STANLEY'S SOLUTION OF THE ADG-CONJECTURE

J. K. VERMA

1. Introduction

Our objective in these notes is to present Stanley's solution of the Anand-Dumir-Gupta (ADG) conjecture concerning enumeration of doubly stochastic matrices or magic squares. Let \mathbb{N} denote the set of nonnegative integers and let \mathbb{P} denote the set of positive integers. An $n \times n$ matrix M is called a magic square if its entries are in \mathbb{N} and the sum of entries in any row or column is a given integer r. The number r is called the line sum of M. It is clear that

$$H_1(r) = 1$$
 and $H_2(r) = r + 1$.

MacMahon [2] and independently Anand-Dumir-Gupta [1] showed that the number of 3×3 magic squares with line sum r is given by

$$H_3(r) = \binom{r+4}{4} + \binom{r+3}{4} + \binom{r+2}{4}.$$

Inspired by these formulas they proposed the following conjectures in 1966. [1]:

Conjecture 1.1 (Anand-Dumir-Gupta). Fix $n \ge 1$. Then

(1) $H_n(r) \in \mathbb{C}[r]$. (2) $\deg H_n(r) = (n-1)^2$. (3) $H_n(i) = 0$ for $i = -1, -2, \dots, -(n-1)$. (4) $H_n(-n-r) = (-1)^{n-1}H_n(r)$ for all r.

We will see that the above four assertions about $H_n(r)$ are equivalent to the following:

$$\sum_{r=0}^{\infty} H_n(r)\lambda^r = \frac{h_0 + h_1\lambda + \dots + h_d\lambda^d}{(1-\lambda)^{(n-1)^2+1}},$$

where h_0, h_1, \ldots, h_d are integers, $d = (n-1)^2 + 1 - n$, $h_0 + h_1 + \cdots + h_d \neq 0$ and $h_{d-i} = h_i$ for $i = 0, 1, \ldots, d$. Stanley made the additional conjectures that (5) $h_i \geq 0$ for all i and (6) $h_i \leq h_i \leq \dots \leq h_i$ are

⁽⁶⁾ $h_0 \le h_1 \le \dots \le h_{[d/2]}$.

Notes of 3 lectures in the workshop *Combinatorics and Commutative Algebra* held during July 7-12, 2003 in Department of Mathematics, Pune University.

Stanley settled (1)-(5) in 1973 [4]. A geometric proof based on Ehrhart polynomials of integral polytopes appears in Stanley's Red Book [5]. The conjecture (6) is still open.

2. Linear homogeneous Diophantine equations

Let x_{ij} ; i, j = 1, 2, ..., n be indeterminates. The entries of an $n \times n$ magic square are solutions to the following system of linear homogeneous Diophantine equations:

$$x_{11} + x_{12} + \dots + x_{1n} = \sum_{j=1}^{n} x_{ij} \text{ for } i = 2, 3 \dots, n.$$

$$x_{11} + x_{12} + \dots + x_{1n} = \sum_{i=1}^{n} x_{ij} \text{ for } j = 2, 3 \dots, n.$$
(1)

Thus the problem of counting magic squares is a special case of counting nonnegative integer solutions of a system of linear Diophantine equations. Let Φ be an $r \times n \mathbb{Z}$ -matrix. Let x_1, x_2, \ldots, x_n be indeterminates. Let X denote the column vector $(x_1, x_2, \ldots, x_n)^t$. We are interested in the N-solutions to the system $\Phi X = 0$. We gather all the solutions in the semigroup

$$E_{\Phi} = \{\beta \in \mathbb{N}^n : \Phi\beta = 0\}.$$

Let k be any field. For $\beta = (\beta_1, \beta_2, \dots, \beta_n)^t$, put $x^{\beta} = x_1^{\beta_1} x_2^{\beta_2} \cdots x_n^{\beta_n}$. With E_{Φ} we can associate the semigroup ring

$$R_{\Phi} = k[x^{\beta} : \beta \in E_{\Phi}].$$

Stanley studied the semigroup ring R_{μ} where μ is the $(2n-2) \times n^2$ coefficient matrix of the system (1). In particular he showed that the ring R_{μ} is Gorenstein and calculated its canonical module and thus its *a*-invariant. We shall see that these observations are enough to settle the conjectures (1)-(5). Let us begin by observing the

Theorem 2.1. The semigroup ring R_{Φ} is a finitely generated k-algebra.

Proof. Let I denote the ideal in $R = k[x_1, x_2, \ldots, x_n]$ generated by the set

$$P = \{ x^{\beta} : 0 \neq \beta \in E_{\Phi} \}.$$

Since R is Noetherian, I is generated by a finite subset $G = \{x^{\delta_1}, x^{\delta_2}, \ldots, x^{\delta_t}\}$ of P. We claim that

$$R_{\Phi} = k[x^{\delta} : x^{\delta} \in G].$$

Indeed, Any $x^{\beta} \in R_{\Phi}$ can be written as $x^{\beta} = x^{\delta_i} x^{\gamma}$ for some *i* and $x^{\gamma} \in R$. Thus $\gamma = \beta - \delta_i \in E_{\Phi}$. The argument can be repeated for x^{γ} , eventually yielding an expression for x^{β} in terms of x^{δ_i} for $i = 1, 2, \ldots, t$.

As far as the structure of R_{μ} is concerned, we have more precise information due to

Theorem 2.2 (Birkhoff-von Neumann Theorem). Every $n \times n$ magic square is an \mathbb{N} -linear combination of the $n \times n$ permutation matrices.

Thus R_{μ} is generated by n! degree n monomials. Let $[R_{\mu}]_r$ denote the k-subspace of R_{μ} generated by the monomials of degree nr. These monomials are in one-to-one correspondence with magic squares of line sum r. Moreover, $R_{\mu} = \bigoplus_{r=0}^{\infty} [R_{\mu}]_r$. Thus

$$H(R_{\mu}, r) = \dim_k [R_{\mu}]_r = H_n(r).$$

This observation will eventually lead to the conclusion that $H_n(r)$ is a polynomial in r for all r. But for the time being we can see that it is so for all large values of r in view of the Hilbert-Serre theorem.

Lemma 2.3. If $\Phi X = 0$ has a positive solution, then dim $R_{\Phi} = n - \operatorname{rank} \Phi$.

Proof. We show that the vectors $\beta_1, \beta_2, \ldots, \beta_d \in E_{\Phi}$ are \mathbb{Q} -linearly independent if and only if $x^{\beta_1}, x^{\beta_2}, \ldots, x^{\beta_d}$ are algebraically independent over k. Suppose $\beta_1, \beta_2, \ldots, \beta_d \in E_{\Phi}$ are linearly independent over \mathbb{Q} . Let

$$\sum_{\alpha} a_{\alpha}(x^{\beta_1})^{\alpha_1}(x^{\beta_2})^{\alpha_2}\dots(x^{\beta_d})^{\alpha_d} = 0,$$

for certain $a_{\alpha} \in k$ and distinct vectors $\alpha = (\alpha_1, \ldots, \alpha_d) \in \mathbb{N}^d$. Since $\beta_1, \beta_2, \ldots, \beta_d$ are linearly independent over \mathbb{Q} , the vectors $\alpha_1\beta_1 + \cdots + \alpha_d\beta_d$ are distinct. Hence $a_{\alpha} = 0$ for all α .

Conversely let $x^{\beta_1}, x^{\beta_2}, \ldots, x^{\beta_d}$ be algebraically independent over k. Let $\alpha_1, \ldots, \alpha_d \in \mathbb{Q}$ such that $\alpha_1\beta_1 + \cdots + \alpha_d\beta_d = 0$. Without loss of generality we may assume that $\alpha_1, \alpha_2, \ldots, \alpha_p > 0$ and $\alpha_{p+1}, \ldots, \alpha_d < 0$. Then

$$\alpha_1\beta_1 + \dots + \alpha_p\beta_p = \alpha_{p+1}\beta_{p+1} + \dots + \alpha_d\beta_d.$$

This yields the algebraic dependency relation $x^{\alpha_1\beta_1}\cdots x^{\alpha_p\beta_p} = x^{\alpha_{p+1}\beta_{p+1}}\cdots x^{\alpha_d\beta_d}$.

Let $\alpha \in \mathbb{P}^n \cap E_{\Phi}$. Let $d = n - \operatorname{rank} \Phi$. Pick linearly independent solutions $\beta_1, \beta_2, \ldots, \beta_d \in \mathbb{Z}^n$ of $\Phi X = 0$. Let $t \in \mathbb{Q}_+$. If $\alpha - t\beta_1, \alpha - t\beta_2, \ldots, \alpha - t\beta_d$ are linearly dependent over \mathbb{Q} , then there exist $a_1, a_2, \ldots, a_d \in \mathbb{Z}$, not all zero such that

$$a_1(\alpha - t\beta_1) + a_2(\alpha - t\beta_2) + \dots + a_d(\alpha - t\beta_d) = 0$$

We have unique rational numbers b_1, b_2, \ldots, b_d such that $\alpha = b_1\beta_1 + b_2\beta_2 + \cdots + b_d\beta_d$. Put $a = \sum_{i=1}^d a_i$. Then $\sum_{i=1}^d (ab_i - ta_i)\beta_i = 0$. Let $a_p \neq 0$. Then $t = ab_p/a_p$. Hence by selecting $t \in \mathbb{Q}_+$ sufficiently small, we get a contradiction. This proves that $\delta_1 = \alpha - t\beta_1, \delta_2 = \alpha - t\beta_2, \ldots, \delta_d = \alpha - t\beta_d$ are linearly independent solutions in \mathbb{P}^n . Hence $x^{\delta_1}, \ldots, x^{\delta_d}$ are algebraically independent elements of R_{Φ} .

Corollary 2.4. The function $H_n(r)$ is a polynomial in r for large r of degree $(n-1)^2$.

Proof. The ring R_{μ} is a standard graded k-algebra. The r^{th} graded component of it is generated by monomials of degree rn corresponding to magic squares of line sum r. Hence $H_n(r)$ is a polynomial for large r. We show that

$$\dim R_{\mu} = (n-1)^2 + 1.$$

By the above lemma, dim R_{μ} = nullity μ . Note that to construct a magic square, we may assign any nonnegative values to the variables x_{ij} , for i, j = 1, 2, ..., (n-1) and a value for x_{1n} will determine the rest of the entries. Thus nullity $\mu = (n-1)^2 + 1$.

Proposition 2.5 (MacMahon [2], Anand-Dumir-Gupta [1]). The number of 3×3 magic squares with line sum r is given by

$$H_3(r) = \binom{r+4}{4} + \binom{r+3}{4} + \binom{r+2}{4}.$$

Proof. By the above corollary, the dimension of the semigroup ring R generated over a field k by the monomials corresponding to the six 3×3 permutation matrices is $(n-1)^2 + 1 = 5$. Let $S = k[y_1, y_2, \ldots, y_6]$. Put

$$M_{1} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \quad M_{2} = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}, \quad M_{3} = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \end{bmatrix},$$
$$M_{4} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}, \quad M_{5} = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \quad M_{6} = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}.$$

Note that $M_1 + M_2 + M_3 = M_4 + M_5 + M_6$. Let $f = y_1 y_2 y_3 - y_4 y_5 y_6$. Hence $S/(f) \simeq R$. Therefore

$$H(S/(f),\lambda) = (1-\lambda^3)/(1-\lambda)^6 = (1+\lambda+\lambda^2)/(1-\lambda)^5.$$

This yields the desired formula.

3. Cohen-Macaulay Property of R_{Φ}

In this section we show that R_{Φ} is a Cohen-Macaulay ring. This is done by showing that it is a ring of invariants of an algebraic torus acting linearly on a polynomial ring. A well-known theorem of Hochster then implies that it is Cohen-Macaulay.

Write the $r \times n$ matrix $\Phi = [\gamma_1, \gamma_2, \dots, \gamma_n]$ where γ_i is the *i*th column vector of Φ . Let k^* denote the multiplicative group of k. Consider the algebraic torus

$$T = \{ \operatorname{diag}(u^{\gamma_1}, u^{\gamma_2}, \dots, u^{\gamma_n}) : u = (u_1, u_2, \dots, u_r) \in (k^*)^r \}.$$

T acts on $R = k[x_1, x_2, \dots, x_n]$ via the automorphisms $\tau_u : x_i \longrightarrow u^{\gamma_i} x_i, \quad i = 1, 2, \dots, n$. Let $\beta \in \mathbb{N}^n$. Then

$$\tau_u(x^\beta) = (u^{\gamma_1}x_1)^{\beta_1}(u^{\gamma_2}x_2)^{\beta_2}\cdots(u^{\gamma_n}x_n)^{\beta_n}$$
$$= u^{\beta_1\gamma_1+\beta_2\gamma_2+\cdots+\beta_n\gamma_n}x^\beta$$

Hence $\tau_u(x^\beta) = x^\beta$ if and only if $\beta \in E_{\Phi}$. Hence R_{Φ} is the ring of invariants of the torus T acting linearly on R. By Hochster's theorem [3] R_{Φ} is Cohen-Macaulay.

We can now dispose the conjecture (5) of Stanley. Since R_{μ} is Cohen-Macaulay homogeneous ring of dimension $d = (n-1)^2 + 1$, there exists an hoop **a** for R_{μ} of elements of degree one. Hence

$$F(R_{\mu}, \lambda) = rac{F(R_{\mu}/(\mathbf{a}), \lambda)}{(1-\lambda)^d}.$$

Hence the numerator of the above Hilbert series is a polynomial with positive coefficients.

4. Macaulay's theorem for Gorenstein graded rings

The purpose of this section is to recall the basic definitions and facts about Gorenstein graded rings and provide a proof of Macaulay's theorem concerning their Hilbert series.

Let R be an \mathbb{N} -graded ring. Let \mathcal{M} be the category of \mathbb{Z} -graded R-modules. Let $M = \bigoplus M_n$ and $N = \bigoplus N_n \in \mathcal{M}$. An R-linear map $f : M \longrightarrow N$ is a morphism in \mathcal{M} if $f(M_n) \subseteq N_n$ for all $n \in \mathbb{Z}$. By M(n) we mean the module M with grading defined by $[M(n)]_m = M_{m+n}$ for all $m \in \mathbb{Z}$. Put

* Hom
$$(M, N)_n = \{f : M \longrightarrow N(n)\}$$
 and * Hom $(M, N) = \bigoplus_{n \in \mathbb{Z}} * \text{Hom}(M, N)_n$.

It is easy to check that if M is finitely generated then $* \operatorname{Hom}(M, N) = \operatorname{Hom}(M, N)$.

Proposition 4.1. Let $A = k[x_1, x_2, ..., x_s]$ be polynomial ring over a field k. Let I be a homogeneous ideal of A. Let A/I be Cohen-Macaulay. Then

 $\operatorname{Ext}^{i}(A/I, A) \neq 0 \iff i = h = ht(I).$

Proof. By Auslander-Buchsbaum formula pd(A/I) = depth A - dim A/I = s - (s - h) = h. Write a graded minimal resolution of A/I as an A-module:

 $0 \longrightarrow A^{\beta_h} \longrightarrow A^{\beta_{h-1}} \longrightarrow \cdots \longrightarrow A^{\beta_1} \longrightarrow A \longrightarrow A/I \longrightarrow 0.$

Thus $\operatorname{Ext}^{i}(A/I, A) = 0$ for i > h. Since A is Cohen-Macaulay, $\operatorname{Ext}^{i}(A/I, A) = 0$ for i < h. \Box

Definition 4.2. The A-module $K_{A/I} = \text{Ext}^h(A/I, A)$ is called the **canonical module** of A/I. The ring A/I is called **Gorenstein** if $K_{A/I} \simeq A/I(a)$. for some $a \in \mathbb{Z}$. The integer a is called the a-invariant of A/I.

Theorem 4.3. Put R = A/I and $d = \dim(R)$. Let the degree of $x_i = e_i \in \mathbb{P}$ for i = 1, 2, ..., s. Then as rational functions of λ

$$F(K_R,\lambda) = (-1)^d F(R,1/\lambda) \lambda^{-\sum_{i=1}^s e_i}.$$

Proof. Write a minimal free resolution of R as an A-module:

$$0 \longrightarrow M_h \xrightarrow{\phi_h} M_{h-1} \xrightarrow{\phi_{h-1}} \cdots \longrightarrow M_1 \xrightarrow{\phi_1} M_0 \xrightarrow{\phi_0} R \longrightarrow 0.$$

Apply Hom(-, A) to the above resolution to get the complex:

$$0 \longrightarrow \operatorname{Hom}(M_0, A) \xrightarrow{\phi_0^*} \operatorname{Hom}(M_1, A) \xrightarrow{\phi_1^*} \cdots \xrightarrow{\phi_h^*} \operatorname{Hom}(M_h, A) \longrightarrow 0$$

Thus $K_R \simeq \operatorname{Hom}(M_h, A)/\operatorname{Im}(\phi_h^*)$. Hence we have the following minimal free resolution for K_R as an A-module:

$$0 \longrightarrow \operatorname{Hom}(M_0, A) \xrightarrow{\phi_0^*} \cdots \xrightarrow{\phi_h^*} \operatorname{Hom}(M_h, A) \longrightarrow K_R \longrightarrow 0$$

It is easy to see that for integers m and n,

 $F(M(n), \lambda) = \lambda^{-n} F(M, \lambda)$ and $\operatorname{Hom}(A(m), A) \simeq A(-m).$

Let rank $(M_i) = \beta_i$, and $M_i = \bigoplus_{j=1}^{\beta_i} A(-g_{ij})$ for i = 0, 1, ..., h. Put $D(\lambda) = \prod_{p=1}^{s} (1 - \lambda^{e_p})$ and $N_i(\lambda) = \sum_{j=1}^{\beta_i} \lambda^{g_{ij}}$. Now we calculate the Hilbert series of R and K_R from their minimal free resolutions written above. Put $e = \sum_{i=1}^{s} e_i$.

$$F(M_i,\lambda) = \sum_{j=1}^{\beta_i} F(A(-g_{ij}),\lambda) = \frac{\sum_{j=1}^{\beta_i} \lambda^{g_{ij}}}{\prod_{p=1}^s (1-\lambda^{e_p})} = \frac{N_i(\lambda)}{D(\lambda)}$$

Hence $F(R,\lambda) = \sum_{i=0}^{h} N_i(\lambda) / D(\lambda)(-1)^i$. To find $F(K_R,\lambda)$, note that

$$F(K_R,\lambda) = \sum_{i=0}^{h} (-1)^{i+h} F(M_i^*,\lambda) = \sum_{i=0}^{h} (-1)^{i+h} F(A(g_{ij}),\lambda) = \sum_{i=0}^{h} (-1)^{i+h} N_i(\lambda^{-1}) / D(\lambda).$$

Since $D(\lambda^{-1}) = (-1)^s D(\lambda) \lambda^{-e}$, we get

$$F(R, 1/\lambda) = \sum_{i=0}^{h} (-1)^{i} \frac{N_{i}(\lambda^{-1})}{D(\lambda^{-1})} = (-1)^{s-h} \lambda^{e} F(K_{R}, \lambda) = (-1)^{d} \lambda^{e} F(K_{R}, \lambda).$$

Corollary 4.4 (Macaulay's Theorem). If the ring R = A/I is Gorenstein of dimension d then for some $\sigma \in \mathbb{Z}$,

$$F(R, 1/\lambda) = (-1)^d \lambda^\sigma F(R, \lambda).$$

If R is standard Gorenstein with $F(R,\lambda) = (h_0 + h_1\lambda + \dots + h_g\lambda^g)/(1-\lambda)^d$, and $h_g \neq 0$, then

(1) $h_i = h_{g-i}$, for all $i = 0, 1, \dots, g$.

(2) $\sigma = d - g$.

(3) If $\sigma \geq 1$, then $H(n) = \dim R_n$ is a polynomial P(n) for all n, (a) P(-i) = 0 for all $i = 1, 2, ..., (\sigma - 1)$, and (b) $P(n) = (-1)^{d-1}P(-\sigma - n)$ for all $n \in \mathbb{Z}$.

Proof. (1) and (2): Put $e = \sum_{i=1}^{s} e_i$. Suppose R is Gorenstein. Then $K_R \simeq R(a)$, for some $a \in \mathbb{Z}$. Hence

$$F(K_R,\lambda) = \lambda^{-a} F(R,\lambda) = (-1)^d \lambda^{-e} F(R,1/\lambda).$$

Hence $F(R, \lambda) = \lambda^{a-e}(-1)^d F(R, 1/\lambda)$. Now let R be standard Gorenstein. Write

$$F(R,\lambda) = (h_0 + h_1\lambda + h_2\lambda^2 + \dots + h_g\lambda^g)/(1-\lambda)^d$$

where $h_g \neq 0$. Then

$$F(R, 1/\lambda) = (-1)^d \lambda^{d-g} (h_0 \lambda^g + h_1 \lambda^{g-1} + \dots + h_g) / (1-\lambda)^d = \lambda^{e-a} (-1)^d F(R, \lambda).$$

Hence $d - g = e - a = \sigma$ and $h_i = h_{g-i}$ for all $i = 0, 1, \dots, g$.

(3) We know that if $\sigma \ge 1$, then H(n) is a polynomial for all $n \in \mathbb{Z}$ and as dim $R_n = 0$ for all n < 0, P(n) = 0 for all $n = -1, -2, \ldots, -(\sigma - 1)$, and $P(-\sigma) \ne 0$. We have for all $n \ge -(\sigma - 1)$,

$$P(n) = h_0 \binom{n+d-1}{d-1} + h_1 \binom{n+d-2}{d-1} + \dots + h_g \binom{d-1+n-g}{d-1}.$$

Now use the fact that $h_i = h_{g-i}$ for all i = 1, 2, ..., g, and $\binom{n}{p} = (-1)^p \binom{p-n-1}{p}$, as polynomials,

$$P(n) = \sum_{i=0}^{g} h_i {d-1+n-i \choose d-1}$$

= $\sum_{i=0}^{g} h_{g-i} {d-1-(d-1+n-i)-1 \choose d-1} (-1)^{d-1}$
= $\sum_{i=0}^{g} h_i {g-i-n-1 \choose d-1} (-1)^{d-1}$
= $\sum_{i=0}^{g} h_i {d-\sigma-i-n-1 \choose d-1} (-1)^{d-1}$
= $(-1)^{d-1} P(-\sigma-n).$

Definition 4.5. The vector (h_0, h_1, \ldots, h_g) is called the h-vector of the standard graded algebra R. If the condition $h_i = h_{g-i}$ is satisfied for all $i = 0, i, \ldots, g$ then we say that the h-vector of R is symmetric.

Example 4.6. The symmetry of the *h*-vector of a standard graded Cohen-Macaulay algebra R does not imply that R is Gorenstein. We construct an example. Consider the ideal I = (xyz, xw, zw) of the polynomial ring A = k[x, y, z, w]. The ideal I is generated by the maximal minors of the matrix

$$M = \left[\begin{array}{ccc} 0 & z & x \\ -w & -yz & 0 \end{array} \right].$$

A resolution of R = A/I as an A-module is:

 $0 \longrightarrow A(-3) \oplus A(-4) \xrightarrow{f} A(-3) \oplus A(-2)^2 \xrightarrow{g} A \longrightarrow R \longrightarrow 0,$

where the maps f and g are defined as

$$f([r,s]) = [r,s]M$$
 and $g([r,s,t]) = rxyz - sxw + tzw.$

It can be shown easily that the above sequence is a minimal resolution of R. Hence by Auslander-Buchsbaum formula, depth $R = \text{depth } A - \text{pd } R = 4 - 2 = 2 = \dim R$. Hence R is Cohen-Macaulay. However it is not Gorenstein as the above resolution shows that rank $K_R = 2$. The Hilbert series of R can be found from the resolution and it turns out to be $(1 + 2\lambda + \lambda^2)/(1 - \lambda)^2$. Hence the *h*-vector of R is symmetric, although it is not Gorenstein.

Remark: The principal result of [6] shows that the symmetry of the h-vector implies Gorenstein property provided R is a Cohen-Macaulay domain.

5. A sketch of Stanley's solution

By Corollary 4.4, we need to show that the degree of the Hilbert series of R_{μ} is -n and it is Gorenstein. By the Grothehdieck-Serre difference formula, the degree of the Hilbert series of R_{Φ} is the integer $a(R_{\Phi}) = \max\{n : H^d(R_{\Phi})_n \neq 0\}$.

Theorem 5.1 (Stanley, [4]). (1) $H^d(R_{\Phi}) = k[x^{\beta} : \beta \in E_{\Phi}, and \beta < 0].$

- (2) $K_{R_{\Phi}} = k[x^{\beta} : \beta \in E_{\Phi}, and \beta > 0].$
- (3) If $\gamma = (1, 1, ..., 1) \in E_{\Phi}$, then $K_{R_{\Phi}} = x^{\gamma} R_{\Phi}$. Hence in this case, R_{Φ} is Gorenstein.

For the case of magic squares, the $n \times n$ magic square J_n whose each entry is 1 is the smallest positive solution and by the description of $H^d(R_{\Phi})$, the *a*-invariant of R_{μ} is -n. Hence The degree of its Hilbert series is -n. It proves that $H_n(r)$ is a polynomial for all r > -n. Moreover $H_n(-n) \neq 0$ and

$$H_n(-1) = H_n(-2) = \dots = H_n(-(n-1)) = 0.$$

By Corollary 4.4, we conclude that

$$H_n(r) = (-1)^{(n-1)^2} H_n(-r-n) = (-1)^{n-1} H_n(-r-n).$$

for all n.

References

- H. Anand, V. C. Dumir and H. Gupta, A combinatorial distribution problem, Duke Math. J. 33 (1966), 757-769.
- [2] P. A. MacMahon, *Combinatory Analysis*, vols 1 and 2, Cambridge, 1916; reprinted by Chelsea, New York, 1960.
- [3] M. Hochster, Rings of invariants of Tori, Cohen-Macaulay rings generated by monomials and polytopes, Annals of Math 96 (1972), 318-337.
- [4] R. P. Stanley, Linear homogeneous Diophatine equations and magic labelling of graphs, Duke Math. J. 40 (1973), 607-632.
- [5] R. P. Stanley, Enumerative Combinatorics, Vol1, Wardsworth and Brooks/Cole, Pacific Grove, CA, 1986.
- [6] R. P. Stanley, Hilbert functions of graded algebras, Advances in Math 28 (1978), 57-83.
- [7] R. P. Stanley, Linear Diophantine equations and local cohomology, Inventiones. Math. 68(1982), 175-193.

DEPARTMENT OF MATHEMATICS, IIT BOMBAY, POWAI, MUMBAI 400 076.

E-mail address: jkv@math.iitb.ac.in