EFFICIENT GENERATION OF IDEALS IN A DISCRETE HODGE ALGEBRA

MANOJ K. KESHARI AND MD. ALI ZINNA

Abstract

Let R be a commutative Noetherian ring and D be a discrete Hodge algebra over R of dimension $d>\operatorname{dim}(R)$. Then we show that

(i) the top Euler class group $E^{d}(D)$ of D is trivial.
(ii) if $d>\operatorname{dim}(R)+1$, then $(d-1)$-st Euler class group $E^{d-1}(D)$ of D is trivial.

1. Introduction

Let R be a commutative Noetherian ring. An R-algebra D is called a discrete Hodge algebra over R if $D=R\left[X_{1}, \cdots, X_{n}\right] / \mathcal{I}$, where \mathcal{I} is an ideal of $R\left[X_{1}, \cdots, X_{n}\right]$ generated by monomials. Typical examples are $R\left[X_{1}, \cdots, X_{n}\right], R[X, Y](X Y)$ etc. In [V], Vorst studied the behaviour of projective modules over discrete Hodge algebras. He proved [V, Theorem 3.2] that every finitely generated projective D-module is extended from R if for all k, every finitely generated projective $R\left[X_{1}, \cdots, X_{k}\right]$-module is extended from R.

Later Mandal [M 2] and Wiemers [Wi] studied projective modules over discrete Hodge algebra D. In [Wi], Wiemers proved the following significant result. Let P be a projective D-module of rank $\geq \operatorname{dim}(R)+1$. Then (i) $P \simeq Q \oplus D$ for some D-module Q and (ii) P is cancellative, i.e. $P \oplus D \simeq P^{\prime} \oplus D$ implies $P \simeq P^{\prime}$.

When $D=R[X, Y](X Y)$, above results of Wiemers are due to Bhatwadekar and Roy [B-R]. Very recent, inspired by results of Bhatwadekar and Roy, Das and Zinna [D-Z 3] studied the behaviour of ideals in $R[X, Y] /(X Y)$ and proved the following result on efficient generation of ideals. Assume $\operatorname{dim}(R) \geq 1, D=R[X, Y] /(X Y)$ and $I \subset D$ is an ideal of height $n=\operatorname{dim}(D)$. Assume I / I^{2} is generated by n elements. Then any given set of n generators of I / I^{2} can be lifted to a set of n generators of I. In particular, the top Euler class group $E^{n}(D)$ of D is trivial.

As $R[X, Y] /(X Y)$ is the simplest example of a discrete Hodge algebra over R, motivated by above discussions, one can ask the following question.
Question 1.1. Let R be a commutative Noetherian ring of dimension ≥ 1 and D be a discrete Hodge algebra over R of dimension $n>\operatorname{dim}(R)$. Let $I \subset D$ be an ideal of height n. Suppose that $I=\left(f_{1}, \cdots, f_{n}\right)+I^{2}$. Do there exist $g_{1}, \cdots, g_{n} \in I$ such that
$I=\left(g_{1}, \cdots, g_{n}\right)$ with $f_{i}-g_{i} \in I^{2}$? In other words, Is the top Euler class group $E^{n}(D)$ of D trivial? (For definition of Euler class groups, see [B-RS 2] and [B-RS 3].)

We answer Question 1.1 affirmatively and prove the following more general result ((3.1) below).

Proposition 1.2. Let R be a commutative Noetherian ring of dimension ≥ 1 and D be a discrete Hodge algebra over R of dimension $n>\operatorname{dim}(R)$. Let P be a projective D-module of rank n which is extended from R and I be an ideal in D of height ≥ 2. Suppose that there is a surjection $\alpha: P / I P \rightarrow I / I^{2}$. Then α can be lifted to a surjection $\beta: P \rightarrow I$. In particular, the n-th Euler class group $E^{n}(D)$ of D is trivial.

The above result can be extended to any rank n projective D-module when R contains $\mathbb{Q}(3.8)$. Here is the precise statement.

Theorem 1.3. Let R be a commutative Noetherian ring containing \mathbb{Q} of dimension ≥ 2 and D be a discrete Hodge algebra over R of dimension $n>\operatorname{dim}(R)$. Let I be an ideal in D of height ≥ 3 and P be any rank n projective D-module. Suppose that there is a surjection $\alpha: P / I P \rightarrow I / I^{2}$. Then α can be lifted to a surjection $\beta: P \rightarrow I$.

After studying the top rank case, one is tempted to go one step further and inquire the following question.
Question 1.4. Let R be a commutative Noetherian ring of dimension ≥ 3 and D be a discrete Hodge algebra over R of dimension $d \geq \operatorname{dim}(R)+2$. Let I be an ideal in D of height $d-1$ and P be a projective D-module of rank $d-1$. Suppose that $\alpha: P / I P \rightarrow I / I^{2}$ is a surjection. Can α be lifted to a surjection $\beta: P \rightarrow I$?

We answer Question 1.4 affirmatively when R contains \mathbb{Q} ((4.3) below) as follows.
Theorem 1.5. Let R be a commutative Noetherian ring containing \mathbb{Q} of dimension ≥ 3 and D be a discrete Hodge algebra over R of dimension $d>\operatorname{dim}(R)$. Let I be an ideal in D of height ≥ 4 and P be a projective D-module of rank $n \geq \max \{\operatorname{dim}(R)+1, d-1\}$. Suppose that $\alpha: P / I P \rightarrow I / I^{2}$ is a surjection. Then there exists a surjection $\beta: P \rightarrow I$ which lifts α. As a consequence, if $d \geq \operatorname{dim}(R)+2$, then $(d-1)$-st Euler class group $E^{d-1}(D)$ of D is trivial.

Finally we derive an interesting consequence of above result as follows (see (4.6)).
Theorem 1.6. Let R be a commutative Noetherian ring containing \mathbb{Q} of dimension ≥ 3 and D be a discrete Hodge algebra over R of dimension $d>\operatorname{dim}(R)$. Let I be a locally complete intersection ideal in D of height $n \geq \max \{\operatorname{dim}(R)+1, d-1\}$. Then I is set theoretically generated by n elements.

In Section 5, we give some partial answer to the following question.

Question 1.7. Let R be a commutative Noetherian ring of dimension ≥ 1 and D be a discrete Hodge algebra over R of dimension $>\operatorname{dim}(R)$. Let $I \subset D$ be an ideal of height $>\operatorname{dim}(R)$. Suppose that $I=\left(f_{1}, \cdots, f_{n}\right)+I^{2}$, where $n \geq \operatorname{dim}(D / I)+2$. Do there exist $g_{1}, \cdots, g_{n} \in I$ such that $I=\left(g_{1}, \cdots, g_{n}\right)$ with $f_{i}-g_{i} \in I^{2}$?

The above question has been settled in the affirmative by Mandal in [M 1] when D is a polynomial algebra over R. Recently Fasel [Fa] has settled a conjecture of Murthy and proved the following result. Let k be an infinite field of characteristic $\neq 2$ and $I \subset$ $k\left[T_{1}, \cdots, T_{m}\right]$ be an ideal. Then we have $\mu(I)=\mu\left(I / I^{2}\right)$.

Therefore, we may ask the following natural question.
Question 1.8. Let k be an infinite field of characteristic $\neq 2$ and D be a discrete Hodge algebra over k. Let $I \subset D$ be an ideal. Is $\mu(I)=\mu\left(I / I^{2}\right)$?

2. Preliminaries

Assumptions. Throughout this paper, rings are assumed to be commutative Noetherian and projective modules are finitely generated and of constant rank. For a ring A, $\operatorname{dim}(A)$ will denote the Krull dimension of A.

We start with the following definition.
Definition 2.1. An R-algebra D is said to be a discrete Hodge algebra over R if D is isomorphic to $R\left[X_{1}, \cdots, X_{n}\right] / J$, where J is an ideal of $R\left[X_{1}, \cdots, X_{n}\right]$ generated by monomials. A discrete Hodge algebra over R is called trivial if it is a polynomial algebra over R. Otherwise, it is called a non-trivial discrete Hodge algebra.
Definition 2.2. We call an ideal I of a ring R to be efficiently generated if $\mu(I)=\mu\left(I / I^{2}\right)$, where $\mu(I)$ (resp. $\mu\left(I / I^{2}\right)$) stands for the minimal number of generators of I (resp. I / I^{2}) as an R-module (resp. R / I-module).
Definition 2.3. Let I be an ideal of a ring R. We say that I is set theoretically generated by k elements f_{1}, \cdots, f_{k} in R if $\sqrt{\left(f_{1}, \cdots, f_{k}\right)}=\sqrt{I}$.

The next two results are standard. For proofs the reader may consult [B-RS 2].
Lemma 2.4. [B-RS 2, 2.11] Let R be a ring and J be an ideal of R. Let $K \subset J$ and $L \subset J^{2}$ be two ideals of R such that $K+L=J$. Then $J=K+(e)$ for some $e \in L$ with $e(1-e) \in K$ and $K=J \cap J^{\prime}$, where $J^{\prime}+L=R$.

Lemma 2.5. [B-RS 2, 2.13] Let A be a ring and P be a projective A-module of rank n. Let $(\alpha, a) \in\left(P^{*} \oplus A\right)$. Then there exists an element $\beta \in P^{*}$ such that $\mathrm{ht}\left(I_{a}\right) \geq n$, where $I=(\alpha+a \beta)(P)$. In particular, if the ideal $(\alpha(P), a)$ has height $\geq n$, then ht $I \geq n$. Further, if $(\alpha(P), a)$ is an ideal of height $\geq n$ and I is a proper ideal of A, then $\mathrm{ht} I=n$.

The following lemma is proved in [D-K, Lemma 3.1].

Lemma 2.6. Let R be a ring and $J \subset R$ be an ideal. Let P be a projective R-module of rank $n \geq \operatorname{dim}(R / J)+1$ and let $\alpha: P / J P \rightarrow J / J^{2} f$ be a surjection for some $f \in R$. Given any ideal $K \subset R$ with $\operatorname{dim}(R / K) \leq n-1$, the map α can be lifted to a surjection $\beta: P \rightarrow J^{\prime \prime}$ such that:
(1) $J^{\prime \prime}+\left(J^{2} \cap K\right) f=J$,
(2) $J^{\prime \prime}=J \cap J^{\prime}$ and $h t\left(J^{\prime}\right) \geq n$,
(3) $\left(J^{2} \cap K\right) f+J^{\prime}=R$.

The following theorem is due to Mandal [M 3, Theorem 2.1].
Theorem 2.7. Let R be a ring and $I \subset R[T]$ be an ideal containing a monic polynomial. Let P be a projective R-module of rank $n \geq \operatorname{dim}(R[T] / I)+2$. Suppose that there exists a surjection $\phi: P[T] \rightarrow I /\left(I^{2} T\right)$. Then, there exists a surjection $\psi: P[T] \rightarrow I$ which lifts ϕ.

We improve [D-Z 3, Lemma 2.9] in the following form to suit our needs. The proof is similar to the one given in [D, Lemma 4.9].

Lemma 2.8. Let R be a ring and I, J be two ideals in R such that $J \subset I^{2}$. Let P be a projective R-module and $K \subset R$ be an ideal. Suppose that we are given surjections $\alpha: P \rightarrow I / J$ and $\beta: P \rightarrow \bar{I}$ such that $\alpha \equiv \beta \bmod \bar{J}$, where bar denotes reduction modulo the ideal K. Then α can be lifted to surjection $\phi: P \rightarrow I /(J K)$.

The following result is implicit in the proof of [V, Theorem 3.2].
Theorem 2.9. Let R be a ring and $r>0$ be an integer. Assume that all projective modules of rank r over polynomial extensions of R are extended from R. Then all projective modules of rank r over discrete Hodge R-algebras are extended from R.

The following result is due to Das and Zinna [D-Z 1, Theorem 3.12].
Theorem 2.10. Let R be a ring of dimension $n \geq 2$. Let $R \hookrightarrow S$ be a subintegral extension and L be a projective R-module of rank one. Then, the natural map $E^{n}(R, L) \longrightarrow E^{n}\left(S, L \otimes_{R} S\right)$ is an isomorphism.

The following result follows from [Sw, Lemma 3.2].
Lemma 2.11. Let $R \hookrightarrow S$ be a subintegral extension and $\mathcal{J} \subset R\left[X_{1}, \cdots, X_{m}\right]$ be an ideal generated by monomials. Then $R\left[X_{1}, \cdots, X_{m}\right] / \mathcal{J} \hookrightarrow S\left[X_{1}, \cdots, X_{m}\right] / \mathcal{J}$ is also subintegral.

The following result is from [D-Z 2, Proposition 2.13] for $d \geq 2$. By patching argument, it can be proved for $d=1$.

Proposition 2.12. Let A be a ring of dimension $d \geq 1$. Let I be an ideal of $A[T]$ of height ≥ 2 and P be a projective $A[T]$-module of rank $n \geq d+1$. Suppose that there exists a surjection $\phi: P / I P \rightarrow I / I^{2}$. Then ϕ can be lifted to a surjection $\Psi: P \rightarrow I$.

The following result is due to Wiemers [Wi, Corollary 4.3].
Theorem 2.13. Let R be a ring of dimension d and D be a discrete Hodge algebra over R. Let P be a projective D-module of rank $>d$. Then
(1) $P=D \oplus Q$ for some projective D-module Q.
(2) P is cancellative, i.e. if $P \oplus D \xrightarrow{\sim} P^{\prime} \oplus D$, then $P \xrightarrow{\sim} P^{\prime}$.

It is not hard to see that, adapting the same proof of [D-RS, Theorem 4.2], we can extend [D-RS, Theorem 4.2] in the following form.

Theorem 2.14. Let R be a ring containing \mathbb{Q} with $\operatorname{dim}(R)=n \geq 3$ and $I \subseteq R[T]$ be an ideal of height ≥ 3. Let L be a projective R-module of rank 1 and P be a projective $R[T]$-module of rank n whose determinant is $L[T]$. Assume that we are given a surjection $\psi: P \rightarrow I /\left(I^{2} T\right)$. Assume further that $\psi \otimes R(T)$ can be lifted to a surjection $\psi^{\prime}: P \otimes R(T) \rightarrow I R(T)$. Then, there exists a surjection $\Psi: P \rightarrow I$ such that Ψ is a lift of ψ.

3. Main Theorems: Codimension Zero Case

We begin with the following result which is motivated by [D-Z 3, Theorem 4.2].
Proposition 3.1. Let R be a ring of dimension ≥ 1 and D be a discrete Hodge algebra over R of dimension $n>\operatorname{dim}(R)$. Let P be a projective D-module of rank n which is extended from R and I be an ideal in D of height ≥ 2. Suppose that there is a surjection $\alpha: P / I P \rightarrow I / I^{2}$. Then α can be lifted to a surjection $\beta: P \rightarrow I$.

Proof. If D is a trivial discrete Hodge algebra over R, then we are done by (2.12). So we assume that R is a non-trivial discrete Hodge algebra over R. Let 'prime' denote reduction modulo the nil radical N of D. Assume $\alpha \otimes D^{\prime}$ can be lifted to a surjection $\alpha_{1}: P \otimes D^{\prime} \rightarrow I \otimes D^{\prime}$. Then α_{1} can be lifted to a surjection $\alpha_{2}: P_{1+N} \rightarrow I_{1+N}$. Since $1+N$ consists of units of D, α_{2} is a lift of α. Therefore, we may assume that D is reduced.

Let $D=R\left[X_{1}, \cdots, X_{m}\right] / \mathcal{J}$, where \mathcal{J} is an ideal of $R\left[X_{1}, \cdots, X_{m}\right]$ generated by square-free monomials. We prove the result using induction on the number of variables m. If $m=1$, then D is just $R\left[X_{1}\right]$ and the result follows from (2.12).

Let us assume that $m \geq 2$. We can assume that $\mathcal{J}=\mathcal{K}+X_{m} \mathcal{L}$, where \mathcal{K} and \mathcal{L} are monomial ideals of $R\left[X_{1}, \cdots, X_{m-1}\right]$. Then $D=R\left[X_{1}, \cdots, X_{m}\right] /\left(\mathcal{K}, X_{m} \mathcal{L}\right)$.

Case 1. $n \geq 3$. Given $\alpha: P / I P \rightarrow I / I^{2}$, applying (2.6), α can be lifted to a surjection $\gamma_{1}: P \rightarrow I^{\prime}$ such that (1) $I^{\prime}=I \cap J$, (2) $I+J=D,(3) \operatorname{ht}(J) \geq n$.

If $\operatorname{ht}(J)>n$, then $J=D$ and we are done. So assume $h t(J)=n$. Let $\gamma: P \rightarrow J / J^{2}$ be the surjection induced from γ_{1}.

Let x_{m} and L be the images of X_{m} and \mathcal{L} in D, respectively. We shall use 'tilde' when we move modulo $\left(x_{m}\right)$ and 'bar' when we move modulo L. We first go modulo x_{m} and consider the surjection $\widetilde{\gamma}: \widetilde{P} \rightarrow \widetilde{J} / \widetilde{J}^{2}$. Note that \widetilde{J} is an ideal of $\widetilde{D}=$ $R\left[X_{1}, \cdots, X_{m-1}\right] / \mathcal{K}$ of height equal to dimension of \widetilde{D}. For this, we observe that

$$
\operatorname{dim}\left(\widetilde{D}\left[X_{m}\right]\right)+\operatorname{ht}\left(\widehat{X_{m} \mathcal{L}}\right)=\operatorname{dim}(D)
$$

where $\widehat{X_{m} \mathcal{L}}$ is the image of $X_{m} \mathcal{L}$ in $\widetilde{D}\left[X_{m}\right]$.
By induction hypothesis on m, there exists a surjection $\phi: \widetilde{P} \rightarrow \widetilde{J}$ which is a lift of $\widetilde{\gamma}$. Therefore, it follows from (2.8) that γ can be lifted to a surjection $\psi: P \rightarrow J /\left(J^{2} x_{m}\right)$.

We now move to the ring $\bar{D}=\frac{R\left[X_{1}, \cdots, X_{m-1}\right]}{(\mathcal{K}, \mathcal{L})}\left[X_{m}\right]$ (i.e., go modulo L) and consider the surjection

$$
\bar{\psi}: \bar{P} \rightarrow \bar{J} /\left(\bar{J}^{2} X_{m}\right)
$$

Now observe that J is of the form $J^{\prime} /\left(X_{m} \mathcal{L}\right)$ for some ideal J^{\prime} in $\frac{R\left[X_{1}, \cdots, X_{m-1}\right]}{\mathcal{K}}\left[X_{m}\right]$ containing $X_{m} \mathcal{L}$. Observe that $\operatorname{ht}\left(J^{\prime}\right)=\operatorname{dim}\left(\frac{R\left[X_{1}, \cdots, X_{m-1}\right]}{\mathcal{K}}\left[X_{m}\right]\right)$. Therefore we may assume that J^{\prime} contains a monic polynomial in X_{m}. Since $\bar{J}=J / L \cap J=J^{\prime} / L \cap J^{\prime}$, it follows that \bar{J} contains a monic in X_{m}. Also $n \geq \operatorname{dim}(\bar{D} / \bar{J})+2(=2)$. By (2.7), there exists a surjection $\theta: \bar{P} \rightarrow \bar{J}$ which lifts $\bar{\psi}$.

Therefore, it follows from (2.8) that there exists a surjection $\delta: P \rightarrow J /\left(J^{2} x_{m} L\right)$ which is a lift of ψ. As $x_{m} L=0$ in D, we obtain $\delta: P \rightarrow J$ is a surjection which lifts γ. Now we have
(1) $\gamma_{1}: P \rightarrow I \cap J$ such that $\gamma_{1} \otimes D / I=\alpha \otimes D / I$,
(2) $\delta: P \rightarrow J$ with $\delta \otimes D / J=\gamma_{1} \otimes D / J=\gamma$.

Now by (2.13), $P=D \oplus P^{\prime}$. Also it follows that $n \geq \operatorname{dim}(D / I)+2$ and $n+\operatorname{ht}(J) \geq$ $\operatorname{dim}(D)+3$. We can now use the subtraction principle [D-K, Proposition 3.2] to find a surjection $\beta: P \rightarrow I$ which lifts α. This completes the proof in case $n \geq 3$.

Case 2. $n=2$. In this case $\operatorname{dim}(R)=1$ and hence by (2.13), $P \simeq L \oplus D$ for some rank one projective D-module L.

We have $I=\alpha(P)+I^{2}$. Applying (2.4), we can find $f \in I$ such that $I=(\alpha(P), f)$ with $f(1-f) \in \alpha(P)$ and therefore we have a surjection $\alpha_{1-f}: P_{1-f} \rightarrow I_{1-f}$. Let $\pi: P_{f}=L_{f} \oplus D_{f} \rightarrow D_{f}=I_{f}$ be the projection onto the second factor. Now consider the following surjections:

$$
\begin{gathered}
\alpha_{f(1-f)}: P_{f(1-f)} \rightarrow I_{f(1-f)}=D_{f(1-f)} \\
\pi_{1-f}: P_{f(1-f)} \rightarrow I_{f(1-f)}=D_{f(1-f)}
\end{gathered}
$$

Now it is not hard to show that there exists $\tau \in S L\left(P_{f(1-f)}\right)$ such that $\alpha_{f(1-f)} \tau=$ π_{1-f}. Therefore standard patching argument implies that there is a projective D module Q of rank 2 such that Q maps onto I. By (2.13), $Q=\wedge^{2}(Q) \oplus D$. Also note that Q has determinant L and hence $Q \simeq L \oplus D$.

By (2.13), $L \oplus D$ is cancellative. We can now apply [B, Lemma 3.2] to find a surjection $\beta: P \rightarrow I$ which lifts α.

Corollary 3.2. Let R be a ring of dimension ≥ 1 and D be a discrete Hodge algebra over R of dimension $n>\operatorname{dim}(R)$. Let I be an ideal in D of height ≥ 2. Suppose that $I=$ $\left(f_{1}, \cdots, f_{n}\right)+I^{2}$. Then there exist g_{1}, \cdots, g_{n} such that $I=\left(g_{1}, \cdots, g_{n}\right)$ with $f_{i}-g_{i} \in I^{2}$ for $i=1, \cdots, n$.

Corollary 3.3. Let R be a ring of dimension ≥ 1 and D be a discrete Hodge algebra over R of dimension $n>\operatorname{dim}(R)$. Let L be any rank one projective D-module. Then the n-th Euler class group $E^{n}(D, L)$ is trivial.

Proof. Let $D=R\left[X_{1}, \cdots, X_{m}\right] / \mathcal{J}$. Without loss of generality we can assume that D is reduced (see [B-RS 2, Corollary 4.6]). In particular, R is reduced. Let S be the seminormalization of R in its total quotient ring. Since S is seminormal, by [Sw, Theorem 6.1], every rank one projective $S\left[X_{1}, \cdots, X_{k}\right]$-module is extended from S for all k. Therefore, it follows from (2.9) that $L \otimes_{R} S$ is extended from S.

Let us denote $S\left[X_{1}, \cdots, X_{m}\right] / \mathcal{J}$ by D_{1}. Since $R \hookrightarrow S$ is a subintegral extension, by (2.11), $D \hookrightarrow D_{1}$ is also subintegral. As $L \otimes_{R} S$ is extended from S, by (3.1), it follows that $E^{n}\left(D_{1}, L \otimes_{R} S\right)$ is trivial. Finally, using (2.10), we have $E^{n}(D, L)$ is trivial.

The following result is due to Katz [Ka].
Theorem 3.4. Let R be a ring and $I \subset R$ be an ideal. Let d be the maximum of the heights of maximal ideals containing I, and suppose that $d<\infty$. Then some power of I admits a reduction J satisfying $\mu\left(J / J^{2}\right) \leq d$.

A result of Mandal from [M 2], can now be deduced.
Corollary 3.5. Let R be a ring of dimension ≥ 1 and D be a discrete Hodge algebra over R of dimension $n>\operatorname{dim}(R)$. Let $I \subset D$ be an ideal of height ≥ 2. Then I is set theoretically generated by n elements.

Proof. Using Katz (3.4), there exists $k>0$ such that I^{k} has a reduction J with $\mu\left(J / J^{2}\right) \leq$ n. If $\mu\left(J / J^{2}\right) \leq n-1$, then clearly J is generated by at most n elements. Therefore we assume that $\mu\left(J / J^{2}\right)=n$. Since J is a reduction of I^{k}, it is easy to see that $\sqrt{I}=$ $\sqrt{I^{k}}=\sqrt{J}$ and $\operatorname{ht}(I)=\operatorname{ht}(J)$. Applying (3.2), we see that J is generated by n elements. Therefore, I is set-theoretically generated by n elements.

We have the following variant of (3.1) for rings containing \mathbb{Q}.
Proposition 3.6. Let R be a ring containing \mathbb{Q} of dimension ≥ 2 and D be a discrete Hodge algebra over R of dimension $n>\operatorname{dim}(R)$. Let I be an ideal in D of height ≥ 3 and P be any rank n projective D-module whose determinant is extended from R. Suppose that there is a surjection $\alpha: P / I P \rightarrow I / I^{2}$. Then α can be lifted to a surjection $\beta: P \rightarrow I$.

Proof. We follow the proof of (3.1). The only thing which we need to show is that $\bar{\psi}: \bar{P} \rightarrow \bar{J} /\left(\bar{J}^{2} X_{m}\right)$ can be lifted to a surjection $\theta: \bar{P} \rightarrow \bar{J}$. Rest of the proof is same. To show this, we use (2.14) in place of (2.7). By (2.14), it is enough to show that $\bar{\psi} \otimes R\left(X_{m}\right)$ can be lifted to a surjection from $\bar{P} \otimes R\left(X_{m}\right) \rightarrow \bar{J} \otimes R\left(X_{m}\right)$. This is clearly true, since \bar{J} contains a monic polynomial in X_{m} and $\bar{P}=\bar{D} \oplus P^{\prime}$ by (2.13).

The following lemma is very crucial to generalize above result.
Lemma 3.7. Let R be a reduced ring and D be a discrete Hodge algebra over R. Let L be a rank one projective D-module. Then there exists a ring S such that
(1) $R \hookrightarrow S \hookrightarrow Q(R)$,
(2) S is a finite R-module,
(3) $R \hookrightarrow S$ is subintegral and
(4) $L \otimes_{R} S$ is extended from S.

Proof. Let $R \hookrightarrow B \hookrightarrow Q(R)$ be the seminormalization of R. By Swan's result [Sw, Theorem 6.1], rank one projective modules over polynomial extensions of B are extended from B. Hence by (2.9), rank one projective modules over discrete Hodge algebras over B are extended from B. In particular $L \otimes_{R} B$ is extended from B. By [Sw, Theorem 2.8], B is direct limit of B_{λ}, where $R \hookrightarrow B_{\lambda}$ is finite and subintegral extension. Since L is finitely generated, we can find a subring $S=B_{\lambda}$ for some λ satisfying conditions ($1-4$).

We now prove the general case of (3.6).
Theorem 3.8. Let R be a ring containing \mathbb{Q} of dimension ≥ 2 and D be a discrete Hodge algebra over R of dimension $n>\operatorname{dim}(R)$. Let I be an ideal in D of height ≥ 3 and P be any rank n projective D-module. Suppose that there is a surjection $\alpha: P / I P \rightarrow I / I^{2}$. Then α can be lifted to a surjection $\beta: P \rightarrow I$.

Proof. Without loss of generality, we may assume that D is reduced. In particular, R is reduced. Let $D=R\left[X_{1}, \cdots, X_{m}\right] / \mathcal{J}$, where \mathcal{J} is an ideal of $R\left[X_{1}, \cdots, X_{m}\right]$ generated by square free monomials. By (3.7), there exists an extension $R \hookrightarrow S$ such that
(1) $R \hookrightarrow S \hookrightarrow Q(R)$,
(2) S is a finite R-module,
(3) $R \hookrightarrow S$ is subintegral and
(4) $\wedge^{n}(P) \otimes_{R} S$ is extended from S.

Let $E=S\left[X_{1}, \cdots, X_{m}\right] / \mathcal{J}$. Since $\wedge^{n}(P) \otimes_{R} S$ is extended from S, by (3.6), the induced surjection $\alpha^{*}: P \otimes E \rightarrow I E / I^{2} E$ can be lifted to a surjection $\phi: P \otimes E \rightarrow I E$. By (2.13), $P=D \oplus Q$. In case $P=\wedge^{n}(P) \oplus D^{n-1}$, the rest of the proof is given in [D-Z 1, Theorem 3.12]. The proof of [D-Z 1, Theorem 3.12] works for $P=D \oplus Q$ also. Hence we are done.

4. Main Theorems: Codimension One Case:

The aim of this section is to give an affirmative answer to Question 1.4 mentioned in the introduction. We start with the following lemma which generalizes (2.12).

Lemma 4.1. Let R be a ring containing \mathbb{Q} of dimension ≥ 2 and I be an ideal of $R[X, Y]$ of height ≥ 3. Let P be a projective $R[X, Y]$-module of rank $\geq \operatorname{dim}(R)+1$ whose determinant is extended from $R[X]$. Suppose that there exists a surjection $\phi: P \rightarrow I / I^{2}$. Then ϕ can be lifted to a surjection $\psi: P \rightarrow I$.

Proof. If rank of P is $>\operatorname{dim}(R)+1$, then we are done by (2.12). So assume rank of $P=\operatorname{dim}(R)+1$. Since R contains \mathbb{Q}, using [B-RS 1, Lemma 3.3] and replacing Y by $Y-\lambda$ for some $\lambda \in \mathbb{Q}$, we can assume that either $I(0)=R[X]$ or $h t(I(0))=\operatorname{ht}(I)$. If $I(0)=R[X]$, then by (2.8), we can lift ϕ to a surjection $\alpha: P \rightarrow I /\left(I^{2} Y\right)$.

Now assume that $\operatorname{ht}(I(0))=\operatorname{ht}(I) \geq 3$. Let "bar" denote the reduction modulo Y and consider $\bar{\phi}: \bar{P} \rightarrow \bar{I} / \bar{I}^{2}$. By (2.12), there exists a surjection $\beta: \bar{P} \rightarrow \bar{I}$ which lifts $\bar{\phi}$. Therefore, again by (2.8), we can lift ϕ to a surjection $\alpha: P \rightarrow I /\left(I^{2} Y\right)$. Therefore, in any case, we can lift ϕ to a surjection $\alpha: P \rightarrow I /\left(I^{2} Y\right)$.

Consider the surjection $\alpha \otimes R(Y): P \otimes R(Y) \rightarrow I \otimes R(Y) / I^{2} \otimes R(Y)$. Since $\operatorname{dim}(R(Y))=$ $\operatorname{dim}(R)$, by (2.12), $\alpha \otimes R(Y)$ can be lifted to a surjection $\delta: P \otimes R(Y) \rightarrow I \otimes R(Y)$. Using (2.14), we get a surjection $\psi: P \rightarrow I$ which lifts α and hence lifts ϕ.

Proposition 4.2. Let R be a ring containing \mathbb{Q} of dimension ≥ 3 and D be a discrete Hodge algebra over R of dimension $d>\operatorname{dim}(R)$. Let I be an ideal in D of height ≥ 4 and P be a projective D-module of rank $n \geq \max \{\operatorname{dim}(R)+1, d-1\}$ whose determinant is extended from R. Suppose that $\alpha: P \rightarrow I / I^{2}$ is a surjection. Then there exists a surjection $\beta: P \rightarrow I$ that lifts α.

Proof. As in the proof of (3.1), we can assume that R is reduced and $D=R\left[X_{1}, \cdots, X_{m}\right] / \mathcal{I}$, where \mathcal{I} is an ideal of $R\left[X_{1}, \cdots, X_{m}\right]$ generated by square free monomials. where $X_{i_{1}}^{l_{1}} \cdots X_{i_{k}}^{l_{k}} \in \mathcal{I}$ and $l_{i} \geq 1$ We prove the result using induction on m. If $m=1$, then $D=R\left[X_{1}\right]$ and the result follows from (2.12).

Let us assume that $m \geq 2$. If D is a polynomial ring over R, then we are done by (4.1). Now suppose that D is a non-trivial discrete Hodge algebra. Then we can assume that $\mathcal{I}=\left(\mathcal{K}, X_{m} \mathcal{L}\right)$, where \mathcal{K} and \mathcal{L} are monomial ideals in $R\left[X_{1}, \ldots, X_{m-1}\right]$. Then $D=R\left[X_{1}, \cdots, X_{m}\right] /\left(\mathcal{K}, X_{m} \mathcal{L}\right)$.

Let x_{m} and L be the images of X_{m} and \mathcal{L} in D respectively. We shall use "tilde" when we move modulo $\left(x_{m}\right)$ and "bar" when we move modulo L. We first go modulo $\left(x_{m}\right)$, i.e. to the discrete Hodge algebra $\widetilde{D}=R\left[X_{1}, \cdots, X_{m-1}\right] / \mathcal{K}$ and consider the surjection $\widetilde{\alpha}: \widetilde{P} \rightarrow \widetilde{I} / \widetilde{I}^{2}$. Note that \widetilde{I} is an ideal of \widetilde{D} of height $\geq \operatorname{dim}(\widetilde{D})-1$. By induction hypothesis on m, there exists a surjection $\phi: \widetilde{P} \rightarrow \widetilde{I}$ which is a lift of $\widetilde{\alpha}$. Therefore, using (2.8), we can lift α to a surjection $\psi: P \rightarrow I /\left(I^{2} x_{m}\right)$.

We now move modulo L, i.e. $\bar{D}=\frac{R\left[X_{1}, \cdots, X_{m-1}\right]}{(\mathcal{K}, \mathcal{L})}\left[X_{m}\right]:=D_{0}\left[X_{m}\right]$ and consider the surjection

$$
\bar{\psi}: \bar{P} \rightarrow \bar{I} /\left(\bar{I}^{2} X_{m}\right) .
$$

Observe that $\operatorname{ht}(\bar{I}) \geq \operatorname{dim}(R) \geq 3$. If $\operatorname{dim}\left(D_{0}\right)<n$, then by (2.12), $\bar{\psi}$ can be lifted to a surjection $\theta: \bar{P} \rightarrow \bar{I}$. So assume $\operatorname{dim}\left(D_{0}\right)=n$. Since $\operatorname{dim}\left(R\left(X_{m}\right)\right)=\operatorname{dim}(R)$ and $\bar{D} \otimes R\left(X_{m}\right)=\frac{R\left(X_{m}\right)\left[X_{1}, \cdots, X_{m-1}\right]}{(\mathcal{K}, \mathcal{L})}$, by (3.6), the surjection $\bar{\psi} \otimes R\left(X_{m}\right): \bar{P} \otimes R\left(X_{m}\right) \rightarrow$ $\bar{I} \otimes R\left(X_{m}\right) /\left(\bar{I}^{2} \otimes R\left(X_{m}\right)\right)$ can be lifted to a surjection $\eta: \bar{P} \otimes R\left(X_{m}\right) \rightarrow \bar{I} \otimes R\left(X_{m}\right)$. By (2.14), there exists a surjection $\theta: \bar{P} \rightarrow \bar{I}$ which lifts $\bar{\psi}$.

Finally it follows from (2.8) that there exists a surjection $\beta: P \rightarrow I /\left(I^{2} x_{m} L\right)$ which lifts ψ. As $x_{m} L=0$ in D, we obtain a surjection $\beta: P \rightarrow I$ which lifts α.

Now we will answer Question 1.4.
Theorem 4.3. Let R be a ring of dimension ≥ 3 containing \mathbb{Q} and D be a discrete Hodge algebra over R of dimension $d>\operatorname{dim}(R)$. Let I be an ideal in D of height ≥ 4 and P be a projective D-module of rank $n \geq \max \{\operatorname{dim}(R)+1, d-1\}$. Suppose that $\alpha: P \rightarrow I / I^{2}$ is a surjection. Then there exists a surjection $\beta: P \rightarrow I$ which lifts α.

Proof. Without loss of generality we may assume that D is reduced. Using (2.6), we can lift α to a surjection $\alpha^{\prime}: P \rightarrow I \cap I_{1}$ such that $I+I_{1}=D$ and $\operatorname{ht}\left(I_{1}\right) \geq n$.

If $h t\left(I_{1}\right)>n$, then $I_{1}=D$ and hence α^{\prime} is the required surjective lift of α. Assume $\operatorname{ht}\left(I_{1}\right)=n$. The map α^{\prime} induces a surjection $\alpha_{1}: P \rightarrow I_{1} / I_{1}^{2}$. If we can show that α_{1} can be lifted to a surjection $\Delta: P \rightarrow I_{1}$, then by subtraction principle [D-K, Proposition 3.2], we can find a surjection $\Delta_{1}: P \rightarrow I$ which lifts α. Therefore it is enough to show that α_{1} has a surjective lift Δ. Now replacing I_{1} by I and α_{1} by α, we assume that $h t(I)=n$.

By (3.7), there exists an extension $R \hookrightarrow S$ such that
(1) $R \hookrightarrow S \hookrightarrow Q(R)$,
(2) S is a finite R-module,
(3) $R \hookrightarrow S$ is subintegral and
(4) $\wedge^{n}(P) \otimes_{R} S$ is extended from S.

Let C be the conductor ideal of R in S. Then $\operatorname{ht}(C) \geq 1$. Since $\operatorname{ht}(I)=n \geq$ $\max \{\operatorname{dim}(R)+1, d-1\}$ and $\operatorname{ht}(C) \geq 1$, it follows that $\operatorname{ht}\left(I^{2} \cap C\right) \geq 1$. Therefore, we can choose an element $b \in I^{2} \cap C$ such that $h t(b)=1$. Let "bar" denote reduction modulo the ideal (b). Consider the surjection $\bar{\alpha}: \bar{P} \rightarrow \bar{I} / \bar{I}^{2}$ and note that $\operatorname{dim}(\bar{R})<\operatorname{dim}(R)$.

Now applying (3.8), we can find a surjection $\gamma^{\prime}: \bar{P} \rightarrow \bar{I}$ which lifts $\bar{\alpha}$. Choose a lift $\gamma: P \longrightarrow I$ of γ^{\prime}. Since $b \in I^{2}, \gamma$ is a lift of α and hence $(\gamma(P), b)=I$. Since hh $(I)=n$ and $b \in I^{2}$, applying (2.5) and replacing γ by $\gamma+b \delta$ for some $\delta \in P^{*}$, we can assume that $\operatorname{ht}(\gamma(P))=n$.

Applying (2.4), there exists an ideal I^{\prime} of height $\geq n$ such that $I^{\prime}+b D=D$ and $\gamma(P)=I \cap I^{\prime}$. If $h t\left(I^{\prime}\right)>n$, then $I^{\prime}=D$ and hence γ is the required surjective lift of α. Assume that $\operatorname{ht}\left(I^{\prime}\right)=n$ and consider the surjection $\theta: P \rightarrow I^{\prime} / I^{\prime 2}$ induced from $\gamma: P \rightarrow I \cap I^{\prime}$.

Consider the surjection $\theta \otimes{ }_{R} S: P \otimes S \rightarrow I^{\prime} \otimes S / I^{\prime 2} \otimes S$. Since $\wedge^{n}\left(P \otimes_{R} S\right)$ is extended from S, by (4.2), $\theta \otimes S$ can be lifted to a surjection $\Theta: P \otimes S \rightarrow I^{\prime} \otimes S$. Now we need to show that we get a surjection $\eta: P \rightarrow I^{\prime}$ which lifts θ. In the case of $P=\wedge^{n}(P) \oplus D^{n-1}$, this is proved in [D-Z 2, Lemma 5.1]. Note that $P=D \oplus P^{\prime}$, by (2.13). The proof of [D-Z 2, Lemma 5.1] works in this case also, so we do not repeat it here. Therefore we have a surjection $\eta: P \rightarrow I^{\prime}$ which lifts θ. Applying subtraction principle [D-K, Proposition 3.2], we can find a surjection $\beta: P \rightarrow I$ which lifts α.

The following result is immediate from (4.3).
Corollary 4.4. Let R be a ring of dimension $d \geq 3$ containing \mathbb{Q} and $D=\frac{R\left[X_{1}, X_{2}, X_{3}\right]}{I}$ be a discrete Hodge algebra over R. Let I be an ideal in D of height ≥ 4 and P be a projective D-module of rank $n \geq \operatorname{dim}(R)+1$. Suppose that $\alpha: P \rightarrow I / I^{2}$ be a surjection. Then there exists a surjection $\beta: P \rightarrow I$ which lifts α.

The following theorem is due to Ferrand and Szpiro [Sz].
Theorem 4.5. Let R be a ring and $I \subset R$ be a locally complete intersection ideal of height $r \geq 2$ and $\operatorname{dim}(R / I) \leq 1$. Then there is a locally complete intersection ideal $J \subset R$ of height r such that
(1) $\sqrt{I}=\sqrt{J}$ and
(2) J / J^{2} is free R / J-module of rank r.

As an application of (4.3), we improve a result of Mandal [M 2, Corollary 2.2], albeit with a stronger hypothesis on ideals.

Theorem 4.6. Let R be a ring of dimension ≥ 3 containing \mathbb{Q} and D be a discrete Hodge algebra over R with $\operatorname{dim}(D)=d>\operatorname{dim}(R)$. Let I be a locally complete intersection ideal in D of height $n=\max \{\operatorname{dim}(R)+1, d-1\}$. Then there exist $f_{1}, \cdots, f_{n} \in I$ such that $\sqrt{I}=\sqrt{\left(f_{1}, \cdots, f_{n}\right)}$. In other words, I is set theoretically generated by n elements.
Proof. By (4.5), there is a locally complete intersection ideal J such that $\sqrt{I}=\sqrt{J}$ and J / J^{2} is a free R / J-module of rank n. Applying (4.3), we see that J is generated by n elements. Therefore, I is set theoretically generated by n elements.

5. Some Auxiliary Results

After answering Question 1.1 and Question 1.4, it is natural to ask the following more general question.
Question 5.1. Let R be a commutative Noetherian ring of dimension ≥ 1 and D be a discrete Hodge algebra over R of dimension $>\operatorname{dim}(R)$. Let $I \subset D$ be an ideal of height $>\operatorname{dim}(R)$. Suppose that $I=\left(f_{1}, \cdots, f_{n}\right)+I^{2}$, where $n \geq \operatorname{dim}(D / I)+2$. Do there exist $g_{1}, \cdots, g_{n} \in I$ such that $I=\left(g_{1}, \cdots, g_{n}\right)$ with $f_{i}-g_{i} \in I^{2}$?

The above question has been answered affirmatively by Mandal when D is a polynomial algebra over R ([M 1]). Using [D-RS, Theorem 4.2] and following the proofs of (3.1) and (4.2), we can obtain the following result which gives a partial answer to the above question.

Theorem 5.2. Let R be a ring of dimension $d \geq 2$ containing \mathbb{Q} and $D=\frac{R\left[X_{1}, \cdots, X_{m}\right]}{\left(J_{1}, X_{m} J_{2}\right)}$, where J_{1}, J_{2} are two ideals of $R\left[X_{1}, \cdots, X_{m-1}\right]$ generated by monomials. Let I be an ideal in D of height $>d$. Suppose that $I=\left(f_{1}, \cdots, f_{n}\right)+I^{2}$ with $n \geq \operatorname{dim}(D / I)+2$. Then $I=\left(g_{1}, \cdots, g_{n}\right)$ with $f_{i}-g_{i} \in I^{2}$ in each of the following cases:
(1) $n \geq \max \left\{\operatorname{dim}\left(D / J_{1}\right), \operatorname{dim}\left(D / J_{2}\right)\right\}$ and $h t\left(\frac{I+J_{2}}{J_{2}}\right) \geq 2$.
(2) $n=\max \left\{\operatorname{dim}\left(D / J_{1}\right)-1, \operatorname{dim}\left(D / J_{2}\right)-1\right\}$ and $h t\left(\frac{I+J_{2}}{J_{2}}\right) \geq 3$.

As an application of (5.2), we give some explicit examples.
Example 5.3. Let R be a ring of dimension $d \geq 4$ containing \mathbb{Q} and $D=\frac{R\left[X_{1}, \cdots, X_{4}\right]}{\left(X_{4} J\right)}$ where $J=\left(X_{1} X_{2}, X_{2} X_{3}, X_{1} X_{3}\right)$. Let $I \subset D$ be an ideal of height $n \geq d+1$. Suppose that $I=\left(f_{1}, \cdots, f_{n}\right)+I^{2}$. Then there exist $g_{1}, \cdots g_{n} \in I$ such that $I=\left(g_{1}, \cdots g_{n}\right)$ with $f_{i}-g_{i} \in I^{2}$. In other words, the n-th Euler class group $E^{n}(D)$ is trivial.
Proof. Using (3.1) and (4.2), we can assume that $n=d+1$. We have $\operatorname{dim}(D / J)=d+2$, i.e., $n=d+1=\operatorname{dim}(D / J)-1$ and $\operatorname{ht}\left(\frac{I+J}{J}\right) \geq 3$. Also note that $n=d+1 \geq 5 \geq$ $\operatorname{dim}(D / I)+2$. Now the result follows from (5.2(2)).

The following result follows from (5.2).

Example 5.4. Let R be a ring of dimension $d \geq 3$ containing \mathbb{Q} and $D=\frac{R\left[X_{1}, \cdots, X_{m}\right]}{\left(X_{m} J\right)}$ where $J=\left(X_{i} X_{j} \mid 1 \leq i \neq j \leq m-1\right)$. Let $I \subset D$ be an ideal such that $\operatorname{ht}\left(\frac{I+J}{J}\right) \geq 3$. Suppose that $I=\left(f_{1}, \cdots, f_{n}\right)+I^{2}$ with $n \geq \max \{d+1, \operatorname{dim}(D / I)+2\}$. Then there exist $g_{1}, \cdots g_{n} \in I$ such that $I=\left(g_{1}, \cdots g_{n}\right)$ with $f_{i}-g_{i} \in I^{2}$.

Now using (4.4) and following the proof of (5.2), we can derive the following.
Example 5.5. Let R be a ring of dimension $d \geq 4$ containing \mathbb{Q} and $D=\frac{R\left[X_{1}, \cdots, X_{4}\right]}{\left(J_{1}, X_{4} J_{2}\right)}$ where J_{1}, J_{2} are two ideals in $R\left[X_{1}, X_{2}, X_{3}\right]$ generated by monomials and $\mathrm{ht}\left(J_{1}+J_{2}\right) \geq$ 2. Let $I \subset D$ be an ideal of height $n \geq d+1$. Suppose that $I=\left(f_{1}, \cdots, f_{n}\right)+I^{2}$. Then there exist $g_{1}, \cdots g_{n} \in I$ such that $I=\left(g_{1}, \cdots g_{n}\right)$ with $f_{i}-g_{i} \in I^{2}$. In other words, the n-th Euler class group $E^{n}(D)$ is trivial.

Proof. Since $\operatorname{dim}(D) \leq d+3$, the case $n \geq d+2$ is covered by (3.1) and (4.2). Let us assume that $n=d+1$. Then $n=d+1=\operatorname{dim}\left(D / J_{2}\right)-1$ and $2 n \geq \operatorname{dim}(D)+2$. Now the result follows from (5.2).

The following result follows from (5.2).
Example 5.6. Let R be a ring of dimension $d \geq 4$ containing \mathbb{Q} and $D=\frac{R\left[X_{1}, \cdots, X_{5}\right]}{\left(X_{5} J\right)}$ where $J=\left(X_{1} X_{2} X_{3}, X_{1} X_{2} X_{4}, X_{2} X_{3} X_{4}\right)$. Let $I \subset D$ be an ideal such that $\operatorname{ht}(I)=n \geq$ $d+1$. Suppose that $I=\left(f_{1}, \cdots, f_{n}\right)+I^{2}$ with $n \geq d+2$. Then there exist $g_{1}, \cdots g_{n} \in I$ such that $I=\left(g_{1}, \cdots g_{n}\right)$ with $f_{i}-g_{i} \in I^{2}$. In other words, the n-th Euler class group $E^{n}(D)$ is trivial.

References

[B] S. M. Bhatwadekar, Cancellation theorems for projective modules over a two dimensional ring and its polynomial extensions, Compositio Math. 128 (2001), 339-359.
[B-R] S. M. Bhatwadekar, Amit Roy, Stability theorems for overrings of polynomial rings, Invent.Math 68 (1982), 117-127.
[B-RS 1] S.M. Bhatwadekar, Raja Sridharan, Projective generation of curves in polynomial extensions of an affine domain and a question of Nori, Invent. Math. 133 (1998), 161-192.
[B-RS 2] S. M. Bhatwadekar and Raja Sridharan, Euler class group of a Noetherian ring, Compositio Math. 122 (2000), 183-222.
[B-RS 3] S. M. Bhatwadekar and Raja Sridharan, On Euler classes and stably free projective modules, in: Algebra, arithmetic and geometry, Part I, II(Mumbai, 2000), 139-158, Tata Inst. Fund. Res. Stud. Math., 16, Tata Inst. Fund. Res., Bombay, 2002.
[D] M. K. Das, The Euler class group of a polynomial algebra, J. Algebra 264 (2003), 582-612.
[D-K] M. K. Das and M. K. Keshari, A question of Nori, Segre classes of ideals and other applications, J. Pure and Applied Algebra 216 (2012), 2193-2203.
[D-RS] M. K. Das and Raja Sridharan, Good invariants for bad ideals, J. Algebra 323 (2010), 3216-3229.
[D-Z 1] M. K. Das and Md. Ali Zinna, On invariance of the Euler class group under a subintegral base change, J. Algebra 398 (2014), 131-155.
[D-Z 2] M. K. Das, Md. Ali Zinna, The Euler class group of a polynomial algebra with coefficients in a line bundle, Math. Z. 276 (2014), 257-283.
[D-Z 3] M. K. Das and Md. Ali Zinna, Efficient generation of ideals in overrings of polynomial rings, J. Pure Appl. Algebra 219 (2015), 4016-4034.
[Fa] Jean Fasel, On the number of generators of ideals in polynomial rings, Annals of Math. 184 (2016), 315-331.
[Ka] D. Katz, Generating ideals up to projective equivalence, Proc. Amer. Math. Soc, 120 (1994), 401-414.
[M 1] S. Mandal, On efficient generation of ideals, Invent. Math 75 (1984), 59-67.
[M 2] S. Mandal, Smoe results about modules over discrete Hodge algebras, Math. Z. 190 (1985), 287299.
[M 3] S. Mandal, Homotopy of sections of projective modules, J. Algebraic Geometry 1 (1992), 639-646.
[Sw] Richard G. Swan, On seminormality, J.Algebra 67 (1980), 210-229.
[Sz] L. Szpiro, Equations defining space curves, Published for Tata Institute of Fundamental Research by Springer-Verlag (1979).
[V] T. Vorst, The Serre problem for discrete Hodge algebras, Math. Z. 184 (1983), 425-433.
[Wi] A. Wiemers, Some Properties of Projective Modules over Discrete Hodge Algebras, J. Algebra 150 (1992), 402-426.

Department of Mathematics, Indian Institute of Technology Bombay, Powai, Mumbai 400076, INDIA.

E-mail address: keshari@math.iitb.ac.in
Department of Mathematics, Indian Institute of Technology Bombay, Powai, Mumbai 400076, InDIA

E-mail address: zinna@math.iitb.ac.in

