition. By
Cauchy’s estimate we get

sup
|t|=Rn

|u′n−3(t)| ≤
(

sup
|t|=Rn−3

|un−3(t)|
)
/(Rn−3 −Rn) ≤

Mn−3

(Rn−1 −Rn)
.

∴ sup
|t|=Rn

|u′n−3(t)| ≤
Mn−3

dn
= An2Mn−3, and

sup
|t|=Rn

|ψ′(t)| ≤ sup
|t|=2ρ

|ψ(t)|/(2ρ−Rn) ≤
M

2ρ−R1
=
M

A
.
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Now the recursion relation defining Mn gives

Q(n)Mn =
Mn−3

dn
+
nMMn−2

2ρ−R1
+
n−1∑

j=1

(j − 2)Mn−jMj

≥ sup
|t|=Rn

|u′n−3(t)|+ n sup
|t|=Rn

|ψ
′

(t)| sup
|t|=Rn−2

|un−2|

+
n−1∑

j=1

(j − 2) sup
|t|=Rn−j

|un−j | sup
|t|=Rj

|uj |

≥ sup
|t|=Rn

[
|u

′

n−3(t)|+ (n− 4)|ψ
′

(t)||un−2|+
n−1∑

j=1

(j − 2)|un−juj |
]

≥ sup
|t|=Rn

∣∣∣u′n−3 − (n− 4)ψ
′

(t)un−2 −
n−1∑

j=1

(j − 2)un−juj

∣∣∣

∴ Q(n)Mn ≥ sup
|t|=Rn

Q(n)|un(t)|

completing the induction.

Claim. If we choose K, B such that

(2.5) B ≥ max{M, 10
√
M/ρ, 3ρ−1/3, π(M/ρ2)1/5,

2

ρ
}, K = 1/4

then Un ≤ nKBn for all n.

In the following, we will use the self-evident facts

n2/Q(n) < 3,
n(n− 1)

(n− 4)(n− 6)
≤ 14 for n ≥ 7.

The choice of K, B and the values of un for 1 ≤ n ≤ 6 implies that Un ≤ nKBn

for 1 ≤ n ≤ 6. We will prove this later. Assume inductively that the estimate is
true for all i < n. Now, for n ≥ 7, we get

Q(n)Un = An2Un−3 + AnMUn−2 +

n−1∑

j=1

(j − 2)Un−jUj

≤ nKBn
(
An(n− 3)/B3 +

(n− 2)AM

B2
+K

n∑

j=1

j2(n− j)/n
)

Therefore, we get

Un ≤ nKBn
( An2

Q(n)B3
+

AM

B2(n− 4)(n− 6)
+

Kn(n− 1)

12(n− 4)(n− 6)

)

≤ nKBn
(3A
B3

+
A

B(n− 4)(n− 6)
+

7K

6

)

≤ nKBn
(3A
B3

+
π2

6ρB(n− 4)(n− 6)
+

1

3

)

≤ nKBn
(3A
B3

+
2

3ρB
+

1

3

)
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To complete the induction we need to show that

(1) 3A/B3 + 2/(3ρB) + 1/3 ≤ 1
Proof: From (2.13) follows 2ρ−R1 = 6ρ/π2.

3A

B3
=

3π2

6B3ρ
<

5

ρB3
<

1

3
,

because B > 3ρ−1/3. Also,

2

3ρB
≤

1

3

because B > 2/ρ.
(2) Un ≤ nKBn for n = 1, . . . , 6. Since u1 = u3 = 0 and |u4(t)| ≤ M ,

|u6(t)| ≤ M , and B ≥ M ≥ 1 we need to consider only n = 2, 5. From the
definitions of u2, u5 we get

sup
|t|=R2

|u2(t)| = sup
|t|=R2

|ψ
′

(t)|

≤
2M

R1 −R2
=

4Mπ2

3ρ

<
16M

ρ
< 2KB2,

sup
|t|=R5

|u5(t)| = sup
|t|=R5

|ψ′′(t)|

6

≤
M

3(R4 −R5)(2ρ−R1)

=
25Mπ4

108ρ2
< 5KB5.

(Note, in the latter, we have used Cauchy’s estimate twice on two concentric disks.)
So we get for all n, Un ≤ nKBn completing the induction. The arithmetic-
geometric series

∑∞
n=1 nK(XB)n dominates the series

∑∞
j=1 |uj(t)|X

j uniformly
in the set

{(X, t); |X | < B−1, |t| ≤ ρ} ⊂ C
2.

Since M ≥ 1 and ρ0 := min{1, ρ} ≤ 1, the required estimate (2.7) on B holds if we
take B = 10M/ρ0, completing the proof of the theorem. �

Remark. Note that the majorant
∑∞
n=1 nK(XB)n has a double pole on its circle

of convergence. This is consistent with the suspected double pole of the solution as
the next singularity away from the initial manifiold (1.1).

§3 Proof of Theorem B — Continuity With Respect To The Arbitrary
Functions.

In this section, we prove Theorem B. Recall the notation defined for domains
Oδ, O in the Introduction. For emphasis we may sometimes use the notations
Oδ(ψ, u4, u6), Bδ(ψ, u4, u6), Mδ(ψ, u4, u6), or simply Oδ(ψ), Bδ(ψ),Mδ(ψ).
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Lemma 3.1. Given Ω ⊂ C containing the origin and ψ, u4, u6 holomorphic in Ω
the meromorphic solution obtained in Theorem [1.1] exist in the domain O.

Proof. Pick a δ arbitrary and small. Let t ∈ Ωδ. Then the closed disk D2δ(t) is
contained in Ωδ/3. By maximum modulus theorem,

max
D2δ(t)

{1, |ψ(τ)|, |u4(τ)|, |u6(τ)|} ≤Mδ.

The proof of Theorem A can be generalised by replacing all suprema over |t| = Ri
by suprema over |t− a| = Ri. This shows that the solution is defined on {(x, τ) :
τ ∈ D2δ(t), |x−ψ(τ)| < B−1

δ } and since the Bδ is the same for all the disks D2δ(t)
as t varies over Ωδ, the solution is defined on

⋃

t∈Ωδ

{(x, τ) : τ ∈ D2δ(t), |x− ψ(τ)| < B−1
δ } ⊃ Oδ.

Since δ > 0 is arbitrary, the solution is defined on
⋃
δ>0 Oδ = O.

This lemma is used below to enable us to work in any polydisk in Oδ.

Proof of Theorem.

(1) Proof of the first part of the theorem:
Since we have ψ(0) = 0 it follows that O contains the origin. Choose

δ > 0 such that 0 ∈ Ωδ and choose a polydisk P (a1, a2) whose closure is
contained in Oδ. Since ψj(t), u4,j(t), u6,j(t) converge uniformly on compact
subsets of Ω, there exists a J = Jδ such that

1 ≤ sup
j

sup
Ωδ/3

{1, |ψj(t)|, |u4,j(t)|, |u6,j(t)|} ≤ Jδ

Let

H =
10Jδ

min{1, δ}
.

There exists j0 such that

sup
Ωδ

{|ψj(t)− ψ(t)|, |u4,j(t)− u4(t)|, |u6,j(t)− u6(t)|} <
1

3H
∀j ≥ j0

Now choose a b2 > 0 with b2 < a2 such that |ψ(t)| < 1
3H for all |t| < b2 and

now if |x| < 1
3H , |t| < b2,

|x− ψj(t)| ≤ |x|+ |ψ(t)|+ |ψj(t)− ψ(t)| < 3
1

3H
=

1

H
∀j ≥ j0

But note that

H =
10Jδ

min{1, δ}
≥

10Mδ(ψj)

min{1, δ}
= Bδ(ψj).

This shows that if we take b1 = 1
3H

and b2 as above then P (b1, b2) ⊂ Oδ(ψj)

for all j ≥ j0. Finally, since ∩j0j=1Oδ(ψj) is an open set containing the
7



origin it follows that there exists c1, c2 such that P (c1, c2) ⊂
⋂j0
j=1 Oδ(ψj)

and then ri = min{ai, bi, ci} (i = 1, 2) suffices. The lower bound on the
radius of convergence given in Theorem A and the uniform convergence of
the WTC data imply that ri 6= 0. This finishes the proof of the first part
of the theorem.

(2) Proof of the second part of the theorem:
To prove that the convergence is uniform on compact subsets we proceed

as follows. Let C be a compact subset of G := P (r1, r2). Choose a compact

subset C̃ of G such that C ⋐ C̃.1 By the maximum modulus theorem we
have

sup
(x,t)∈C

|x− ψ(t)| < β < γ < sup
(x,t)∈C̃

|x− ψ(t)|

for some pair of numbers β and γ. Uniform convergence of ψj gives a j0
such that for all j ≥ j0,

sup
(x,t)∈C

|x− ψj(t)| < β < γ < sup
(x,t)∈C̃

|x− ψj(t)|

Since C̃ is compact, there is a δ > 0 such that C̃ ⊂ Oδ. (Note Oδ are nested
domains.) In Oδ(ψj) we have |x − ψj(t)| < Bδ(ψj)

−1 and consequently
Bδ(ψj)

−1 > γ for all j ≥ j0. Let un,j be given by the recursion formula
(1.6) with data ψj, u4,j, u6,j. Then we have the estimates:

sup
t∈Ωδ(ψj)

|un,j(t)| ≤ nK(Bδ(ψj))
n < nKγ−n ∀j ≥ j0,

∴ sup
(x,t)∈C

|un,j(t)||x− ψj(t)|
n < nKβnγ−n ∀j ≥ j0.

Meanwhile by induction on n and (1.6), it follows easily that

lim
j→∞

un,j → un, lim
j→∞

u
′

n,j → u
′

n unif. comp. sets.

The remainder of the proof is now a consequence of the following result
which is a special case of Lebesgue dominated convergence theorem.

A Dominated Convergence Theorem. Suppose that f : N× N× C → C such
that

1) limj→∞ f(n, j, v) converges uniformly in v to a limit denoted by f(n, v).
2) supj,v |f(n, j, v)| ≤ g(n) and

3)
∑∞
n=1 g(n) converges

Then,

lim
j→∞

∞∑

n=1

sup
v

|f(n, j, v)− f(n, v)| = 0

In particular
∑∞
n=1 f(n, j, v) converges to

∑∞
n=1 f(n, v) uniformly on C.

Apply the above to the case (with v = (x, t))

f(n, j, v) = un,j(x− ψj(t))
n, f(n, v) = un(x− ψ(t))n, g(n) = nK(

β

γ
)n

This finishes the proof of the second part of the theorem. �

1The notation C ⋐ C̃ means closure of C is compact and is contained in the interior of C̃.
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§4 Conclusion. In this paper we have obtained an explicit lower bound for the
radius of convergence of the Painlevé expansion of solutions of the KdV equation
and used this estimate to prove the continuous dependence of solutions on the
WTC data. Note that these cannot be given in the usual way i.e. as one would
give Cauchy data on a regular manifold. The question of how to relate WTC data to
regular Cauchy data elsewhere still remains open. The methods used in this paper
readily extend to other integrable PDEs that are analytic in the dependent variable
u and its derivatives, including those in 2 + 1-dimensions such as the Kadomtsev-
Petviashvili equation.

A proof that the KdV equation possesses the Painlevé property is still lacking
in the literature. The major problem is the absence so far of a method of global
analysis in Cn that applies to the whole space of solutions.
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