Quiz-1 Algebraic Topology

- 1. Show that for odd n, the antipodal map and the identity map from S^n to S^n are homotopic.
- 2. Let X be an Euclidean Neighbourhood Retract space and A a closed subspace of X which is contractible. Show that there exist a continuous map $f: X \to X$ such that f is homotopic to identity and f(A) = point. Further, show that X and X/A have the same homotopy type.
- 3. Show that $SO(n, \mathbb{R})$ is a retraction of $SL(n, \mathbb{R})$.
- 4. Compute the fundamental group of the space X which is S^2 together with a line joining north and south poles, with subspace topology from \mathbb{R}^3 .

Quiz-2 - Algebraic Topology

- 1. For $n \ge 2$, state the appropriate path lifting result for the canonical map $p: S^n \to \mathbb{R}P^n$ and prove that $\pi_1(\mathbb{R}P^n) = \mathbb{Z}/2$.
- 2. Let $\pi: E \to B$ be a local trivial fibration with typical fiber F. If F is path connected, then show that the induced map $\pi_{\sharp}: \pi_1(E, z_0) \to \pi_1(B, x_0)$ is surjective. [You can (state and) use path lifting property for π .]
- 3. Show that S^3 is a topological group.
- 4. Show that a locally injective map $f: X \to Y$ has discrete fibers.

Quiz-3 Algebraic Topology

- 1. Assume that $h: Z \to C(I, Y)$ is a continuous map with compact open topology on C(I, Y). Show that the induced map $H: Z \times I \to Y$, defined as H(z, t) = h(z)(t), is continuous.
- 2. Find spaces \widetilde{X}, X which are path connected and locally path connected, and a covering map $p : \widetilde{X} \to X$ which is not a regular covering. Conclude that $\pi_1(X)$ is non-abelian.
- 3. Let X be path connected and locally path connected. Let G be a group of homeomorphisms of X. Show that G acts properly discontinuous on X if and only if the projection map $p: X \to X/G$ is a covering map.
- 4. (1) Show that every continuous map f : ℝP² → S¹ is homotopic to constant.
 (2) Find a continuous map g : T → S¹ which is not homotopic to constant, where T is a torus.

Mid Semester Exam Algebraic Topology - M803

(24th February, 3:30-5:30 pm, 24 marks) Solve all questions. Each question is of 3 marks.

- 1. Let $a, b: I \to X$ be two loops in X at the points x_0, y_0 respectively. Show that if a and b are free homotopic, then there exists a path $c: I \to X$ from x_0 to y_0 such that $a \cong (cb)c^{-1}$.
- 2. Let $f: S^n \to X$ be a continuous map which is homotopic to a constant map. Show that f can be extended to a continuous map $F: B^{n+1} \to X$.
- 3. Find the fundamental group of $\mathbb{R}^3 E$, where E is the union of x and y-axis.
- 4. A subspace Y of X is called a *deformation retract* of X if there exist a homotopy $H: X \times I \to X$ such that $H_0 = id$ and $H_1(X) = A$ with $H_1(a) = a$ for all $a \in A$. Clearly, if Y is a deformation retract of X, then Y is a retract of X. Show by an example, that the converse may not be true.
- 5. Construct a continuous surjective map $F: D^2 \to D^2$ such that $F|_{S^1} = f: S^1 \to S^1$ and f is homotopic to a constant map.
- 6. Let $a, b: I \to S^1$ be two loops in S^1 (at x_0 and x_1 respectively) with same degree n(a) = n(b). Show that a, b are free homotopic.
- 7. Show that any continuous map $f: D^2 \to D^2$ has a fixed point. [You can use $\pi_1(S^1) = \mathbb{Z}$.]
- 8. Show that there are no retraction $r: X \to A$, where (X, A) are
 - (a) $(\mathbb{R}^3, S^1),$
 - (b) $X = S^1 \times D^1$ is solid torus and $A = S^1 \times S^1$, the boundary of X.

End Semester Exam - Algebraic Topology

Instructor: Manoj K. Keshari

(25th April, 2-5 pm, 40 marks)

Solve all the problems. You can get maximum 40 marks out of 45. Give proper justifications.

- 1. Find whether open interval (0,1) is a retract of (0,2). (2)
- List 4 topological properties which are not preserved under homotopy equivalence.
 (2)
- 3. Show that the antipodal map a and the identity map id from $S^3 \to S^3$ are homotopic. (2)
- 4. Let X be path connected such that $\pi_1(X) = 0$. Show that every map $S^1 \to X$ extends to a map $D^2 \to X$. (2)
- 5. Let $p : (\widetilde{X}, \widetilde{x}_0) \to (X, x_0)$ be a covering map and Z is a connected space. Let $f : (Z, z_0) \to (X, x_0)$ be a continuous map. Assume f has a lift $\widetilde{f} : (Z, z_0) \to (\widetilde{X}, \widetilde{x}_0)$. Show that \widetilde{f} is the unique lift of f. (2)
- 6. Show that if a path-connected and locally-path-connected space X has a simply connected cover, then X has to be semi-locally simply-connected. (2)
- 7. Give an example to show that a simply connected space X may not be locally simply connected. (2)
- 8. Give an example of a locally injective map which is not a local homeomorphism. (2)
- 9. Give an example of a local homeomorphism which is not a covering map. (2)

P.T.O.

- 10. Let $Y \subset \mathbb{R}^n$ be a compact space of ENR type. Show that there exist $\delta > 0$ such that if $f, g: X \to Y$ are continuous with $|f(x) g(x)| < \delta$ for all $x \in X$, then f is homotopic to g. (2)
- 11. Find a universal cover of the space $\mathbb{R} \wedge S^1$. (3)
- 12. Let $f: S^1 \to S^1$ be a continuous map which is homotopic to a constant map. Show that there exist $z \in S^1$ such that f(z) = f(-z). (3)
- 13. Find all two sheeted covering spaces of the figure eight space X. (3)

- 14. Find a covering map $p : \mathbb{R} \times S^1 \to S^1 \times S^1$ such that the image of p_{\sharp} is the cyclic subgroup of $\mathbb{Z}^2 = \pi_1(S^1 \times S^1)$ generated by (1,1). (3)
- 15. Show that the projection map $\pi : S^{2n+1} \to \mathbb{C}P^n$ is a local trivial fibration with typical fiber S^1 . (3)
- 16. Let $p: \widetilde{X} \to X$ be a covering map with \widetilde{X} path connected. (i) Show that $\pi_1(X, x)$ acts transitively on the fiber $p^{-1}(x)$. (2)
 - (ii) Find the stabilizer of $\tilde{x} \in p^{-1}(x)$. (2)

(iii) Show that the group $G(\tilde{X}/X)$ of covering transformations is a properly discontinuous group of homeomorphisms of \tilde{X} . (2)

17. (i) Show that the fundamental group of any finite graph is a free product of some copies of \mathbb{Z} . (2)

(ii) Using the fact that any covering space of a graph is a graph, show that any subgroup of the group $\mathbb{Z} * \mathbb{Z}$ is free. (2)

End Semester Exam - Algebraic Topology (CBS)

Instructor: Manoj K. Keshari

(25th April, 10:30-13:30 hours, 40 marks)

Solve all the problems. You can get maximum 40 marks out of 47. Give proper justifications.

- 1. Show that $\mathbb{R}^2 (0,0)$ has same homotopy type as figure eight. (2)
- 2. Show that the antipodal map a and the identity map id from $S^3 \to S^3$ are homotopic. (2)
- 3. Construct a continuous surjective map $F: D^2 \to D^2$ such that $F|_{S^1} = f: S^1 \to S^1$ and f is homotopic to a constant map. (2)
- 4. Show that a locally injective map $f: X \to Y$ has discrete fibers. (2)
- 5. Let $p : (\widetilde{X}, \widetilde{x}_0) \to (X, x_0)$ be a covering map and Z is a connected space. Let $f : (Z, z_0) \to (X, x_0)$ be a continuous map. Assume f has a lift $\widetilde{f} : (Z, z_0) \to (\widetilde{X}, \widetilde{x}_0)$. Show that \widetilde{f} is the unique lift of f. (2)
- 6. Assume that $h: Z \to C(I, Y)$ is a continuous map with compact open topology on C(I, Y). Show that the induced map $H: Z \times I \to Y$, defined as H(z, t) = h(z)(t), is continuous. (2)
- 7. Let X be the figure eight space. Find a path connected and locally path connected space \widetilde{X} and a covering map $p: \widetilde{X} \to X$ which is not a regular covering (i.e. image $p_{\sharp}(\pi_1(\widetilde{X}))$ is not normal in $\pi_1(X)$). (2)
- 8. Give an example to show that a simply connected space X may not be locally simply connected. (2)
- 9. Show that if a path-connected and locally-path-connected space X has a simply connected cover, then X has to be semi-locally simply-connected. (2)

P.T.O.

10.	Give an example of a locally injective map which is not a local homeomorphism.	(2)
11.	Give an example of a local homeomorphism which is not a covering map.	(2)
12.	State Jordan curve theorem and the classification theorem for surfaces.	(2)
13.	Show that S^3 has a topological group structure.	(2)
14.	Show that every continuous map $f:\mathbb{R}P^2\to S^1$ is homotopic to a constant map.	(3)
15.	Let X be path connected and locally path connected. Let G be a group of hom morphisms of X. Show that if the projection map $p: X \to X/G$ is a covering methen G acts properly discontinuously on X.	

- 16. Let $f: S^1 \to S^1$ be a continuous map which is homotopic to constant. Show that there exist $z \in S^1$ such that f(z) = f(-z). (3)
- 17. For $n \ge 2$, prove that $\pi_1(\mathbb{R}P^n) = \mathbb{Z}/2.$ (3)
- 18. Let $\pi : E \to B$ be a local trivial fibration with typical fiber F. If F is path connected, then show that the induced map $\pi_{\sharp} : \pi_1(E, z_0) \to \pi_1(B, x_0)$ is surjective. (3)
- 19. Use generalized Van-Kampen theorem (done in seminar) to find the fundamental group of the subspace X of \mathbb{R}^2 , where X is union of circles of radius n and center (n,0), for $n \ge 1$. (3)
- 20. Find a covering map $p : \mathbb{R} \times S^1 \to S^1 \times S^1$ such that the image of p_{\sharp} is the cyclic subgroup of $\mathbb{Z}^2 = \pi_1(S^1 \times S^1)$ generated by (1,1). (3)