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1. Introduction

Our objective in these notes is to present Stanley’s solution of the Anand-Dumir-Gupta (ADG)
conjecture concerning enumeration of doubly stochastic matrices or magic squares. Let N denote
the set of nonnegative integers and let P denote the set of positive integers. An n× n matrix M
is called a magic square if its entries are in N and the sum of entries in any row or column is a
given integer r. The number r is called the line sum of M. It is clear that

H1(r) = 1 and H2(r) = r + 1.

MacMahon [2] and independently Anand-Dumir-Gupta [1] showed that the number of 3×3 magic
squares with line sum r is given by

H3(r) =
(
r + 4

4

)
+
(
r + 3

4

)
+
(
r + 2

4

)
.

Inspired by these formulas they proposed the following conjectures in 1966. [1]:

Conjecture 1.1 (Anand-Dumir-Gupta). Fix n ≥ 1. Then

(1) Hn(r) ∈ C[r].
(2) degHn(r) = (n− 1)2.

(3) Hn(i) = 0 for i = −1,−2, . . . ,−(n− 1).
(4) Hn(−n− r) = (−1)n−1Hn(r) for all r.

We will see that the above four assertions about Hn(r) are equivalent to the following:
∞∑
r=0

Hn(r)λr =
h0 + h1λ+ · · ·+ hdλ

d

(1− λ)(n−1)2+1
,

where h0, h1, . . . , hd are integers, d = (n− 1)2 + 1− n, h0 + h1 + · · ·+ hd 6= 0 and hd−i = hi for
i = 0, 1, . . . , d. Stanley made the additional conjectures that
(5) hi ≥ 0 for all i and
(6) h0 ≤ h1 ≤ · · · ≤ h[d/2].
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Stanley settled (1)-(5) in 1973 [4]. A geometric proof based on Ehrhart polynomials of integral
polytopes appears in Stanley’s Red Book [5]. The conjecture (6) is still open.

2. Linear homogeneous Diophantine equations

Let xij ; i, j = 1, 2, . . . , n be indeterminates. The entries of an n × n magic square are solutions
to the following system of linear homogeneous Diophantine equations:

x11 + x12 + · · ·+ x1n =
n∑
j=1

xij for i = 2, 3 . . . , n. (1)

x11 + x12 + · · ·+ x1n =
n∑
i=1

xij for j = 2, 3 . . . , n.

Thus the problem of counting magic squares is a special case of counting nonnegative integer so-
lutions of a system of linear Diophantine equations. Let Φ be an r×n Z-matrix. Let x1, x2, . . . , xn
be indeterminates. Let X denote the column vector (x1, x2, . . . , xn)t. We are interested in the
N-solutions to the system ΦX = 0. We gather all the solutions in the semigroup

EΦ = {β ∈ Nn : Φβ = 0}.

Let k be any field. For β = (β1, β2, . . . , βn)t, put xβ = xβ1
1 x

β2
2 · · ·x

βn
n . With EΦ we can associate

the semigroup ring
RΦ = k[xβ : β ∈ EΦ].

Stanley studied the semigroup ring Rµ where µ is the (2n−2)×n2 coefficient matrix of the system
(1). In particular he showed that the ring Rµ is Gorenstein and calculated its canonical module
and thus its a-invariant. We shall see that these observations are enough to settle the conjectures
(1)-(5). Let us begin by observing the

Theorem 2.1. The semigroup ring RΦ is a finitely generated k-algebra.

Proof. Let I denote the ideal in R = k[x1, x2, . . . , xn] generated by the set

P = {xβ : 0 6= β ∈ EΦ}.

Since R is Noetherian, I is generated by a finite subset G = {xδ1 , xδ2 , . . . , xδt} of P . We claim
that

RΦ = k[xδ : xδ ∈ G].

Indeed, Any xβ ∈ RΦ can be written as xβ = xδixγ for some i and xγ ∈ R. Thus γ = β− δi ∈ EΦ.

The argument can be repeated for xγ , eventually yielding an expression for xβ in terms of xδi for
i = 1, 2, . . . , t. �

As far as the structure of Rµ is concerned, we have more precise information due to
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Theorem 2.2 (Birkhoff-von Neumann Theorem). Every n× n magic square is an N-linear
combination of the n× n permutation matrices.

Thus Rµ is generated by n! degree n monomials. Let [Rµ]r denote the k-subspace of Rµ
generated by the monomials of degree nr. These monomials are in one-to-one correspondence
with magic squares of line sum r. Moreover, Rµ = ⊕∞r=0[Rµ]r. Thus

H(Rµ, r) = dimk[Rµ]r = Hn(r).

This observation will eventually lead to the conclusion that Hn(r) is a polynomial in r for all r.
But for the time being we can see that it is so for all large values of r in view of the Hilbert-Serre
theorem.

Lemma 2.3. If ΦX = 0 has a positive solution, then dimRΦ = n− rank Φ.

Proof. We show that the vectors β1, β2, . . . , βd ∈ EΦ are Q-linearly independent if and only if
xβ1 , xβ2 , . . . , xβd are algebraically independent over k. Suppose β1, β2, . . . , βd ∈ EΦ are linearly
independent over Q. Let ∑

α

aα(xβ1)α1(xβ2)α2 . . . (xβd)αd = 0,

for certain aα ∈ k and distinct vectors α = (α1, . . . , αd) ∈ Nd. Since β1, β2, . . . , βd are linearly
independent over Q, the vectors α1β1 + · · ·+ αdβd are distinct. Hence aα = 0 for all α.

Conversely let xβ1 , xβ2 , . . . , xβd be algebraically independent over k. Let α1, . . . , αd ∈ Q such
that α1β1 + · · ·+αdβd = 0. Without loss of generality we may assume that α1, α2, . . . , αp > 0 and
αp+1, . . . , αd < 0. Then

α1β1 + · · ·+ αpβp = αp+1βp+1 + · · ·+ αdβd.

This yields the algebraic dependency relation xα1β1 · · ·xαpβp = xαp+1βp+1 · · ·xαdβd .

Let α ∈ Pn ∩ EΦ. Let d = n − rank Φ. Pick linearly independent solutions β1, β2, . . . , βd ∈ Zn

of ΦX = 0. Let t ∈ Q+. If α− tβ1, α− tβ2, . . . , α− tβd are linearly dependent over Q, then there
exist a1, a2, . . . , ad ∈ Z, not all zero such that

a1(α− tβ1) + a2(α− tβ2) + · · ·+ ad(α− tβd) = 0.

We have unique rational numbers b1, b2, . . . , bd such that α = b1β1 + b2β2 + · · · + bdβd. Put
a =

∑d
i=1 ai. Then

∑d
i=1(abi−tai)βi = 0. Let ap 6= 0. Then t = abp/ap. Hence by selecting t ∈ Q+

sufficiently small, we get a contradiction. This proves that δ1 = α − tβ1, δ2 = α − tβ2, . . . , δd =
α− tβd are linearly independent solutions in Pn. Hence xδ1 , . . . , xδd are algebraically independent
elements of RΦ. �

Corollary 2.4. The function Hn(r) is a polynomial in r for large r of degree (n− 1)2.

Proof. The ring Rµ is a standard graded k-algebra. The rth graded component of it is generated by
monomials of degree rn corresponding to magic squares of line sum r. Hence Hn(r) is a polynomial
for large r. We show that

dimRµ = (n− 1)2 + 1.
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By the above lemma, dimRµ = nullityµ. Note that to construct a magic square, we may assign
any nonnegative values to the variables xij , for i, j = 1, 2, . . . , (n − 1) and a value for x1n will
determine the rest of the entries. Thus nullityµ = (n− 1)2 + 1.

�

Proposition 2.5 (MacMahon [2], Anand-Dumir-Gupta [1]). The number of 3 × 3 magic
squares with line sum r is given by

H3(r) =
(
r + 4

4

)
+
(
r + 3

4

)
+
(
r + 2

4

)
.

Proof. By the above corollary, the dimension of the semigroup ring R generated over a field k

by the monomials corresponding to the six 3 × 3 permutation matrices is (n − 1)2 + 1 = 5. Let
S = k[y1, y2, . . . , y6]. Put

M1 =

 1 0 0
0 1 0
0 0 1

 , M2 =

 0 0 1
1 0 0
0 1 0

 , M3 =

 0 1 0
0 0 1
1 0 0

 ,

M4 =

 1 0 0
0 0 1
0 1 0

 , M5 =

 0 1 0
1 0 0
0 0 1

 , M6 =

 0 0 1
0 1 0
1 0 0

 .
Note that M1 +M2 +M3 = M4 +M5 +M6. Let f = y1y2y3−y4y5y6. Hence S/(f) ' R. Therefore

H(S/(f), λ) = (1− λ3)/(1− λ)6 = (1 + λ+ λ2)/(1− λ)5.

This yields the desired formula.

�

3. Cohen-Macaulay Property of RΦ

In this section we show that RΦ is a Cohen-Macaulay ring. This is done by showing that it is
a ring of invariants of an algebraic torus acting linearly on a polynomial ring. A well-known
theorem of Hochster then implies that it is Cohen-Macaulay .

Write the r×n matrix Φ = [γ1, γ2, . . . , γn] where γi is the ith column vector of Φ. Let k∗ denote
the multiplicative group of k. Consider the algebraic torus

T = {diag(uγ1 , uγ2 , . . . , uγn) : u = (u1, u2, . . . , ur) ∈ (k∗)r} .

T acts on R = k[x1, x2, . . . , xn] via the automorphisms τu : xi −→ uγixi, i = 1, 2, . . . , n. Let
β ∈ Nn. Then

τu(xβ) = (uγ1x1)β1(uγ2x2)β2 · · · (uγnxn)βn

= uβ1γ1+β2γ2+···+βnγnxβ
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Hence τu(xβ) = xβ if and only if β ∈ EΦ. Hence RΦ is the ring of invariants of the torus T acting
linearly on R. By Hochster’s theorem [3] RΦ is Cohen-Macaulay .

We can now dispose the conjecture (5) of Stanley. Since Rµ is Cohen-Macaulay homogeneous
ring of dimension d = (n− 1)2 + 1, there exists an hsop a for Rµ of elements of degree one. Hence

F (Rµ, λ) =
F (Rµ/(a), λ)

(1− λ)d
.

Hence the numerator of the above Hilbert series is a polynomial with positive coeficients.

4. Macaulay’s theorem for Gorenstein graded rings

The purpose of this section is to recall the basic definitions and facts about Gorenstein graded
rings and provide a proof of Macaulay’s theorem concerning their Hilbert series.

Let R be an N-graded ring. Let M be the category of Z-graded R-modules. Let M = ⊕Mn and
N = ⊕Nn ∈M. An R-linear map f : M −→ N is a morphism inM if f(Mn) ⊆ Nn for all n ∈ Z.
By M(n) we mean the module M with grading defined by [M(n)]m = Mm+n for all m ∈ Z. Put

∗Hom(M,N)n = {f : M −→ N(n)} and ∗Hom(M,N) =
⊕
n∈Z

∗Hom(M,N)n.

It is easy to check that if M is finitely generated then ∗Hom(M,N) = Hom(M,N).

Proposition 4.1. Let A = k[x1, x2, . . . , xs] be polynomial ring over a field k. Let I be a homoge-
neous ideal of A. Let A/I be Cohen-Macaulay . Then

Exti(A/I,A) 6= 0 ⇐⇒ i = h = ht(I).

Proof. By Auslander-Buchsbaum formula pd(A/I) = depthA−dimA/I = s− (s−h) = h. Write
a graded minimal resolution of A/I as an A-module:

0 −−−−→ Aβh −−−−→ Aβh−1 −−−−→ · · · −−−−→ Aβ1 −−−−→ A −−−−→ A/I −−−−→ 0.

Thus Exti(A/I,A) = 0 for i > h. Since A is Cohen-Macaulay , Exti(A/I,A) = 0 for i < h. �

Definition 4.2. The A-module KA/I = Exth(A/I,A) is called the canonical module of A/I.
The ring A/I is called Gorenstein if KA/I ' A/I(a). for some a ∈ Z. The integer a is called
the a-invariant of A/I.

Theorem 4.3. Put R = A/I and d = dim(R). Let the degree of xi = ei ∈ P for i = 1, 2, . . . , s.
Then as rational functions of λ

F (KR, λ) = (−1)d F (R, 1/λ) λ−
∑s
i=1 ei .

Proof. Write a minimal free resolution of R as an A-module:

0 −−−−→ Mh
φh−−−−→ Mh−1

φh−1−−−−→ · · · −−−−→ M1
φ1−−−−→ M0

φ0−−−−→ R −−−−→ 0.
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Apply Hom(−, A) to the above resolution to get the complex:

0 −−−−→ Hom(M0, A)
φ∗0−−−−→ Hom(M1, A)

φ∗1−−−−→ · · ·
φ∗h−−−−→ Hom(Mh, A) −−−−→ 0.

Thus KR ' Hom(Mh, A)/Im(φ∗h). Hence we have the following minimal free resolution for KR as
an A-module:

0 −−−−→ Hom(M0, A)
φ∗0−−−−→ · · ·

φ∗h−−−−→ Hom(Mh, A) −−−−→ KR −−−−→ 0.

It is easy to see that for integers m and n,

F (M(n), λ) = λ−nF (M,λ) and Hom(A(m), A) ' A(−m).

Let rank(Mi) = βi, and Mi = ⊕βij=1A(−gij) for i = 0, 1, . . . , h. Put D(λ) =
∏s
p=1(1 − λep) and

Ni(λ) =
∑βi

j=1 λ
gij . Now we calculate the Hilbert series of R and KR from their minimal free

resolutions written above. Put e =
∑s

i=1 ei.

F (Mi, λ) =
βi∑
j=1

F (A(−gij), λ) =

∑βi
j=1 λ

gij∏s
p=1(1− λep)

=
Ni(λ)
D(λ)

.

Hence F (R, λ) =
∑h

i=0Ni(λ)/D(λ)(−1)i. To find F (KR, λ), note that

F (KR, λ) =
h∑
i=0

(−1)i+hF (M∗i , λ) =
h∑
i=0

(−1)i+hF (A(gij), λ) =
h∑
i=0

(−1)i+hNi(λ−1)/D(λ).

Since D(λ−1) = (−1)sD(λ)λ−e, we get

F (R, 1/λ) =
h∑
i=0

(−1)i
Ni(λ−1)
D(λ−1)

= (−1)s−hλeF (KR, λ) = (−1)dλeF (KR, λ).

�

Corollary 4.4 (Macaulay’s Theorem). If the ring R = A/I is Gorenstein of dimension d then
for some σ ∈ Z,

F (R, 1/λ) = (−1)dλσF (R, λ).

If R is standard Gorenstein with F (R, λ) = (h0 + h1λ+ · · ·+ hgλ
g)/(1− λ)d, and hg 6= 0, then

(1) hi = hg−i, for all i = 0, 1, . . . , g.
(2) σ = d− g.
(3) If σ ≥ 1, then H(n) = dimRn is a polynomial P (n) for all n,

(a) P (−i) = 0 for all i = 1, 2, . . . , (σ − 1), and
(b) P (n) = (−1)d−1P (−σ − n) for all n ∈ Z.

Proof. (1) and (2): Put e =
∑s

i=1 ei. Suppose R is Gorenstein. Then KR ' R(a), for some a ∈ Z.
Hence

F (KR, λ) = λ−aF (R, λ) = (−1)dλ−eF (R, 1/λ).

Hence F (R, λ) = λa−e(−1)dF (R, 1/λ). Now let R be standard Gorenstein. Write

F (R, λ) = (h0 + h1λ+ h2λ
2 + · · ·+ hgλ

g)/(1− λ)d
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where hg 6= 0. Then

F (R, 1/λ) = (−1)dλd−g(h0λ
g + h1λ

g−1 + · · ·+ hg)/(1− λ)d = λe−a(−1)dF (R, λ).

Hence d− g = e− a = σ and hi = hg−i for all i = 0, 1, . . . , g.
(3) We know that if σ ≥ 1, then H(n) is a polynomial for all n ∈ Z and as dimRn = 0 for all
n < 0, P (n) = 0 for all n = −1,−2, . . . ,−(σ − 1), and P (−σ) 6= 0. We have for all n ≥ −(σ − 1),

P (n) = h0

(
n+ d− 1
d− 1

)
+ h1

(
n+ d− 2
d− 1

)
+ · · ·+ hg

(
d− 1 + n− g

d− 1

)
.

Now use the fact that hi = hg−i for all i = 1, 2, . . . , g, and
(
n
p

)
= (−1)p

(
p−n−1

p

)
, as polynomials,

P (n) =
g∑
i=0

hi

(
d− 1 + n− i

d− 1

)

=
g∑
i=0

hg−i

(
d− 1− (d− 1 + n− i)− 1

d− 1

)
(−1)d−1

=
g∑
i=0

hi

(
g − i− n− 1

d− 1

)
(−1)d−1

=
g∑
i=0

hi

(
d− σ − i− n− 1

d− 1

)
(−1)d−1

= (−1)d−1P (−σ − n).

�

Definition 4.5. The vector (h0, h1, . . . , hg) is called the h-vector of the standard graded algebra
R. If the condition hi = hg−i is satisfied for all i = 0, i, . . . , g then we say that the h-vector of R
is symmetric.

Example 4.6. The symmetry of the h-vector of a standard graded Cohen-Macaulay algebra
R does not imply that R is Gorenstein. We construct an example. Consider the ideal I =
(xyz, xw, zw) of the polynomial ring A = k[x, y, z, w]. The ideal I is generated by the maximal
minors of the matrix

M =
[

0 z x

−w −yz 0

]
.

A resolution of R = A/I as an A-module is:

0 −−−−→ A(−3)⊕A(−4)
f−−−−→ A(−3)⊕A(−2)2 g−−−−→ A −−−−→ R −−−−→ 0,

where the maps f and g are defined as

f ([r, s]) = [r, s]M and g ([r, s, t]) = rxyz − sxw + tzw.

It can be shown easily that the above sequence is a minimal resolution of R. Hence by Auslander-
Buchsbaum formula, depthR = depthA−pdR = 4−2 = 2 = dimR. Hence R is Cohen-Macaulay.
However it is not Gorenstein as the above resolution shows that rankKR = 2. The Hilbert series
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of R can be found from the resolution and it turns out to be (1 + 2λ + λ2)/(1 − λ)2. Hence the
h-vector of R is symmetric, although it is not Gorenstein.

Remark: The principal result of [6] shows that the symmetry of the h-vector implies Gorenstein
property provided R is a Cohen-Macaulay domain.

5. A sketch of Stanley’s solution

By Corollary 4.4, we need to show that the degree of the Hilbert series of Rµ is −n and it is
Gorenstein. By the Grothehdieck-Serre difference formula, the degree of the Hilbert series of RΦ

is the integer a(RΦ) = max{n : Hd(RΦ)n 6= 0}.

Theorem 5.1 ( Stanley, [4] ). (1) Hd(RΦ) = k[xβ : β ∈ EΦ, and β < 0].
(2) KRΦ

= k[xβ : β ∈ EΦ, and β > 0].
(3) If γ = (1, 1, . . . , 1) ∈ EΦ, then KRΦ

= xγRΦ. Hence in this case, RΦ is Gorenstein.

For the case of magic squares, the n× n magic square Jn whose each entry is 1 is the smallest
positive solution and by the description of Hd(RΦ), the a-invariant of Rµ is −n. Hence The
degree of its Hilbert series is −n. It proves that Hn(r) is a polynomial for all r > −n. Moreover
Hn(−n) 6= 0 and

Hn(−1) = Hn(−2) = · · · = Hn(−(n− 1)) = 0.

By Corollary 4.4, we conclude that

Hn(r) = (−1)(n−1)2
Hn(−r − n) = (−1)n−1Hn(−r − n).

for all n.
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