EFFICIENT GENERATION OF IDEALS IN A DISCRETE HODGE ALGEBRA

MANOJ K. KESHARI AND MD. ALI ZINNA

ABSTRACT. Let R be a commutative Noetherian ring and D be a discrete Hodge alge-

bra over *R* of dimension $d > \dim(R)$. Then we show that

(i) the top Euler class group $E^{d}(D)$ of D is trivial.

(ii) if $d > \dim(R) + 1$, then (d - 1)-st Euler class group $E^{d-1}(D)$ of D is trivial.

1. INTRODUCTION

Let *R* be a commutative Noetherian ring. An *R*-algebra *D* is called a *discrete Hodge* algebra over *R* if $D = R[X_1, \dots, X_n]/\mathcal{I}$, where \mathcal{I} is an ideal of $R[X_1, \dots, X_n]$ generated by monomials. Typical examples are $R[X_1, \dots, X_n]$, R[X, Y](XY) etc. In [V], Vorst studied the behaviour of projective modules over discrete Hodge algebras. He proved [V, Theorem 3.2] that every finitely generated projective *D*-module is extended from *R* if for all *k*, every finitely generated projective $R[X_1, \dots, X_k]$ -module is extended from *R*.

Later Mandal [M 2] and Wiemers [Wi] studied projective modules over discrete Hodge algebra D. In [Wi], Wiemers proved the following significant result. Let Pbe a projective D-module of rank $\geq dim(R) + 1$. Then (i) $P \simeq Q \oplus D$ for some D-module Qand (ii) P is cancellative, i.e. $P \oplus D \simeq P' \oplus D$ implies $P \simeq P'$.

When D = R[X, Y](XY), above results of Wiemers are due to Bhatwadekar and Roy [B-R]. Very recent, inspired by results of Bhatwadekar and Roy, Das and Zinna [D-Z 3] studied the behaviour of ideals in R[X, Y]/(XY) and proved the following result on efficient generation of ideals. Assume $dim(R) \ge 1$, D = R[X, Y]/(XY) and $I \subset D$ is an ideal of height n = dim(D). Assume I/I^2 is generated by n elements. Then any given set of ngenerators of I/I^2 can be lifted to a set of n generators of I. In particular, the top Euler class group $E^n(D)$ of D is trivial.

As R[X,Y]/(XY) is the simplest example of a discrete Hodge algebra over R, motivated by above discussions, one can ask the following question.

Question 1.1. Let *R* be a commutative Noetherian ring of dimension ≥ 1 and *D* be a discrete Hodge algebra over *R* of dimension $n > \dim(R)$. Let $I \subset D$ be an ideal of height *n*. Suppose that $I = (f_1, \dots, f_n) + I^2$. Do there exist $g_1, \dots, g_n \in I$ such that

Date: January 20, 2016.

²⁰⁰⁰ Mathematics Subject Classification. 13C10, 19A15, 13B22.

 $I = (g_1, \dots, g_n)$ with $f_i - g_i \in I^2$? In other words, Is the top Euler class group $E^n(D)$ of D trivial? (For definition of Euler class groups, see [B-RS 2] and [B-RS 3].)

We answer Question 1.1 affirmatively and prove the following more general result ((3.1) below).

Proposition 1.2. Let R be a commutative Noetherian ring of dimension ≥ 1 and D be a discrete Hodge algebra over R of dimension $n > \dim(R)$. Let P be a projective D-module of rank n which is extended from R and I be an ideal in D of height ≥ 2 . Suppose that there is a surjection $\alpha : P/IP \rightarrow I/I^2$. Then α can be lifted to a surjection $\beta : P \rightarrow I$. In particular, the n-th Euler class group $E^n(D)$ of D is trivial.

The above result can be extended to any rank *n* projective *D*-module when *R* contains \mathbb{Q} (3.8). Here is the precise statement.

Theorem 1.3. Let R be a commutative Noetherian ring containing \mathbb{Q} of dimension ≥ 2 and D be a discrete Hodge algebra over R of dimension $n > \dim(R)$. Let I be an ideal in D of height ≥ 3 and P be any rank n projective D-module. Suppose that there is a surjection $\alpha : P/IP \rightarrow I/I^2$. Then α can be lifted to a surjection $\beta : P \rightarrow I$.

After studying the top rank case, one is tempted to go one step further and inquire the following question.

Question 1.4. Let *R* be a commutative Noetherian ring of dimension ≥ 3 and *D* be a discrete Hodge algebra over *R* of dimension $d \geq \dim(R) + 2$. Let *I* be an ideal in *D* of height d - 1 and *P* be a projective *D*-module of rank d - 1. Suppose that $\alpha : P/IP \rightarrow I/I^2$ is a surjection. Can α be lifted to a surjection $\beta : P \rightarrow I$?

We answer Question 1.4 affirmatively when *R* contains \mathbb{Q} ((4.3) below) as follows.

Theorem 1.5. Let R be a commutative Noetherian ring containing \mathbb{Q} of dimension ≥ 3 and D be a discrete Hodge algebra over R of dimension $d > \dim(R)$. Let I be an ideal in D of height ≥ 4 and P be a projective D-module of rank $n \geq \max\{\dim(R) + 1, d - 1\}$. Suppose that $\alpha : P/IP \twoheadrightarrow I/I^2$ is a surjection. Then there exists a surjection $\beta : P \twoheadrightarrow I$ which lifts α . As a consequence, if $d \geq \dim(R) + 2$, then (d - 1)-st Euler class group $E^{d-1}(D)$ of D is trivial.

Finally we derive an interesting consequence of above result as follows (see (4.6)).

Theorem 1.6. Let R be a commutative Noetherian ring containing \mathbb{Q} of dimension ≥ 3 and D be a discrete Hodge algebra over R of dimension $d > \dim(R)$. Let I be a locally complete intersection ideal in D of height $n \geq \max\{\dim(R) + 1, d - 1\}$. Then I is set theoretically generated by n elements.

In Section 5, we give some partial answer to the following question.

Question 1.7. Let *R* be a commutative Noetherian ring of dimension ≥ 1 and *D* be a discrete Hodge algebra over *R* of dimension $> \dim(R)$. Let $I \subset D$ be an ideal of height $> \dim(R)$. Suppose that $I = (f_1, \dots, f_n) + I^2$, where $n \geq \dim(D/I) + 2$. Do there exist $g_1, \dots, g_n \in I$ such that $I = (g_1, \dots, g_n)$ with $f_i - g_i \in I^2$?

The above question has been settled in the affirmative by Mandal in [M 1] when D is a polynomial algebra over R. Recently Fasel [Fa] has settled a conjecture of Murthy and proved the following result. Let k be an infinite field of characteristic $\neq 2$ and $I \subset k[T_1, \dots, T_m]$ be an ideal. Then we have $\mu(I) = \mu(I/I^2)$.

Therefore, we may ask the following natural question.

Question 1.8. Let *k* be an infinite field of characteristic $\neq 2$ and *D* be a discrete Hodge algebra over *k*. Let $I \subset D$ be an ideal. Is $\mu(I) = \mu(I/I^2)$?

2. Preliminaries

Assumptions. Throughout this paper, rings are assumed to be commutative Noetherian and projective modules are finitely generated and of constant rank. For a ring A, dim(A) will denote the Krull dimension of *A*.

We start with the following definition.

Definition 2.1. An *R*-algebra *D* is said to be a *discrete Hodge algebra over R* if *D* is isomorphic to $R[X_1, \dots, X_n]/J$, where *J* is an ideal of $R[X_1, \dots, X_n]$ generated by monomials. A discrete Hodge algebra over *R* is called *trivial* if it is a polynomial algebra over *R*. Otherwise, it is called a *non-trivial* discrete Hodge algebra.

Definition 2.2. We call an ideal *I* of a ring *R* to be *efficiently generated* if $\mu(I) = \mu(I/I^2)$, where $\mu(I)$ (resp. $\mu(I/I^2)$) stands for the minimal number of generators of *I* (resp. I/I^2) as an *R*-module (resp. *R*/*I*-module).

Definition 2.3. Let *I* be an ideal of a ring *R*. We say that *I* is set theoretically generated by *k* elements f_1, \dots, f_k in *R* if $\sqrt{(f_1, \dots, f_k)} = \sqrt{I}$.

The next two results are standard. For proofs the reader may consult [B-RS 2].

Lemma 2.4. [B-RS 2, 2.11] Let R be a ring and J be an ideal of R. Let $K \subset J$ and $L \subset J^2$ be two ideals of R such that K + L = J. Then J = K + (e) for some $e \in L$ with $e(1 - e) \in K$ and $K = J \cap J'$, where J' + L = R.

Lemma 2.5. [B-RS 2, 2.13] Let A be a ring and P be a projective A-module of rank n. Let $(\alpha, a) \in (P^* \oplus A)$. Then there exists an element $\beta \in P^*$ such that $\operatorname{ht}(I_a) \geq n$, where $I = (\alpha + a\beta)(P)$. In particular, if the ideal $(\alpha(P), a)$ has height $\geq n$, then $\operatorname{ht} I \geq n$. Further, if $(\alpha(P), a)$ is an ideal of height $\geq n$ and I is a proper ideal of A, then $\operatorname{ht} I = n$.

The following lemma is proved in [D-K, Lemma 3.1].

Lemma 2.6. Let R be a ring and $J \subset R$ be an ideal. Let P be a projective R-module of rank $n \ge \dim(R/J) + 1$ and let $\alpha : P/JP \twoheadrightarrow J/J^2 f$ be a surjection for some $f \in R$. Given any ideal $K \subset R$ with $\dim(R/K) \le n - 1$, the map α can be lifted to a surjection $\beta : P \twoheadrightarrow J''$ such that:

- (1) $J'' + (J^2 \cap K)f = J$,
- (2) $J'' = J \cap J'$ and $ht(J') \ge n$,
- (3) $(J^2 \cap K)f + J' = R$.

The following theorem is due to Mandal [M 3, Theorem 2.1].

Theorem 2.7. Let R be a ring and $I \subset R[T]$ be an ideal containing a monic polynomial. Let P be a projective R-module of rank $n \ge \dim(R[T]/I) + 2$. Suppose that there exists a surjection $\phi : P[T] \twoheadrightarrow I/(I^2T)$. Then, there exists a surjection $\psi : P[T] \twoheadrightarrow I$ which lifts ϕ .

We improve [D-Z 3, Lemma 2.9] in the following form to suit our needs. The proof is similar to the one given in [D, Lemma 4.9].

Lemma 2.8. Let R be a ring and I, J be two ideals in R such that $J \subset I^2$. Let P be a projective R-module and $K \subset R$ be an ideal. Suppose that we are given surjections $\alpha : P \twoheadrightarrow I/J$ and $\beta : P \twoheadrightarrow \overline{I}$ such that $\alpha \equiv \beta \mod \overline{J}$, where bar denotes reduction modulo the ideal K. Then α can be lifted to surjection $\phi : P \twoheadrightarrow I/(JK)$.

The following result is implicit in the proof of [V, Theorem 3.2].

Theorem 2.9. Let R be a ring and r > 0 be an integer. Assume that all projective modules of rank r over polynomial extensions of R are extended from R. Then all projective modules of rank r over discrete Hodge R-algebras are extended from R.

The following result is due to Das and Zinna [D-Z 1, Theorem 3.12].

Theorem 2.10. Let R be a ring of dimension $n \ge 2$. Let $R \hookrightarrow S$ be a subintegral extension and L be a projective R-module of rank one. Then, the natural map $E^n(R, L) \longrightarrow E^n(S, L \otimes_R S)$ is an isomorphism.

The following result follows from [Sw, Lemma 3.2].

Lemma 2.11. Let $R \hookrightarrow S$ be a subintegral extension and $\mathcal{J} \subset R[X_1, \dots, X_m]$ be an ideal generated by monomials. Then $R[X_1, \dots, X_m]/\mathcal{J} \hookrightarrow S[X_1, \dots, X_m]/\mathcal{J}$ is also subintegral.

The following result is from [D-Z 2, Proposition 2.13] for $d \ge 2$. By patching argument, it can be proved for d = 1.

Proposition 2.12. Let A be a ring of dimension $d \ge 1$. Let I be an ideal of A[T] of height ≥ 2 and P be a projective A[T]-module of rank $n \ge d + 1$. Suppose that there exists a surjection $\phi: P/IP \longrightarrow I/I^2$. Then ϕ can be lifted to a surjection $\Psi: P \longrightarrow I$.

The following result is due to Wiemers [Wi, Corollary 4.3].

Theorem 2.13. Let R be a ring of dimension d and D be a discrete Hodge algebra over R. Let P be a projective D-module of rank > d. Then

- (1) $P = D \oplus Q$ for some projective *D*-module *Q*.
- (2) *P* is cancellative, i.e. if $P \oplus D \xrightarrow{\sim} P' \oplus D$, then $P \xrightarrow{\sim} P'$.

It is not hard to see that, adapting the same proof of [D-RS, Theorem 4.2], we can extend [D-RS, Theorem 4.2] in the following form.

Theorem 2.14. Let R be a ring containing \mathbb{Q} with $\dim(R) = n \ge 3$ and $I \subseteq R[T]$ be an ideal of height ≥ 3 . Let L be a projective R-module of rank 1 and P be a projective R[T]-module of rank n whose determinant is L[T]. Assume that we are given a surjection $\psi : P \twoheadrightarrow I/(I^2T)$. Assume further that $\psi \otimes R(T)$ can be lifted to a surjection $\psi' : P \otimes R(T) \twoheadrightarrow IR(T)$. Then, there exists a surjection $\Psi : P \twoheadrightarrow I$ such that Ψ is a lift of ψ .

3. MAIN THEOREMS: CODIMENSION ZERO CASE

We begin with the following result which is motivated by [D-Z 3, Theorem 4.2].

Proposition 3.1. Let R be a ring of dimension ≥ 1 and D be a discrete Hodge algebra over R of dimension $n > \dim(R)$. Let P be a projective D-module of rank n which is extended from R and I be an ideal in D of height ≥ 2 . Suppose that there is a surjection $\alpha : P/IP \twoheadrightarrow I/I^2$. Then α can be lifted to a surjection $\beta : P \twoheadrightarrow I$.

Proof. If *D* is a trivial discrete Hodge algebra over *R*, then we are done by (2.12). So we assume that *R* is a non-trivial discrete Hodge algebra over *R*. Let 'prime' denote reduction modulo the nil radical *N* of *D*. Assume $\alpha \otimes D'$ can be lifted to a surjection $\alpha_1 : P \otimes D' \longrightarrow I \otimes D'$. Then α_1 can be lifted to a surjection $\alpha_2 : P_{1+N} \longrightarrow I_{1+N}$. Since 1 + N consists of units of *D*, α_2 is a lift of α . Therefore, we may assume that *D* is reduced.

Let $D = R[X_1, \dots, X_m]/\mathcal{J}$, where \mathcal{J} is an ideal of $R[X_1, \dots, X_m]$ generated by square-free monomials. We prove the result using induction on the number of variables m. If m = 1, then D is just $R[X_1]$ and the result follows from (2.12).

Let us assume that $m \ge 2$. We can assume that $\mathcal{J} = \mathcal{K} + X_m \mathcal{L}$, where \mathcal{K} and \mathcal{L} are monomial ideals of $R[X_1, \dots, X_{m-1}]$. Then $D = R[X_1, \dots, X_m]/(\mathcal{K}, X_m \mathcal{L})$.

Case 1. $n \ge 3$. Given $\alpha : P/IP \twoheadrightarrow I/I^2$, applying (2.6), α can be lifted to a surjection $\gamma_1 : P \twoheadrightarrow I'$ such that (1) $I' = I \cap J$, (2) I + J = D, (3) $ht(J) \ge n$.

If ht(J) > n, then J = D and we are done. So assume ht(J) = n. Let $\gamma : P \to J/J^2$ be the surjection induced from γ_1 .

Let x_m and L be the images of X_m and \mathcal{L} in D, respectively. We shall use 'tilde' when we move modulo (x_m) and 'bar' when we move modulo L. We first go modulo x_m and consider the surjection $\tilde{\gamma} : \tilde{P} \twoheadrightarrow \tilde{J}/\tilde{J}^2$. Note that \tilde{J} is an ideal of $\tilde{D} = R[X_1, \cdots, X_{m-1}]/\mathcal{K}$ of height equal to dimension of \tilde{D} . For this, we observe that

$$\dim(\widetilde{D}[X_m]) + \operatorname{ht}(\widehat{X_m\mathcal{L}}) = \dim(D),$$

where $\widehat{X_m \mathcal{L}}$ is the image of $X_m \mathcal{L}$ in $\widetilde{D}[X_m]$.

By induction hypothesis on m, there exists a surjection $\phi : \tilde{P} \twoheadrightarrow \tilde{J}$ which is a lift of $\tilde{\gamma}$. Therefore, it follows from (2.8) that γ can be lifted to a surjection $\psi : P \twoheadrightarrow J/(J^2 x_m)$.

We now move to the ring $\overline{D} = \frac{R[X_1, \dots, X_{m-1}]}{(\mathcal{K}, \mathcal{L})}[X_m]$ (i.e., go modulo *L*) and consider the surjection

$$\overline{\psi}:\overline{P}\twoheadrightarrow\overline{J}/(\overline{J}^2X_m)$$

Now observe that J is of the form $J'/(X_m\mathcal{L})$ for some ideal J' in $\frac{R[X_1, \dots, X_{m-1}]}{\mathcal{K}}[X_m]$ containing $X_m\mathcal{L}$. Observe that $\operatorname{ht}(J') = \dim(\frac{R[X_1, \dots, X_{m-1}]}{\mathcal{K}}[X_m])$. Therefore we may assume that J' contains a monic polynomial in X_m . Since $\overline{J} = J/L \cap J = J'/L \cap J'$, it follows that \overline{J} contains a monic in X_m . Also $n \ge \dim(\overline{D}/\overline{J}) + 2(=2)$. By (2.7), there exists a surjection $\theta : \overline{P} \twoheadrightarrow \overline{J}$ which lifts $\overline{\psi}$.

Therefore, it follows from (2.8) that there exists a surjection $\delta : P \twoheadrightarrow J/(J^2 x_m L)$ which is a lift of ψ . As $x_m L = 0$ in D, we obtain $\delta : P \twoheadrightarrow J$ is a surjection which lifts γ . Now we have

(1)
$$\gamma_1 : P \twoheadrightarrow I \cap J$$
 such that $\gamma_1 \otimes D/I = \alpha \otimes D/I$,

(2) $\delta: P \twoheadrightarrow J$ with $\delta \otimes D/J = \gamma_1 \otimes D/J = \gamma$.

Now by (2.13), $P = D \oplus P'$. Also it follows that $n \ge \dim(D/I) + 2$ and $n + \operatorname{ht}(J) \ge \dim(D) + 3$. We can now use the subtraction principle [D-K, Proposition 3.2] to find a surjection $\beta : P \twoheadrightarrow I$ which lifts α . This completes the proof in case $n \ge 3$.

Case 2. n = 2. In this case dim(R) = 1 and hence by (2.13), $P \simeq L \oplus D$ for some rank one projective *D*-module *L*.

We have $I = \alpha(P) + I^2$. Applying (2.4), we can find $f \in I$ such that $I = (\alpha(P), f)$ with $f(1 - f) \in \alpha(P)$ and therefore we have a surjection $\alpha_{1-f} : P_{1-f} \twoheadrightarrow I_{1-f}$. Let $\pi : P_f = L_f \oplus D_f \twoheadrightarrow D_f = I_f$ be the projection onto the second factor. Now consider the following surjections:

$$\alpha_{f(1-f)} : P_{f(1-f)} \twoheadrightarrow I_{f(1-f)} = D_{f(1-f)}$$
$$\pi_{1-f} : P_{f(1-f)} \twoheadrightarrow I_{f(1-f)} = D_{f(1-f)}$$

Now it is not hard to show that there exists $\tau \in SL(P_{f(1-f)})$ such that $\alpha_{f(1-f)}\tau = \pi_{1-f}$. Therefore standard patching argument implies that there is a projective *D*-module *Q* of rank 2 such that *Q* maps onto *I*. By (2.13), $Q = \wedge^2(Q) \oplus D$. Also note that *Q* has determinant *L* and hence $Q \simeq L \oplus D$.

By (2.13), $L \oplus D$ is cancellative. We can now apply [B, Lemma 3.2] to find a surjection $\beta : P \twoheadrightarrow I$ which lifts α .

Corollary 3.2. Let R be a ring of dimension ≥ 1 and D be a discrete Hodge algebra over R of dimension $n > \dim(R)$. Let I be an ideal in D of height ≥ 2 . Suppose that $I = (f_1, \dots, f_n) + I^2$. Then there exist g_1, \dots, g_n such that $I = (g_1, \dots, g_n)$ with $f_i - g_i \in I^2$ for $i = 1, \dots, n$.

Corollary 3.3. Let R be a ring of dimension ≥ 1 and D be a discrete Hodge algebra over R of dimension $n > \dim(R)$. Let L be any rank one projective D-module. Then the n-th Euler class group $E^n(D, L)$ is trivial.

Proof. Let $D = R[X_1, \dots, X_m]/\mathcal{J}$. Without loss of generality we can assume that D is reduced (see [B-RS 2, Corollary 4.6]). In particular, R is reduced. Let S be the seminormalization of R in its total quotient ring. Since S is seminormal, by [Sw, Theorem 6.1], every rank one projective $S[X_1, \dots, X_k]$ -module is extended from S for all k. Therefore, it follows from (2.9) that $L \otimes_R S$ is extended from S.

Let us denote $S[X_1, \dots, X_m]/\mathcal{J}$ by D_1 . Since $R \hookrightarrow S$ is a subintegral extension, by (2.11), $D \hookrightarrow D_1$ is also subintegral. As $L \otimes_R S$ is extended from S, by (3.1), it follows that $E^n(D_1, L \otimes_R S)$ is trivial. Finally, using (2.10), we have $E^n(D, L)$ is trivial. \Box

The following result is due to Katz [Ka].

Theorem 3.4. Let R be a ring and $I \subset R$ be an ideal. Let d be the maximum of the heights of maximal ideals containing I, and suppose that $d < \infty$. Then some power of I admits a reduction J satisfying $\mu(J/J^2) \leq d$.

A result of Mandal from [M 2], can now be deduced.

Corollary 3.5. Let R be a ring of dimension ≥ 1 and D be a discrete Hodge algebra over R of dimension $n > \dim(R)$. Let $I \subset D$ be an ideal of height ≥ 2 . Then I is set theoretically generated by n elements.

Proof. Using Katz (3.4), there exists k > 0 such that I^k has a reduction J with $\mu(J/J^2) \le n$. If $\mu(J/J^2) \le n - 1$, then clearly J is generated by at most n elements. Therefore we assume that $\mu(J/J^2) = n$. Since J is a reduction of I^k , it is easy to see that $\sqrt{I} = \sqrt{I^k} = \sqrt{J}$ and $\operatorname{ht}(I) = \operatorname{ht}(J)$. Applying (3.2), we see that J is generated by n elements. Therefore, I is set-theoretically generated by n elements. \Box

We have the following variant of (3.1) for rings containing \mathbb{Q} .

Proposition 3.6. Let R be a ring containing \mathbb{Q} of dimension ≥ 2 and D be a discrete Hodge algebra over R of dimension $n > \dim(R)$. Let I be an ideal in D of height ≥ 3 and P be any rank n projective D-module whose determinant is extended from R. Suppose that there is a surjection $\alpha : P/IP \twoheadrightarrow I/I^2$. Then α can be lifted to a surjection $\beta : P \twoheadrightarrow I$.

Proof. We follow the proof of (3.1). The only thing which we need to show is that $\overline{\psi}:\overline{P} \twoheadrightarrow \overline{J}/(\overline{J}^2X_m)$ can be lifted to a surjection $\theta:\overline{P} \twoheadrightarrow \overline{J}$. Rest of the proof is same. To show this, we use (2.14) in place of (2.7). By (2.14), it is enough to show that $\overline{\psi} \otimes R(X_m)$ can be lifted to a surjection from $\overline{P} \otimes R(X_m) \twoheadrightarrow \overline{J} \otimes R(X_m)$. This is clearly true, since \overline{J} contains a monic polynomial in X_m and $\overline{P} = \overline{D} \oplus P'$ by (2.13).

The following lemma is very crucial to generalize above result.

Lemma 3.7. Let R be a reduced ring and D be a discrete Hodge algebra over R. Let L be a rank one projective D-module. Then there exists a ring S such that

- (1) $R \hookrightarrow S \hookrightarrow Q(R)$,
- (2) S is a finite R-module,
- (3) $R \hookrightarrow S$ is subintegral and
- (4) $L \otimes_R S$ is extended from S.

Proof. Let $R \hookrightarrow B \hookrightarrow Q(R)$ be the seminormalization of R. By Swan's result [Sw, Theorem 6.1], rank one projective modules over polynomial extensions of B are extended from B. Hence by (2.9), rank one projective modules over discrete Hodge algebras over B are extended from B. In particular $L \otimes_R B$ is extended from B. By [Sw, Theorem 2.8], B is direct limit of B_{λ} , where $R \hookrightarrow B_{\lambda}$ is finite and subintegral extension. Since L is finitely generated, we can find a subring $S = B_{\lambda}$ for some λ satisfying conditions (1-4).

We now prove the general case of (3.6).

Theorem 3.8. Let R be a ring containing \mathbb{Q} of dimension ≥ 2 and D be a discrete Hodge algebra over R of dimension $n > \dim(R)$. Let I be an ideal in D of height ≥ 3 and P be any rank n projective D-module. Suppose that there is a surjection $\alpha : P/IP \twoheadrightarrow I/I^2$. Then α can be lifted to a surjection $\beta : P \twoheadrightarrow I$.

Proof. Without loss of generality, we may assume that *D* is reduced. In particular, *R* is reduced. Let $D = R[X_1, \dots, X_m]/\mathcal{J}$, where \mathcal{J} is an ideal of $R[X_1, \dots, X_m]$ generated by square free monomials. By (3.7), there exists an extension $R \hookrightarrow S$ such that

- (1) $R \hookrightarrow S \hookrightarrow Q(R)$,
- (2) *S* is a finite *R*-module,

- (3) $R \hookrightarrow S$ is subintegral and
- (4) $\wedge^n(P) \otimes_R S$ is extended from *S*.

Let $E = S[X_1, \dots, X_m]/\mathcal{J}$. Since $\wedge^n(P) \otimes_R S$ is extended from S, by (3.6), the induced surjection $\alpha^* : P \otimes E \twoheadrightarrow IE/I^2E$ can be lifted to a surjection $\phi : P \otimes E \twoheadrightarrow IE$. By (2.13), $P = D \oplus Q$. In case $P = \wedge^n(P) \oplus D^{n-1}$, the rest of the proof is given in [D-Z 1, Theorem 3.12]. The proof of [D-Z 1, Theorem 3.12] works for $P = D \oplus Q$ also. Hence we are done.

4. MAIN THEOREMS: CODIMENSION ONE CASE:

The aim of this section is to give an affirmative answer to Question 1.4 mentioned in the introduction. We start with the following lemma which generalizes (2.12).

Lemma 4.1. Let R be a ring containing \mathbb{Q} of dimension ≥ 2 and I be an ideal of R[X, Y] of height ≥ 3 . Let P be a projective R[X, Y]-module of rank $\geq \dim(R) + 1$ whose determinant is extended from R[X]. Suppose that there exists a surjection $\phi : P \twoheadrightarrow I/I^2$. Then ϕ can be lifted to a surjection $\psi : P \twoheadrightarrow I$.

Proof. If rank of *P* is $> \dim(R) + 1$, then we are done by (2.12). So assume rank of $P = \dim(R) + 1$. Since *R* contains \mathbb{Q} , using [B-RS 1, Lemma 3.3] and replacing *Y* by $Y - \lambda$ for some $\lambda \in \mathbb{Q}$, we can assume that either I(0) = R[X] or h(I(0)) = ht(I). If I(0) = R[X], then by (2.8), we can lift ϕ to a surjection $\alpha : P \twoheadrightarrow I/(I^2Y)$.

Now assume that $ht(I(0)) = ht(I) \ge 3$. Let "bar" denote the reduction modulo Y and consider $\overline{\phi} : \overline{P} \twoheadrightarrow \overline{I}/\overline{I}^2$. By (2.12), there exists a surjection $\beta : \overline{P} \twoheadrightarrow \overline{I}$ which lifts $\overline{\phi}$. Therefore, again by (2.8), we can lift ϕ to a surjection $\alpha : P \twoheadrightarrow I/(I^2Y)$. Therefore, in any case, we can lift ϕ to a surjection $\alpha : P \twoheadrightarrow I/(I^2Y)$.

Consider the surjection $\alpha \otimes R(Y) : P \otimes R(Y) \twoheadrightarrow I \otimes R(Y)/I^2 \otimes R(Y)$. Since dim(R(Y)) =dim(R), by (2.12), $\alpha \otimes R(Y)$ can be lifted to a surjection $\delta : P \otimes R(Y) \twoheadrightarrow I \otimes R(Y)$. Using (2.14), we get a surjection $\psi : P \twoheadrightarrow I$ which lifts α and hence lifts ϕ .

Proposition 4.2. Let R be a ring containing \mathbb{Q} of dimension ≥ 3 and D be a discrete Hodge algebra over R of dimension $d > \dim(R)$. Let I be an ideal in D of height ≥ 4 and P be a projective D-module of rank $n \geq \max\{\dim(R) + 1, d - 1\}$ whose determinant is extended from R. Suppose that $\alpha : P \twoheadrightarrow I/I^2$ is a surjection. Then there exists a surjection $\beta : P \twoheadrightarrow I$ that lifts α .

Proof. As in the proof of (3.1), we can assume that R is reduced and $D = R[X_1, \dots, X_m]/\mathcal{I}$, where \mathcal{I} is an ideal of $R[X_1, \dots, X_m]$ generated by square free monomials. where $X_{i_1}^{l_1} \cdots X_{i_k}^{l_k} \in \mathcal{I}$ and $l_i \geq 1$ We prove the result using induction on m. If m = 1, then $D = R[X_1]$ and the result follows from (2.12).

Let us assume that $m \ge 2$. If *D* is a polynomial ring over *R*, then we are done by (4.1). Now suppose that *D* is a non-trivial discrete Hodge algebra. Then we can assume that $\mathcal{I} = (\mathcal{K}, X_m \mathcal{L})$, where \mathcal{K} and \mathcal{L} are monomial ideals in $R[X_1, \ldots, X_{m-1}]$. Then $D = R[X_1, \cdots, X_m]/(\mathcal{K}, X_m \mathcal{L})$.

Let x_m and L be the images of X_m and \mathcal{L} in D respectively. We shall use "tilde" when we move modulo (x_m) and "bar" when we move modulo L. We first go modulo (x_m) , i.e. to the discrete Hodge algebra $\widetilde{D} = R[X_1, \dots, X_{m-1}]/\mathcal{K}$ and consider the surjection $\widetilde{\alpha} : \widetilde{P} \twoheadrightarrow \widetilde{I}/\widetilde{I}^2$. Note that \widetilde{I} is an ideal of \widetilde{D} of height $\geq \dim(\widetilde{D}) - 1$. By induction hypothesis on m, there exists a surjection $\phi : \widetilde{P} \twoheadrightarrow \widetilde{I}$ which is a lift of $\widetilde{\alpha}$. Therefore, using (2.8), we can lift α to a surjection $\psi : P \twoheadrightarrow I/(I^2 x_m)$.

We now move modulo L, i.e. $\overline{D} = \frac{R[X_1, \dots, X_{m-1}]}{(\mathcal{K}, \mathcal{L})}[X_m] := D_0[X_m]$ and consider the surjection

$$\overline{\psi}:\overline{P}\twoheadrightarrow\overline{I}/(\overline{I}^2X_m)$$

Observe that $\operatorname{ht}(\overline{I}) \geq \dim(R) \geq 3$. If $\dim(D_0) < n$, then by (2.12), $\overline{\psi}$ can be lifted to a surjection $\theta : \overline{P} \twoheadrightarrow \overline{I}$. So assume $\dim(D_0) = n$. Since $\dim(R(X_m)) = \dim(R)$ and $\overline{D} \otimes R(X_m) = \frac{R(X_m)[X_1, \cdots, X_{m-1}]}{(\mathcal{K}, \mathcal{L})}$, by (3.6), the surjection $\overline{\psi} \otimes R(X_m) : \overline{P} \otimes R(X_m) \twoheadrightarrow \overline{I} \otimes R(X_m)$) can be lifted to a surjection $\eta : \overline{P} \otimes R(X_m) \twoheadrightarrow \overline{I} \otimes R(X_m)$. By (2.14), there exists a surjection $\theta : \overline{P} \twoheadrightarrow \overline{I}$ which lifts $\overline{\psi}$.

Finally it follows from (2.8) that there exists a surjection $\beta : P \twoheadrightarrow I/(I^2 x_m L)$ which lifts ψ . As $x_m L = 0$ in D, we obtain a surjection $\beta : P \twoheadrightarrow I$ which lifts α .

Now we will answer Question 1.4.

Theorem 4.3. Let R be a ring of dimension ≥ 3 containing \mathbb{Q} and D be a discrete Hodge algebra over R of dimension $d > \dim(R)$. Let I be an ideal in D of height ≥ 4 and P be a projective D-module of rank $n \geq \max\{\dim(R) + 1, d - 1\}$. Suppose that $\alpha : P \twoheadrightarrow I/I^2$ is a surjection. Then there exists a surjection $\beta : P \twoheadrightarrow I$ which lifts α .

Proof. Without loss of generality we may assume that *D* is reduced. Using (2.6), we can lift α to a surjection $\alpha' : P \twoheadrightarrow I \cap I_1$ such that $I + I_1 = D$ and $ht(I_1) \ge n$.

If $ht(I_1) > n$, then $I_1 = D$ and hence α' is the required surjective lift of α . Assume $ht(I_1) = n$. The map α' induces a surjection $\alpha_1 : P \twoheadrightarrow I_1/I_1^2$. If we can show that α_1 can be lifted to a surjection $\Delta : P \twoheadrightarrow I_1$, then by subtraction principle [D-K, Proposition 3.2], we can find a surjection $\Delta_1 : P \twoheadrightarrow I$ which lifts α . Therefore it is enough to show that α_1 has a surjective lift Δ . Now replacing I_1 by I and α_1 by α , we assume that ht(I) = n.

By (3.7), there exists an extension $R \hookrightarrow S$ such that

(1)
$$R \hookrightarrow S \hookrightarrow Q(R)$$
,

(2) S is a finite R-module,

- (3) $R \hookrightarrow S$ is subintegral and
- (4) $\wedge^n(P) \otimes_R S$ is extended from *S*.

Let *C* be the conductor ideal of *R* in *S*. Then $ht(C) \ge 1$. Since $ht(I) = n \ge max\{\dim(R)+1, d-1\}$ and $ht(C) \ge 1$, it follows that $ht(I^2 \cap C) \ge 1$. Therefore, we can choose an element $b \in I^2 \cap C$ such that ht(b) = 1. Let "bar" denote reduction modulo the ideal (*b*). Consider the surjection $\overline{\alpha} : \overline{P} \twoheadrightarrow \overline{I}/\overline{I}^2$ and note that $\dim(\overline{R}) < \dim(R)$.

Now applying (3.8), we can find a surjection $\gamma' : \overline{P} \twoheadrightarrow \overline{I}$ which lifts $\overline{\alpha}$. Choose a lift $\gamma : P \longrightarrow I$ of γ' . Since $b \in I^2$, γ is a lift of α and hence $(\gamma(P), b) = I$. Since hh(I) = n and $b \in I^2$, applying (2.5) and replacing γ by $\gamma + b\delta$ for some $\delta \in P^*$, we can assume that $ht(\gamma(P)) = n$.

Applying (2.4), there exists an ideal I' of height $\geq n$ such that I' + bD = D and $\gamma(P) = I \cap I'$. If ht(I') > n, then I' = D and hence γ is the required surjective lift of α . Assume that ht(I') = n and consider the surjection $\theta : P \twoheadrightarrow I'/I'^2$ induced from $\gamma : P \twoheadrightarrow I \cap I'$.

Consider the surjection $\theta \otimes_R S : P \otimes S \twoheadrightarrow I' \otimes S/I'^2 \otimes S$. Since $\wedge^n(P \otimes_R S)$ is extended from S, by (4.2), $\theta \otimes S$ can be lifted to a surjection $\Theta : P \otimes S \twoheadrightarrow I' \otimes S$. Now we need to show that we get a surjection $\eta : P \twoheadrightarrow I'$ which lifts θ . In the case of $P = \wedge^n(P) \oplus D^{n-1}$, this is proved in [D-Z 2, Lemma 5.1]. Note that $P = D \oplus P'$, by (2.13). The proof of [D-Z 2, Lemma 5.1] works in this case also, so we do not repeat it here. Therefore we have a surjection $\eta : P \twoheadrightarrow I'$ which lifts θ . Applying subtraction principle [D-K, Proposition 3.2], we can find a surjection $\beta : P \twoheadrightarrow I$ which lifts α .

The following result is immediate from (4.3).

Corollary 4.4. Let R be a ring of dimension $d \ge 3$ containing \mathbb{Q} and $D = \frac{R[X_1, X_2, X_3]}{\mathcal{I}}$ be a discrete Hodge algebra over R. Let I be an ideal in D of height ≥ 4 and P be a projective D-module of rank $n \ge \dim(R) + 1$. Suppose that $\alpha : P \twoheadrightarrow I/I^2$ be a surjection. Then there exists a surjection $\beta : P \twoheadrightarrow I$ which lifts α .

The following theorem is due to Ferrand and Szpiro [Sz].

Theorem 4.5. Let R be a ring and $I \subset R$ be a locally complete intersection ideal of height $r \geq 2$ and $\dim(R/I) \leq 1$. Then there is a locally complete intersection ideal $J \subset R$ of height r such that

- (1) $\sqrt{I} = \sqrt{J}$ and
- (2) J/J^2 is free R/J-module of rank r.

As an application of (4.3), we improve a result of Mandal [M 2, Corollary 2.2], albeit with a stronger hypothesis on ideals.

Theorem 4.6. Let R be a ring of dimension ≥ 3 containing \mathbb{Q} and D be a discrete Hodge algebra over R with $\dim(D) = d > \dim(R)$. Let I be a locally complete intersection ideal in D of height $n = \max\{\dim(R) + 1, d - 1\}$. Then there exist $f_1, \dots, f_n \in I$ such that $\sqrt{I} = \sqrt{(f_1, \dots, f_n)}$. In other words, I is set theoretically generated by n elements.

Proof. By (4.5), there is a locally complete intersection ideal *J* such that $\sqrt{I} = \sqrt{J}$ and J/J^2 is a free R/J-module of rank *n*. Applying (4.3), we see that *J* is generated by *n* elements. Therefore, *I* is set theoretically generated by *n* elements.

5. Some Auxiliary Results

After answering Question 1.1 and Question 1.4, it is natural to ask the following more general question.

Question 5.1. Let *R* be a commutative Noetherian ring of dimension ≥ 1 and *D* be a discrete Hodge algebra over *R* of dimension $> \dim(R)$. Let $I \subset D$ be an ideal of height $> \dim(R)$. Suppose that $I = (f_1, \dots, f_n) + I^2$, where $n \geq \dim(D/I) + 2$. Do there exist $g_1, \dots, g_n \in I$ such that $I = (g_1, \dots, g_n)$ with $f_i - g_i \in I^2$?

The above question has been answered affirmatively by Mandal when D is a polynomial algebra over R ([M 1]). Using [D-RS, Theorem 4.2] and following the proofs of (3.1) and (4.2), we can obtain the following result which gives a partial answer to the above question.

Theorem 5.2. Let R be a ring of dimension $d \ge 2$ containing \mathbb{Q} and $D = \frac{R[X_1, \dots, X_m]}{(J_1, X_m J_2)}$, where J_1, J_2 are two ideals of $R[X_1, \dots, X_{m-1}]$ generated by monomials. Let I be an ideal in D of height > d. Suppose that $I = (f_1, \dots, f_n) + I^2$ with $n \ge \dim(D/I) + 2$. Then $I = (g_1, \dots, g_n)$ with $f_i - g_i \in I^2$ in each of the following cases:

(1) $n \ge max\{dim(D/J_1), dim(D/J_2)\}\$ and $ht(\frac{I+J_2}{J_2}) \ge 2$. (2) $n = max\{dim(D/J_1) - 1, dim(D/J_2) - 1\}\$ and $ht(\frac{I+J_2}{J_2}) \ge 3$.

As an application of (5.2), we give some explicit examples.

Example 5.3. Let *R* be a ring of dimension $d \ge 4$ containing \mathbb{Q} and $D = \frac{R[X_1, \dots, X_4]}{(X_4J)}$ where $J = (X_1X_2, X_2X_3, X_1X_3)$. Let $I \subset D$ be an ideal of height $n \ge d + 1$. Suppose that $I = (f_1, \dots, f_n) + I^2$. Then there exist $g_1, \dots, g_n \in I$ such that $I = (g_1, \dots, g_n)$ with $f_i - g_i \in I^2$. In other words, the *n*-th Euler class group $E^n(D)$ is trivial.

Proof. Using (3.1) and (4.2), we can assume that n = d + 1. We have $\dim(D/J) = d + 2$, i.e., $n = d + 1 = \dim(D/J) - 1$ and $\operatorname{ht}(\frac{I+J}{J}) \ge 3$. Also note that $n = d + 1 \ge 5 \ge \dim(D/I) + 2$. Now the result follows from (5.2(2)).

The following result follows from (5.2).

Example 5.4. Let *R* be a ring of dimension $d \ge 3$ containing \mathbb{Q} and $D = \frac{R[X_1, \dots, X_m]}{(X_m J)}$ where $J = (X_i X_j | 1 \le i \ne j \le m - 1)$. Let $I \subset D$ be an ideal such that $\operatorname{ht}(\frac{I+J}{J}) \ge 3$. Suppose that $I = (f_1, \dots, f_n) + I^2$ with $n \ge \max\{d + 1, \dim(D/I) + 2\}$. Then there exist $g_1, \dots, g_n \in I$ such that $I = (g_1, \dots, g_n)$ with $f_i - g_i \in I^2$.

Now using (4.4) and following the proof of (5.2), we can derive the following.

Example 5.5. Let R be a ring of dimension $d \ge 4$ containing \mathbb{Q} and $D = \frac{R[X_1, \dots, X_4]}{(J_1, X_4, J_2)}$ where J_1, J_2 are two ideals in $R[X_1, X_2, X_3]$ generated by monomials and $\operatorname{ht}(J_1 + J_2) \ge 2$. Let $I \subset D$ be an ideal of height $n \ge d + 1$. Suppose that $I = (f_1, \dots, f_n) + I^2$. Then there exist $g_1, \dots, g_n \in I$ such that $I = (g_1, \dots, g_n)$ with $f_i - g_i \in I^2$. In other words, the *n*-th Euler class group $E^n(D)$ is trivial.

Proof. Since dim(D) $\leq d + 3$, the case $n \geq d + 2$ is covered by (3.1) and (4.2). Let us assume that n = d + 1. Then $n = d + 1 = \dim(D/J_2) - 1$ and $2n \geq \dim(D) + 2$. Now the result follows from (5.2).

The following result follows from (5.2).

Example 5.6. Let *R* be a ring of dimension $d \ge 4$ containing \mathbb{Q} and $D = \frac{R[X_1, \dots, X_5]}{(X_5J)}$ where $J = (X_1X_2X_3, X_1X_2X_4, X_2X_3X_4)$. Let $I \subset D$ be an ideal such that $ht(I) = n \ge d + 1$. Suppose that $I = (f_1, \dots, f_n) + I^2$ with $n \ge d + 2$. Then there exist $g_1, \dots, g_n \in I$ such that $I = (g_1, \dots, g_n)$ with $f_i - g_i \in I^2$. In other words, the *n*-th Euler class group $E^n(D)$ is trivial.

References

- [B] S. M. Bhatwadekar, Cancellation theorems for projective modules over a two dimensional ring and its polynomial extensions, *Compositio Math.* **128** (2001), 339-359.
- [B-R] S. M. Bhatwadekar, Amit Roy, Stability theorems for overrings of polynomial rings, *Invent.Math* 68 (1982), 117-127.
- [B-RS 1] S.M. Bhatwadekar, Raja Sridharan, Projective generation of curves in polynomial extensions of an affine domain and a question of Nori, *Invent. Math.* 133 (1998), 161-192.
- [B-RS 2] S. M. Bhatwadekar and Raja Sridharan, Euler class group of a Noetherian ring, Compositio Math. 122 (2000), 183-222.
- [B-RS 3] S. M. Bhatwadekar and Raja Sridharan, On Euler classes and stably free projective modules, in: Algebra, arithmetic and geometry, Part I, II(Mumbai, 2000), 139-158, Tata Inst. Fund. Res. Stud. Math., 16, Tata Inst. Fund. Res., Bombay, 2002.
- [D] M. K. Das, The Euler class group of a polynomial algebra, J. Algebra 264 (2003), 582-612.
- [D-K] M. K. Das and M. K. Keshari, A question of Nori, Segre classes of ideals and other applications, J. Pure and Applied Algebra 216 (2012), 2193-2203.
- [D-RS] M. K. Das and Raja Sridharan, Good invariants for bad ideals, J. Algebra 323 (2010), 3216-3229.
- [D-Z 1] M. K. Das and Md. Ali Zinna, On invariance of the Euler class group under a subintegral base change, J. Algebra 398 (2014), 131-155.

MANOJ K. KESHARI AND MD. ALI ZINNA

- [D-Z 2] M. K. Das, Md. Ali Zinna, The Euler class group of a polynomial algebra with coefficients in a line bundle, *Math. Z.* 276 (2014), 257-283.
- [D-Z 3] M. K. Das and Md. Ali Zinna, Efficient generation of ideals in overrings of polynomial rings, J. Pure Appl. Algebra 219 (2015), 4016-4034.
- [Fa] Jean Fasel, On the number of generators of ideals in polynomial rings, *Annals of Math.* **184** (2016), 315-331.
- [Ka] D. Katz, Generating ideals up to projective equivalence, Proc. Amer. Math. Soc, 120 (1994), 401-414.
- [M 1] S. Mandal, On efficient generation of ideals, Invent. Math 75 (1984), 59-67.
- [M 2] S. Mandal, Smoe results about modules over discrete Hodge algebras, Math. Z. 190 (1985), 287-299.
- [M 3] S. Mandal, Homotopy of sections of projective modules, J. Algebraic Geometry 1 (1992), 639-646.
- [Sw] Richard G. Swan, On seminormality, J.Algebra 67 (1980), 210-229.
- [Sz] L. Szpiro, Equations defining space curves, Published for Tata Institute of Fundamental Research by Springer-Verlag (1979).
- [V] T. Vorst, The Serre problem for discrete Hodge algebras, *Math. Z.* **184** (1983), 425-433.
- [Wi] A. Wiemers, Some Properties of Projective Modules over Discrete Hodge Algebras, J. Algebra 150 (1992), 402-426.

Department of Mathematics, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.

E-mail address: keshari@math.iitb.ac.in

Department of Mathematics, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India

E-mail address: zinna@math.iitb.ac.in