STANLEY’S SOLUTION OF THE ADG-CONJECTURE

J. K. VERMA

1. Introduction

Our objective in these notes is to present Stanley’s solution of the Anand-Dumir-Gupta (ADG)
conjecture concerning enumeration of doubly stochastic matrices or magic squares. Let N denote
the set of nonnegative integers and let [P denote the set of positive integers. An n x n matrix M
is called a magic square if its entries are in N and the sum of entries in any row or column is a
given integer r. The number r is called the line sum of M. It is clear that

Hi(r) =1 and Ha(r)=r+1.

MacMahon [2] and independently Anand-Dumir-Gupta [1] showed that the number of 3 x 3 magic
squares with line sum r is given by

r+4 r+3 T+ 2
H3(7’)—<4)+<4>+<4>.
Inspired by these formulas they proposed the following conjectures in 1966. [1]:

Conjecture 1.1 (Anand-Dumir-Gupta). Fizn > 1. Then

(1) Hy,(r) € C[r].

(2) deg Ho(r) = (n— 1)2.

(3) Hy(1) =0 fori=—-1,-2,...,—(n —1).
(4) Hy(—n —7) = (=1)"YH,(r) for all r.

We will see that the above four assertions about H,(r) are equivalent to the following:

> r hoHRA+ 4 hgA?
Z_[:)Hn(,r))\ - (1 o A)(n_1)2+1 )

where hg, hi, ..., hq are integers, d = (n —1)2+1—mn, hg+hy +---+ hg # 0 and hg_; = h; for
1=0,1,...,d. Stanley made the additional conjectures that

(5) hi > 0 for all 7 and

(6) ho < h1 < -+ < hygyg-
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Stanley settled (1)-(5) in 1973 [4]. A geometric proof based on Ehrhart polynomials of integral
polytopes appears in Stanley’s Red Book [5]. The conjecture (6) is still open.

2. Linear homogeneous Diophantine equations

Let x;5; 4,7 = 1,2,...,n be indeterminates. The entries of an n X n magic square are solutions
to the following system of linear homogeneous Diophantine equations:

n
T+ T2+ + 21, = injfori:ZS...,n. (1)
j=1

n
11 +212+ -+ 21 = Z:Eij forj=2,3...,n.
=1

Thus the problem of counting magic squares is a special case of counting nonnegative integer so-
lutions of a system of linear Diophantine equations. Let ® be an r x n Z-matrix. Let x1,z9,..., T,
be indeterminates. Let X denote the column vector (z1,z2,...,z,)". We are interested in the
N-solutions to the system ®X = 0. We gather all the solutions in the semigroup

E@:{ﬁGNnIQQZO}.

Let k be any field. For 8 = (81, B2, .., 8s)t, put 2’ = x?lxgg ... 2" With Eg we can associate
the semigroup ring

Ro = k[2P : B3 € Eg).
Stanley studied the semigroup ring R, where 1 is the (2n—2) x n? coefficient matrix of the system
(1). In particular he showed that the ring R, is Gorenstein and calculated its canonical module

and thus its a-invariant. We shall see that these observations are enough to settle the conjectures
(1)-(5). Let us begin by observing the

Theorem 2.1. The semigroup ring Re is a finitely generated k-algebra.

Proof. Let I denote the ideal in R = k[x1,z2,. .., 2, generated by the set
P={2":0+#p ¢ Es}.

Since R is Noetherian, I is generated by a finite subset G = {x‘;l,:c‘;?, .. ,:c‘st} of P. We claim
that

Re = k[ : 2% € G).
Indeed, Any z” € Rg can be written as 2 = %27 for some i and 7 € R. Thus v = 3 —6; € Eg.

The argument can be repeated for 7, eventually yielding an expression for 2 in terms of % for
i=1,2,...,t. O

As far as the structure of R, is concerned, we have more precise information due to
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Theorem 2.2 (Birkhoff-von Neumann Theorem). FEvery n x n magic square is an N-linear
combination of the n X n permutation matrices.

Thus R, is generated by n! degree m monomials. Let [R,], denote the k-subspace of R,
generated by the monomials of degree nr. These monomials are in one-to-one correspondence
with magic squares of line sum r. Moreover, R, = ®22,[R,,],. Thus

H(R,,r) = dimg[R,], = Hp(r).

This observation will eventually lead to the conclusion that H,(r) is a polynomial in r for all r.
But for the time being we can see that it is so for all large values of r in view of the Hilbert-Serre
theorem.

Lemma 2.3. If X = 0 has a positive solution, then dim Rg = n — rank ®.

Proof. We show that the vectors (31, fs,...,84 € Eg are Q-linearly independent if and only if
P 22 . xPa are algebraically independent over k. Suppose (1, 3s,...,04 € Eg are linearly
independent over Q. Let

Z aa(x51>041 (xﬁz)OéQ . (xﬁd>ad — 0’

for certain a, € k and distinct vectors o« = (ay,...,aq) € N, Since 061, B2, ..., 04 are linearly
independent over QQ, the vectors a1 31 + - - - + agf34 are distinct. Hence a, = 0 for all a.

Conversely let %, 272 ... zf be algebraically independent over k. Let a,...,aq € Q such
that a1 81 +- -+ agfqs = 0. Without loss of generality we may assume that oy, as,..., 0, > 0 and
Qpit, ..., 0q < 0. Then

a1f1+ -+ by = apr1fpr1 + - + 2afa

This yields the algebraic dependency relation 71 ...z = gop+t1Bpt1 ... goaba,

Let o € P" N Eg. Let d = n — rank ®. Pick linearly independent solutions (31,32, ..., 84 € Z"
of X =0.Let t € Q. If o —tf1,« — 0o, ..., — tf, are linearly dependent over Q, then there
exist a1, aq,...,aq € Z, not all zero such that

ar(a—tp1) + ag(a —tH2) + - -+ + aqg(a — tBy) = 0.

We have unique rational numbers by,bs,...,bg such that o = b1 81 + bofBo + -+ + bgfBy. Put
a= Z‘f:l a;. Then Zle(abi —ta;)f; = 0. Let ap # 0. Then t = aby/a,. Hence by selecting t € Q.

sufficiently small, we get a contradiction. This proves that §; = a — 81,00 = a — t0s,...,04 =
a — tf34 are linearly independent solutions in P"". Hence z%', ..., 2% are algebraically independent
elements of Reg. O

Corollary 2.4. The function H,(r) is a polynomial in v for large v of degree (n — 1)2.

Proof. The ring R, is a standard graded k-algebra. The rt* graded component of it is generated by
monomials of degree rn corresponding to magic squares of line sum r. Hence H,,(r) is a polynomial
for large r. We show that

dim R, = (n—1)* + 1.
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By the above lemma, dim R, = nullity 4. Note that to construct a magic square, we may assign
any nonnegative values to the variables z;;, for 7,5 = 1,2,...,(n — 1) and a value for zy, will
determine the rest of the entries. Thus nullity g = (n — 1) + 1.

O

Proposition 2.5 (MacMahon [2], Anand-Dumir-Gupta [1]). The number of 3 x 3 magic
squares with line sum r is given by

o= (1) (1)1,

Proof. By the above corollary, the dimension of the semigroup ring R generated over a field k
by the monomials corresponding to the six 3 x 3 permutation matrices is (n — 1)2 +1 = 5. Let
S =kly1,vy2,--.,ye]. Put

100 0 1 0 1
M = 10|, Mo=|10 0], Mg= 1],
[0 0 1 L0 1 0 (10 0
(1 0 0] [0 1 0] [0 0 17
My=|00 1|, Ms=|100]|, Mg=|0 10
(01 0 L0 0 1| 10 0

Note that My + My + Ms = My + Ms+ Mg. Let f = y1y2ys — yaysys. Hence S/(f) ~ R. Therefore
H(S/(£),A) = (1 =2)/(1 =0 = (1+ A+ 2)/(1 =),

This yields the desired formula.

3. Cohen-Macaulay Property of Rg

In this section we show that Rg is a Cohen-Macaulay ring. This is done by showing that it is
a ring of invariants of an algebraic torus acting linearly on a polynomial ring. A well-known
theorem of Hochster then implies that it is Cohen-Macaulay .

th

Write the r x n matrix ® = [y1,72, . ..,7n] where ~; is the i*"* column vector of ®. Let £* denote

the multiplicative group of k. Consider the algebraic torus
T = {diag(u™,u",...,u") : u = (ug,ug,...,u,) € (k*)"}.

T acts on R = k[z1,x2,...,zy,] via the automorphisms 7, : z; — uwiz;, ¢ = 1,2,...,n. Let
3 € N". Then

Tu@ﬁ) - (u"flxl>ﬂl (u’yzx.Q)ﬁz . (uvnxn)ﬁn

uﬂ1 Y1+B272++BnTn lﬁ
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Hence 7, (27) = 27 if and only if # € Fg. Hence Rg is the ring of invariants of the torus T acting
linearly on R. By Hochster’s theorem [3] Rg is Cohen-Macaulay .

We can now dispose the conjecture (5) of Stanley. Since R,, is Cohen-Macaulay homogeneous
ring of dimension d = (n— 1)+ 1, there exists an hsop a for R, of elements of degree one. Hence

F(Ru/(a),\)
1= -

Hence the numerator of the above Hilbert series is a polynomial with positive coeficients.

F(R,,\) =

4. Macaulay’s theorem for Gorenstein graded rings

The purpose of this section is to recall the basic definitions and facts about Gorenstein graded
rings and provide a proof of Macaulay’s theorem concerning their Hilbert series.

Let R be an N-graded ring. Let M be the category of Z-graded R-modules. Let M = &M, and
N = ®N,, € M. An R-linear map f : M — N is a morphism in M if f(M,) C N, for all n € Z.
By M(n) we mean the module M with grading defined by [M(n)];, = My, for all m € Z. Put
*Hom(M,N), = {f : M — N(n)} and *Hom(M,N) = € *Hom(M, N),.
nel,
It is easy to check that if M is finitely generated then * Hom(M, N) = Hom(M, N).

Proposition 4.1. Let A = k[z1,x2,...,xs] be polynomial ring over a field k. Let I be a homoge-
neous ideal of A. Let A/I be Cohen-Macaulay . Then

Ext!(A/I,A) #0 < i=h=h(I).

Proof. By Auslander-Buchsbaum formula pd(A/I) = depth A—dim A/I = s — (s —h) = h. Write
a graded minimal resolution of A/l as an A-module:

0 — AP —, ABr—1 AB A AJI —— 0.
Thus Ext?(A/I, A) = 0 for i > h. Since A is Cohen-Macaulay , Ext’(A/I, A) = 0 for i < h. O

Definition 4.2. The A-module K1 = Ext"(A/I, A) is called the canonical module of A/I.
The ring A/I is called Gorenstein if K,,; ~ A/I(a). for some a € Z. The integer a is called
the a-invariant of A/I.

Theorem 4.3. Put R = A/I and d = dim(R). Let the degree of x; = e; € P for i =1,2,...,s.
Then as rational functions of A

F(Kgp,\) = (=) F(R,1/X) A\~ Zi=1¢,

Proof. Write a minimal free resolution of R as an A-module:

on M Ph—1 M, b1

0 M, My -2 R 0.
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Apply Hom(—, A) to the above resolution to get the complex:

¢T oo ¢Z’

0 —— Hom(M,, A) _%, Hom(M;, A) Hom(Mp, A) —— 0.

Thus Kr ~ Hom(Mj, A)/Im(¢} ). Hence we have the following minimal free resolution for K as
an A-module:

% , ... _%

0 —— Hom(M,, A)
It is easy to see that for integers m and n,
F(M(n),A) =AX"F(M,\) and Hom(A(m),A) ~ A(—m).
Let rank(M;) = 3;, and M; = 69 L1 A(=gij) for i = 0,1,...,h. Put D(A) = [[;,_;(1 — A*) and

N;(\) = Zf; Nii. Now we calculate the Hilbert series of R and Kp from their minimal free
resolutions written above. Put e = > "7 e;.

Hom(M},, A) Kpg 0.

SR N0
F(M;, \) F(A(~g; i =
’ Z 93} N = [T 0 ae) ~ DY

Hence F(R,\) = Zi:O N;i(\)/D(\)(—1)". To find F(Kg,\), note that

h h h
F(KRA) = S (1RO = S (-1 F(A(g), A) = 3 (-1 N /D).
i=0 i=0 i=0
Since D(A\71) = (=1)*D(M\)A~¢, we get
" zN’L()‘_l) s—hye dye
F(R,1/\) = Z(—l) DO = (—1)°""A°F(Kgr,\) = (—1)°X\“F (KR, \).
i=0

0

Corollary 4.4 (Macaulay’s Theorem). If the ring R = A/I is Gorenstein of dimension d then
for some o € 7.,

F(R,1/\) = (=1)I\F(R, \).
If R is standard Gorenstein with F(R,\) = (ho + b+ - + hyA9) /(1 = A%, and hy # 0, then

—~
—_

) hi =hg_;, foralli=0,1,...,g.

1, hen H(n) =dim R,, is a polynomial P(n) for all n,
(=i)=0 forall i=1,2,...,(0c — 1), and
(n) = (=1)4"1P(—0 —n) forall n € 2.

F(KRr,\) = A°F(R,\) = (=1)I\"°F(R,1/\).
Hence F(R,\) = \»¢(=1)F(R,1/)). Now let R be standard Gorenstein. Write
F(R,\) = (ho + hiX + ho X2 + - + hgA9) /(1 — N)?



where hy # 0. Then
F(R,1/A) = (=1)NI(ho A + b A9 4 -+ hy) /(1= N = XTU=1)4F(R, \).

Henced —g=e—a=o0and h; = hy_; foralli =0,1,...,g.
(3) We know that if o > 1, then H(n) is a polynomial for all n € Z and as dim R,, = 0 for all
n <0, P(n)=0foralln=-1,-2,...,—(c — 1), and P(—0o) # 0. We have for all n > —(c — 1),

n+d-—1 n+d-—2 d—1+n-—
P(n):h0< - >+h1< ) >+---+hg< PR g).

Now use the fact that h; = hy—; for alli=1,2,...,g, and (;L) = (—1)p(7’_z—1), as polynomials,

o = Son(*TL)

hg—i<d1(ddiYni)1>(_1)dl

1=0

2

1=0
B

>

(d—o—i—-n—1 d_1
G [

= (=) tP(—0o —n).

e

0

Definition 4.5. The vector (ho, h1,...,hg) is called the h-vector of the standard graded algebra
R. If the condition h; = hgy_; is satisfied for all i = 0,1,...,g then we say that the h-vector of R
is symmetric.

Example 4.6. The symmetry of the h-vector of a standard graded Cohen-Macaulay algebra
R does not imply that R is Gorenstein. We construct an example. Consider the ideal I =
(zyz,zw, zw) of the polynomial ring A = k[z,y, z, w]. The ideal I is generated by the maximal
minors of the matrix

0 z T
M = .
[ —w —yz 0 }
A resolution of R = A/I as an A-module is:
0 —— A(-3) @ A(-4) —L— A(3)@pA-2)? 2 A R 0,

where the maps f and g are defined as
f(r,s]) =[r,s]M and g([r,s,t]) = reyz — szxw + tzw.

It can be shown easily that the above sequence is a minimal resolution of R. Hence by Auslander-
Buchsbaum formula, depth R = depth A—pd R = 4—2 = 2 = dim R. Hence R is Cohen-Macaulay.
However it is not Gorenstein as the above resolution shows that rank Kp = 2. The Hilbert series
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of R can be found from the resolution and it turns out to be (1 + 2\ + A?)/(1 — \)2. Hence the
h-vector of R is symmetric, although it is not Gorenstein.

Remark: The principal result of [6] shows that the symmetry of the h-vector implies Gorenstein
property provided R is a Cohen-Macaulay domain.

5. A sketch of Stanley’s solution

By Corollary 4.4, we need to show that the degree of the Hilbert series of R, is —n and it is
Gorenstein. By the Grothehdieck-Serre difference formula, the degree of the Hilbert series of R
is the integer a(Rg) = max{n : H(Rg), # 0}.

Theorem 5.1 ( Stanley, [4] ). (1) HYRg) = k[2° : B € Eg, and 3 < 0].
(2) Kg, = k2 : B € Eg, and 3 > 0].
(3) Ify=(1,1,...,1) € Eg, then Kr, = 27 Ro. Hence in this case, Ry is Gorenstein.

For the case of magic squares, the n x n magic square J,, whose each entry is 1 is the smallest
positive solution and by the description of H%(Rg), the a-invariant of R, is —n. Hence The
degree of its Hilbert series is —n. It proves that H,(r) is a polynomial for all » > —n. Moreover
H,(—n) # 0 and

H,(-1)=Hp(-2)=---=Hy(—(n—1))=0.
By Corollary 4.4, we conclude that

Hn<7") = (_1)(n_1)2Hn(—T _ n) _ (—1)n_1Hn(—7’ . n)

for all n.
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