STANLEY'S SOLUTION OF THE ADG-CONJECTURE

J. K. VERMA

1. Introduction

Our objective in these notes is to present Stanley's solution of the Anand-Dumir-Gupta (ADG) conjecture concerning enumeration of doubly stochastic matrices or magic squares. Let \mathbb{N} denote the set of nonnegative integers and let \mathbb{P} denote the set of positive integers. An $n \times n$ matrix M is called a magic square if its entries are in \mathbb{N} and the sum of entries in any row or column is a given integer r. The number r is called the line sum of M. It is clear that

$$
H_{1}(r)=1 \text { and } H_{2}(r)=r+1 .
$$

MacMahon [2] and independently Anand-Dumir-Gupta [1] showed that the number of 3×3 magic squares with line sum r is given by

$$
H_{3}(r)=\binom{r+4}{4}+\binom{r+3}{4}+\binom{r+2}{4} .
$$

Inspired by these formulas they proposed the following conjectures in 1966. [1]:
Conjecture 1.1 (Anand-Dumir-Gupta). Fix $n \geq 1$. Then
(1) $H_{n}(r) \in \mathbb{C}[r]$.
(2) $\operatorname{deg} H_{n}(r)=(n-1)^{2}$.
(3) $H_{n}(i)=0$ for $i=-1,-2, \ldots,-(n-1)$.
(4) $H_{n}(-n-r)=(-1)^{n-1} H_{n}(r)$ for all r.

We will see that the above four assertions about $H_{n}(r)$ are equivalent to the following:

$$
\sum_{r=0}^{\infty} H_{n}(r) \lambda^{r}=\frac{h_{0}+h_{1} \lambda+\cdots+h_{d} \lambda^{d}}{(1-\lambda)^{(n-1)^{2}+1}},
$$

where $h_{0}, h_{1}, \ldots, h_{d}$ are integers, $d=(n-1)^{2}+1-n, h_{0}+h_{1}+\cdots+h_{d} \neq 0$ and $h_{d-i}=h_{i}$ for $i=0,1, \ldots, d$. Stanley made the additional conjectures that
(5) $h_{i} \geq 0$ for all i and
(6) $h_{0} \leq h_{1} \leq \cdots \leq h_{[d / 2]}$.

[^0]Stanley settled (1)-(5) in 1973 [4]. A geometric proof based on Ehrhart polynomials of integral polytopes appears in Stanley's Red Book [5]. The conjecture (6) is still open.

2. Linear homogeneous Diophantine equations

Let $x_{i j} ; i, j=1,2, \ldots, n$ be indeterminates. The entries of an $n \times n$ magic square are solutions to the following system of linear homogeneous Diophantine equations:

$$
\begin{align*}
x_{11}+x_{12}+\cdots+x_{1 n} & =\sum_{j=1}^{n} x_{i j} \text { for } i=2,3 \ldots, n . \tag{1}\\
x_{11}+x_{12}+\cdots+x_{1 n} & =\sum_{i=1}^{n} x_{i j} \text { for } j=2,3 \ldots, n .
\end{align*}
$$

Thus the problem of counting magic squares is a special case of counting nonnegative integer solutions of a system of linear Diophantine equations. Let Φ be an $r \times n \mathbb{Z}$-matrix. Let $x_{1}, x_{2}, \ldots, x_{n}$ be indeterminates. Let X denote the column vector $\left(x_{1}, x_{2}, \ldots, x_{n}\right)^{t}$. We are interested in the \mathbb{N}-solutions to the system $\Phi X=0$. We gather all the solutions in the semigroup

$$
E_{\Phi}=\left\{\beta \in \mathbb{N}^{n}: \Phi \beta=0\right\} .
$$

Let k be any field. For $\beta=\left(\beta_{1}, \beta_{2}, \ldots, \beta_{n}\right)^{t}$, put $x^{\beta}=x_{1}^{\beta_{1}} x_{2}^{\beta_{2}} \cdots x_{n}^{\beta_{n}}$. With E_{Φ} we can associate the semigroup ring

$$
R_{\Phi}=k\left[x^{\beta}: \beta \in E_{\Phi}\right] .
$$

Stanley studied the semigroup ring R_{μ} where μ is the $(2 n-2) \times n^{2}$ coefficient matrix of the system (1). In particular he showed that the ring R_{μ} is Gorenstein and calculated its canonical module and thus its a-invariant. We shall see that these observations are enough to settle the conjectures (1)-(5). Let us begin by observing the

Theorem 2.1. The semigroup ring R_{Φ} is a finitely generated k-algebra.

Proof. Let I denote the ideal in $R=k\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ generated by the set

$$
P=\left\{x^{\beta}: 0 \neq \beta \in E_{\Phi}\right\} .
$$

Since R is Noetherian, I is generated by a finite subset $G=\left\{x^{\delta_{1}}, x^{\delta_{2}}, \ldots, x^{\delta_{t}}\right\}$ of P. We claim that

$$
R_{\Phi}=k\left[x^{\delta}: x^{\delta} \in G\right] .
$$

Indeed, Any $x^{\beta} \in R_{\Phi}$ can be written as $x^{\beta}=x^{\delta_{i}} x^{\gamma}$ for some i and $x^{\gamma} \in R$. Thus $\gamma=\beta-\delta_{i} \in E_{\Phi}$. The argument can be repeated for x^{γ}, eventually yielding an expression for x^{β} in terms of $x^{\delta_{i}}$ for $i=1,2, \ldots, t$.

As far as the structure of R_{μ} is concerned, we have more precise information due to

Theorem 2.2 (Birkhoff-von Neumann Theorem). Every $n \times n$ magic square is an \mathbb{N}-linear combination of the $n \times n$ permutation matrices.

Thus R_{μ} is generated by n ! degree n monomials. Let $\left[R_{\mu}\right]_{r}$ denote the k-subspace of R_{μ} generated by the monomials of degree $n r$. These monomials are in one-to-one correspondence with magic squares of line sum r. Moreover, $R_{\mu}=\oplus_{r=0}^{\infty}\left[R_{\mu}\right]_{r}$. Thus

$$
H\left(R_{\mu}, r\right)=\operatorname{dim}_{k}\left[R_{\mu}\right]_{r}=H_{n}(r) .
$$

This observation will eventually lead to the conclusion that $H_{n}(r)$ is a polynomial in r for all r. But for the time being we can see that it is so for all large values of r in view of the Hilbert-Serre theorem.

Lemma 2.3. If $\Phi X=0$ has a positive solution, then $\operatorname{dim} R_{\Phi}=n-\operatorname{rank} \Phi$.

Proof. We show that the vectors $\beta_{1}, \beta_{2}, \ldots, \beta_{d} \in E_{\Phi}$ are \mathbb{Q}-linearly independent if and only if $x^{\beta_{1}}, x^{\beta_{2}}, \ldots, x^{\beta_{d}}$ are algebraically independent over k. Suppose $\beta_{1}, \beta_{2}, \ldots, \beta_{d} \in E_{\Phi}$ are linearly independent over \mathbb{Q}. Let

$$
\sum_{\alpha} a_{\alpha}\left(x^{\beta_{1}}\right)^{\alpha_{1}}\left(x^{\beta_{2}}\right)^{\alpha_{2}} \ldots\left(x^{\beta_{d}}\right)^{\alpha_{d}}=0
$$

for certain $a_{\alpha} \in k$ and distinct vectors $\alpha=\left(\alpha_{1}, \ldots, \alpha_{d}\right) \in \mathbb{N}^{d}$. Since $\beta_{1}, \beta_{2}, \ldots, \beta_{d}$ are linearly independent over \mathbb{Q}, the vectors $\alpha_{1} \beta_{1}+\cdots+\alpha_{d} \beta_{d}$ are distinct. Hence $a_{\alpha}=0$ for all α.

Conversely let $x^{\beta_{1}}, x^{\beta_{2}}, \ldots, x^{\beta_{d}}$ be algebraically independent over k. Let $\alpha_{1}, \ldots, \alpha_{d} \in \mathbb{Q}$ such that $\alpha_{1} \beta_{1}+\cdots+\alpha_{d} \beta_{d}=0$. Without loss of generality we may assume that $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{p}>0$ and $\alpha_{p+1}, \ldots, \alpha_{d}<0$. Then

$$
\alpha_{1} \beta_{1}+\cdots+\alpha_{p} \beta_{p}=\alpha_{p+1} \beta_{p+1}+\cdots+\alpha_{d} \beta_{d} .
$$

This yields the algebraic dependency relation $x^{\alpha_{1} \beta_{1}} \cdots x^{\alpha_{p} \beta_{p}}=x^{\alpha_{p+1} \beta_{p+1}} \cdots x^{\alpha_{d} \beta_{d}}$.
Let $\alpha \in \mathbb{P}^{n} \cap E_{\Phi}$. Let $d=n-\operatorname{rank} \Phi$. Pick linearly independent solutions $\beta_{1}, \beta_{2}, \ldots, \beta_{d} \in \mathbb{Z}^{n}$ of $\Phi X=0$. Let $t \in \mathbb{Q}_{+}$. If $\alpha-t \beta_{1}, \alpha-t \beta_{2}, \ldots, \alpha-t \beta_{d}$ are linearly dependent over \mathbb{Q}, then there exist $a_{1}, a_{2}, \ldots, a_{d} \in \mathbb{Z}$, not all zero such that

$$
a_{1}\left(\alpha-t \beta_{1}\right)+a_{2}\left(\alpha-t \beta_{2}\right)+\cdots+a_{d}\left(\alpha-t \beta_{d}\right)=0 .
$$

We have unique rational numbers $b_{1}, b_{2}, \ldots, b_{d}$ such that $\alpha=b_{1} \beta_{1}+b_{2} \beta_{2}+\cdots+b_{d} \beta_{d}$. Put $a=\sum_{i=1}^{d} a_{i}$. Then $\sum_{i=1}^{d}\left(a b_{i}-t a_{i}\right) \beta_{i}=0$. Let $a_{p} \neq 0$. Then $t=a b_{p} / a_{p}$. Hence by selecting $t \in \mathbb{Q}_{+}$ sufficiently small, we get a contradiction. This proves that $\delta_{1}=\alpha-t \beta_{1}, \delta_{2}=\alpha-t \beta_{2}, \ldots, \delta_{d}=$ $\alpha-t \beta_{d}$ are linearly independent solutions in \mathbb{P}^{n}. Hence $x^{\delta_{1}}, \ldots, x^{\delta_{d}}$ are algebraically independent elements of R_{Φ}.
Corollary 2.4. The function $H_{n}(r)$ is a polynomial in r for large r of degree $(n-1)^{2}$.
Proof. The ring R_{μ} is a standard graded k-algebra. The $r^{t h}$ graded component of it is generated by monomials of degree $r n$ corresponding to magic squares of line sum r. Hence $H_{n}(r)$ is a polynomial for large r. We show that

$$
\operatorname{dim} R_{\mu}=(n-1)^{2}+1
$$

By the above lemma, $\operatorname{dim} R_{\mu}=$ nullity μ. Note that to construct a magic square, we may assign any nonnegative values to the variables $x_{i j}$, for $i, j=1,2, \ldots,(n-1)$ and a value for $x_{1 n}$ will determine the rest of the entries. Thus nullity $\mu=(n-1)^{2}+1$.

Proposition 2.5 (MacMahon [2], Anand-Dumir-Gupta [1]). The number of 3×3 magic squares with line sum r is given by

$$
H_{3}(r)=\binom{r+4}{4}+\binom{r+3}{4}+\binom{r+2}{4} .
$$

Proof. By the above corollary, the dimension of the semigroup ring R generated over a field k by the monomials corresponding to the six 3×3 permutation matrices is $(n-1)^{2}+1=5$. Let $S=k\left[y_{1}, y_{2}, \ldots, y_{6}\right]$. Put

$$
\begin{aligned}
& M_{1}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right], M_{2}=\left[\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right], \quad M_{3}=\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right], \\
& M_{4}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right], M_{5}=\left[\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right], \quad M_{6}=\left[\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right] .
\end{aligned}
$$

Note that $M_{1}+M_{2}+M_{3}=M_{4}+M_{5}+M_{6}$. Let $f=y_{1} y_{2} y_{3}-y_{4} y_{5} y_{6}$. Hence $S /(f) \simeq R$. Therefore

$$
H(S /(f), \lambda)=\left(1-\lambda^{3}\right) /(1-\lambda)^{6}=\left(1+\lambda+\lambda^{2}\right) /(1-\lambda)^{5}
$$

This yields the desired formula.

3. Cohen-Macaulay Property of R_{Φ}

In this section we show that R_{Φ} is a Cohen-Macaulay ring. This is done by showing that it is a ring of invariants of an algebraic torus acting linearly on a polynomial ring. A well-known theorem of Hochster then implies that it is Cohen-Macaulay .

Write the $r \times n$ matrix $\Phi=\left[\gamma_{1}, \gamma_{2}, \ldots, \gamma_{n}\right]$ where γ_{i} is the $i^{\text {th }}$ column vector of Φ. Let k^{*} denote the multiplicative group of k. Consider the algebraic torus

$$
T=\left\{\operatorname{diag}\left(u^{\gamma_{1}}, u^{\gamma_{2}}, \ldots, u^{\gamma_{n}}\right): u=\left(u_{1}, u_{2}, \ldots, u_{r}\right) \in\left(k^{*}\right)^{r}\right\} .
$$

T acts on $R=k\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ via the automorphisms $\tau_{u}: x_{i} \longrightarrow u^{\gamma_{i}} x_{i}, \quad i=1,2, \ldots, n$. Let $\beta \in \mathbb{N}^{n}$. Then

$$
\begin{aligned}
\tau_{u}\left(x^{\beta}\right) & =\left(u^{\gamma_{1}} x_{1}\right)^{\beta_{1}}\left(u^{\gamma_{2}} x_{2}\right)^{\beta_{2}} \cdots\left(u^{\gamma_{n}} x_{n}\right)^{\beta_{n}} \\
& =u^{\beta_{1} \gamma_{1}+\beta_{2} \gamma_{2}+\cdots+\beta_{n} \gamma_{n}} x^{\beta}
\end{aligned}
$$

Hence $\tau_{u}\left(x^{\beta}\right)=x^{\beta}$ if and only if $\beta \in E_{\Phi}$. Hence R_{Φ} is the ring of invariants of the torus T acting linearly on R. By Hochster's theorem [3] R_{Φ} is Cohen-Macaulay .

We can now dispose the conjecture (5) of Stanley. Since R_{μ} is Cohen-Macaulay homogeneous ring of dimension $d=(n-1)^{2}+1$, there exists an hsop a for R_{μ} of elements of degree one. Hence

$$
F\left(R_{\mu}, \lambda\right)=\frac{F\left(R_{\mu} /(\mathbf{a}), \lambda\right)}{(1-\lambda)^{d}}
$$

Hence the numerator of the above Hilbert series is a polynomial with positive coeficients.

4. Macaulay's theorem for Gorenstein graded rings

The purpose of this section is to recall the basic definitions and facts about Gorenstein graded rings and provide a proof of Macaulay's theorem concerning their Hilbert series.

Let R be an \mathbb{N}-graded ring. Let \mathcal{M} be the category of \mathbb{Z}-graded R-modules. Let $M=\oplus M_{n}$ and $N=\oplus N_{n} \in \mathcal{M}$. An R-linear map $f: M \longrightarrow N$ is a morphism in \mathcal{M} if $f\left(M_{n}\right) \subseteq N_{n}$ for all $n \in \mathbb{Z}$. By $M(n)$ we mean the module M with grading defined by $[M(n)]_{m}=M_{m+n}$ for all $m \in \mathbb{Z}$. Put

$$
{ }^{*} \operatorname{Hom}(M, N)_{n}=\{f: M \longrightarrow N(n)\} \text { and }{ }^{*} \operatorname{Hom}(M, N)=\bigoplus_{n \in \mathbb{Z}}{ }^{*} \operatorname{Hom}(M, N)_{n}
$$

It is easy to check that if M is finitely generated then ${ }^{*} \operatorname{Hom}(M, N)=\operatorname{Hom}(M, N)$.
Proposition 4.1. Let $A=k\left[x_{1}, x_{2}, \ldots, x_{s}\right]$ be polynomial ring over a field k. Let I be a homogeneous ideal of A. Let A / I be Cohen-Macaulay . Then

$$
\operatorname{Ext}^{i}(A / I, A) \neq 0 \Longleftrightarrow i=h=h t(I)
$$

Proof. By Auslander-Buchsbaum formula $\operatorname{pd}(A / I)=\operatorname{depth} A-\operatorname{dim} A / I=s-(s-h)=h$. Write a graded minimal resolution of A / I as an A-module:

$$
0 \longrightarrow A^{\beta_{h}} \longrightarrow A^{\beta_{h-1}} \longrightarrow \cdots \longrightarrow A^{\beta_{1}} \longrightarrow A \longrightarrow A / I \longrightarrow 0
$$

Thus $\operatorname{Ext}^{i}(A / I, A)=0$ for $i>h$. Since A is Cohen-Macaulay, $\operatorname{Ext}^{i}(A / I, A)=0$ for $i<h$.
Definition 4.2. The A-module $K_{A / I}=\operatorname{Ext}^{h}(A / I, A)$ is called the canonical module of A / I. The ring A / I is called Gorenstein if $K_{A / I} \simeq A / I(a)$. for some $a \in \mathbb{Z}$. The integer a is called the a-invariant of A / I.

Theorem 4.3. Put $R=A / I$ and $d=\operatorname{dim}(R)$. Let the degree of $x_{i}=e_{i} \in \mathbb{P}$ for $i=1,2, \ldots, s$. Then as rational functions of λ

$$
F\left(K_{R}, \lambda\right)=(-1)^{d} F(R, 1 / \lambda) \lambda^{-\sum_{i=1}^{s} e_{i}}
$$

Proof. Write a minimal free resolution of R as an A-module:

$$
0 \longrightarrow M_{h} \xrightarrow{\phi_{h}} M_{h-1} \xrightarrow{\phi_{h-1}} \cdots \longrightarrow M_{1} \xrightarrow{\phi_{1}} M_{0} \xrightarrow{\phi_{0}} R \longrightarrow 0
$$

Apply $\operatorname{Hom}(-, A)$ to the above resolution to get the complex:

$$
0 \longrightarrow \operatorname{Hom}\left(M_{0}, A\right) \xrightarrow{\phi_{0}^{*}} \operatorname{Hom}\left(M_{1}, A\right) \xrightarrow{\phi_{1}^{*}} \cdots \xrightarrow{\phi_{h}^{*}} \operatorname{Hom}\left(M_{h}, A\right) \longrightarrow 0 .
$$

Thus $K_{R} \simeq \operatorname{Hom}\left(M_{h}, A\right) / \operatorname{Im}\left(\phi_{h}^{*}\right)$. Hence we have the following minimal free resolution for K_{R} as an A-module:

$$
0 \longrightarrow \operatorname{Hom}\left(M_{0}, A\right) \xrightarrow{\phi_{0}^{*}} \cdots \xrightarrow{\phi_{h}^{*}} \operatorname{Hom}\left(M_{h}, A\right) \longrightarrow K_{R} \longrightarrow 0 .
$$

It is easy to see that for integers m and n,

$$
F(M(n), \lambda)=\lambda^{-n} F(M, \lambda) \text { and } \operatorname{Hom}(A(m), A) \simeq A(-m) .
$$

Let $\operatorname{rank}\left(M_{i}\right)=\beta_{i}$, and $M_{i}=\oplus_{j=1}^{\beta_{i}} A\left(-g_{i j}\right)$ for $i=0,1, \ldots, h$. Put $D(\lambda)=\prod_{p=1}^{s}\left(1-\lambda^{e_{p}}\right)$ and $N_{i}(\lambda)=\sum_{j=1}^{\beta_{i}} \lambda^{g_{i j}}$. Now we calculate the Hilbert series of R and K_{R} from their minimal free resolutions written above. Put $e=\sum_{i=1}^{s} e_{i}$.

$$
F\left(M_{i}, \lambda\right)=\sum_{j=1}^{\beta_{i}} F\left(A\left(-g_{i j}\right), \lambda\right)=\frac{\sum_{j=1}^{\beta_{i}} \lambda^{g_{i j}}}{\prod_{p=1}^{s}\left(1-\lambda^{e_{p}}\right)}=\frac{N_{i}(\lambda)}{D(\lambda)} .
$$

Hence $F(R, \lambda)=\sum_{i=0}^{h} N_{i}(\lambda) / D(\lambda)(-1)^{i}$. To find $F\left(K_{R}, \lambda\right)$, note that

$$
F\left(K_{R}, \lambda\right)=\sum_{i=0}^{h}(-1)^{i+h} F\left(M_{i}^{*}, \lambda\right)=\sum_{i=0}^{h}(-1)^{i+h} F\left(A\left(g_{i j}\right), \lambda\right)=\sum_{i=0}^{h}(-1)^{i+h} N_{i}\left(\lambda^{-1}\right) / D(\lambda) .
$$

Since $D\left(\lambda^{-1}\right)=(-1)^{s} D(\lambda) \lambda^{-e}$, we get

$$
F(R, 1 / \lambda)=\sum_{i=0}^{h}(-1)^{i} \frac{N_{i}\left(\lambda^{-1}\right)}{D\left(\lambda^{-1}\right)}=(-1)^{s-h} \lambda^{e} F\left(K_{R}, \lambda\right)=(-1)^{d} \lambda^{e} F\left(K_{R}, \lambda\right) .
$$

Corollary 4.4 (Macaulay's Theorem). If the ring $R=A / I$ is Gorenstein of dimension d then for some $\sigma \in \mathbb{Z}$,

$$
F(R, 1 / \lambda)=(-1)^{d} \lambda^{\sigma} F(R, \lambda) .
$$

If R is standard Gorenstein with $F(R, \lambda)=\left(h_{0}+h_{1} \lambda+\cdots+h_{g} \lambda^{g}\right) /(1-\lambda)^{d}$, and $h_{g} \neq 0$, then
(1) $h_{i}=h_{g-i}$, for all $i=0,1, \ldots, g$.
(2) $\sigma=d-g$.
(3) If $\sigma \geq 1$, then $H(n)=\operatorname{dim} R_{n}$ is a polynomial $P(n)$ for all n,
(a) $P(-i)=0$ for all $i=1,2, \ldots,(\sigma-1)$, and
(b) $P(n)=(-1)^{d-1} P(-\sigma-n)$ for all $n \in \mathbb{Z}$.

Proof. (1) and (2): Put $e=\sum_{i=1}^{s} e_{i}$. Suppose R is Gorenstein. Then $K_{R} \simeq R(a)$, for some $a \in \mathbb{Z}$. Hence

$$
F\left(K_{R}, \lambda\right)=\lambda^{-a} F(R, \lambda)=(-1)^{d} \lambda^{-e} F(R, 1 / \lambda) .
$$

Hence $F(R, \lambda)=\lambda^{a-e}(-1)^{d} F(R, 1 / \lambda)$. Now let R be standard Gorenstein. Write

$$
F(R, \lambda)=\left(h_{0}+h_{1} \lambda+h_{2} \lambda^{2}+\cdots+h_{g} \lambda^{g}\right) /(1-\lambda)^{d}
$$

where $h_{g} \neq 0$. Then

$$
F(R, 1 / \lambda)=(-1)^{d} \lambda^{d-g}\left(h_{0} \lambda^{g}+h_{1} \lambda^{g-1}+\cdots+h_{g}\right) /(1-\lambda)^{d}=\lambda^{e-a}(-1)^{d} F(R, \lambda) .
$$

Hence $d-g=e-a=\sigma$ and $h_{i}=h_{g-i}$ for all $i=0,1, \ldots, g$.
(3) We know that if $\sigma \geq 1$, then $H(n)$ is a polynomial for all $n \in \mathbb{Z}$ and as $\operatorname{dim} R_{n}=0$ for all $n<0, P(n)=0$ for all $n=-1,-2, \ldots,-(\sigma-1)$, and $P(-\sigma) \neq 0$. We have for all $n \geq-(\sigma-1)$,

$$
P(n)=h_{0}\binom{n+d-1}{d-1}+h_{1}\binom{n+d-2}{d-1}+\cdots+h_{g}\binom{d-1+n-g}{d-1} .
$$

Now use the fact that $h_{i}=h_{g-i}$ for all $i=1,2, \ldots, g$, and $\binom{n}{p}=(-1)^{p}\binom{p-n-1}{p}$, as polynomials,

$$
\begin{aligned}
P(n) & =\sum_{i=0}^{g} h_{i}\binom{d-1+n-i}{d-1} \\
& =\sum_{i=0}^{g} h_{g-i}\binom{d-1-(d-1+n-i)-1}{d-1}(-1)^{d-1} \\
& =\sum_{i=0}^{g} h_{i}\binom{g-i-n-1}{d-1}(-1)^{d-1} \\
& =\sum_{i=0}^{g} h_{i}\binom{d-\sigma-i-n-1}{d-1}(-1)^{d-1} \\
& =(-1)^{d-1} P(-\sigma-n) .
\end{aligned}
$$

Definition 4.5. The vector $\left(h_{0}, h_{1}, \ldots, h_{g}\right)$ is called the h-vector of the standard graded algebra R. If the condition $h_{i}=h_{g-i}$ is satisfied for all $i=0, i, \ldots, g$ then we say that the h-vector of R is symmetric.

Example 4.6. The symmetry of the h-vector of a standard graded Cohen-Macaulay algebra R does not imply that R is Gorenstein. We construct an example. Consider the ideal $I=$ $(x y z, x w, z w)$ of the polynomial ring $A=k[x, y, z, w]$. The ideal I is generated by the maximal minors of the matrix

$$
M=\left[\begin{array}{rrr}
0 & z & x \\
-w & -y z & 0
\end{array}\right] .
$$

A resolution of $R=A / I$ as an A-module is:

$$
0 \longrightarrow A(-3) \oplus A(-4) \xrightarrow{f} A(-3) \oplus A(-2)^{2} \xrightarrow{g} A \longrightarrow R \longrightarrow 0,
$$

where the maps f and g are defined as

$$
f([r, s])=[r, s] M \text { and } g([r, s, t])=r x y z-s x w+t z w
$$

It can be shown easily that the above sequence is a minimal resolution of R. Hence by AuslanderBuchsbaum formula, depth $R=\operatorname{depth} A-\operatorname{pd} R=4-2=2=\operatorname{dim} R$. Hence R is Cohen-Macaulay. However it is not Gorenstein as the above resolution shows that rank $K_{R}=2$. The Hilbert series
of R can be found from the resolution and it turns out to be $\left(1+2 \lambda+\lambda^{2}\right) /(1-\lambda)^{2}$. Hence the h-vector of R is symmetric, although it is not Gorenstein.

Remark: The principal result of [6] shows that the symmetry of the h-vector implies Gorenstein property provided R is a Cohen-Macaulay domain.

5. A sketch of Stanley's solution

By Corollary 4.4, we need to show that the degree of the Hilbert series of R_{μ} is $-n$ and it is Gorenstein. By the Grothehdieck-Serre difference formula, the degree of the Hilbert series of R_{Φ} is the integer $a\left(R_{\Phi}\right)=\max \left\{n: H^{d}\left(R_{\Phi}\right)_{n} \neq 0\right\}$.

Theorem 5.1 (Stanley, [4]). (1) $H^{d}\left(R_{\Phi}\right)=k\left[x^{\beta}: \beta \in E_{\Phi}\right.$, and $\left.\beta<0\right]$.
(2) $K_{R_{\Phi}}=k\left[x^{\beta}: \beta \in E_{\Phi}\right.$, and $\left.\beta>0\right]$.
(3) If $\gamma=(1,1, \ldots, 1) \in E_{\Phi}$, then $K_{R_{\Phi}}=x^{\gamma} R_{\Phi}$. Hence in this case, R_{Φ} is Gorenstein.

For the case of magic squares, the $n \times n$ magic square J_{n} whose each entry is 1 is the smallest positive solution and by the description of $H^{d}\left(R_{\Phi}\right)$, the a-invariant of R_{μ} is $-n$. Hence The degree of its Hilbert series is $-n$. It proves that $H_{n}(r)$ is a polynomial for all $r>-n$. Moreover $H_{n}(-n) \neq 0$ and

$$
H_{n}(-1)=H_{n}(-2)=\cdots=H_{n}(-(n-1))=0
$$

By Corollary 4.4, we conclude that

$$
H_{n}(r)=(-1)^{(n-1)^{2}} H_{n}(-r-n)=(-1)^{n-1} H_{n}(-r-n)
$$

for all n.

REFERENCES

[1] H. Anand, V. C. Dumir and H. Gupta, A combinatorial distribution problem, Duke Math. J. 33 (1966), 757-769.
[2] P. A. MacMahon, Combinatory Analysis, vols 1 and 2, Cambridge, 1916; reprinted by Chelsea, New York, 1960.
[3] M. Hochster, Rings of invariants of Tori, Cohen-Macaulay rings generated by monomials and polytopes, Annals of Math 96 (1972), 318-337.
[4] R. P. Stanley, Linear homogeneous Diophatine equations and magic labelling of graphs, Duke Math. J. 40 (1973), 607-632.
[5] R. P. Stanley, Enumerative Combinatorics, Vol1, Wardsworth and Brooks/Cole, Pacific Grove, CA, 1986.
[6] R. P. Stanley, Hilbert functions of graded algebras, Advances in Math 28 (1978), 57-83.
[7] R. P. Stanley, Linear Diophantine equations and local cohomology, Inventiones. Math. 68(1982), 175-193.

Department of Mathematics, IIT Bombay, Powai, Mumbai 400076.
E-mail address: jkv@math.iitb.ac.in

[^0]: Notes of 3 lectures in the workshop Combinatorics and Commutative Algebra held during July 7-12, 2003 in Department of Mathematics, Pune University.

