Euler Class Group of a Noetherian Ring

A thesis
Submitted to the University of Mumbai
for the Degree of Master of Philosophy

by
Manoj Kumar Keshari

Tata Institute of Fundamental Research
Mumbai

CERTIFICATE

Certified that the work contained in the thesis entitled
Euler class group of a Noetherian ring, by Manoj Kumar Keshari, has been carried out under my supervision and that this work has not been submitted elsewhere for a degree.

ACKNOWLEDGEMENTS

It gives me great pleasure to express my deep sense of gratitude and thanks to my supervisor Prof. S. M. Bhatwadekar, for his valuable guidance and suggestions throughout my thesis work. This work is an outcome of the reading course I undertook with him over the past one-and-half years.

My sincere thanks to Dr. Raja Sridharan for helpful discussions. My thanks are also due to Prof. R. Sridharan for his guidance and help during my first year in TIFR.

I would like to thank my friends for their encouragement. Finally, I thank my parents for the support they have given me all these years.

Contents

0 Introduction 5
1 Some Basic Definitions 7
2 Some Preliminary Results 13
3 Some Addition and Subtraction Principles 20
4 The Euler Class Group of a Noetherian Ring 26
5 Some Results on $E(A)$ 37
6 The Weak Euler Class Group of a Noetherian Ring 43

Chapter 0

Introduction

Let A be a commutative Noetherian ring of dimension n and let P be a projective A-module. Then P is said to have a unimodular element if there exists a surjective A-linear map $\phi: P \rightarrow A$ (in other words $P \xrightarrow{\sim} Q \oplus A$). A classical theorem of Serre ([18], Theorem 4.2.1) asserts that if P is a projective A-module of rank $>n$, then P has a unimodular element. This result is the best possible in the general. A standard example to show this is:

Let $A=\mathbb{R}[X, Y, Z] /\left(X^{2}+Y^{2}+Z^{2}-1\right)=\mathbb{R}[x, y, z]$ be the coordinate ring of the real 2-sphere. Let $P=A^{3} / A(x, y, z)$. Then P is a projective A-module of rank 2 and is associated to the tangent bundle of the real 2-sphere. We have $P \oplus A \xrightarrow{\sim} A^{3}$ and it is well known that $P \nsucceq A^{2}$. Hence P does not have a unimodular element. Thus, Serre's result is not valid in general if rank $P=\operatorname{dim} A$.

Therefore, it is natural to ask:
Main Question: Let A be a commutative Noetherian ring of dimension n and let P be a projective A-module of rank n. Can we associate an invariant to P, the vanishing of which would ensure that P has a unimodular element?

Let A be a smooth affine domain over a field k. Let $F^{n} K_{0}(A)$ denote the subgroup of $K_{0}(A)$ generated by the images of the residue fields of all the maximal ideals of A. Let P be a projective A-module of rank n. Then the $n^{\text {th }}$ Chern class of $P, C_{n}(P)=\sum(-1)^{i}\left(\wedge^{i} P^{*}\right)$ (where P^{*} is the dual of P) is an element of $F^{n} K_{0}(A)$. It is easy to see that if $P \xrightarrow{\sim} Q \oplus A$, then $C_{n}(P)=0$.

In the above setting, if k is an algebraically closed, then Murthy ([12], Theorem 3.8) proved that P has a unimodular element if and only if $C_{n}(P)=0$. Thus, the only obstruction for P to have a unimodular element is the possible non-vanishing of its "top Chern class" $C_{n}(P)$. However, if k is not algebraically closed, then the vanishing of the invariant top Chern class is not sufficient, as is shown by the example of the projective module associated to the tangent bundle of the real 2 -sphere.

It is natural to ask, whether in the case of affine domains A of dimension ≥ 2 over arbitrary base fields, if one can attach a different invariant to a projective A-module P of rank $=\operatorname{dim} A$, the vanishing of which would ensure that P has a unimodular element. To tackle this question, Nori defined the notion of the "Euler class group" of a smooth affine variety $X=\operatorname{Spec}(A)$ over an infinite field, attached to any projective A-module P of $\operatorname{rank}=\operatorname{dim} A$, an element in this group, called the
"Euler class" of P and asked whether the vanishing of the Euler class of P would ensure that P has a unimodular element. In [3], Bhatwadekar and Raja Sridharan settled this question of Nori in the affirmative for projective modules of trivial determinant. In [3], an explicit description of the Euler class group is given, which appeared amenable for plausible generalization to arbitrary Noetherian rings. Indeed such a generalization is possible. In order to answer the Main Question, in [5], to any Noetherian ring A of dimension $n \geq 2$ containing the field of rational numbers, an abelian group $E(A)$ is attached, defined roughly as follows:

First, one takes the free abelian group on the pairs $\left(J, w_{J}\right)$, where $J \subset A$ is an ideal of height $n=\operatorname{dim} A$ such that J / J^{2} is generated by n elements and w_{J} a set of n generators of J / J^{2}. The group $E(A)$ is a quotient of this group by the subgroup generated by $\left(J, w_{J}\right)$, where $J=\left(a_{1}, \ldots, a_{n}\right)$ and w_{J} is the induced set of generators of J / J^{2}. It is proved in [5], that if A is a Noetherian ring containing the field of rationales, then the group $E(A)$ detects the obstruction for a projective A module P of rank n with trivial determinant to have a unimodular element, thus answering the Main Question in the affirmative.

The aim of this thesis is to give a self contained account of the proof of this result and give some applications. The layout of this thesis is as follows: In chapter 1, we recall some basic definitions and some well known theorems. In chapter 2, we prove some preliminary results. In chapter 3, we prove some addition and subtraction principles which are the main ingredients for the proofs of the main theorems. In chapter 4 , we define the notion of Euler class group $E(A)$ and show how to attach to the pair (P, χ) (where P is a projective A-module of rank n and $\chi: A \xrightarrow{\sim} \wedge^{n}(P)$ an isomorphism), an element $e(P, \chi)$ of $E(A)$ called the Euler class of (P, χ). We show that P has a unimodular element if and only if $e(P, \chi)$ vanishes. In chapter 5 , we use the above result to prove some theorems about projective modules over real affine varieties. In the last chapter, we define the notion of the weak Euler class group $E_{0}(A)$, which is obtained as a certain canonical quotient of $E(A)$. We also define the weak Euler class of a projective A-module of rank $n=\operatorname{dim} A$. It is proved that if A is a Noetherian ring of even dimension n, and P is a projective A-module of rank n with trivial determinant, then the weak Euler class $e(P)$ of P vanishes in $E_{0}(A)$ if and only if $[P]=[Q \oplus A]$ in $K_{0}(A)$ for some projective A-module Q of rank $n-1$.

Chapter 1

Some Basic Definitions

In this thesis we assume that all rings are commutative Noetherian with unity and all modules are finitely generated unless otherwise stated. We assume that the multiplicative closed sets with respect to which we localize do not contain 0 . We begin with a few definitions and subsequently state some basic and useful results without proof.

Definition 1.1 Let A be a ring. The supremum of the lengths r, taken over all strictly increasing chains $\mathfrak{p}_{0} \subset \mathfrak{p}_{1} \subset \ldots \subset \mathfrak{p}_{r}$ of prime ideals of A, is called the Krull dimension of A or simply the dimension of A and is denoted by $\operatorname{dim} A$.

For a prime ideal \mathfrak{p} of A, the supremum of the lengths r, taken over all strictly increasing chains $\mathfrak{p}_{0} \subset \mathfrak{p}_{1} \subset \ldots \subset \mathfrak{p}_{r}=\mathfrak{p}$ of prime ideals of A, is called the the height of \mathfrak{p} and is denoted by ht \mathfrak{p}. Note that for a Noetherian ring A, ht $\mathfrak{p}<\infty$.

For an ideal $I \subset A$, the infimum of the heights of \mathfrak{p}, taken over all prime ideals $\mathfrak{p} \subset A$ such that $I \subset \mathfrak{p}$, is defined to be height of I and is denoted by ht I.

For a prime ideal \mathfrak{p} of A, the supremum of the lengths r, taken over all strictly increasing chains $\mathfrak{p}=\mathfrak{p}_{0} \subset \mathfrak{p}_{1} \subset \ldots \subset \mathfrak{p}_{r}$ of prime ideals of A starting from \mathfrak{p}, is called the the coheight of \mathfrak{p} and is denoted by coht \mathfrak{p}.

For an ideal $I \subset A$, the supremum of the coheights of \mathfrak{p}, taken over all prime ideals $\mathfrak{p} \subset A$ such that $I \subset \mathfrak{p}$, is defined to be coheight of I and is denoted by coht I.

It follows from the definitions that
ht $\mathfrak{p}=\operatorname{dim} A_{\mathfrak{p}}$, coht $\mathfrak{p}=\operatorname{dim}(A / \mathfrak{p})$ and ht $\mathfrak{p}+\operatorname{coht} \mathfrak{p} \leq \operatorname{dim} A$.

Definition 1.2 An A-module P is said to be projective if it satisfies one of the following equivalent conditions:
(i) Given A-modules M, N and an A-linear surjective map $\alpha: M \rightarrow N$, the canonical map from $\operatorname{Hom}_{A}(P, M)$ to $\operatorname{Hom}_{A}(P, N)$ sending θ to $\alpha \theta$ is surjective.
(ii) Given an A-module M and a surjective A-linear map $\alpha: M \rightarrow P$, there exists an A-linear map $\beta: P \rightarrow M$ such that $\alpha \beta=1_{P}$.
(iii) There exists an A-module Q such that $P \oplus Q \simeq A^{n}$ for some positive integer n, i.e. $P \oplus Q$ is free.

Lemma 1.3 (Nakayama Lemma) Let A be a ring and let M be a finitely generated A-module. Let $I \subset A$ be an ideal such that $I M=M$. Then, there exists $a \in I$ such that $(1+a) M=0$. In particular, if I is contained in Jacobson radical of A, then $(1+a)$ is a unit and hence $M=0$.

Corollary 1.4 Let A be a ring and let M be a finitely generated A-module. Let I be an ideal contained in the Jacobson radical of A and let N be a submodule of M. If $N+I M=M$, then $N=M$.

Corollary 1.5 Let A be a local ring with \mathfrak{m} its maximal ideal. Let M be a finitely generated A-module. Then $\mu(M)$ (the minimum number of generators of $M)=\operatorname{dim}_{A / \mathfrak{m}}(M / \mathfrak{m} M)$.

Lemma 1.6 Let I be an ideal of A contained in the Jacobson radical of A. Let P, Q be projective A-modules such that projective A / I-modules $P / I P$ and $Q / I Q$ are isomorphic. Then P and Q are isomorphic as A-modules.

Proof Let $\bar{\alpha}: P / I P \xrightarrow{\sim} Q / I Q$ be an isomorphism. Since P is projective, $\bar{\alpha}$ can be lifted to an A-linear map $\alpha: P \rightarrow Q$. We claim that α is an isomorphism.

Since $\bar{\alpha}$ is surjective, $Q=\alpha(P)+I Q$. As I is contained in the Jacobson radical of A, by Nakayama lemma, we get $Q=\alpha(P)$. Hence α is surjective.

Since Q is projective, there exists an A-linear map $\beta: Q \rightarrow P$ such that $\alpha \beta=\operatorname{Id}_{Q}$. Let $\bar{\beta}$: $Q / I Q \rightarrow P / I P$ be the map induced by β. Then, we have $\bar{\alpha} \bar{\beta}=\operatorname{Id}_{Q / I Q}$. As $\bar{\alpha}$ is an isomorphism, we get that $\bar{\beta}$ is also an isomorphism and in particular, $\bar{\beta}$ is surjective. Therefore $P=\beta(Q)+I P$. Hence as before, we see that β is surjective. Now, injectivity of α follows from the fact that $\alpha \beta=\mathrm{Id}$.

Corollary 1.7 Let A be a local ring. Then every projective A-module is free.

Proof Let \mathfrak{m} be the maximal ideal A and let $k=A / \mathfrak{m}$ be the residue field of A. Let P be a projective A-module and let $n=\operatorname{dim}_{k}(P / \mathfrak{m} P)$. Now, applying (1.6) to the projective modules P and A^{n}, we see that $P \xrightarrow{\sim} A^{n}$.

Definition 1.8 (Zariski Topology) For an ideal $I \subset A$, we denote by $V(I)$, the set of all prime ideals of A containing I. For $f \in A$, we denote by $D(f)$, the set of all prime ideals of A not containing the element f. The Zariski topology on $\operatorname{Spec}(A)$ is the topology for which all the closed sets are of the form $V(I)$ for some ideal I of A or equivalently the basic open sets are of the form $D(f), f \in A$.

Definition 1.9 Let P be a projective A-module. In view of (1.7), we define the rank function rank_{P} as follows:
$\operatorname{rank}_{P}: \operatorname{Spec}(A) \rightarrow \mathbb{Z}$ is the function defined by $\operatorname{rank}_{P}(\mathfrak{q})=\operatorname{rank}$ of the free $A_{\mathfrak{q}}$-module $P \otimes_{A} A_{\mathfrak{q}}$. If rank_{P} is a constant function taking the value n, then we define the rank of P to be n and denote it by $\operatorname{rank}(P)$.

Remark $1.10 \operatorname{rank}_{P}$ is a continuous function (with the discrete topology on \mathbb{Z} and Zariski topology on Spec A). Moreover, rank_{P} is a constant function for every finitely generated projective A-module P if A has no non trivial idempotent elements.

Remark 1.11 As in corollary (1.7), one can show that if A is a semi-local ring and P is a projective A-module of constant rank n, then P is free of rank n.

Definition 1.12 Given a projective A-module P and an element $p \in P$, we define $\mathcal{O}_{P}(p)=\{\alpha(p) \mid \alpha \in$ $\left.P^{*}\right\}$. We say that p is unimodular if $\mathcal{O}_{P}(p)=A$. The set of all unimodular elements of P is denoted by $\operatorname{Um}(P)$. If $P=A^{n}$, then, we write $\operatorname{Um}_{n}(A)$ for $\operatorname{Um}\left(A^{n}\right)$.

Remark $1.13 \mathcal{O}_{P}(p)$ is an ideal of A and p is unimodular if and only if there exists $\alpha \in P^{*}$ such that $\alpha(p)=1$. An element $\left(a_{1}, \ldots, a_{n}\right) \in A^{n}$ is unimodular if and only if there exists elements $b_{1}, \ldots, b_{n} \in A$ such that $\sum_{i=1}^{n} a_{i} b_{i}=1$. If $\left(a_{1}, \ldots, a_{n}\right)$ is unimodular, then we say that the row $\left[a_{1}, \ldots, a_{n}\right]$ is a unimodular row.

We now state the classical stability theorem of Serre.
Theorem 1.14 (Serre) Let A be a Noetherian ring of dimension n and let P be a projective A-module of rank $>n$. Then $P \simeq Q \oplus A$. ([18], p. 41).

Definition 1.15 Let A be a ring. Let $\mathrm{GL}_{n}(A)$ be the subset of $\mathrm{M}_{n}(A)$ consisting of matrices having determinant equal to a unit in A. Let $\mathrm{SL}_{n}(A)$ be the subset of $\mathrm{M}_{n}(A)$ consisting of matrices of determinant 1. Let $e_{i j}, i \neq j$ denote the $n \times n$ matrix with 1 in the (i, j) coordinate and having zeros elsewhere and $\mathrm{E}_{i j}(a)=I_{n}+a e_{i j}, a \in A$. We denote by $\mathrm{E}_{n}(A)$ the subgroup of $\mathrm{SL}_{n}(A)$ generated by matrices of the type $\mathrm{E}_{i j}(a), a \in A$.

Let A be a ring. Then $\mathrm{GL}_{n}(A)$ acts on $\operatorname{Um}_{n}(A)$. If two rows $f, g \in \operatorname{Um}_{n}(A)$ are conjugate under this action, then, we shall write $f \sim g$. This defines an equivalence relation on $\operatorname{Um}_{n}(A)$. The equivalence classes of $\operatorname{Um}_{n}(A)$ under \sim are just the orbits of the $\mathrm{GL}_{n}(A)$ action. The next proposition shows how to associate a projective module to a unimodular row.

Proposition 1.16 The orbits of $\operatorname{Um}_{n}(A)$ under the $\mathrm{GL}_{n}(A)$ action are in $1-1$ correspondence with the isomorphism classes of A-modules P for which $P \oplus A \simeq A^{n}$. Under this correspondence, $(1,0, \ldots, 0)$ corresponds to the free module A^{n-1}.

Proof To any $\left[b_{1}, \ldots, b_{n}\right] \in \operatorname{Um}_{n}(A)$, we can associate $P=P\left(b_{1}, \ldots, b_{n}\right)$, the kernel of $\left[b_{1}, \ldots, b_{n}\right]$: $A^{n} \rightarrow A$. Such P is a typical module for which $P \oplus A \simeq A^{n}$. Suppose $\beta: P\left(b_{1}, \ldots, b_{n}\right) \xrightarrow{\sim}$ $P\left(c_{1}, \ldots, c_{n}\right)$ is an isomorphism for another $\left[c_{1}, \ldots, c_{n}\right] \in \operatorname{Um}_{n}(A)$. Then, we can complete the following commutative diagram

with a suitable isomorphism $A^{n} \xrightarrow{\sim} A^{n}$ (note that the rows are split exact). If $\sigma \in \mathrm{GL}_{n}(A)$ denotes the matrix of this isomorphism, we will have $\left[b_{1}, \ldots, b_{n}\right]=\left[c_{1}, \ldots, c_{n}\right] \sigma$ and hence $\left[b_{1}, \ldots, b_{n}\right] \sim$ $\left[c_{1}, \ldots, c_{n}\right]$. Conversely, if this equation holds for some $\sigma \in \operatorname{GL}_{n}(A)$, then the automorphism $A^{n} \xrightarrow{\sim} A^{n}$ defined by σ induces an isomorphism of the two kernels : $P\left(b_{1}, \ldots, b_{n}\right) \simeq P\left(c_{1}, \ldots, c_{n}\right)$.

We now state some well known theorems on unimodular rows.

Theorem 1.17 (Swan, Towber) Let A be a commutative ring and let $v=\left[a^{2}, b, c\right] \in A^{3}$ be a unimodular row. Then v can be completed to a matrix in $\mathrm{SL}_{3}(A)$ ([19], Theorem 2.1).

Theorem 1.18 (Suslin) Let A be a commutative ring and let $\left[x_{0}, x_{1}, \ldots, x_{n}\right] \in A^{n+1}$ be a unimodular row. Let r_{0}, \ldots, r_{n} be positive integers such that the product $r_{0} r_{1} \ldots r_{n}$ is divisible by $n!$. Then the unimodular row $\left[x_{0}^{r_{0}}, x_{1}^{r_{1}}, \ldots, x_{n}^{r_{n}}\right]$ is completable to a matrix in $\operatorname{GL}_{n+1}(A)$ ([18], Theorem 5.3.1).

Theorem 1.19 (Ravi A. Rao) Let A be a Noetherian ring of dimension n. If $1 / n!\in A$, then any unimodular row $v \in \operatorname{Um}_{n+1}(A[X])$ is extended from A, i.e. $v \sim_{G_{n+1}(A[X])} v(0)$, i.e. there exists a matrix in $\mathrm{GL}_{n+1}(A[X])$ which takes v to $v(0)$ ([15], Corollary 2.5).

The following proposition is analogous to (1.16).

Proposition 1.20 For a projective A-module P, the following are equivalent:
(i) For any projective A-module Q, if $P \oplus A \xrightarrow{\sim} Q \oplus A$, then $P \xrightarrow{\sim} Q$.
(ii) Given a unimodular element $(p, a) \in P \oplus A$, there exists an automorphism Δ of $P \oplus A$ such that $\Delta(p, a)=(0,1)$.

Proof $\quad(i) \Rightarrow(i i)$. Since (p, a) is unimodular element of $P \oplus A$, there exists an element $\alpha \in(P \oplus A)^{*}$ such that $\alpha(p, a)=1$. Let $Q=\operatorname{ker}(\alpha)$. Then, we get the following short exact sequence of A-modules:

$$
0 \rightarrow Q \rightarrow P \oplus A \xrightarrow{\alpha} A \rightarrow 0
$$

Let $\beta: A \rightarrow P \oplus A$ be an A-linear map such that $\beta(1)=(p, a)$. Then $\alpha \beta=1_{A}$. Hence the cyclic submodule $A(p, a)$ of $P \oplus A$ is isomorphic to A and $P \oplus A=Q \oplus A(p, a)$. Therefore, by assumption, there exists an isomorphism $\sigma: Q \xrightarrow{\sim} P$.

Let $\Delta: Q \oplus A(p, a) \rightarrow P \oplus A$ be an endomorphism of $P \oplus A$ defined by $\Delta(q, 0)=(\sigma(q), 0)$ for $q \in Q$ and $\Delta(p, a)=(0,1)$. Then as σ is an isomorphism and $A(p, a) \xrightarrow{\sim} A$, it follows that Δ is an automorphism of $P \oplus A$ which sends (p, a) to (0,1).
$(i i) \Rightarrow(i)$. Let $\psi: Q \oplus A \xrightarrow{\sim} P \oplus A$ be an isomorphism and let $\psi(0,1)=(p, a)$. Then as ψ is an isomorphism, (p, a) is a unimodular element of $P \oplus A$. Therefore, by assumption, there exists an automorphism Δ of $P \oplus A$ such that $\Delta(p, a)=(0,1)$. Hence the isomorphism $\Delta \psi: Q \oplus A \xrightarrow{\sim} P \oplus A$ sends the element $(0,1)$ of $Q \oplus A$ to $(0,1)$ of $P \oplus A$. Note that $Q \xrightarrow{\sim}(Q \oplus A) / A(0,1)$ and $P \xrightarrow{\sim}(P \oplus A) / A(0,1)$. Hence $P \xrightarrow{\sim} Q$. This proves the result.

Definition 1.21 Let $f_{1}: M_{1} \rightarrow N$ and $f_{2}: M_{2} \rightarrow N$ be homomorphisms of A-modules. The fiber product of M_{1} and M_{2} over N is a triple $\left(M, g_{1}, g_{2}\right)$, where M is an A-module, $g_{1}: M \rightarrow M_{1}$ and $g_{2}: M \rightarrow M_{2}$ are A-linear maps such that $f_{1} g_{1}=f_{2} g_{2}$ and the triple is universal in the sense that given any other triple $\left(M^{\prime}, g_{1}^{\prime}, g_{2}^{\prime}\right)$ of this kind with $f_{1} g_{1}^{\prime}=f_{2} g_{2}^{\prime}$, there is a unique homomorphism $h: M^{\prime} \rightarrow M$ such that $g_{1} h=g_{1}^{\prime}$ and $g_{2} h=g_{2}^{\prime}$.

Example 1.22 Let A be a commutative ring let M be an A-module. Let $s, t \in A$ be such that $A s+A t=A$. Then

are fiber product diagrams of commutative rings and A-modules respectively.
Lemma 1.23 Let A be a commutative ring and let $s, t \in A$ be such that $(s, t)=A$. Suppose M and M^{\prime} are two A-modules. Let $f_{1}: M_{s} \rightarrow M_{s}^{\prime}$ be an A_{s}-linear map and $f_{2}: M_{t} \rightarrow M_{t}^{\prime}$ be an A_{t}-linear map such that $\left(f_{1}\right)_{t}=\left(f_{2}\right)_{s}$.
(1) Then, there is an A-linear map $f: M \rightarrow M^{\prime}$ such that $(f)_{s}=f_{1}$ and $(f)_{t}=f_{2}$.
(2) Further, if f_{1} and f_{2} are injective (respectively surjective, isomorphisms), then so is f.

Definition 1.24 For a projective A-module P, we write (P) for the isomorphism class of P. The Grothendieck group $K_{0}(A)$ is an additive abelian group generated by the symbols (P) with certain natural relations. To be precise, we let:
$G=$ free abelian group generated by $(P): P$ is a projective A-module,
$H=$ subgroup of G generated by $(P \oplus Q)-(P)-(Q): P, Q$ are projective A-modules,
$K_{0}(A)=G / H$ and $[P]=$ image of (P) in $K_{0}(A)$.
Thus we have $[P \oplus Q]=[P]+[Q]$ in $K_{0}(A)$.
Proposition 1.25 Let A be a ring and let P and Q be projective A-modules. Then the following are equivalent :
(1) $[P]=[Q] \in K_{0}(A)$,
(2) there exists a projective A-module T such that $P \oplus T \simeq Q \oplus T$,
(3) there exists a positive integer t such that $P \oplus A^{t} \simeq Q \oplus A^{t}$.

Definition 1.26 A projective A-module P is said to be stably free if $[P]=\left[A^{n}\right]$ in $K_{0}(A)$ for some n.

Theorem 1.27 (Bass Cancellation Theorem) Let A be a Noetherian ring of dimension n and let P be a projective A-module of rank $>n$. Suppose that $P \oplus Q \xrightarrow{\sim} P^{\prime} \oplus Q$ for some projective A-modules P^{\prime} and Q. Then $P \xrightarrow{\sim} P^{\prime}$ i.e. if $\operatorname{rank} P=\operatorname{rank} P^{\prime}>\operatorname{dim} A$ and $[P]=\left[P^{\prime}\right]$ in $K_{0}(A)$, then $P \xrightarrow{\sim} P^{\prime}$ ([18], p. 42).

Chapter 2

Some Preliminary Results

We begin with some lemmas on general position that are proved using prime avoidance arguments.
Lemma 2.1 Let A be a Noetherian ring, $I \subset A$ be an ideal and let $\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{r}$ be prime ideals of A. Let $I=\left(a_{1}, \ldots, a_{n}\right) \nsubseteq \bigcup_{1}^{r} \mathfrak{p}_{i}$. Then, there exists $b_{2}, \ldots, b_{n} \in A$ such that $c=a_{1}+b_{2} a_{2}+\ldots+b_{n} a_{n} \notin \bigcup_{1}^{r} \mathfrak{p}_{i}$.

Proof Without loss of generality, we may assume that there are no inclusion relations between the various prime ideals \mathfrak{p}_{i}. We prove the lemma by induction on the number of prime ideals. Suppose by induction, we have chosen $c_{2}, \ldots, c_{n} \in A$ such that $d_{1}=a_{1}+c_{2} a_{2}+\ldots+c_{n} a_{n} \notin \bigcup_{1}^{r-1} \mathfrak{p}_{i}$. If $d_{1} \notin \mathfrak{p}_{r}$, we set $c=d_{1}$. We assume therefore, that $d_{1} \in \mathfrak{p}_{r}$. Since $I \nsubseteq \mathfrak{p}_{r}$, it follows that one of the elements $a_{2}, \ldots, a_{n} \notin \mathfrak{p}_{r}$. Without loss of generality, we assume that $a_{2} \notin \mathfrak{p}_{r}$. We choose an element $g \in A$ such that $g \in \bigcap_{1}^{r-1} \mathfrak{p}_{i}$ and $g \notin \mathfrak{p}_{r}$. Such a choice of g is possible, since there are no inclusion relations between the various prime ideals \mathfrak{p}_{i}. The element $c=d_{1}+g a_{2}$ is of the form $a_{1}+e_{2} a_{2}+\ldots+e_{n} a_{n}$ and $c \notin \bigcup_{1}^{r} \mathfrak{p}_{i}$.

Lemma 2.2 Let A be a Noetherian ring and let $I=\left(a_{1}, \ldots, a_{n}\right) \subset A$ be an ideal of height $\geq n$. Then, there exists an elementary matrix $\theta \in \mathrm{E}_{n}(A)$ such that $\left[a_{1}, \ldots, a_{n}\right] \theta=\left[b_{1}, \ldots, b_{n}\right], I=\left(b_{1}, \ldots, b_{n}\right)$ and ht $\left(b_{1}, \ldots, b_{i}\right) \geq i, 1 \leq i \leq n$.

Proof By lemma (2.1), we find elements $b_{2}, \ldots, b_{n} \in A$ such that the element $d_{1}=a_{1}+b_{2} a_{2}+$ $\ldots+b_{n} a_{n}$ does not belong to the minimal prime ideals of A. Hence $\operatorname{ht}\left(d_{1}\right) \geq 1$. The element d_{1} is contained in only finitely many height one prime ideals of A, say $\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{r}$. Note that $I=$ $\left(d_{1}, a_{2}, \ldots, a_{n}\right)$. Applying lemma (2.1) once more, we find $c_{1}, c_{3}, \ldots, c_{n} \in A$ such that the element $d_{2}=a_{2}+c_{1} d_{1}+c_{3} a_{3}+\ldots+c_{n} a_{n}$ does not belong to any \mathfrak{p}_{i} for $1 \leq i \leq r$. Hence ht $\left(d_{1}, d_{2}\right) \geq 2$. Note that $I=\left(d_{1}, d_{2}, a_{3}, \ldots, a_{n}\right)$. Proceeding as above, we obtain a set of generators d_{1}, \ldots, d_{n} of I with the required properties. We note that the transformations we have performed are all elementary. Hence a matrix θ exists with the required property.

Lemma 2.3 Let A be a Noetherian ring and $\left[a_{1}, \ldots, a_{n}, a\right] \in A^{n+1}$. Then, there exists $\left[b_{1}, \ldots, b_{n}\right] \in$ A^{n} such that ht $I_{a} \geq n$, where $I=\left(a_{1}+a b_{1}, \ldots, a_{n}+a b_{n}\right)$, i.e. if $\mathfrak{p} \in \operatorname{Spec}(A), I \subset \mathfrak{p}$ and $a \notin \mathfrak{p}$,
then ht $\mathfrak{p} \geq n$. In particular, if the ideal $\left(a_{1}, \ldots, a_{n}, a\right)$ has height $\geq n$, then $\mathrm{ht} I \geq n$. Further, if $\left(a_{1}, \ldots, a_{n}, a\right)$ is an ideal of height $\geq n$ and I is a proper ideal of A, then $\mathrm{ht} I=n$.

Proof The only prime ideals of A which survive in A_{a} are those which do not contain a. If every minimal prime ideal of A contains a, then a is a nilpotent element and every prime ideal contains a. Hence there is nothing to prove. Assume that $a \in A$ is not a nilpotent element. Let $\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{r}$ be the minimal prime ideals of A which do not contain a. Applying (2.1), we can find $b_{1} \in A$ such that $\left(a_{1}+a b_{1}\right) A_{a} \not \subset \bigcup_{1}^{r} \mathfrak{p}_{i}$. Assume that $b_{1}, \ldots, b_{n-1} \in A$ are chosen so that ht $\left(a_{1}+a b_{1}, \ldots, a_{n-1}+\right.$ $\left.a b_{n-1}\right) A_{a} \geq n-1$. Let $\mathfrak{q}_{1}, \ldots, \mathfrak{q}_{s}$ be the minimal prime ideals of $\left(a_{1}+a b_{1}, \ldots, a_{n-1}+a b_{n-1}\right)$ which do not contain a. Applying (2.1), we can find $b_{n} \in A$ such that $a_{n}+a b_{n} \notin \bigcup_{1}^{s} \mathfrak{q}_{i}$ and hence ht $\left(a_{1}+\right.$ $\left.a b_{1}, \ldots, a_{n}+a b_{n}\right) A_{a} \geq n$.

Now, assume that ht $\left(a_{1}, \ldots, a_{n}, a\right) \geq n$. We show that ht $I \geq n$, where $I=\left(a_{1}+a b_{1}, \ldots, a_{n}+a b_{n}\right)$. Assume ht $I=r<n$. Let \mathfrak{p} be a prime ideal of A containing I such that ht $\mathfrak{p}=r$. If $a \notin \mathfrak{p}$, then $I_{a} \subset \mathfrak{p}_{a}$ and ht $\mathfrak{p}_{a}=r$, a contradiction. If $a \in \mathfrak{p}$, then $(I, a)=\left(a_{1}, \ldots, a_{n}, a\right) \in \mathfrak{p}$, a contradiction as ht $\left(a_{1}, \ldots, a_{n}, a\right) \geq n$ and ht $\mathfrak{p}=r<n$. Hence, we have ht $I \geq n$.

Assume that ht $\left(a_{1}, \ldots, a_{n}, a\right) \geq n$ and I is a proper ideal. Then ht $I \leq n$, since I is generated by n elements. Hence ht $I=n$.

Lemma 2.4 Let $\left[a_{0}, a_{1}, \ldots, a_{n}\right]$ be a unimodular row. If $\left[a_{1}, \ldots, a_{n}\right]$ is also unimodular, then $\left[a_{0}, a_{1}, \ldots, a_{n}\right]$ can be taken to $[1,0, \ldots, 0]$ by an elementary transformation.

Proposition 2.5 Let A be a Noetherian ring of dimension d. If $n \geq d+2$, then $\mathrm{E}_{n}(A)$ acts transitively on $\operatorname{Um}_{n}(A)$

Proof Let $\left(a_{1}, \ldots, a_{n}\right) \in \operatorname{Um}_{n}(A)$. By (2.3), there exist $b_{1}, \ldots, b_{n-1} \in A$ such that $\left(a_{1}+b_{1} a_{n}, \ldots, a_{n-1}+\right.$ $\left.b_{n-1} a_{n}\right)$ is a unimodular row. Hence, by $(2.4),\left(a_{1}, \ldots, a_{n}\right)$ can be taken to $(1,0, \ldots, 0)$ by elementary transformations.

Lemma 2.6 Let A be a Noetherian ring of dimension n and let $\left[a_{0}, a_{1}, \ldots, a_{n}\right]$ be a unimodular row. Then, we can elementarily transform $\left[a_{0}, a_{1}, \ldots, a_{n}\right]$ to $\left[b_{0}, \ldots, b_{n}\right]$ such that (1) ht $\left(b_{1}, \ldots, b_{n}\right) \geq n$ and (2) if $J \subset A$ is an ideal of height n, then, we can choose the elementary transformations so that in addition we have $\left(b_{1}, \ldots, b_{n}\right)+J=A$.

Proof Since $\operatorname{dim}(A / J)=0$, by (2.5), we may perform elementary transformations to obtain $\left[b_{0}, b_{1}, \ldots, b_{n}\right]$ such that $\left[b_{0}, b_{1}, \ldots, b_{n}\right]=[0, \ldots, 0,1]$ modulo J. Further, adding suitable multiple of b_{0} to b_{1}, \ldots, b_{n}, we may assume by (2.3) that $h t\left(b_{1}, \ldots, b_{n}\right) \geq n$, and in addition that $\left(b_{1}, \ldots, b_{n}\right)+J=A$.

Lemma 2.7 Let A be a Noetherian ring and let $J \subset A$ be an ideal. Let $J_{1} \subset J$ and $J_{2} \subset J^{2}$ be two ideals of A such that $J_{1}+J_{2}=J$. Then $J=J_{1}+(e)$ for some $e \in J_{2}$ and $J_{1}=J \cap J^{\prime}$, where $J_{2}+J^{\prime}=A$.

Proof Since J / J_{1} is an idempotent ideal of A / J_{1}, it is generated by an idempotent element. Let $J / J_{1}=(\bar{e})$. Since $J_{1}+J_{2}=J$, we can assume that $e \in J_{2}$. Since \bar{e} is an idempotent element, we have $e-e^{2} \in J_{1}$. Take $J^{\prime}=J_{1}+(1-e)$. Then $J_{2}+J^{\prime}=A$, since $e \in J_{2}$. We claim that $J \cap J^{\prime}=J_{1}$.

Let $x \in J \cap J^{\prime}$. Then $x=y+e z=y_{1}+(1-e) z_{1}$, where $y, y_{1} \in J_{1}$ and $z, z_{1} \in A$. This implies $e z-(1-e) z_{1} \in J_{1}$. But $e-e^{2} \in J_{1}$, so $e^{2} z \in J_{1}$ and hence $e z \in J_{1}$. Hence $x \in J_{1}$. This proves $J \cap J^{\prime}=J_{1}$.

Corollary 2.8 Let A be a Noetherian local ring. Let $J \subset A$ be an ideal such that $J=\left(f_{1}, \ldots, f_{n}\right)+J^{2}$. Then $J=\left(f_{1}, \ldots, f_{n}\right)$.

Lemma 2.9 Let A be a Noetherian ring and $I \subset A$ an ideal. Let $f_{1}, \ldots, f_{n} \in I$ and $J=\left(f_{1}, \ldots, f_{n}\right)$. Then $I=J$ if and only if $I=J+I^{2}$ and $V(J)=V(I)$ in $\operatorname{Spec}(A)$.

Proof This follows from (2.7), however we give an independent proof. In order to show that $J=I$, it is enough to show that $J_{\mathfrak{p}}=I_{\mathfrak{p}}$ for all $\mathfrak{p} \in \operatorname{Spec}(A)$. If $\mathfrak{p} \nsupseteq J$, then $\mathfrak{p} \nsupseteq I$ and $J_{\mathfrak{p}}=I_{\mathfrak{p}}=A_{\mathfrak{p}}$. If $\mathfrak{p} \supset J$, then by hypothesis, $\mathfrak{p} \supset I$. Since $I=\left(f_{1}, \ldots, f_{n}\right)+I^{2}$ by (2.8), we have $J_{\mathfrak{p}}=I_{\mathfrak{p}}$. This proves the lemma.

Lemma 2.10 (Mohan Kumar) Let A be a Noetherian ring and let I be an ideal of A. Let I / I^{2} is generated by n elements as an A / I-module. Let x be any element of A. Then the ideal $(I, x) \subset A$ is generated by $n+1$ elements [8].

Proof Let a_{1}, \ldots, a_{n} be elements of I such that they generate I modulo I^{2}. In the ring $A /\left(a_{1}, \ldots, a_{n}\right)$, the ideal $\bar{I}=I /\left(a_{1}, \ldots, a_{n}\right)$ has the property that $\bar{I}=\overline{I^{2}}$. Hence \bar{I} is generated by an idempotent. Let $h \in I$ be any lift of this idempotent. We see that $I=\left(a_{1}, \ldots, a_{n}, h\right)$ and $h(1-h) \in\left(a_{1}, \ldots, a_{n}\right)$. So $(I, x)=\left(a_{1}, \ldots, a_{n}, h, x\right)$. We claim that the ideal $J=\left(a_{1}, \ldots, a_{n}, h+(1-h) x\right) \subset(I, x)$ is actually equal to (I, x).

By multiplying $h+(1-h) x$ by h, we have $h^{2} \in J($ since $h(1-h) \in J)$. Since $h=h^{2}+h(1-h)$, we have $h \in J$. Also $h+(1-h) x \in J$, hence $x \in J$. Thus $J=(I, x)$ which proves the claim.

Remark 2.11 Implicit in the above proof is a proof of the following assertion. Let A be a ring, $e \in A$ be an idempotent. Then, for any $x \in A$, the ideals (e, x) and $(e+(1-e) x)$ are equal.

The following is a theorem of Eisenbud and Evans [6] and this is a version proved in ([13], p. 1420). This was proved in (2.3) when P is free.

Lemma 2.12 Let A be a Noetherian ring and let P be a projective A-module of rank n. Let $(\alpha, a) \in$ $\left(P^{*} \oplus A\right)$. Then, there exists an element $\beta \in P^{*}$ such that ht $I_{a} \geq n$, where $I=(\alpha+a \beta)(P)$. In particular, if the ideal $(\alpha(P), a)$ has height $\geq n$, then ht $I \geq n$. Further, if $(\alpha(P), a)$ is an ideal of height $\geq n$ and I is a proper ideal of A, then ht $I=n$.

Lemma 2.13 Let A be a Noetherian ring of dimension d and let P be a projective A-module of rank $n>d$. Let $J \subset A$ be an ideal and let $\bar{\alpha}: P / J P \rightarrow J / J^{2}$ be a surjection. Then $\bar{\alpha}$ can be lifted to a surjection from P to J.

Proof Let $\delta: P \rightarrow J$ be a lift of $\bar{\alpha}$. Then $\delta(P)+J^{2}=J$ and hence, by (2.7), there exists $c^{\prime} \in J^{2}$ such that $\delta(P)+\left(c^{\prime}\right)=J$. Now, applying (2.12) to the element $\left(\delta, c^{\prime}\right)$ of $P^{*} \oplus A$, we see that there exists $\gamma \in P^{*}$ such that the height of the ideal $N_{c^{\prime}}>n$, where $N=\left(\delta+c^{\prime} \gamma\right)(P)$. Since $\operatorname{dim} A=d$ and $n>d$, it follows that $\left(c^{\prime}\right)^{r} \in N$ for some positive integer r. As $N+\left(c^{\prime}\right)=J$ and $c^{\prime} \in J^{2}$, we have $N=J$, by (2.9). Since $\delta+c^{\prime} \gamma$ is also a lift of $\bar{\alpha}$, we get the result.

Corollary 2.14 (Moving Lemma) Let A be a Noetherian ring of dimension $n \geq 2$ and let P be a projective A-module of rank n. Let $J \subset A$ be an ideal of height n and let $\bar{\alpha}: P / J P \rightarrow J / J^{2}$ be a surjection. Then, there exists an ideal $J^{\prime} \subset A$ and a surjection $\beta: P \rightarrow J \cap J^{\prime}$ such that:
(i) $J+J^{\prime}=A$, (ii) $\beta \otimes A / J=\bar{\alpha}$, (iii) ht $J^{\prime} \geq n$, and
(iv) Further, given finitely many ideals $J_{1}, J_{2}, \ldots, J_{r}$ of height ≥ 1, J^{\prime} can be chosen with the additional property that J^{\prime} is comaximal with $J_{1}, J_{2}, \ldots, J_{r}$.

Proof Let $K=J^{2} \cap J_{1} \ldots \cap J_{r}$. Then, by the assumption, ht $K \geq 1$. Therefore, there exists an element $a \in K$ such that ht $A a=1$ and hence $\operatorname{dim}(A / A a) \leq n-1$. By (2.13), the surjection $\bar{\alpha}$ can be lifted to a surjection $\delta: P / a P \rightarrow J / A a$.

Let $\theta \in \operatorname{Hom}_{A}(P, J)$ be a lift of δ. Then, as $J / A a=\delta(P / a P)$, we have $\theta(P)+A a=J$. Applying (2.12) to the element (θ, a) of $P^{*} \oplus A$, we see that there exists $\psi \in P^{*}$ such that ht $\widetilde{J}_{a} \geq n$, where $\widetilde{J}=(\theta+a \psi)(P)$. But $(\theta(P), a)=J$ has height n and \widetilde{J} is a proper ideal $(\widetilde{J} \subset J)$. Hence, by (2.12), ht $\widetilde{J}=n$. Since $\widetilde{J}+A a=J$ and $a \in J^{2}$, by (2.7), there exists an ideal J^{\prime} of A such that $\widetilde{J}=J \cap J^{\prime}$ and $A a+J^{\prime}=A$. Now, setting $\beta=\theta+a \psi$, we get
(i) $\beta: P \rightarrow \widetilde{J}=J \cap J^{\prime}$,
(ii) $\beta \otimes A / J=\bar{\alpha}$,
(iii) ht $J^{\prime} \geq n$, since ht $\widetilde{J}_{a} \geq n$ and
(iv) J^{\prime} is comaximal with J_{1}, \ldots, J_{r}, since $A a+J^{\prime}=A$.

Lemma 2.15 Let A be a ring and let J be a proper ideal of A. Let $J=(a, b)=(c, d)$. Suppose $[a, b]=[c, d]$ modulo J^{2}. Then, there exists an automorphism \triangle of A^{2} such that (1) $[a, b] \triangle=[c, d]$ and (2) $\operatorname{det}(\triangle)=1$.

Proof We have $a-c, b-d \in J^{2}$. So, we can write $a-c=a a_{1}+b a_{2}$ and $b-d=a a_{3}+b a_{4}$, where $a_{i} \in J$ for $1 \leq i \leq 4$. Let $u=1-a_{1}, v=-a_{2}, w=-a_{3}$, and $x=1-a_{4}$. Then, we have the following equation

$$
\left(\begin{array}{ll}
u & v \\
w & x
\end{array}\right) \cdot\binom{a}{b}=\binom{c}{d},
$$

Now, we see that $u x-v w=1-f$, for some $f \in J$. There exists $t_{1}, t_{2} \in A$ such that $f=d t_{2}-c t_{1}$. The endomorphism Δ of A^{2} given by

$$
\left(\begin{array}{cc}
u+b t_{2} & v-a t_{2} \\
w+b t_{1} & x-a t_{1}
\end{array}\right)
$$

is an automorphism of determinant 1 with $[a, b] \Delta=[c, d]$.

Lemma 2.16 Let A be a Noetherian ring of dimension n and let $J \subset A$ be an ideal of height n. Let P and P_{1} be projective A-modules of rank n. Let $\alpha: P \rightarrow J$ and $\beta: P_{1} \rightarrow J$ be maps such that $\alpha \otimes A / J$ and $\beta \otimes A / J$ are surjective. Let $\psi: P \rightarrow P_{1}$ be a homomorphism such that $\beta \psi=\alpha$. Then $\psi \otimes A / J: P / J P \rightarrow P_{1} / J P_{1}$ is an isomorphism.

Proof By Nakayama lemma, it is enough to prove that if $K=\sqrt{J}$, then $\bar{\psi}: P / K P \rightarrow P_{1} / K P_{1}$ is an isomorphism. Let "bar" denote reduction modulo K. Note that $\bar{\alpha}$ and $\bar{\beta}$ are surjections. We prove that $\bar{\alpha}$ and $\bar{\beta}$ are isomorphisms. Since $\overline{\beta \psi}=\bar{\alpha}$, it will follow that $\bar{\psi}$ is an isomorphism. Since A / K is semi-local, $P / K P$ and $P_{1} / K P_{1}$ are free A / K-modules of rank n, by (1.7). Hence, in order to prove that $\bar{\alpha}$ and $\bar{\beta}$ are isomorphisms, it is enough to prove that $J / K J$ is a free A / K-module of rank n. Note that $J / K J=\oplus J / \mathfrak{m}_{i} J$, where \mathfrak{m}_{i} are the maximal ideals containing K. We prove that $J / \mathfrak{m}_{i} J$ is a free A / \mathfrak{m}_{i}-module of rank n. Since $\alpha \otimes A / J$ is surjective, J / J^{2} is generated by n elements. Hence, by (2.8), $J_{\mathfrak{m}_{i}}$ is generated by n elements. Since ht $J=n, J_{\mathfrak{m}_{i}}$ cannot be generated by less than n elements. Hence $\mu\left(J_{\mathfrak{m}_{i}}\right)=n$. Hence, by (1.5), $J / \mathfrak{m}_{i} J$ is a free A / \mathfrak{m}_{i}-module of rank n. This proves the lemma.

Lemma 2.17 Let A be a Noetherian ring and let P be a finitely generated projective A-module. Let $P[T]$ denote the projective $A[T]$-module $P \otimes_{A} A[T]$. Let $\alpha(T): P[T] \rightarrow A[T]$ and $\beta(T): P[T] \rightarrow A[T]$ be two surjections such that $\alpha(0)=\beta(0)$. Suppose further that the projective $A[T]$-modules $\operatorname{ker} \alpha(T)$ and $\operatorname{ker} \beta(T)$ are extended from A. Then, there exists an automorphism $\sigma(T)$ of $P[T]$ with $\sigma(0)=\mathrm{Id}$ such that $\beta(T) \sigma(T)=\alpha(T)$.

Proof First, we show that there exists an automorphism $\theta(T)$ of $P[T]$ such that $\theta(0)=\operatorname{Id}$ and $\alpha(T) \theta(T)=\alpha(0) \otimes A[T]$. Let $Q=\operatorname{ker}(\alpha(T))$ and $L=\operatorname{ker}(\alpha(0))$. Since Q is extended from A, there exists an isomorphism $\mu: L[T] \xrightarrow{\sim} Q$. Since the rows of the following diagram

are split, we can find an automorphism $\rho(T)$ of $P[T]$ such that the above diagram is commutative. We have $\alpha(T) \rho(T)=\alpha(0) \otimes A[T]$ and hence $\alpha(0) \rho(0)=\alpha(0)$. Consider an automorphism $\theta(T)=$ $\rho(T)(\rho(0) \otimes A[T])^{-1}$ of $P[T]$. Then $\alpha(T) \theta(T)=(\alpha(0) \otimes A[T])(\rho(0) \otimes A[T])^{-1}=(\alpha(0) \otimes A[T])$ and $\theta(0)=\mathrm{Id}$.

Similarly, we have an automorphism $\delta(T)$ of $P[T]$ such that $\beta(T) \delta(T)=\beta(0) \otimes A[T]$ and $\delta(0)=$ Id. Consider the automorphism $\sigma(T)=\delta(T)(\theta(T))^{-1}$ of $P[T]$. As $\alpha(0)=\beta(0)$, we have $\beta(T) \sigma(T)=$ $(\beta(0) \otimes A[T])(\theta(T))^{-1}=(\alpha(0) \otimes A[T])(\theta(T))^{-1}=\alpha(T)$ and $\sigma(0)=$ Id. This proves the lemma.

Lemma 2.18 Let A be a ring (not necessarily commutative) and let $S \subset A$ be a multiplicative closed set which is contained in the center of A. Let $u(T) \in A_{S}[T]$ be a unit such that $u(0)=1$. Then, there exists $s \in S$ such that $u(s T)$ is a unit of $A[T]$.

Lemma 2.19 (Quillen) Let A be a ring and let $s, t \in A$ be such that $A s+A t=A . \operatorname{Let} \sigma(T) \in$ $\mathrm{GL}_{n}\left(A_{s t}[T]\right)$ be such that $\sigma(0)=\mathrm{Id}$. Then $\sigma(T)=\left(\psi_{2}(T)\right)_{t}\left(\psi_{1}(T)\right)_{s}$, where $\psi_{1}(T) \in \mathrm{GL}_{n}\left(A_{t}[T]\right)$ such that $\psi_{1}(0)=\mathrm{Id}$ and $\psi_{1}(T)=\mathrm{Id}$ modulo (s) and $\psi_{2}(T) \in \mathrm{GL}_{n}\left(A_{s}[T]\right)$ such that $\psi_{2}(0)=\mathrm{Id}$ and $\psi_{2}(T)=\operatorname{Id}$ modulo (t).

Proof Since $\sigma(0)=\mathrm{Id}, \sigma=\mathrm{Id}+T \tau(T)$. Therefore, by (2.18), we can choose large enough k_{1} such that for all $k \geq k_{1}$ and for all $\lambda \in A, \sigma\left(\lambda s^{k} T\right) \in \mathrm{GL}_{n}\left(A_{t}[T]\right)$ and $\sigma\left(\lambda s^{k} T\right)=$ Id modulo (sT). Hence, we can write $\sigma\left(\lambda s^{k} T\right)=\left(\psi_{1}(T)\right)_{s}$ where $\psi_{1}(T) \in \mathrm{GL}_{n}\left(A_{t}[T]\right)$ and $\psi_{1}(T)=\operatorname{Id}$ modulo $(s T)$.

Let X and Y be variables. Write $\delta(X, T, Y)=\sigma((X+Y) T) \sigma(X T)^{-1}$. Clearly $\delta(X, T, Y) \in$ $\operatorname{GL}_{n}\left(A_{s t}[X, T, Y]\right), \delta(X, T, 0)=\operatorname{Id}$ and $\delta(X, 0, Y)=\mathrm{Id}$. Hence $\delta(X, T, Y)=\operatorname{Id}+Y T \widetilde{\tau}(X, T, Y)$. We can choose large enough k_{2} such that for all $k \geq k_{2}$ and for all $\mu \in A, \delta\left(X, T, t^{k} \mu Y\right) \in$ $\mathrm{GL}_{n}\left(A_{s}[X, T, Y]\right)$ and is identity modulo $(t T Y)$. Hence, we can write $\delta\left(X, T, t^{k} \mu Y\right)=\left(\psi_{2}(X, T, Y)\right)_{t}$, where $\psi_{2}(X, T, Y) \in \mathrm{GL}_{n}\left(A_{s}[X, T, Y]\right)$ and $\psi_{2}(X, T, Y)=\mathrm{Id}$ modulo $(t T)$.

Take $k \geq \max \left(k_{1}, k_{2}\right)$. Since $A s+A t=A$, we have $\lambda s^{k}+\mu t^{k}=1$ for some $\lambda, \mu \in A$. Now $\sigma(T)=\sigma(T) \sigma\left(\lambda s^{k} T\right)^{-1} \sigma\left(\lambda s^{k} T\right)$. We have $\sigma\left(\lambda s^{k} T\right)=\left(\psi_{1}(T)\right)_{s}$ and $\sigma(T) \sigma\left(\lambda s^{k} T\right)^{-1}=\sigma\left(\left(\lambda s^{k}+\right.\right.$ $\left.\left.\mu t^{k}\right) T\right) \sigma\left(\lambda s^{k} T\right)^{-1}=\delta\left(\lambda s^{k}, T, \mu t^{k}\right)=\left(\psi_{2}\left(\lambda s^{k}, T, 1\right)\right)_{t}=\left(\psi_{2}(T)\right)_{t}$. Hence, we have $\sigma(T)=\left(\psi_{2}(T)\right)_{t}\left(\psi_{1}(T)\right)_{s}$. This proves the lemma.

Definition 2.20 Let A be a ring and let M, N be A-modules. Suppose $f, g: M \xrightarrow{\sim} N$ be two isomorphisms. We say that f is isotopic to g if there is an isomorphism $\phi: M[X] \xrightarrow{\sim} N[X]$ such that $\phi(0)=f$ and $\phi(1)=g$. A matrix $\theta \in \mathrm{GL}_{n}(A)$ is said to be isotopic to identity if the corresponding automorphism of A^{n} is isotopic to identity, i.e. there exists a matrix $\alpha(X) \in \mathrm{GL}_{n}(A[X])$ such that $\alpha(0)=\operatorname{Id}$ and $\alpha(1)=\theta$.

Corollary 2.21 Let A be a ring and $s, t \in A$ such that $A s+A t=A$. Let $\theta \in \mathrm{GL}_{n}\left(A_{\text {st }}\right)$ be isotopic to identity. Then θ splits as $\theta=\left(\theta_{1}\right)_{t}\left(\theta_{2}\right)_{s}$, where $\theta_{1} \in \mathrm{GL}_{n}\left(A_{s}\right)$ such that $\theta_{1}=\operatorname{Id}$ modulo (t) and $\theta_{2} \in \mathrm{GL}_{n}\left(A_{t}\right)$ such that $\theta_{2}=\mathrm{Id}$ modulo (s).

Example 2.22 Elementary automorphisms are isotopic to identity. If $\sigma=\Pi\left(1+\lambda e_{i j}\right)$ is an elementary automorphism of A^{n}, then $\gamma(T)=\prod\left(1+\lambda T e_{i j}\right)$ is an automorphism of $(A[T])^{n}$ (in-fact elementary) such that $\gamma(0)=\operatorname{Id}$ and $\gamma(1)=\sigma$.

Definition 2.23 Let P be a projective A-module of rank n. Let $\wedge^{n}(P)$ denote the $n^{\text {th }}$ exterior power of P. Then $\wedge^{n}(P)$ is a projective A-module of rank 1 and is called the determinant of P. An A-linear endomorphism α of P gives rise, in a natural way, to an endomorphism $\wedge^{n}(\alpha)$ of $\wedge^{n}(P)$. Since rank of $\wedge^{n}(P)=1$, we have $\operatorname{End}_{A}\left(\wedge^{n}(P)\right)=A$ and hence $\wedge^{n}(\alpha) \in A$. Note that α is an automorphism if and only if $\wedge^{n}(\alpha)$ is an invertible element of A.

Let P, α be as in the above paragraph. We define the determinant of α to be $\wedge^{n}(\alpha)$ and denote it by det (α). We denote the group of automorphisms of P of determinant 1 by $\mathrm{SL}(P)$.

Definition 2.24 Let P be a projective A-module. Given an element $\phi \in P^{*}$ and an element $p \in P$, we define an endomorphism ϕ_{p} as the composite $P \xrightarrow{\phi} A \xrightarrow{p} P$.

If $\phi(p)=0$, then $\phi_{p}^{2}=0$ and $1+\phi_{p}$ is a unipotent automorphism of P and hence is an element of $\mathrm{SL}(P)$.

By a transvection, we mean an automorphism of P of the form $1+\phi_{p}$, where $\phi(p)=0$ and either ϕ is unimodular in P^{*} or p is unimodular in P. We denote by $\mathrm{E}(P)$ the subgroup of $\mathrm{SL}(P)$ generated by all the transvections of P.

Remark 2.25 When $P=A^{n}$, a transvection is an element of $\operatorname{SL}_{n}(A)$ of the form $1+v w^{t}$, where $v, w \in \mathrm{M}_{n \times 1}(A)$ and $w v=0$ and either v or w is unimodular. For example, $e_{i j}(\lambda)=1+\lambda e_{i} e_{j}^{t}$ is a transvection. Hence $\mathrm{E}_{n}(A)$ is a subgroup of $\mathrm{E}\left(A^{n}\right)$.

The following lemma is proved in [2].
Lemma 2.26 Let A be a Noetherian ring, $I \subset A$ ideal of A and P a projective A-module. Then any transvection of $P / I P$ can be lifted to a (unipotent) automorphism of P.

Proof Let $\phi^{\prime} \in(P / I P)^{*}$ and $p^{\prime} \in P / I P$ be such that $\phi^{\prime}\left(p^{\prime}\right)=0$. Assume that p^{\prime} is unimodular. Let $p \in P$ (resp. $\theta \in P^{*}$) be a lift of p^{\prime} (resp. ϕ^{\prime}). Then, we have $\theta(p)=a$ for some $a \in I$. Since p^{\prime} is unimodular, there exists a $\psi \in P^{*}$ such that $\psi(p)=1+b$ for some $b \in I$ (as P is projective). Set $\phi=(1+b) \theta-a \psi$. Then ϕ is a lift of ϕ^{\prime} and $\phi(p)=0$. Consequently, $1+\phi_{p}$ is an automorphism of P lifting $1+\phi_{p^{\prime}}^{\prime}$.

Now, assume that ϕ^{\prime} is unimodular. Then, there exists $q \in P$ such that $\theta(q)=1+b$ for some $b \in I$. Set $p_{1}=(1+b) p-a q$. Then $\theta\left(p_{1}\right)=0$. Consequently, $1+\theta_{p_{1}}$ is an automorphism of P lifting $1+\phi_{p^{\prime}}^{\prime}$.

Chapter 3

Some Addition and Subtraction Principles

In [9], Mohan Kumar proved the following theorems
Theorem 3.1 (Addition principle) Let A be a reduced affine ring of dimension n over k, where k is algebraically closed. Let I and J be two comaximal ideals of height n which are generated by n elements. Then $I \cap J$ is also generated by n elements.

Theorem 3.2 (Subtraction principle) Let A be a reduced affine ring of dimension n over k, where k is algebraically closed. Let I and J be two comaximal ideals of height n. Assume that I and $I \cap J$ are generated by n elements. Then J is also generated by n elements.

Theorem 3.3 Let A be a reduced affine ring of dimension n over an algebraically closed field. Let P be a projective A-module of rank n. If P maps onto an ideal J of height n which is generated by n elements, then P has a unimodular element.

In this chapter, we prove some addition and subtraction principles. These are modeled upon those proved by Mohan Kumar. Roughly, the idea is to consider ideals J together with sets of generators of J / J^{2} and formulate the addition and subtraction principles using this data.

Theorem 3.4 (Addition Principle) Let A be a Noetherian ring of dimension $n \geq 2$. Let J_{1} and J_{2} be two comaximal ideals of height n and $J_{3}=J_{1} \cap J_{2}$. Suppose $J_{1}=\left(a_{1}, \ldots, a_{n}\right)$ and $J_{2}=\left(b_{1}, \ldots, b_{n}\right)$. Then $J_{3}=\left(c_{1}, \ldots, c_{n}\right)$, where $a_{i}-c_{i} \in J_{1}^{2}$ and $b_{i}-c_{i} \in J_{2}^{2}$.

Proof We have $J_{1}=\left(a_{1}, \ldots, a_{n}\right)$ and $J_{2}=\left(b_{1}, \ldots, b_{n}\right)$. Since $J_{1}+J_{2}=A$, we have that $\left[\bar{a}_{1}, \ldots, \bar{a}_{n}\right]$ is a unimodular row over A / J_{2}. Since $\operatorname{dim}\left(A / J_{2}\right)=0$, by (2.5), there exists an elementary matrix $\bar{\sigma} \in \mathrm{E}_{n}\left(A / J_{2}\right)$ such that $\left[\bar{a}_{1}, \ldots, \bar{a}_{n}\right] \bar{\sigma}=[1,0, \ldots, 0]$.

Let $\sigma \in \mathrm{E}_{n}(A)$ be a lift of $\bar{\sigma}$. Let $\left[a_{1}, \ldots, a_{n}\right] \sigma=\left[\widetilde{a}_{1}, \ldots, \widetilde{a}_{n}\right]$. Then $\widetilde{a}_{1}=1$ modulo J_{2} and $\widetilde{a}_{2}, \ldots, \widetilde{a}_{n} \in J_{2}$. Hence adding suitable multiples of a_{n} to a_{1}, \ldots, a_{n-1}, we can assume that (1) $a_{1}=1$ modulo J_{2}, (2) if $K=\left(a_{1}, \ldots, a_{n-1}\right)$, then ht $K=n-1$ and (3) $K+J_{2}=A$. Let $S=1+K$. Then $S \cap J_{2} \neq \varnothing$. Hence $\left[b_{1}, \ldots, b_{n}\right] \in A_{S}^{n}$ is a unimodular row.

Claim : $\left[b_{1}, \ldots, b_{n}\right]$ can be taken to $[0, \ldots, 0,1]$ by an element of $\mathrm{SL}_{n}\left(A_{S}\right)$.

Assume the claim. Then, there exists an element $s \in S$ and an automorphism Γ of A_{s}^{n} of determinant 1 such that $\left[b_{1}, \ldots, b_{n}\right] \Gamma=[0, \ldots, 0,1]$. Since $S \cap J_{2} \neq \varnothing$, without loss of generality, we may assume that $s \in J_{2}$. Hence, we have $\left(J_{3}\right)_{s}=\left(a_{1}, \ldots, a_{n}\right)_{s}$.

Let $s=1+t$, for some $t \in K$. Then $\left(J_{3}\right)_{t}=\left(b_{1}, \ldots, b_{n}\right)_{t}$. Since $t \in K$, we have that $\left[a_{1}, \ldots, a_{n-1}\right] \in$ A_{t}^{n-1} is unimodular row. Hence, by $(2.4),\left[a_{1}, \ldots, a_{n}\right]$ can be taken to $[0, \ldots, 0,1]$ by an elementary transformation Δ of A_{t}^{n}. Hence, we have $\left[a_{1}, \ldots, a_{n}\right] \Delta_{s}\left(\Gamma^{-1}\right)_{t}=\left[b_{1}, \ldots, b_{n}\right]$.

Let $\Phi=\Gamma_{t} \Delta_{s}\left(\Gamma^{-1}\right)_{t}$. Then $\left[a_{1}, \ldots, a_{n}\right]\left(\Gamma^{-1}\right)_{t} \Phi=\left[b_{1}, \ldots, b_{n}\right]$. Since Δ_{s} is an elementary automorphism, Φ is isotopic to identity automorphism of $A_{s t}^{n}$. Hence, by (2.21), there exists a splitting $\Phi=\left(\Phi_{1}\right)_{t}\left(\Phi_{2}\right)_{s}$, where Φ_{2} is an automorphism of A_{t}^{n} which is identity modulo the ideal (s) and Φ_{1} is an automorphism of A_{s}^{n} which is identity modulo the ideal (t). Let

$$
\begin{gathered}
{\left[a_{1}, \ldots, a_{n}\right] \Gamma^{-1} \Phi_{1}=\left[a_{1}^{\prime}, \ldots, a_{n}^{\prime}\right]: A_{s}^{n} \rightarrow\left(J_{3}\right)_{s},} \\
{\left[b_{1}, \ldots, b_{n}\right] \Phi_{2}^{-1}=\left[b_{1}^{\prime}, \ldots, b_{n}^{\prime}\right]: A_{t}^{n} \rightarrow\left(J_{3}\right)_{t} .}
\end{gathered}
$$

These two surjections patch up to give a surjection $\psi=\left[g_{1}, \ldots, g_{n}\right]: A^{n} \rightarrow J_{3}$. Since s is unit modulo J_{1}, the homomorphism $A \rightarrow A / J_{1}$ factors through A_{s}. Similarly, the homomorphism $A \rightarrow A / J_{2}$ factors through A_{t}. Now, since ϕ_{1} is identity modulo the ideal $(t) \subset J_{1}$ and ϕ_{2} is identity modulo J_{2}, it follows that $\left[g_{1}, \ldots, g_{n}\right] \otimes A / J_{1}$ and $\left[g_{1}, \ldots, g_{n}\right] \otimes A / J_{2}$ differ from $\left[a_{1}, \ldots, a_{n}\right] \otimes A / J_{1}$ and $\left[b_{1}, \ldots, b_{n}\right] \otimes A / J_{2}$ by an element of $\mathrm{SL}_{n}\left(A / J_{1}\right)$ and $\mathrm{SL}_{n}\left(A / J_{2}\right)$ respectively. Since $\operatorname{dim}\left(A / J_{i}\right)=0$ for $i=1,2, \mathrm{SL}_{n}\left(A / J_{i}\right)=\mathrm{E}_{n}\left(A / J_{i}\right)$. Hence, using (2.26), we can alter $\left[g_{1}, \ldots, g_{n}\right]$ by an element of $\mathrm{SL}_{n}(A)$, to get a surjection $\theta: A^{n} \rightarrow J_{3}$, say $J_{3}=\left(c_{1}, \ldots, c_{n}\right)$, such that $a_{i}-c_{i} \in J_{1}^{2}$ and $b_{i}-c_{i} \in J_{2}^{2}$. This proves the theorem.

Proof of the claim. First, we assume that $n \geq 3$. Let "bar" denote modulo K. Then $\left[\bar{b}_{1}, \ldots, \bar{b}_{n}\right]$ is a unimodular row in \bar{A}_{S}^{n}. Since $\operatorname{dim}(A / K)=1$, by $(2.5),\left[\bar{b}_{1}, \ldots, \bar{b}_{n}\right]$ can be taken to $[0, \ldots, 0,1]$ by an elementary transformation, say $\bar{\psi} \in \mathrm{E}_{n}\left(\bar{A}_{S}\right)$. Taking a lift $\psi \in \mathrm{E}_{n}\left(A_{S}\right)$ of $\bar{\psi}$, by (2.26), we see that $\left[b_{1}, \ldots, b_{n}\right]$ can be taken to $\left[d_{1}, \ldots, d_{n-1}, 1+d_{n}\right]$ by an elementary transformation, where $d_{i} \in K_{S}$. Since $1+d_{n}$ is a unit in $A_{S},\left[d_{1}, \ldots, d_{n-1}, 1+d_{n}\right]$ can be taken to $\left[0, \ldots, 0,1+d_{n}\right]$ by an elementary transformation. Now, $\left[0, \ldots, 0,1+d_{n}\right]$ can be taken to $[0, \ldots, 0,1]$ by an elementary automorphism of A_{S}^{n} by (2.4). This proves the claim.

When $n=2$. Given $\left[b_{1}, b_{2}\right]$ is a unimodular row in A_{S}^{2}. Let $a_{1}, a_{2} \in A_{S}$ be chosen so that $a_{1} b_{1}+a_{2} b_{2}=1$. Consider the matrix $\gamma=\left[\begin{array}{cc}a_{1} & -b_{2} \\ a_{2} & b_{1}\end{array}\right]$. Then $\left[b_{1}, b_{2}\right] \gamma=[1,0]$ and $\operatorname{det}(\gamma)=1$. Hence, the claim is proved.

Theorem 3.5 (Subtraction Principle) Let A be a Noetherian ring of dimension $n \geq 2$. Let J and J_{1} be two comaximal ideals of height n. Let $J_{2}=J \cap J_{1}$. Assume that $J_{2}=\left(a_{1}, \ldots, a_{n}\right)$ and $J_{1}=\left(b_{1}, \ldots, b_{n}\right)$ with $a_{i}-b_{i} \in J_{1}^{2}$. Then $J=\left(c_{1}, \ldots, c_{n}\right)$ with $a_{i}-c_{i} \in J^{2}$.

Proof Let $\sigma \in \mathrm{E}_{n}(A)$. Suppose $\left[b_{1}, \ldots, b_{n}\right] \sigma=\left[\widetilde{b}_{1}, \ldots, \widetilde{b}_{n}\right]$ and $\left[a_{1}, \ldots, a_{n}\right] \sigma=\left[\widetilde{a}_{1}, \ldots, \widetilde{a}_{n}\right]$. Then, since $b_{i}-a_{i} \in J_{1}^{2}$, we have $\widetilde{b}_{i}-\widetilde{a}_{i} \in J_{1}^{2}$. Therefore, without loss of generality, we can perform elementary transformations on $\left[b_{1}, \ldots, b_{n}\right]$.

We have $\left(a_{1}, \ldots, a_{n}\right)=J \cap\left(b_{1}, \ldots, b_{n}\right)$. Let "bar" denote modulo J. Then $\left[\bar{b}_{1}, \ldots, \bar{b}_{n}\right]$ is a unimodular row over A / J. Since $\operatorname{dim}(A / J)=0$, by (2.5), there exists an elementary transformation $\bar{\sigma} \in \mathrm{E}_{n}(A / J)$ such that $\left[\bar{b}_{1}, \ldots, \bar{b}_{n}\right] \bar{\sigma}=[1,0, \ldots, 0]$.

After changing by elementary transformation, we can assume, as in (3.4), that $b_{1}=1$ modulo J, $b_{i} \in J, i=2, \ldots, n$ and ht $K=n-1$, where $K=\left(b_{1}, \ldots, b_{n-1}\right)$. Then $K+J=A$. Let $S=1+K$. Consider the natural mapping from $A \rightarrow A_{S}$. Since $S \cap J \neq \varnothing$, we have $\left(a_{1}, \ldots, a_{n}\right)_{S}=\left(b_{1}, \ldots, b_{n}\right)_{S}$.

Claim There exists $\tau \in \operatorname{GL}_{n}\left(A_{S}\right)$ such that $\left[a_{1}, \ldots, a_{n}\right] \tau=\left[b_{1}, \ldots, b_{n}\right]$.

Assume the claim. Then, there exists an element $b=1+a \in S, a \in K$ and $\tau \in \mathrm{GL}_{n}\left(A_{b}\right)$ such that $\left[a_{1}, \ldots, a_{n}\right] \tau=\left[b_{1}, \ldots, b_{n}\right]$. Moreover, since $S \cap J \neq \varnothing$, we can assume that $b \in J$.

Let $\beta:\left(A_{b}\right)^{n} \rightarrow J_{b}=A_{b}$ be defined by $\beta\left(e_{1}\right)=1$ and $\beta\left(e_{i}\right)=0, i=2, \ldots, n$ and let $\alpha:\left(A_{a}\right)^{n} \rightarrow$ $\rightarrow J_{a}=\left(a_{1}, \ldots, a_{n}\right)$ be defined by $\alpha\left(e_{i}\right)=a_{i}$. Since $\left[b_{1}, \ldots, b_{n-1}\right] \in\left(A_{a b}\right)^{n-1}$ is a unimodular row, $\left[b_{1}, \ldots, b_{n}\right]$ can be taken to $[1,0, \ldots, 0]$ by an elementary transformation $\Delta \in \mathrm{E}_{n}\left(A_{a b}\right)$.

Define $\delta:\left(A_{a b}\right)^{n} \rightarrow J_{a b}=A_{a b}=\left(J_{1}\right)_{a b}$ by $\delta\left(e_{i}\right)=b_{i}$. Hence, we have $\alpha_{b} \tau_{a}=\delta$ and $\delta \Delta=\beta_{a}$. From these two relations, we get $\alpha_{b} \tau_{a} \Delta=\beta_{a}$. Let $\widetilde{\Delta}=\tau_{a} \Delta \tau_{a}^{-1}$. Then, we have $\alpha_{b} \widetilde{\Delta} \tau_{a}=\beta_{a}$. Hence $\alpha_{b} \widetilde{\Delta}=\beta_{a} \tau_{a}^{-1}=\left(\beta \tau^{-1}\right)_{a}$.

Since Δ is an elementary automorphism, we have that $\widetilde{\Delta}$ is isotopic to identity. Hence $\widetilde{\Delta}=$ $\left(\widetilde{\Delta}_{1}\right)_{b}\left(\widetilde{\Delta}_{2}\right)_{a}$, by (2.21), where $\widetilde{\Delta}_{1}$ is an automorphism of $\left(A_{a}\right)^{n}$ which is identity modulo the ideal (b) and $\widetilde{\Delta}_{2}$ is an automorphism of $\left(A_{b}\right)^{n}$ which is identity modulo the ideal (a). Hence, we have $\alpha_{b}\left(\widetilde{\Delta}_{1}\right)_{b}\left(\widetilde{\Delta}_{2}\right)_{a}=\left(\beta \tau^{-1}\right)_{a}$ and hence, we get $\left(\alpha \widetilde{\Delta}_{1}\right)_{b}=\left(\beta \tau^{-1} \widetilde{\Delta}_{2}^{-1}\right)_{a}$. The surjections

$$
\begin{gathered}
\alpha \widetilde{\Delta}_{1}=\left[c_{1}^{\prime}, \ldots, c_{n}^{\prime}\right]:\left(A_{a}\right)^{n} \rightarrow J_{a} \\
\beta \tau^{-1} \widetilde{\Delta}_{2}^{-1}=\left[d_{1}^{\prime}, \ldots, d_{n}^{\prime}\right]:\left(A_{b}\right)^{n} \rightarrow J_{b}
\end{gathered}
$$

patch up to give $J=\left(c_{1}, \ldots, c_{n}\right)$ such that $c_{i}=c_{i}^{\prime}$ in A_{a} and $c_{i}=d_{i}^{\prime}$ in A_{b}. Now, we show that $c_{i}-a_{i} \in J^{2}$. Since $b=1+a \in J$, the map $A \rightarrow A /(b)$ factors through A_{a}. Since $\widetilde{\Delta}_{1}=\operatorname{Id}(\bmod (b))$, from the equation $\alpha \widetilde{\Delta}_{1}=\left[c_{1}^{\prime}, \ldots, c_{n}^{\prime}\right]$, it follows by going modulo J, that $c_{i}-a_{i} \in J^{2}$.

Proof of the claim. To prove the claim, replace A by A_{S}. Then $K=\left(b_{1}, \ldots, b_{n-1}\right)$ is an ideal of height $n-1$ such that $K \subset J(A)$. Given $J=\left(a_{1}, \ldots, a_{n}\right)=\left(b_{1}, \ldots, b_{n}\right)$ such that $a_{i}-b_{i} \in J^{2}$ and ht $J=n$. To show that there exists $\tau \in \mathrm{GL}_{n}(A)$ such that $\left[a_{1}, \ldots, a_{n}\right] \tau=\left[b_{1}, \ldots, b_{n}\right]$.

Let $b_{i}=a_{i}+d_{i}, d_{i} \in J^{2}$. Then $d_{i}=\sum_{j=1}^{n} \lambda_{i j}^{\prime} a_{j}, \lambda_{i j}^{\prime} \in J$. Hence, there exists $\sigma \in \mathrm{M}_{n}(A)$ such that $\sigma=\operatorname{Id}(\bmod J)$, and $\left[a_{1}, \ldots, a_{n}\right] \sigma=\left[b_{1}, \ldots, b_{n}\right]$. Similarly, there exists $\theta \in \mathrm{M}_{n}(A)$ such that $\theta=\operatorname{Id}(\bmod J)$ and $\left[b_{1}, \ldots, b_{n}\right] \theta=\left[a_{1}, \ldots, a_{n}\right]$.

Let $\sigma=\left(\lambda_{i j}\right)$ and $\theta=\left(\mu_{i j}\right)$. Then, we have $\left[b_{1}, \ldots, b_{n}\right] \theta \sigma=\left[b_{1}, \ldots, b_{n}\right]$. Let $\gamma=\sum_{j=1}^{n} \lambda_{n j} \mu_{j n}$. From the above equation, we get $b_{n}=c_{1} b_{1}+\ldots+c_{n-1} b_{n-1}+\gamma b_{n}$ for some $c_{1}, \ldots, c_{n-1} \in A$. Hence, we have $(1-\gamma) b_{n} \in\left(b_{1}, \ldots, b_{n-1}\right)=K$. Since ht $K=n-1$ and K is generated by $n-1$ elements, any minimal prime ideal of K is also of height $n-1$. Hence b_{n} does not belong to any minimal prime ideal
of K. Hence $(1-\gamma) \in \sqrt{K}$. This implies that $(\gamma)+\sqrt{K}=A$ and so $(\gamma)+K=A$. But $K \subset J(A)$, hence $(\gamma)=A$. This shows that $\gamma \in A$ is a unit. Hence $\left[\lambda_{n 1}, \ldots, \lambda_{n n}\right]$ is a unimodular row. In fact $\left[\lambda_{n 1}, \ldots, \lambda_{n n}\right] \in \operatorname{Um}_{n}(A, J)$, i.e. it is a lift of the unimodular row $[0, \ldots, 0,1]$ in $\operatorname{Um}_{n}(A / J)$.

Assume that $n \geq 3$. Let "bar" denote modulo K. Since $\operatorname{dim}(A / K)=1$, by (2.5), the unimodular row $\left[\bar{\lambda}_{n 1}, \ldots, \bar{\lambda}_{n n}\right]$ can be taken to $[1,0, \ldots, 0]$ by an elementary transformation $\bar{\sigma}_{1}$. Since $K \subset$ $J(A), 1+K$ are units in A. We first show that $\left[\lambda_{n 1}, \ldots, \lambda_{n n}\right]$ can be taken to $[1,0, \ldots, 0]$ by elementary transformation. To see this, first take an elementary lift, say $\sigma_{1} \in \mathrm{E}_{n}(A)$ of $\bar{\sigma}_{1}$. Assume $\left[\lambda_{n 1}, \ldots, \lambda_{n n}\right] \sigma_{1}=\left[1+u_{1}, \ldots, u_{n}\right]$, where $u_{i} \in K$. Since $1+u_{1}$ is a unit, $\left[1+u_{1}, \ldots, u_{n}\right]$ can be taken to $[1,0, \ldots, 0]$ by an elementary transformation. Hence, the row $\left[\lambda_{n 1}, \ldots, \lambda_{n n}\right]$ is completable to an elementary matrix over A. Let $\Delta \in \mathrm{E}_{n}(A)$ be such that

$$
\Delta=\left[\begin{array}{ccc}
\Delta_{1} & & * \\
& & \vdots \\
\lambda_{n 1} & \ldots & \lambda_{n n}
\end{array}\right]_{n \times n}
$$

Consider the map from $\mathrm{E}_{n}(A) \rightarrow \mathrm{E}_{n}(A / J)$. Let "tilde" denote modulo J. Then

$$
\widetilde{\Delta}=\left[\begin{array}{ccc}
\widetilde{\Delta}_{1} & & * \\
& & \vdots \\
0 & \ldots & 1
\end{array}\right]_{n \times n}
$$

where $\widetilde{\Delta}_{1} \in \operatorname{SL}_{n-1}(A / J)=\mathrm{E}_{n-1}(A / J)$. Let $\delta \in \mathrm{E}_{n-1}(A)$ be a lift of $\widetilde{\Delta}_{1}$. Then, the inverse $\delta^{-1} \in \mathrm{E}_{n-1}(A)$. Then

$$
\left[\begin{array}{ccc}
\delta^{-1} & & 0 \\
& & \vdots \\
0 & \ldots & 1
\end{array}\right] \Delta=\left[\begin{array}{ccc}
\theta^{\prime} & & * \\
& & \vdots \\
\lambda_{n 1} & \ldots & \lambda_{n n}
\end{array}\right]
$$

where $\theta^{\prime} \in \mathrm{M}_{n-1}(A)$ is such that $\theta^{\prime}=\mathrm{Id}(\bmod J)$. Hence, after changing by elementary transformation, we can assume that $\Delta \in \mathrm{E}_{n}(A)$ is such that $\Delta_{1}=\operatorname{Id}(\bmod J)$. Let $\left[a_{1}, \ldots, a_{n}\right] \Delta=$ $\left[a_{1}^{\prime}, \ldots, a_{n-1}^{\prime}, b_{n}\right]$, where $a_{i}-a_{i}^{\prime} \in J^{2}$. Then $\left(a_{1}, \ldots, a_{n}\right)=\left(a_{1}^{\prime}, \ldots, a_{n-1}^{\prime}, b_{n}\right)=\left(b_{1}, . ., b_{n}\right)$. Let $a_{i}^{\prime}=c_{i}+d_{i} b_{n}, c_{i} \in K$ and $d_{i} \in A$. Consider the matrix

$$
\Gamma=\left[\begin{array}{cccc}
1 & \ldots & 0 & -d_{1} \\
\vdots & & \vdots & \vdots \\
0 & \ldots & 1 & -d_{n-1} \\
0 & \ldots & 0 & 1
\end{array}\right]_{n \times n}
$$

Then Γ is an elementary matrix and $\left[a_{1}^{\prime}, \ldots, a_{n-1}^{\prime}, b_{n}\right] \Gamma=\left[c_{1}, \ldots, c_{n-1}, b_{n}\right]$, where $a_{i}^{\prime}-c_{i} \in\left(b_{n}\right)$. Hence $\left[a_{1}, \ldots, a_{n}\right] \Gamma \Delta=\left[c_{1}, \ldots, c_{n-1}, b_{n}\right]$ and so $\left(c_{1}, \ldots, c_{n-1}, b_{n}\right)=\left(b_{1}, \ldots, b_{n}\right)$. Since $c_{i}-a_{i} \in$ $J^{2}+A b_{n}$, we have $c_{i}-b_{i} \in J^{2}+A b_{n}$. Let "bar" denote modulo $\left(b_{n}\right)$. Since $K+A b_{n}=J$, we have $\bar{J}=\left(\bar{b}_{1}, \ldots, \bar{b}_{n-1}\right)=\left(\bar{c}_{1}, \ldots, \bar{c}_{n-1}\right)$ and $\bar{b}_{i}-\bar{c}_{i} \in \bar{J}^{2}$. Hence, there exists a $\psi \in \mathrm{M}_{n-1}(\bar{A})$ such that $\psi=\operatorname{Id}(\bmod \bar{J})$ and $\left[\bar{b}_{1}, \ldots, \bar{b}_{n-1}\right] \psi=\left[\bar{c}_{1}, \ldots, \bar{c}_{n-1}\right]$.

Let $\psi=\left(\overline{s_{i j}}\right)$, where $\overline{s_{i j}} \in A /\left(b_{n}\right)$. Then, we have

$$
h_{j}=\sum_{i=1}^{n-1} b_{i} s_{i j}-c_{j} \in\left(b_{n}\right), \text { for } 1 \leq j \leq n-1
$$

Let $h_{j}=f_{j} b_{n}$. Since $\psi=$ Id $(\bmod J)$, we have $s_{i i}=1+t_{i i} b_{n}+d_{i i}$ for $1 \leq i \leq n-1$, where $t_{i i} \in A, d_{i i} \in K$ and $s_{i j}=t_{i j} b_{n}+d_{i j}$ for $1 \leq i, j \leq n-1, i \neq j$, where $t_{i j} \in A, d_{i j} \in K$. Hence, we have the following relations

$$
\sum_{i=1}^{n-1} b_{i}\left(\delta_{i j}+d_{i j}\right)-c_{j}=b_{n}\left(f_{j}-\sum_{i=1}^{n-1} b_{i} t_{i j}\right)
$$

where $\delta_{i j}$ is the Kronecher delta function. Let us denote by

$$
g_{j}=f_{j}-\sum_{i=1}^{n-1} b_{i} t_{i j}, \quad 1 \leq j \leq n-1
$$

Consider the matrix

$$
\alpha=\left[\begin{array}{cccc}
1+d_{11} & \ldots & d_{1, n-1} & -g_{1} \\
\vdots & & \vdots & \vdots \\
d_{n-1,1} & \ldots & 1+d_{n-1, n-1} & -g_{n-1} \\
0 & \cdots & 0 & 1
\end{array}\right]_{n \times n}
$$

Then, we have $\left[b_{1}, \ldots, b_{n}\right] \alpha=\left[c_{1}, \ldots, c_{n-1}, b_{n}\right]$ and $\alpha \in \operatorname{GL}_{n}(A)$, since $\operatorname{det}(\alpha)=1+x$ for some $x \in K$. But $K \subset J(A)$, hence $1+x$ is a unit in A. Thus, the claim is proved.

When $n=2$, then the claim follows from (2.15). Hence, the theorem is proved.

Remark 3.6 In fact, one can prove by the method of ([9], p. 248) that the subtraction principle (3.5) implies the addition principle (3.4) as follows.

Let I and J be two comaximal ideals of height n. Let $I=\left(a_{1}, \ldots, a_{n}\right)$ and $J=\left(b_{1}, \ldots, b_{n}\right)$. We want to show that $I \cap J=\left(c_{1}, \ldots, c_{n}\right)$ with $a_{i}-c_{i} \in I^{2}$ and $b_{i}-c_{i} \in J^{2}$. We can find $x_{1}, \ldots, x_{n} \in I \cap J$ which generate $I \cap J$ modulo $(I \cap J)^{2}$ such that $a_{i}-x_{i} \in I^{2}$ and $b_{i}-x_{i} \in J^{2}$. Using (2.14), we may further assume that $\left(x_{1}, \ldots, x_{n}\right)=I \cap J \cap K$, where K is a height n ideal, comaximal with $I \cap J$. Since $I=\left(a_{1}, \ldots, a_{n}\right)$ and $a_{i}-x_{i} \in I^{2}$, by the subtraction principle, we have $J \cap K=\left(d_{1}, \ldots, d_{n}\right)$ such that $x_{i}-d_{i} \in(J \cap K)^{2}$. Since $J=\left(b_{1}, \ldots, b_{n}\right)$ and $b_{i}-x_{i} \in J^{2}, b_{i}-d_{i} \in J^{2}$, again by the subtraction principle, $K=\left(g_{1}, \ldots, g_{n}\right)$ such that $d_{i}-g_{i} \in K^{2}$. Hence $x_{i}-g_{i} \in K^{2}$. Applying subtraction principle to the ideal $I \cap J$ and K, we get $I \cap J=\left(c_{1}, \ldots, c_{n}\right)$ such that $x_{i}-c_{i} \in(I \cap J)^{2}$. Hence $a_{i}-c_{i} \in I^{2}$ and $b_{i}-c_{i} \in J^{2}$. This proves the addition principle.

Now, we state the subtraction principle in the general case ([5], Theorem 3.3). Notice that when P is free, this reduces to (3.5).

Theorem 3.7 (Subtraction Principle) Let A be a Noetherian ring of dimension $n \geq 2$. Let P be a projective A-module of rank n with trivial determinant. Let $\chi: A \xrightarrow{\sim} \wedge^{n}(P)$ be an isomorphism. Let J, J^{\prime} be two ideals of A. Let "bar" denote reduction modulo J^{\prime}. Assume
(i) ht $J \geq n$, ht $J^{\prime}=n$ and $J+J^{\prime}=A$.
(ii) $\alpha: P \rightarrow J \cap J^{\prime}$ and $\beta: A^{n} \rightarrow J^{\prime}$ be two surjections.
(iii) $\bar{\alpha}: \bar{P} \longrightarrow J^{\prime} / J^{\prime 2}$ and $\bar{\beta}: \overline{A^{n}} \longrightarrow J^{\prime} / J^{\prime 2}$ be surjections induced from α and β respectively.
(iv) There exists an isomorphism $\delta: \overline{A^{n}} \xrightarrow{\sim} \bar{P}$ such that $\bar{\alpha} \delta=\bar{\beta}$, and $\wedge^{n}(\delta)=\bar{\chi}$.

Then, there exists a surjection $\theta: P \rightarrow J$ such that $\theta \otimes A / J=\alpha \otimes A / J$.
Taking $J=A$ in the above theorem, we obtain the following:
Corollary 3.8 Let A be a Noetherian ring of dimension $n \geq 2$. Let P be a projective A-module of rank n with trivial determinant. Let $\chi: A \xrightarrow{\sim} \wedge^{n}(P)$ be an isomorphism. Let $J^{\prime} \subset A$ be an ideal of height n. Let "bar" denote reduction modulo J^{\prime}. Assume
(i) $\alpha: P \rightarrow J^{\prime}$ and $\beta: A^{n} \rightarrow J^{\prime}$ be two surjections.
(ii) $\bar{\alpha}: \bar{P} \longrightarrow J^{\prime} / J^{\prime 2}$ and $\bar{\beta}: \overline{A^{n}} \rightarrow J^{\prime} / J^{\prime 2}$ be surjections induced from α and β respectively.
(iii) There exists an isomorphism $\delta: \overline{A^{n}} \xrightarrow{\sim} \bar{P}$ such that $\bar{\alpha} \delta=\bar{\beta}$ and $\wedge^{n}(\delta)=\bar{\chi}$.

Then P has a unimodular element.

Chapter 4

The Euler Class Group of a Noetherian Ring

For the rest of this thesis, we assume that all rings considered contain the field \mathbb{Q} of rational numbers. We make this assumption as we need to apply (4.7) to show that the "Euler class" of a projective module is well defined. In general, one can define the Euler class group of A with respect to any rank one projective A-module L. However, we'll define it with respect to A only.

Let A be a Noetherian ring with $\operatorname{dim} A=n \geq 2$. We define the Euler class group of A, denoted by $E(A)$, as follows:

Let $J \subset A$ be an ideal of height n such that J / J^{2} is generated by n elements. Let α and β be two surjections from $(A / J)^{n}$ to J / J^{2}. We say that α and β are related if there exists an automorphism σ of $(A / J)^{n}$ of determinant 1 such that $\alpha \sigma=\beta$. It is easy to see that this is an equivalence relation on the set of generators of J / J^{2}. If $\alpha:(A / J)^{n} \rightarrow J / J^{2}$ is a surjection, then by [α], we denote the equivalence class of α. We call such an equivalence class $[\alpha]$ a local orientation of J.

Since $\operatorname{dim}(A / J)=0$ and $n \geq 2$, we have $\mathrm{SL}_{n}(A / J)=\mathrm{E}_{n}(A / J)$ and therefore, by (2.26), the canonical map from $\mathrm{SL}_{n}(A)$ to $\mathrm{SL}_{n}(A / J)$ is surjective. Hence, if a surjection $\alpha:(A / J)^{n} \rightarrow J / J^{2}$ can be lifted to a surjection $\theta: A^{n} \rightarrow J$, and α is equivalent to $\beta:(A / J)^{n} \rightarrow J / J^{2}$, then β can also be lifted to a surjection from A^{n} to J. For, let $\alpha \sigma=\beta$ for some $\sigma \in \operatorname{SL}_{n}(A / J)$. Then, there exists $\widetilde{\sigma} \in \mathrm{SL}_{n}(A)$ which is a lift of σ by (2.26). Then $\theta \widetilde{\sigma}: A^{n} \rightarrow J$ is a lift of β.

A local orientation $[\alpha]$ of J is called a global orientation of J if the surjection $\alpha:(A / J)^{n} \rightarrow J / J^{2}$ can be lifted to a surjection $\theta: A^{n} \rightarrow J$.

We shall also, from now on, identify a surjection α with the equivalence class $[\alpha]$ to which α belongs.

Let $\mathcal{M} \in A$ be a maximal ideal of height n and \mathcal{N} be a \mathcal{M}-primary ideal such that $\mathcal{N} / \mathcal{N}^{2}$ is generated by n elements. Let $w_{\mathcal{N}}$ be a local orientation of \mathcal{N}. Let G be the free abelian group on the set of pairs $\left(\mathcal{N}, w_{\mathcal{N}}\right)$, where \mathcal{N} is a \mathcal{M}-primary ideal and $w_{\mathcal{N}}$ is a local orientation of \mathcal{N}.

Let $J=\cap \mathcal{N}_{i}$ be the intersection of finitely many ideals \mathcal{N}_{i}, where \mathcal{N}_{i} is \mathcal{M}_{i}-primary, $\mathcal{M}_{i} \subset A$ being distinct maximal ideals of height n. Assume that J / J^{2} is generated by n elements. Let w_{J} be
a local orientation of J. Then w_{J} gives rise, in a natural way, to a local orientation $w_{\mathcal{N}_{i}}$ of \mathcal{N}_{i}. We associate to the pair $\left(J, w_{J}\right)$, the element $\sum\left(\mathcal{N}_{i}, w_{\mathcal{N}_{i}}\right)$ of G. By abuse of notation, we denote the element $\sum\left(\mathcal{N}_{i}, w_{\mathcal{N}_{i}}\right)$ by $\left(J, w_{J}\right)$.

Let H be the subgroup of G generated by set of pairs $\left(J, w_{J}\right)$, where J is an ideal of height n which is generated by n elements and w_{J} is a global orientation of J. We define the Euler class group of A, $E(A)=G / H$. Thus $E(A)$ can be thought of as the quotient of the group of local orientations by the subgroup generated by global orientations.

One of the aims of this chapter is to prove theorem (4.2) which states that if $\left(J, w_{J}\right)$ is zero in $E(A)$, i.e. $\left(J, w_{J}\right) \in H$, then J is generated by n elements and w_{J} is a global orientation of J. This is proved as follows: first assume that $J=J_{1} \cap J_{2}$, where J_{1} and J_{2} are two comaximal ideals of height n which are generated by n elements. Assume w_{J} be a local orientation of J which is induced by generators of J_{1} and J_{2}. Then $\left(J, w_{J}\right)=0$ in $E(A)$. By (3.4), J is generated by n elements and w_{J} is a global orientation of J. Now assume $J_{2}=J \cap J_{1}$, where J and J_{1} are comaximal ideals of height n. Assume $J_{1}=\left(a_{1}, \ldots, a_{n}\right)$ and $J_{2}=\left(b_{1}, \ldots, b_{n}\right)$ such that $a_{i}-b_{i} \in J_{1}^{2}$. Assume w_{J} is a local orientation of J which is induced by the generators of J_{2}. Then $\left(J, w_{J}\right)=0$ in $E(A)$. By (3.5) J is generated by n elements and w_{J} is a global orientation of J. Hence, the addition and subtraction principles are actually special cases of (4.2). Using these two special cases and a formal group theoretic lemma (4.1), we prove the theorem. Using this, we show (4.10) that $E(A)$ detects the obstruction for a projective module of trivial determinant to have a unimodular element.

Lemma 4.1 Let F be the free abelian group with basis $\left(e_{i}\right)_{i \in I}$. Let \sim be an equivalence relation on $\left(e_{i}\right)_{i \in I}$. Define $x \in F$ to be "reduced" if $x=e_{1}+\ldots+e_{r}$ and $e_{i} \neq e_{j}$ for $i \neq j$. For $x \in F$ with $x=e_{1}+\ldots+e_{r}$, define "support" of x to be the set $\left\{e_{1}, \ldots, e_{r}\right\}$ and denote it by supp (x). Define $x \in F$ to be "nicely reduced" if $x=e_{1}+\ldots+e_{r}$ and $e_{i} \neq e_{j}$ for $i \neq j$ and such that no e_{i} belongs to the equivalence class of other e_{j} for $i, j=1, \ldots, r$ and $i \neq j$. Let $S \subset F$ be such that :
(1) Every element of S is nicely reduced.
(2) Let $x, y \in F$ be nicely reduced such that $x+y$ is also nicely reduced. Then, if any two of x, y and $x+y$ belongs to S so does the third one.
(3) Let $x \in F, x \notin S$ and x is nicely reduced and let $J \subset I$ be a finite set. Then, there exists $y \in F$ satisfying the following properties:
(i) y is nicely reduced, (ii) $x+y \in S$ and (iii) $y+e_{j}$ is nicely reduced $\forall j \in J$.

Let H be the subgroup of F generated by S. Then, if $x \in H$ is nicely reduced, then $x \in S$.

Remark Let x, y be elements of F with positive coefficients and $z=x+y$ be nicely reduced. Then x and y are nicely reduced.

Proof Let

$$
\begin{equation*}
y_{1}+\ldots+y_{r}+x=z_{1}+\ldots+z_{s} \tag{*}
\end{equation*}
$$

where $y_{i}, z_{j} \in S, 1 \leq i \leq r, 1 \leq j \leq s$. If $z_{1}+\ldots+z_{s}$ is nicely reduced, then by previous remark $y_{1}+\ldots+y_{r}$ is also nicely reduced. Hence $z_{1}+\ldots+z_{s} \in S$ and $y_{1}+\ldots+y_{r} \in S$, by assumption (2). Then $x \in S$, by assumption (2).

Now, assume that $z_{1}+\ldots+z_{s}$ is not nicely reduced. Given an equality of the type (*), we associate a non-negative integer $n(*)$ in the following manner: For a basis element e_{i} of F, we associate a number $n\left(e_{i}(*)\right)$ as follows: $n\left(e_{i}(*)\right)+1$ is the cardinality of the set $\left\{t \mid e_{i}+z_{t}\right.$ is not nicely reduced for $\left.1 \leq t \leq s\right\}$ and let $n(*)=\sum n\left(e_{i}(*)\right)$ for the equation $(*)$, where the sum is over those e_{i} 's which belong to the set $\bigcup_{1}^{s} \operatorname{supp}\left(z_{t}\right)$. We note that $n(*)=0$ if and only if $z_{1}+\ldots+z_{s}$ is nicely reduced.

Since $z_{1}+\ldots+z_{s}$ is not nicely reduced (i.e. $n(*)$ is positive), there exist $z_{k}, z_{l}, 1 \leq k, l \leq s, k \neq l$ such that $z_{k}+z_{l}$ is not nicely reduced. Without loss of generality, we can assume that $k=1, l=2$. Let $z_{1}=e_{1}+w_{1}, z_{2}=e_{1}^{\prime}+w_{2}$ and $e_{1} \sim e_{1}^{\prime}$. Since x is nicely reduced, at least one of $e_{1}, e_{1}^{\prime} \in \operatorname{supp}$ $\left(y_{i}\right)$ for some $1 \leq i \leq r$. Without loss of generality, we can assume that $e_{1} \in \operatorname{supp}\left(y_{1}\right)$ and assume that $y_{1}=e_{1}+u_{1}$. The equation $(*)$ can be written as

$$
\begin{equation*}
u_{1}+y_{2}+\ldots+y_{r}+x=w_{1}+z_{2}+\ldots+z_{s} \tag{1}
\end{equation*}
$$

If $e_{1} \in S$, then by assumption (2) $u_{1}, w_{1} \in S$. Then, we see that $n\left(*_{1}\right)<n(*)$. Hence, by induction, we are through.

Now, we assume that $e_{1} \notin S$. Then, by assumption (2) $w_{1}, u_{1} \notin S$. Let J be the set $\left\{i \in I \mid e_{i} \in\right.$ $\left.\bigcup_{1}^{s} \operatorname{supp}\left(z_{t}\right)\right\}$. Then $J \subset I$ is a finite set and $w_{1} \in F$ is nicely reduced such that $w_{1} \notin S$. By assumption (3), there exists $\theta \in F$ such that (i) θ is nicely reduced, (ii) $w_{1}+\theta \in S$ and (iii) $\theta+e_{j}$ is nicely reduced $\forall j \in J$. Now, we claim that $\theta+u_{1} \in S$.

Proof of the claim. Let J^{\prime} be the set $\left\{i \in I \mid e_{i} \in \bigcup_{1}^{s} \operatorname{supp}\left(z_{t}\right) \bigcup \operatorname{supp}(\theta)\right\}$. Then $J^{\prime} \subset I$ is a finite set. Then, by assumption (3), there exists $\theta^{\prime} \in F$ such that (i) θ^{\prime} is nicely reduced, (ii) $e_{1}+\theta^{\prime} \in S$ and (iii) $\theta^{\prime}+e_{j}$ is nicely reduced $\forall j \in J^{\prime}$.

We have $w_{1}+\theta \in S, e_{1}+\theta^{\prime} \in S$. As $w_{1}+\theta+e_{1}+\theta^{\prime}$ is nicely reduced, by assumption (2), $w_{1}+\theta+e_{1}+\theta^{\prime} \in S$. Hence $e_{1}+w_{1}+\theta+\theta^{\prime} \in S$ and $e_{1}+w_{1}=z_{1} \in S$. Then, by assumption (2), $\theta+\theta^{\prime} \in S$. We have $e_{1}+u_{1}=y_{1} \in S$ and $e_{1}+u_{1}+\theta+\theta^{\prime} \in S$, as it is nicely reduced. Since $e_{1}+\theta^{\prime} \in S$, we have $\theta+u_{1} \in S$. Thus, the claim is proved.

Now, the equation $\left(*_{1}\right)$ can be written as

$$
\begin{equation*}
\left(u_{1}+\theta\right)+y_{2}+\ldots+y_{r}+x=\left(w_{1}+\theta\right)+z_{2}+\ldots+z_{s} \tag{2}
\end{equation*}
$$

where $\theta+u_{1} \in S$ and $\theta+w_{1} \in S$. Hence, we see that $n\left(*_{2}\right)<n\left(*_{1}\right)$, since $n\left(e_{1}\left(*_{2}\right)\right)<n\left(e_{1}\left(*_{1}\right)\right)$ and $n\left(e_{i}\left(*_{2}\right)\right)=n\left(e_{i}\left(*_{1}\right)\right)$ or 0 for $i \neq 1$ according as $e_{i} \in \bigcup_{1}^{s} \operatorname{supp}\left(z_{i}\right)$ or $e_{i} \in \operatorname{supp}(\theta)$. Hence, by induction, the lemma follows.

Theorem 4.2 Let A be a Noetherian ring of dimension $n \geq 2$. Let $J \subset A$ be an ideal of height n such that J / J^{2} is generated by n elements and let $w_{J}:(A / J)^{n} \rightarrow J / J^{2}$ be a local orientation of J. Suppose that the image of $\left(J, w_{J}\right)$ is zero in the Euler class group $E(A)$ of A. Then J is generated by n elements and w_{J} is a global orientation of J.

Proof Let F be the free abelian group on the set of pairs $\left(\mathcal{N}, w_{\mathcal{N}}\right)$ such that $\mathcal{N} / \mathcal{N}^{2}$ is generated by n elements (where \mathcal{N} is \mathcal{M}-primary ideal and \mathcal{M} is a maximal ideal of height n). Define an equivalence relation on the set of pairs $\left(\mathcal{N}, w_{\mathcal{N}}\right)$ by $\left(\mathcal{N}, w_{\mathcal{N}}\right) \sim\left(\mathcal{N}_{1}, w_{\mathcal{N}_{1}}\right)$ if $\sqrt{\mathcal{N}}=\sqrt{\mathcal{N}_{1}}$, i.e. $\mathcal{N}, \mathcal{N}_{1}$ both are \mathcal{M}-primary ideals of A. Let $J \subset A$ be an ideal of height n such that J / J^{2} is generated by n elements
and $J=\cap \mathcal{N}_{i}$ be a reduced primary decomposition of J. Then, denote $\left(J, w_{J}\right)=\sum\left(\mathcal{N}_{i}, w_{i}\right)$, where w_{i} is induced from w_{J}.

Let $S=\left\{\left(J, w_{J}\right) \in F \mid J=\left(a_{1}, \ldots, a_{n}\right)\right.$ and $\left.w_{J}=\left(\bar{a}_{1}, \ldots, \bar{a}_{n}\right)\right\}$. We check that the conditions 1,2 and 3 of lemma (4.1) hold.
(1) If $\left(J, w_{J}\right) \in S$, then it is nicely reduced. Since, if $J=\bigcap_{i=1}^{r} \mathcal{N}_{i}$, then each \mathcal{N}_{i} is comaximal with the other $\mathcal{N}_{j}, j \neq i$ and $\left(J, w_{J}\right)=\left(\mathcal{N}_{1}, w_{1}\right)+\ldots+\left(\mathcal{N}_{r}, w_{r}\right)$.
(2) If $\left(J, w_{J}\right)$ and $\left(J^{\prime}, w_{J^{\prime}}\right)$ are nicely reduced elements of F such that $\left(J, w_{J}\right)+\left(J^{\prime}, w_{J^{\prime}}\right)$ is also nicely reduced (i.e. $J+J^{\prime}=A$), then, by the addition principle (3.4) and subtraction principle (3.5), it follows that if any two of $\left(J, w_{J}\right),\left(J^{\prime}, w_{J^{\prime}}\right)$ and $\left(J, w_{J}\right)+\left(J^{\prime}, w_{J^{\prime}}\right)$ belong to S, then so does the third.
(3) Similarly, by (2.14), condition 3 of lemma (4.1) holds. Now, applying (4.1), the theorem is proved.

Lemma 4.3 Let A be a Noetherian ring and let P be a projective A-module of rank n. Let $\lambda: P \rightarrow J_{0}$ and $\mu: P \rightarrow J_{1}$ be surjections, where $J_{0}, J_{1} \subset A$ are ideals of height n. Then, there exists an ideal I of $A[T]$ of height n and a surjection $\alpha(T): P[T] \rightarrow I$ such that $I(0)=J_{0}, \alpha(0)=\lambda$ and $I(1)=J_{1}, \alpha(1)=\mu$, where for $a \in A, I(a)=\{F(a): F(T) \in I\}$.

Proof Let $\alpha(T)=T \mu(T)+(1-T) \lambda(T)$, where $\lambda(T)=\lambda \otimes A[T]$ and $\mu(T)=\mu \otimes A[T]$. Then $\alpha(0)=\lambda$ and $\alpha(1)=\mu$.

Claim $(\alpha(T)(P[T])+(T(1-T)))=\left(J_{0} A[T], T\right) \cap\left(J_{1} A[T], 1-T\right)$.
Clearly LHS \subset RHS. Now, let $G=T f+g=(1-T) f_{1}+g_{1} \in$ RHS, where $f, f_{1} \in A[T], g \in$ $J_{0} A[T], g_{1} \in J_{1} A[T]$. Then $T\left(f+f_{1}\right)=f_{1}+g_{1}-g$. Write $G=(1-T) f_{1}+g_{1}=T(1-T)\left(f+f_{1}\right)+(1-$ $T) g+T g_{1}$. We want to show that $(1-T) g+T g_{1} \in$ LHS. Now, there exist $p(T), q(T) \in P[T]$ such that $\lambda(T)(p(T))=g$ and $\mu(T)(q(T))=g_{1}$. Hence $\alpha(T)((1-T) p(T))=T(1-T) \mu(T)(p(T))+(1-T)^{2} g \in$ LHS and so $(1-T)^{2} g \in$ LHS. But $(1-T)^{2} g=(1-T) g-T(1-T) g$. Hence $(1-T) g \in$ LHS. Similarly, taking $T q(T)$, we can show that $T g_{1} \in$ LHS. This proves the claim.

Now, replacing $\alpha(T)$ by $\alpha(T)+T(1-T) \beta(T)$ for a suitable $\beta(T) \in P[T]^{*}$, we may assume, by (2.12), that $\alpha(P[T])=I$ has height n. This proves the lemma.

Lemma 4.4 Let A be a ring and $J \subset A$ an ideal. Let $B=A_{1+J}$. Then $J B$ is contained in the Jacobson radical of B.

Lemma 4.5 Let A be a ring and let $\mathfrak{p}_{1} \varsubsetneqq \mathfrak{p}_{2} \varsubsetneqq \mathfrak{p}_{3}$ be a chain of prime ideals of $A[T]$. Then, we can not have $\mathfrak{p}_{1} \cap A=\mathfrak{p}_{2} \cap A=\mathfrak{p}_{3} \cap A$.

Proof Let us assume contrary. By going modulo $\mathfrak{p}_{1} \cap A$, we can assume that A is a domain and $\mathfrak{p}_{1} \cap A=\mathfrak{p}_{2} \cap A=\mathfrak{p}_{3} \cap A=0$. Let $S=A-\{0\}$. Then $S^{-1} A[T]$, being principal ideal domain, is of dimension 1. But $S^{-1} \mathfrak{p}_{1} \varsubsetneqq S^{-1} \mathfrak{p}_{2} \varsubsetneqq S^{-1} \mathfrak{p}_{3}$. This is a contradiction.

Lemma 4.6 Let A be a Noetherian ring and let $I \subset A[T]$ be an ideal of height k. Then $\operatorname{ht}(I \cap A) \geq$ $k-1$.

Proof First, we assume that $I=\mathfrak{p}$ is a prime ideal. Then, we claim that ht $\mathfrak{p}=\operatorname{ht}(\mathfrak{p} \cap A)$ if $\mathfrak{p}=(\mathfrak{p} \cap A)[T]$ and ht $\mathfrak{p}=\operatorname{ht}(\mathfrak{p} \cap A)+1$ if $\mathfrak{p} \supsetneqq(\mathfrak{p} \cap A)[T]$.

Any prime chain $\mathfrak{q}_{0} \varsubsetneqq \ldots \varsubsetneqq \mathfrak{q}_{r} \varsubsetneqq(\mathfrak{p} \cap A)$ in A extends to a prime chain $\mathfrak{q}_{0}[T] \varsubsetneqq \ldots \varsubsetneqq \mathfrak{q}_{r}[T] \varsubsetneqq$ $(\mathfrak{p} \cap A)[T] \subset \mathfrak{p}$ in $A[T]$. Hence, ht $\mathfrak{p} \geq$ the given values. Now, let ht $(\mathfrak{p} \cap A)=r$. Then, by the dimension theorem, $(\mathfrak{p} \cap A)$ is minimal over an ideal $\mathfrak{a}=\left(a_{1}, \ldots, a_{r}\right)$. Then $(\mathfrak{p} \cap A)[T]$ is minimal over $\mathfrak{a}[T]$, so ht $((\mathfrak{p} \cap A)[T]) \leq r$. Thus, we have ht $\mathfrak{p}=\operatorname{ht}(\mathfrak{p} \cap A)$ in the case $\mathfrak{p}=(\mathfrak{p} \cap A)[T]$.

Now, assume $(\mathfrak{p} \cap A)[T] \varsubsetneqq \mathfrak{p}$, say $f \in \mathfrak{p}-(\mathfrak{p} \cap A)[T]$. We will be done if we can show that \mathfrak{p} is a minimal prime over $\mathfrak{a}[T]+f A[T]$, for then ht $\mathfrak{p} \leq r+1$. Let \mathfrak{p}^{\prime} be a prime between these. Then $\mathfrak{a} \subset\left(p^{\prime} \cap A\right) \subset(\mathfrak{p} \cap A)$, so $\left(\mathfrak{p}^{\prime} \cap A\right)=(\mathfrak{p} \cap A)$, since $(\mathfrak{p} \cap A)$ is minimal prime over \mathfrak{a}. In particular, $(\mathfrak{p} \cap A)[T] \varsubsetneqq \mathfrak{p}^{\prime} \subset \mathfrak{p}$. By (4.5), we have $\mathfrak{p}=\mathfrak{p}^{\prime}$.

Now, we prove the lemma for any ideal $I \subset A[T]$. Let $\sqrt{I}=\bigcap_{1}^{r} \mathfrak{p}_{i}$, where $\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{r}$ are minimal primes over I. Then $\sqrt{(I \cap A)}=\bigcap_{1}^{r}\left(\mathfrak{p}_{i} \cap A\right)$. The prime ideals minimal over $I \cap A$ occur among $\mathfrak{p}_{1} \cap A, \ldots, \mathfrak{p}_{r} \cap A$. Choose \mathfrak{p}_{i} such that ht $(I \cap A)=\operatorname{ht}\left(\mathfrak{p}_{i} \cap A\right)$. Then ht $(I \cap A)=\operatorname{ht}\left(\mathfrak{p}_{i} \cap A\right) \geq$ ht $\mathfrak{p}_{i}-1 \geq \mathrm{ht} I-1$. This proves the lemma.

Roughly, the aim of the next proposition (4.7) is to show that if $I \subset A[T]$ is an ideal of height n which is the surjective image of an extended projective module $P[T]$ of rank n, then, there exists an ideal K of A of height $\geq n$ such that I is comaximal with $K A[T]$ and $I \cap K A[T]$ is generated by n elements. We construct K as follows: we choose K such that $I(0) \cap K$ is generated by n elements. Further, we choose K to be comaximal with $I \cap A$. This is achieved using (2.12). Then, using patching argument, we show that $I \cap K A[T]$ is generated by n elements.

Proposition 4.7 Let A be a Noetherian ring of dimension $n \geq 2$ such that $(n-1)$! is invertible in A. Let P be a projective A-module of rank n with trivial determinant. Let $\chi: A \xrightarrow{\sim} \wedge^{n}(P)$ be an isomorphism. Suppose that $\alpha(T): P[T] \rightarrow I$ is a surjection, where $I \subset A[T]$ is an ideal of height n. Then, there exists a homomorphism $\phi: A^{n} \rightarrow P$, an ideal $K \subset A$ of height $\geq n$ which is comaximal with $I \cap A$ and a surjection $\rho(T):(A[T])^{n} \rightarrow I \cap K A[T]$ such that:
(i) $\phi \otimes A / N$ is an isomorphism, where $N=(I \cap A)$ and $\wedge^{n}(\phi)=u \chi$, where $u=1$ modulo $I \cap A$.
(ii) $(\alpha(0) \phi)\left(A^{n}\right)=I(0) \cap K$.
(iii) $\alpha(T) \phi(T) \otimes A[T] / I=\rho(T) \otimes A[T] / I$.
(iv) $\rho(0) \otimes A / K=\rho(1) \otimes A / K$.

Proof First, we show the existence of ϕ satisfying (i) and (ii).
Since ht $I=n$, we have ht $N \geq n-1$, by (4.6), and hence $\operatorname{dim}(A / N) \leq 1$. Since P has trivial determinant, by Serre's theorem (1.14), there exists an isomorphism $\eta:(A / N)^{n} \xrightarrow{\sim} P / N P$. We can alter η by an automorphism of $(A / N)^{n}$ to obtain an isomorphism $\bar{\delta}:(A / N)^{n} \xrightarrow{\sim} P / N P$ such that $\wedge^{n}(\bar{\delta})=\bar{\chi}$, where "bar" denotes reduction modulo N. Let $\delta: A^{n} \rightarrow P$ be a lift of $\bar{\delta}$. Since $N A_{1+N} \subset J\left(A_{1+N}\right)$, by (1.6), $\delta_{1+N}:\left(A_{1+N}\right)^{n} \rightarrow P_{1+N}$ is an isomorphism.

Let $J=I(0)$, where $I(0)=\{F(0) \mid F(T) \in I\}$ and $\beta=\alpha(0): P \rightarrow J$. The equality $\delta\left(A^{n}\right)+N P=$ P shows that $(\beta \delta)\left(A^{n}\right)+N J=J$. Since $N J \subset J^{2}$, by (2.7), there exists $c \in N J$ such that $(\beta \delta)\left(A^{n}\right)+(c)=J$. Therefore, applying (2.12) to $(\beta \delta, c)$, we see that there exists $\gamma \in\left(A^{n}\right)^{*}$ such that the ideal $(\beta \delta+c \gamma)\left(A^{n}\right)$ has height at least minimum of n and ht J. Since $(\beta \delta+c \gamma)\left(A^{n}\right)+(c)=J$
and $c \in J^{2}$, by (2.7), $(\beta \delta+c \gamma)\left(A^{n}\right)=J \cap K$, where K is either A or an ideal of height n which is comaximal with (c), and hence with N and J.

The next step of the proof is to show that there exists a map $\phi: A^{n} \rightarrow P$ which lifts $\bar{\delta}$ and such that $\beta \phi\left(A^{n}\right)=J \cap K$. This is achieved by altering δ by an element of $\operatorname{Hom}\left(A^{n}, N P\right)$.

Since $c \in N J, c=\sum a_{i} d_{i}$, where $a_{i} \in N$ and $d_{i} \in J$. Any element of $\left(A^{n}\right)^{*}$ of the form $d \gamma$, where $d \in J$, has its image contained in J. Now, since $d_{i} \in J$ and $\beta: P \rightarrow J$ is surjective, there exists $\nu_{i}: A^{n} \rightarrow P$ such that $\beta \nu_{i}=d_{i} \gamma$. Let $\nu=\sum a_{i} \nu_{i}$. Then $c \gamma=\Sigma a_{i} d_{i} \gamma=\sum a_{i} \beta \nu_{i}=\beta \nu$, where $\nu=0$ modulo N. Let $\phi=(\delta+\nu)$. Then ϕ is also a lift of $\bar{\delta}$ and hence $\wedge^{n} \phi=u \chi$, where $u=1$ modulo N. Moreover ϕ has the property that

$$
\begin{aligned}
& \beta \phi\left(A^{n}\right)=(\beta \delta+\beta \nu)\left(A^{n}\right)=\left(\beta \delta+\beta \sum a_{i} \nu_{i}\right)\left(A^{n}\right)=\left(\beta \delta+\sum a_{i} \beta \nu_{i}\right)\left(A^{n}\right) \\
& =\left(\beta \delta+\sum a_{i} d_{i} \gamma\right)\left(A^{n}\right)=(\beta \delta+c \gamma)\left(A^{n}\right)=J \cap K . \text { This proves }(i) \text { and }(i i) .
\end{aligned}
$$

Since $K+N=A$, we have $I+K A[T]=A[T]$. Let $I^{\prime}=I \cap K A[T]$. Then $I^{\prime}(0)=J \cap K$ and $I^{\prime} / I^{\prime 2}=I / I^{2} \oplus K A[T] / K^{2} A[T]$.

Since $N A_{1+N} \subset J\left(A_{1+N}\right)$, by (1.6), $\phi_{1+N}:\left(A_{1+N}\right)^{n} \xrightarrow{\sim} P_{1+N}$ is an isomorphism. Further, $I_{1+N}^{\prime}=I_{1+N}$, as $K \cap(1+N) \neq \varnothing$. Therefore, the map $(\alpha(T) \phi(T))_{1+N}:\left(A_{1+N}[T]\right)^{n} \rightarrow I_{1+N}^{\prime}$ is surjective, where $\phi(T)=\phi \otimes A[T]$. Hence, there exists $a \in N$ such that the map $(\alpha(T) \phi(T))_{1+a}$: $\left(A_{1+a}[T]\right)^{n} \rightarrow I_{1+a}^{\prime}$ is surjective. We can assume that $1+a \in K$, as $N+K=A$. Since $a \in N \subset I$, we have $I_{a}^{\prime}=K A_{a}[T]$. Therefore, we get a surjection $(\beta \phi) \otimes A_{a}[T]:\left(A_{a}[T]\right)^{n} \rightarrow I_{a}^{\prime}$.

The elements $(\beta \phi) \otimes A_{a(1+a A)}[T]$ and $(\alpha(T) \phi(T))_{a(1+a A)}$ are surjections from $\left(A_{a(1+a A)}[T]\right)^{n} \rightarrow A_{a(1+a A)}[T]$ and as $\alpha(0)=\beta$, they are equal modulo (T). Note that $\operatorname{dim} A_{a(1+a A)} \leq$ $n-1$ (for if \mathfrak{m} is any maximal ideal of A, then either $a \in \mathfrak{m}$ or $(1+a A) \cap \mathfrak{m} \neq \varnothing$). The kernels of the surjections $(\beta \phi) \otimes A_{a(1+a A)}$ and $(\alpha(T) \phi(T))_{a(1+a A)}$ are stably free modules given by unimodular rows. These are extended from $A_{a(1+a A)}$ by (1.19), since $(n-1)$! is invertible in A. By (2.17), there exists an $\sigma(T) \in \mathrm{GL}_{n}\left(A_{a(1+a A)}[T]\right)$ such that $\sigma(0)=\mathrm{Id}$ and $(\alpha(T) \phi(T))_{a(1+a A)} \sigma(T)=(\beta \phi) \otimes A_{a(1+a A)}[T]$.

Let $\left(1+a a^{\prime}\right)=(1+a)\left(1+a a^{\prime \prime}\right)$, where $a^{\prime \prime} \in A$ is chosen so that the following properties hold:
(1) $\operatorname{det}(\sigma(T))$ is a unit belonging to $A_{a\left(1+a a^{\prime}\right)}[T]$ and
(2) $(\alpha(T) \phi(T))_{a\left(1+a a^{\prime}\right)} \sigma(T)=(\beta \phi) \otimes A_{a\left(1+a a^{\prime}\right)}[T]$.

Let $b=\left(1+a a^{\prime}\right)$. Then $\sigma(T) \in \mathrm{GL}_{n}\left(A_{a b}[T]\right)$ with $\sigma(0)=\mathrm{Id}$. Since $\sigma(0)=\mathrm{Id}$, by lemma (2.19), we see that $\sigma(T)=\tau(T)_{a} \theta(T)_{b}$, where $\tau(T)$ is an $A_{b}[T]$-automorphism of $\left(A_{b}[T]\right)^{n}$ such that $\tau(0)=\mathrm{Id}$ and $\tau=$ Id modulo (a) and $\theta(T)$ is an $A_{a}[T]$-automorphism of $\left(A_{a}[T]\right)^{n}$ such that $\theta(0)=\mathrm{Id}$ and $\theta=\mathrm{Id}$ modulo (b).

We have $\left((\alpha(T) \phi(T))_{b} \tau(T)\right)_{a}=\left(\left((\beta \phi) \otimes A_{a}[T]\right)(\theta(T))^{-1}\right)_{b}$. Hence, the surjections $(\alpha(T) \phi(T))_{b} . \tau(T):$ $\left(A_{b}[T]\right)^{n} \rightarrow I_{b}^{\prime}$ and $\left((\beta \phi) \otimes A_{a}[T]\right)(\theta(T))^{-1}:\left(A_{a}[T]\right)^{n} \rightarrow I_{a}^{\prime}$ patch to yield a surjection $\rho(T):$ $(A[T])^{n} \rightarrow I^{\prime}$ such that $\rho(0)=\beta \phi$.

Since $\theta(T)=\mathrm{Id}$ modulo the ideal (b) and $b \in K$, it follows from the construction of $\rho(T)$ that $\rho(T)\left(e_{i}\right)-(\beta \phi \otimes A[T])\left(e_{i}\right) \in K^{2} A[T] \forall i$ (where e_{i} are the coordinate functions of $\left.A[T]^{n}\right)$. Hence $\rho(0) \otimes A / K=\rho(1) \otimes A / K$. Further, using the fact that $\tau(T)=$ Id modulo the ideal (a), we see that
$(\alpha(T) \phi(T)) \otimes A[T] / I=\rho(T) \otimes A[T] / I$. This proves (iii) and (iv) and hence, the proposition is proved.

Remark 4.8 Now, we discuss (4.7) in the context of the Euler class group $E(A)$. Let $I \subset A[T]$ be an ideal of height n, where A is of dimension n. Suppose I is a surjective image of a projective $A[T]$-module $P[T]$, where P is a projective A-module of rank n having trivial determinant. Further, assume that $I(0)$ and $I(1)$ are ideals of height n. Now, tensoring the surjection from $P[T]$ to I and $\phi: A^{n} \rightarrow P$ given in (4.7) with $A[T] / I$ and composing, we get a 'local orientation' $w(T)$ of I, i.e. a surjection $w(T):(A[T] / I)^{n} \rightarrow I / I^{2}$, which in turn gives rise to local orientations $w(0):(A / I(0))^{n} \rightarrow$ $\rightarrow I(0) / I(0)^{2}$ and $w(1):(A / I(1))^{n} \rightarrow I(1) / I(1)^{2}$ of $I(0)$ and $I(1)$ respectively.

The gist of (4.7) is that there exists an ideal $K \subset A$ of height n and a local orientation w_{K} of K, which is the class of the surjection $\rho(0) \otimes A / K:(A / K)^{n} \rightarrow K / K^{2}$, such that

$$
(I(0), w(0))+\left(K, w_{K}\right)=0=(I(1), w(1))+\left(K, w_{K}\right)
$$

in $E(A)$. Therefore, $(I(0), w(0))=(I(1), w(1))$ in $E(A)$.
In case when $K=A$, we get $\rho(T):(A[T])^{n} \rightarrow I$, hence I is generated by n elements. Hence $w(0)$ and $w(1)$ are global orientations of $I(0)$ and $I(1)$ respectively. So $(I(0), w(0))=0=(I(1), w(1))$ in $E(A)$.

Let P be a projective A-module of rank n with trivial determinant. Let $\chi: A \xrightarrow{\sim} \wedge^{n}(P)$ be an isomorphism. We call χ an orientation of P and $\chi(1)$ a generator of $\wedge^{n}(P)$. We write χ for $\chi(1)$. To the pair (P, χ), we associate an element $e(P, \chi)$ of $E(A)$ as follows:

Let $\lambda: P \rightarrow J_{0}$ be a surjection, where $J_{0} \subset A$ is an ideal of height n. Let "bar" denote reduction modulo J_{0}. We obtain an induced surjection $\bar{\lambda}: P / J_{0} P \rightarrow J_{0} / J_{0}^{2}$. We choose an isomorphism $\bar{\gamma}:\left(A / J_{0}\right)^{n} \xrightarrow{\sim} P / J_{0} P$ such that $\wedge^{n}(\bar{\gamma})=\bar{\chi}$.

Let $w_{J_{0}}$ be a local orientation of J_{0} given by $\bar{\lambda} \bar{\gamma}:\left(A / J_{0}\right)^{n} \rightarrow J_{0} / J_{0}^{2}$. Let $e(P, \chi)$ be the image in $E(A)$ of the element $\left(J_{0}, w_{J_{0}}\right)$ of G. We say that $\left(J_{0}, w_{J_{0}}\right)$ is obtained from the pair (λ, χ). We show that the assignment sending the pair (P, χ) to the element $e(P, \chi)$ of $E(A)$ is well defined.

Let $\mu: P \rightarrow J_{1}$ be another surjection, where $J_{1} \subset A$ is an ideal of height n. Then, by (4.3), there exists an ideal I of $A[T]$ of height n and a surjection $\alpha(T): P[T] \rightarrow I$ such that $\alpha(0)=\lambda \alpha(1)=\mu$, $I(0)=J_{0}$ and $I(1)=J_{1}$.

Then, from the above discussion, we have $\left(J_{0}, w_{J_{0}}\right)=\left(J_{1}, w_{J_{1}}\right)$ in $E(A)$, where $w_{J_{0}}=\bar{\lambda} \bar{\gamma}$ and $w_{J_{1}}=\overline{\mu \gamma}$. Hence $e(P, \chi)$ does not depend on the choice of the surjection.

Now, let $\lambda: P \rightarrow J_{0}$ be a surjection, where $J_{0} \subset A$ is an ideal of height n. If $\bar{\delta}:\left(A / J_{0}\right)^{n} \xrightarrow{\sim} P / J_{0} P$ is another isomorphism such that $\wedge^{n}(\bar{\delta})=\bar{\chi}$, then $\bar{\delta}$ and $\bar{\gamma}$ differ by an element of $\mathrm{SL}_{n}\left(A / J_{0}\right)$. Hence, there exists an $\bar{\sigma} \in \mathrm{SL}_{n}\left(A / J_{0}\right)$ such that $\bar{\delta}=\overline{\sigma \gamma}$. This shows that $e(P, \chi)$ does not depend on the choice of $\bar{\gamma}$ and proves that $e(P, \chi)$ is well defined. We define the Euler class of (P, χ) to be $e(P, \chi)$.

Corollary 4.9 Let A be a Noetherian ring of dimension $n \geq 2$. Let P be a projective A-module of rank n with trivial determinant and χ be an orientation of P. Let $J \subset A$ be an ideal of height n such that J / J^{2} is generated by n elements. Let w_{J} be a local orientation of J. Suppose that $e(P, \chi)=\left(J, w_{J}\right)$ in $E(A)$. Then, there exists a surjection $\alpha: P \rightarrow J$ such that $\left(J, w_{J}\right)$ is obtained from (α, χ).

Proof We can regard w_{J} as a surjection : $(A / J)^{n} \rightarrow J / J^{2}$. We choose an isomorphism λ : $P / J P \xrightarrow{\sim}(A / J)^{n}$ such that $\wedge^{n}(\lambda)=(\bar{\chi})^{-1}$, where "bar" denotes modulo J. Consider the surjection $\bar{\alpha}=w_{J} \lambda: P / J P \rightarrow J / J^{2}$. By (2.14), there exists an ideal $J^{\prime} \subset A$ and a surjection $\beta: P \rightarrow J \cap J^{\prime}$ such that:
(i) $J+J^{\prime}=A,(i i) \beta \otimes A / J=\bar{\alpha}$, and (iii) height $\left(J^{\prime}\right) \geq n$.

If $J^{\prime}=A$, then $\beta: P \rightarrow J$ is such that $\beta \otimes A / J=\bar{\alpha}$. Hence β satisfies the required property. Otherwise, if ht $J^{\prime}=n$, then, we have $e(P, \chi)=\left(J, w_{J}\right)+\left(J^{\prime}, w_{J^{\prime}}\right)$ in $E(A)$ (where $w_{J^{\prime}}$ is obtained using $P)$. By the assumption of the theorem, $e(P, \chi)=\left(J, w_{J}\right)$ in $E(A)$. Hence, we have $\left(J^{\prime}, w_{J^{\prime}}\right)=0$ in $E(A)$. Therefore, by (4.2), there exists a surjection $\gamma: A^{n} \rightarrow J^{\prime}$ such that $w_{J^{\prime}}=\gamma \otimes A / J^{\prime}$. Now, applying the subtraction principle (3.7), we get a surjection $\alpha: P \rightarrow J$ such that $\left(J, w_{J}\right)$ is obtained from the pair (α, χ). This proves the corollary.

Corollary 4.10 Let A be a Noetherian ring of dimension $n \geq 2$. Let P be a projective A-module of rank n with trivial determinant and let χ be an orientation of P. Then $e(P, \chi)=0$ if and only if P has a unimodular element. In particular, if the determinant of P is trivial and P has a unimodular element, then every generic section ideal J of P (i.e. an ideal J of height n which is a surjective image of P) is generated by n elements.

Proof Let $\alpha: P \rightarrow J$ be a surjection, where J is an ideal of height n. Let $e(P, \chi)=\left(J, w_{J}\right)$ in $E(A)$, where $\left(J, w_{J}\right)$ is obtained from the pair (α, χ). First, assume that $e(P, \chi)=0$. Then $\left(J, w_{J}\right)=0$ in $E(A)$. Hence, by (4.2), there exists a surjection $\beta: A^{n} \rightarrow J$ such that $w_{J}=\beta \otimes A / J$. Now, applying (3.8), we see that P has a unimodular element.

Now, we assume that P has a unimodular element, i.e. $P=Q \oplus A$. Then $\alpha=(\theta, a)$ as an element of $P^{*}=Q^{*} \oplus A$. By performing an elementary automorphism of P, i.e. replacing θ by $\theta+a \theta^{\prime}$, we may assume by (2.12), that $\operatorname{ht} \theta(Q)=n-1$. Let $K=\theta(Q)$. Note that, since determinant of Q is trivial, without loss of generality, we may assume that χ is induced by an isomorphism $\chi^{\prime}: A \xrightarrow{\sim} \wedge^{n-1}(Q)$.

Since $\operatorname{dim}(A / K) \leq 1$, there exists an isomorphism $\gamma:(A / K)^{n-1} \xrightarrow{\sim} Q / K Q$ such that $\wedge^{n-1}(\gamma)=\chi^{\prime}$ modulo K. The surjection $(\theta \otimes A / K) \gamma:(A / K)^{n-1} \rightarrow K / K^{2}$ can be lifted to a map $\delta: A^{n-1} \rightarrow K$ such that $\delta\left(A^{n-1}\right)+K^{2}=K$. Let $\delta\left(A^{n-1}\right)=K^{\prime}$. Then, since $K^{\prime}+K^{2}=K$, by $(2.7), K=K^{\prime}+(e)$,
with $e \in K^{2}$ and $e^{2}-e \in K^{\prime}$. Therefore, by (2.10), $J=K+(a)=K^{\prime}+(b)$, where $b=e+(1-e) a$. Now, consider the surjection $(\delta, b): A^{n} \rightarrow J$. As $e \in K^{2}$, we have that w_{J} is obtained by tensoring the surjection (δ, b) with A / J. Hence, by definition, $e(P, \chi)=0$ in $E(A)$. This proves the corollary.

Lemma 4.11 Let A be a Noetherian ring of dimension $n \geq 2$. Let $J \subset A$ be an ideal of height n such that J / J^{2} is generated by n elements. Let w_{J} be a local orientation of J. Suppose that $\left(J, w_{J}\right) \neq 0$ in $E(A)$. Then, there exists an ideal J_{1} of height n which is comaximal with J and a local orientation $w_{J_{1}}$ of J_{1} such that $\left(J, w_{J}\right)+\left(J_{1}, w_{J_{1}}\right)=0$ in $E(A)$. Further, given any element $f \in A$ such that ht $f A=1, J_{1}$ can be chosen with the additional property that it is comaximal with (f).

Proof Let $\alpha:(A / J)^{n} \rightarrow J / J^{2}$ be a surjection corresponding to w_{J}. Then, by (2.14), there exists an ideal J_{1} of height $\geq n$ which is comaximal with $f J$ and a surjection $\beta: A^{n} \rightarrow J \cap J_{1}$ such that $\beta \otimes A / J=\alpha$. Since $\left(J, w_{J}\right) \neq 0$ in $E(A), J_{1}$ is a proper ideal of height n. Let $w_{J_{1}}$ be the local orientation of J_{1} induced by β. Then $\left(J, w_{J}\right)+\left(J_{1}, w_{J_{1}}\right)=0$ in $E(A)$.

Lemma 4.12 Let A be a Noetherian ring of dimension $n \geq 2$. Then, any element of the Euler class group $E(A)$ is of the form $\left(J, w_{J}\right)$, where J is an ideal of A of height n such that J / J^{2} is generated by n elements and w_{J} is a local orientation of J.

Proof First, we show that if $\left(J, w_{J}\right) \in E(A),\left(J, w_{J}\right) \neq 0$ and $f \in A$ such that ht $f A=1$, then $-\left(J, w_{J}\right)=\left(J_{1}, w_{J_{1}}\right) \in E(A)$ with $J_{1}+f J=A$. By (4.11), there exists an ideal J_{1} of height n which is comaximal with $f J$ and a local orientation $w_{J_{1}}$ of J_{1} such that $\left(J, w_{J}\right)+\left(J_{1}, w_{J_{1}}\right)=0$ in $E(A)$. Hence $-\left(J, w_{J}\right)=\left(J_{1}, w_{J_{1}}\right)$. Therefore, any element $z \in E(A)$ is of the form $z=\sum_{1}^{r}\left(J_{i}, w_{J_{i}}\right)$. It is enough to show that any element $z \in E(A)$ of the form $z=\left(J_{1}, w_{J_{1}}\right)+\left(J_{2}, w_{J_{2}}\right)$ can be written as $z=\left(J^{\prime}, w_{J^{\prime}}\right)$ in $E(A)$ for some ideal J^{\prime} of height n and a local orientation $w_{J^{\prime}}$ of J^{\prime}. Then, by induction, the result will follow.

Without loss of generality, we may assume that both $\left(J_{1}, w_{J_{1}}\right)$ and $\left(J_{2}, w_{J_{2}}\right)$ are not zero in $E(A)$. Choosing $f \in J_{1} \cap J_{2}$ and ht $(f)=1$ and applying (4.11), we see that there exists an ideal J_{0} of height n which is comaximal with J_{1} and J_{2} and a local orientation $w_{J_{0}}$ of J_{0} such that $\left(J_{1}, w_{J_{1}}\right)+\left(J_{0}, w_{J_{0}}\right)=0$ in $E(A)$. Hence, we have $z=-\left(J_{0}, w_{J_{0}}\right)+\left(J_{2}, w_{J_{2}}\right)$. Now, $-\left(J_{0}, w_{J_{0}}\right)=\left(K_{1}, w_{K_{1}}\right)$ in $E(A)$, where K_{1} is comaximal with J_{0} and J_{2}. We have $z=\left(K_{1}, w_{K_{1}}\right)+\left(J_{2}, w_{J_{2}}\right)$, where $K_{1}+J_{2}=A$. Therefore, we have $z=\left(J^{\prime}, w_{J^{\prime}}\right)$ in $E(A)$, where $J^{\prime}=K_{1} \cap J_{2}$ and $w_{J^{\prime}}$ is a local orientation of J^{\prime} induced from $w_{K_{1}}$ and $w_{J_{2}}$. This proves the lemma.

Let A be a Noetherian ring of dimension $n \geq 2$. Let \mathfrak{a} be the nil radical of A. Let "bar" denote modulo \mathfrak{a}. Let $G(A)$ be the free abelian group on the $\operatorname{set}\left(\mathcal{N}, w_{\mathcal{N}}\right)$, where \mathcal{N} is \mathcal{M}-primary ideal of height n such that $\mathcal{N} / \mathcal{N}^{2}$ is generated by n elements and $w_{\mathcal{N}}$ is a local orientation of \mathcal{N}. Similarly, we define $G(\bar{A})$. If \mathcal{N} is \mathcal{M}-primary ideal, then $\overline{\mathcal{N}}=(\mathcal{N}+\mathfrak{a}) / \mathfrak{a}$ is also $\overline{\mathcal{M}}$-primary and if $\mathcal{N} / \mathcal{N}^{2}$ is generated by the images of $\left(a_{1}, \ldots, a_{n}\right)$, then $\overline{\mathcal{N}} /(\overline{\mathcal{N}})^{2}$ is also generated by the images of $\left(a_{1}, \ldots, a_{n}\right)$. Hence, if $\left(\mathcal{N}, w_{\mathcal{N}}\right) \in G(A)$, then $\left(\overline{\mathcal{N}}, w_{\overline{\mathcal{N}}}\right) \in G(\bar{A})$.

Let $J \subset A$ be an ideal of height n with primary decomposition as $J=\cap \mathcal{N}_{i}$, where \mathcal{N}_{i} is $\mathcal{M}_{i^{-}}$ primary, \mathcal{M}_{i} a maximal ideal of A. Then $\bar{J}=(J+N) / N=J / J \cap N \subset \bar{A}$ is an ideal of height n with
primary decomposition as $\bar{J}=\cap \overline{\mathcal{N}}_{i}$. The following diagram is commutative

Hence, any surjection $w_{J}:(A / J)^{n} \rightarrow J / J^{2}$ induces a surjection $\bar{w}_{J}:(\bar{A} / \bar{J})^{n} \rightarrow \bar{J} / \bar{J}^{2}=(J+$ $N) /\left(J^{2}+N\right)$. From the above discussion, it follows that the assignment sending $\left(J, w_{J}\right)$ to $\left(\bar{J}, \bar{w}_{J}\right)$ gives rise to a group homomorphism $\Phi: E(A) \rightarrow E(\bar{A})$.

As a consequence of (4.2), we have the following:
Corollary 4.13 The homomorphism $\Phi: E(A) \rightarrow E(\bar{A})$ is an isomorphism.
Proof Let $\bar{w}_{\bar{J}}:(\bar{A} / \bar{J})^{n} \rightarrow \bar{J} / \bar{J}^{2}$ be a surjection. Let $J \supset \mathfrak{a}$ be an ideal of height n such that $J / \mathfrak{a}=\bar{J}$. Then $\bar{w}_{\bar{J}}$ can be considered as a surjective map from $(A / J)^{n}$ to $J /\left(J^{2}+\mathfrak{a}\right)$. Let $\alpha: A^{n} \rightarrow J$ be an A-linear map which is a lift of \bar{w}_{J}. Let $\alpha\left(A^{n}\right)=\left(f_{1}, \ldots, f_{n}\right)$. Then $\left(f_{1}, \ldots, f_{n}\right)+J^{2}+\mathfrak{a}=J$. By (2.7), there exists an element $e \in J^{2}$ such that $\left(f_{1}, \ldots, f_{n}\right)+\mathfrak{a}+A e=J$, and $e(1-e) \in\left(\left(f_{1}, \ldots, f_{n}\right)+\mathfrak{a}\right)$. Then $\bar{e} \in A /\left(\left(f_{1}, \ldots, f_{n}\right)+\mathfrak{a}\right)$ is an idempotent.

Since \mathfrak{a} is a nilpotent ideal and idempotent elements can be lifted modulo a nilpotent ideal, we can lift $\bar{e} \in A /\left(\left(f_{1}, \ldots, f_{n}\right)+\mathfrak{a}\right)$ to an idempotent element of $A /\left(f_{1}, \ldots, f_{n}\right)$. Let $f \in A$ be such that $\bar{f} \in A /\left(f_{1}, \ldots, f_{n}\right)$ is a lift of $\bar{e} \in A /\left(\left(f_{1}, \ldots, f_{n}\right)+\mathfrak{a}\right)$, i.e. $f-f^{2} \in\left(f_{1}, \ldots, f_{n}\right)$ and $f-e \in$ $\left(\left(f_{1}, \ldots, f_{n}\right)+\mathfrak{a}\right)$. Let $J_{1}=\left(f_{1}, \ldots, f_{n}, f\right)$. Then $\left(f_{1}, \ldots, f_{n}\right)+J_{1}^{2}=J_{1}$ and $J_{1}+\mathfrak{a}=\left(f_{1}, \ldots, f_{n}, f\right)+$ $\mathfrak{a}=\left(f_{1}, \ldots, f_{n}, e\right)+\mathfrak{a}=J\left(\right.$ as $\left.f-e \in\left(\left(f_{1}, \ldots, f_{n}\right)+\mathfrak{a}\right)\right)$. Let "bar" denote modulo \mathfrak{a}. Then $\bar{J}_{1}=\bar{J}$ and $\bar{J}_{1} / \bar{J}_{1}^{2}=\left(\bar{f}_{1}, \ldots, \bar{f}_{n}\right)$. Hence $\left(\bar{f}_{1}, \ldots, \bar{f}_{n}\right)=\bar{J} / \bar{J}^{2}=J /\left(J^{2}+\mathfrak{a}\right)$. This implies that $\bar{w}_{\bar{J}}$ is induced from $\bar{\alpha}$. Hence, the map Φ is surjective.

Now, we prove that the map Φ is injective. By (4.12), every element of $E(A)$ is of the form $\left(J, w_{J}\right)$. Hence, it is enough to prove that for $\left(J, w_{J}\right) \in E(A)$ (where $J \subset A$ is an ideal of height n and $w_{J}:(A / J)^{n} \rightarrow J / J^{2}$ is a local orientation of $\left.J\right)$, if the image of $\left(J, w_{J}\right)=0$ in $E(\bar{A})$, then $\left(J, w_{J}\right)=0$ in $E(A)$. Assume that the image of $\left(J, w_{J}\right)=\left(\bar{J}, \bar{w}_{\bar{J}}\right)=0$ in $E(\bar{A})$. Then, by $(4.2), \bar{w}_{\bar{J}}$ is a global orientation of J, i.e. there exists a surjection $\gamma:(A / \mathfrak{a})^{n} \rightarrow(J+\mathfrak{a}) / \mathfrak{a}$ such that $\bar{w}_{\bar{J}}=\gamma \otimes \bar{A} / \bar{J}$.

We are given surjections $\alpha: A^{n} \rightarrow J / J^{2}$ (which is obtained by w_{J} by composing with the natural map $\left.A^{n} \rightarrow(A / J)^{n}\right)$ and $\beta: A^{n} \rightarrow(J+\mathfrak{a}) / \mathfrak{a}=J /(J \cap \mathfrak{a})$ (which is obtained by γ by composing with natural map $\left.A^{n} \rightarrow(A / \mathfrak{a})^{n}\right)$ such that they induce the same surjective map from A^{n} to $J /\left(J^{2}+(J \cap \mathfrak{a})\right)$.

Since $J /\left(J^{2} \cap \mathfrak{a}\right)$ is the fiber product of J / J^{2} and $J /(J \cap \mathfrak{a})$ over $J /\left(J^{2}, J \cap \mathfrak{a}\right), \alpha$ and β patch to yield a map $\delta: A^{n} \rightarrow J /\left(J^{2} \cap \mathfrak{a}\right)$.

Let $\theta: A^{n} \rightarrow J$ be a lift of δ. Then θ is a lift of α and β. Hence, we have
(i) $\theta\left(A^{n}\right)+J^{2}=J$, and (ii) $\theta\left(A^{n}\right)+(J \cap \mathfrak{a})=J$. Since \mathfrak{a} is nilpotent, $\sqrt{\theta\left(A^{n}\right)}=\sqrt{J}$ are same by (ii). Hence $\theta\left(A^{n}\right)=J$ by (i) and (2.9).

Since θ is a lift of α, we get $\left(J, w_{J}\right)=0$ in $E(A)$. Hence Φ is injective and hence an isomorphism. This proves the corollary.

Chapter 5

Some Results on $E(A)$

If A is an affine domain of dimension n over an algebraically closed field and P is a projective A module of rank n and trivial determinant, then it follows from a result of Mohan Kumar (3.3) that if P maps onto an ideal J of height n which is generated by n elements, then P has a unimodular element and hence all its generic section ideals (i.e. ideals of height n which are surjective image of P) are generated by n elements (4.10). But this is not necessarily true if the base field is not algebraically closed. For example, all the reduced generic section ideals of the tangent bundle of the real 2 -sphere are generated by 2 elements ([4], (5.6-i)). There are however non-reduced generic section ideals of the tangent bundle which are not generated by 2 elements ([3], (5.2)).

This phenomenon is explained by the result (5.10) of this chapter, which asserts that for any n dimensional real affine domain, a projective module of rank n with trivial determinant, all of whose generic section ideals are generated by n elements, has a unimodular element. To prove this result, we first prove some lemmas.

Let A be a Noetherian ring of dimension $n \geq 2$. Let $J \subset A$ be an ideal of height n and w_{J} : $(A / J)^{n} \rightarrow J / J^{2}$ be a local orientation of J. Let $\bar{b} \in A / J$ be a unit. Let $\sigma:(A / J)^{n} \xrightarrow{\sim}(A / J)^{n}$ be an automorphism with $\operatorname{det}(\sigma)=\bar{b}$. Then $w_{J} \sigma$ is another local orientation of J, which we denote by $\bar{b} w_{J}$.

Lemma 5.1 Let A, J be as above. Let w_{J} and \widetilde{w}_{J} be two local orientations of J. Then $\widetilde{w}_{J}=\bar{b} w_{J}$ for some unit $\bar{b} \in A / J$.

Proof We have two surjections $w_{J}:(A / J)^{n} \rightarrow J / J^{2}$ and $\widetilde{w}_{J}:(A / J)^{n} \rightarrow J / J^{2}$. We will define a $\operatorname{map} \psi:(A / J)^{n} \rightarrow(A / J)^{n}$ such that $w_{J} \psi=\widetilde{w}_{J}$.

Let $\left\{e_{i}, i=1, \ldots, n\right\}$ be a basis of $(A / J)^{n}$. Given $\widetilde{w}_{J}\left(e_{i}\right)=\overline{a_{i}}, w_{J}\left(e_{i}\right)=\overline{b_{i}}$. Let $\overline{a_{i}}=\sum \overline{c_{i j}} \overline{b_{j}}$. Define $\psi\left(e_{i}\right)=\sum_{j} c_{i j} e_{j}$. Then $w_{J} \psi=\widetilde{w}_{J}$. Now, by (2.16) ψ is an isomorphism. Let $\operatorname{det}(\psi)=\bar{b}$. Then $\widetilde{w}_{J}=\bar{b} w_{J}$. This proves the lemma.

Lemma 5.2 Let A be a ring and let $J \subset A$ be an ideal which is generated by two elements a_{1}, a_{2}. Let $a \in A$ be a unit modulo J and $b \in A$ be such that $a b=1$ modulo J. Suppose that the unimodular row
$\left(b, a_{2},-a_{1}\right)$ is completable to a matrix in $\mathrm{SL}_{3}(A)$. Then, there exists a matrix $\tau \in \mathrm{M}_{2}(A)$ with det $(\tau)=a$ modulo J such that $\left[a_{1}, a_{2}\right] \tau^{t}=\left[b_{1}, b_{2}\right]$, where b_{1}, b_{2} generate J.

Proof Choose a completion $\sigma \in \mathrm{SL}_{3}(A)$ of the unimodular row $\left(b, a_{2},-a_{1}\right)$. Suppose that second and third rows of σ are $\left(d, \lambda_{11}, \lambda_{12}\right)$ and $\left(e, \lambda_{21}, \lambda_{22}\right)$ respectively.

Let $\gamma: A^{3} \rightarrow J$ be a surjection given by $\gamma\left(e_{1}\right)=0, \gamma\left(e_{2}\right)=a_{1}, \gamma\left(e_{3}\right)=a_{2}$. The vectors $\left(b, a_{2},-a_{1}\right),\left(d, \lambda_{11}, \lambda_{12}\right)$ and $\left(e, \lambda_{21}, \lambda_{22}\right)$ generate A^{3}. Hence, their images under γ generate J. Hence $J=\left(b_{1}, b_{2}\right)$, where $b_{1}=a_{1} \lambda_{11}+a_{2} \lambda_{12}$ and $b_{2}=a_{1} \lambda_{21}+a_{2} \lambda_{22}$. Let $\tau=\left(\lambda_{i j}\right) \in \mathrm{M}_{2}(A)$. Since $\sigma \in \mathrm{SL}_{3}(A)$ and $a_{1}, a_{2} \in J$, we get $\operatorname{det}(\tau)=a$ modulo J. Further, $\left[a_{1}, a_{2}\right] \tau^{t}=\left[b_{1}, b_{2}\right]$. This proves the lemma.

Lemma 5.3 Let A be a Noetherian ring of dimension $n \geq 2, J \subset A$ an ideal of height n and $w_{J}:(A / J)^{n} \rightarrow J / J^{2}$ a surjection. Suppose that w_{J} can be lifted to a surjection $\alpha: A^{n} \rightarrow J$. Let $a \in A$ be a unit modulo J. Let θ be an automorphism of $(A / J)^{n}$ with determinant $\overline{a^{2}}$. Then, the surjection $w_{J} \theta:(A / J)^{n} \rightarrow J / J^{2}$ can be lifted to a surjection $\gamma: A^{n} \rightarrow J$.

Proof Let $P=A^{n-2}$ and $\alpha: P \oplus A^{2} \rightarrow J$ be map defined by $\left(a_{3}, \ldots, a_{n}, a_{1}, a_{2}\right)$ such that $w_{J}=\alpha \otimes A / J$. Let $J^{\prime}=\left(a_{3}, \ldots, a_{n}\right)$ and let "tilde" denote reduction modulo J^{\prime}. Then $\widetilde{\alpha}: \widetilde{A}^{2} \rightarrow \widetilde{J}$ is defined by $\widetilde{\alpha}(0,1,0)=\widetilde{a_{1}}, \widetilde{\alpha}(0,0,1)=\widetilde{a_{2}}$.

Since $a \in A$ is a unit modulo J, there exists an element $b \in A$ such that $a b=1(\bmod J)$. Then $\left(\widetilde{b^{2}}, \widetilde{a_{2}},-\widetilde{a_{1}}\right)$ is a unimodular row, which is completable to an invertible matrix in $\mathrm{SL}_{3}(\widetilde{A})$, by (1.17). Hence, by (5.2), there exists a matrix $\widetilde{\tau} \in \mathrm{M}_{2}(\widetilde{A})$ such that $\left[\widetilde{a_{1}}, \widetilde{a_{2}}\right] \widetilde{\tau}=\left[\widetilde{b_{1}}, \widetilde{b_{2}}\right]$, where $\widetilde{J}=\left(\widetilde{b_{1}}, \widetilde{b_{2}}\right)$ and $\operatorname{det}(\widetilde{\tau})=\widetilde{a^{2}}(\bmod J)$.

Define a surjection $\gamma^{\prime}: P \oplus A^{2} \rightarrow J$ by setting $\gamma^{\prime}=\alpha$, on P and $\gamma^{\prime}(0,1,0)=b_{1}, \gamma^{\prime}(0,0,1)=b_{2}$. Define $\theta^{\prime}:(A / J)^{n} \xrightarrow{\sim}(A / J)^{n}$ by $\left(\begin{array}{cc}I_{n-2} & 0 \\ 0 & \bar{\tau}\end{array}\right)$.

Then, $\operatorname{det} \theta^{\prime}=\bar{a}^{2}$. It follows that $w_{J} \theta^{\prime}=\gamma^{\prime} \otimes A / J$. Hence $w_{J} \theta^{\prime}$ can be lifted to a surjection $A^{n} \rightarrow J$.

Since $\operatorname{dim}(A / J)=0$, we have $\mathrm{SL}_{n}(A / J)=\mathrm{E}_{n}(A / J)$ and the canonical map from $\mathrm{SL}_{n}(A) \rightarrow$ $\operatorname{SL}_{n}(A / J)$ is surjective. Now, since $\operatorname{det} \theta=\operatorname{det} \theta^{\prime}=\overline{a^{2}}$, it follows that $w_{J} \theta$ can also be lifted to a surjection $A^{n} \rightarrow J$.

Lemma 5.4 Let A be a Noetherian ring of dimension $n \geq 2, J \subset A$ an ideal of height n and $w_{J} a$ local orientation of J. Let $\bar{a} \in A / J$ be a unit. Then $\left(J, w_{J}\right)=\left(J, \overline{a^{2}} w_{J}\right)$ in $E(A)$.

Proof If $\left(J, w_{J}\right)=0$ in $E(A)$, then, by (4.2), w_{J} can be lifted to a surjection from $A^{n} \rightarrow J$. By (5.3), $\overline{a^{2}} w_{J}$ can also be lifted to a surjection from $A^{n} \rightarrow J$. Hence $\left(J, \overline{a^{2}} w_{J}\right)=0$ in $E(A)$. Hence, the result follows in this case.

Now, assume that $\left(J, w_{J}\right) \neq 0$ in $E(A)$, where $w_{J}:(A / J)^{n} \rightarrow J / J^{2}$ is a surjection. By (2.14), there exists an ideal J_{1} of height n which is comaximal with J and a surjection $\alpha: A^{n} \rightarrow J \cap J_{1}$ such that $\alpha \otimes A / J=w_{J}$ (If $J_{1}=A$, then $\left(J, w_{J}\right)=0$ in $\left.E(A)\right)$. Let $w_{J_{1}}=\alpha \otimes A / J_{1}$.

Let $x+y=1, x \in J, y \in J_{1}$. If we set $b=a^{2}(1-x)+x$, then $b=a^{2}(\bmod J)$ and $b=1\left(\bmod J_{1}\right)$. Applying (5.3), there exists a surjection $\gamma: A^{n} \rightarrow J \cap J_{1}$ such that $\gamma \otimes A / J=\overline{a^{2}} w_{J}, \gamma \otimes A / J_{1}=w_{J_{1}}$.

From the surjection α, we get $\left(J, w_{J}\right)+\left(J_{1}, w_{J_{1}}\right)=0$ in $E(A)$ and from the surjection γ, we get $\left(J, \overline{a^{2}} w_{J}\right)+\left(J_{1}, w_{J_{1}}\right)=0$ in $E(A)$. Thus $\left(J, w_{J}\right)=\left(J, \overline{a^{2}} w_{J}\right)$ in $E(A)$. This proves the lemma.

Lemma 5.5 Let A be a Noetherian ring of dimension $n \geq 1$ and let $J \subset A$ be an ideal of height n. Let $f \neq 0 \in A$ such that $J A_{f}$ is a proper ideal of A_{f}. Assume $J A_{f}=\left(a_{1}, \ldots, a_{n}\right)$, where $a_{i} \in J$. Then, there exists $\sigma \in \mathrm{SL}_{n}\left(A_{f}\right)$ such that $\left[a_{1}, \ldots, a_{n}\right] \sigma=\left[b_{1}, \ldots, b_{n}\right]$, where $b_{i} \in J$ and ht $\left(b_{1}, \ldots, b_{n}\right)=n$.

Proof Let I be the set $\left\{\sigma \in \operatorname{SL}_{n}\left(A_{f}\right):\left[a_{1}, \ldots, a_{n}\right] \sigma=\left[b_{1}, \ldots, b_{n}\right], b_{i} \in J\right\}$. Then $I \neq \varnothing$, since Id $\in I$. For $\sigma \in I$, if $\left[a_{1}, \ldots, a_{n}\right] \sigma=\left[b_{1}, \ldots, b_{n}\right] \in A^{n}, b_{i} \in J$, let $N(\sigma)$ denote ht $\left(b_{1}, \ldots, b_{n}\right)$. Then, it is enough to prove that there exists $\sigma \in I$ such that $N(\sigma)=n$. This is proved by showing that for any $\sigma \in I$ with $N(\sigma)<n$, there exists $\sigma_{1} \in I$ such that $N\left(\sigma_{1}\right)>N(\sigma)$.

Let $\sigma \in I$ be such that $N(\sigma)<n$. Let $\left[a_{1}, \ldots, a_{n}\right] \sigma=\left[b_{1}, \ldots, b_{n}\right] \in A^{n}, b_{i} \in J$. Then, by (2.3), there exists $\left[c_{1}, \ldots, c_{n-1}\right] \in A^{n-1}$ such that ht $J_{b_{n}}^{\prime} \geq n-1$, where $J^{\prime}=\left(b_{1}+c_{1} b_{n}, \ldots, b_{n-1}+c_{n-1} b_{n}\right)$. The transformation τ sending $\left[b_{1}, \ldots, b_{n}\right]$ to $\left[b_{1}+c_{1} b_{n}, \ldots, b_{n-1}+c_{n-1} b_{n}, b_{n}\right]$ is elementary. Hence $\sigma \tau \in I$. Note that $N(\sigma)=N(\sigma \tau)$. Hence, if necessary, we can replace σ by $\sigma \tau$ and assume that if a prime ideal \mathfrak{p} of A contains $\left(b_{1}, \ldots, b_{n-1}\right)$ and does not contain b_{n}, then, we have ht $\mathfrak{p} \geq n-1$. Now, we claim that $N(\sigma)=\mathrm{ht}\left(b_{1}, \ldots, b_{n-1}\right)$.

We have $N(\sigma) \leq n-1$. Since $N(\sigma)=\operatorname{ht}\left(b_{1}, \ldots, b_{n}\right)$, we have ht $\left(b_{1}, \ldots, b_{n-1}\right) \leq N(\sigma) \leq n-1$. Let \mathfrak{p} be a minimal prime ideal of $\left(b_{1}, \ldots, b_{n-1}\right)$ such that ht $\mathfrak{p}=\operatorname{ht}\left(b_{1}, \ldots, b_{n-1}\right)$. If $b_{n} \notin \mathfrak{p}$, then ht $\mathfrak{p}) \geq n-1$. Hence, we have the inequalities $n-1 \leq h t\left(b_{1}, \ldots, b_{n-1}\right) \leq N(\sigma) \leq n-1$. This implies that $N(\sigma)=\operatorname{ht}\left(b_{1}, \ldots, b_{n-1}\right)=n-1$. If $b_{n} \in \mathfrak{p}$, then ht $\left(b_{1}, \ldots, b_{n-1}\right)=\operatorname{ht}\left(b_{1}, \ldots, b_{n}\right)=N(\sigma)$. This proves the claim.

Let K denote the set of minimal prime ideals of $\left(b_{1}, \ldots, b_{n-1}\right)$. Let $K_{1}=\left\{\mathfrak{p} \in K: b_{n} \in \mathfrak{p}\right\}$ and let $K_{2}=K-K_{1}$. Note that $K_{1} \neq \varnothing$. For, if $K_{1}=\varnothing$, no minimal prime ideal of $\left(b_{1}, \ldots, b_{n-1}\right)$ contains b_{n}. Then ht $\left(b_{1}, \ldots, b_{n}\right)>\operatorname{ht}\left(b_{1}, \ldots, b_{n-1}\right)$. But, ht $\left(b_{1}, \ldots, b_{n}\right)=N(\sigma)=\operatorname{ht}\left(b_{1}, \ldots, b_{n-1}\right)$. This proves that $K_{1} \neq \varnothing$. Now, we claim that $f \in \mathfrak{p}$ for all $\mathfrak{p} \in K_{1}$.

For, if $f \notin \mathfrak{p}$ for some $\mathfrak{p} \in K_{1}$, then, since \mathfrak{p} is minimal prime ideal of $\left(b_{1}, \ldots, b_{n-1}\right)$, we have ht $\mathfrak{p} \leq n-1$. Since $b_{n} \in \mathfrak{p} \in K_{1}$, we have \mathfrak{p} is minimal prime ideal of $\left(b_{1}, \ldots, b_{n}\right)$ and $f \notin \mathfrak{p}$. Hence $\operatorname{htp} A_{f}=\operatorname{ht} \mathfrak{p} \leq n-1$. But $\left(b_{1}, \ldots, b_{n}\right) A_{f} \subset \mathfrak{p} A_{f}$ and ht $\left(b_{1}, \ldots, b_{n}\right) A_{f}=\operatorname{ht}\left(a_{1}, \ldots, a_{n}\right) A_{f}=n$. This is a contradiction. This proves that $f \in \mathfrak{p}$ for all $\mathfrak{p} \in K_{1}$.

If $\mathfrak{p} \in K$, then ht $\mathfrak{p} \leq n-1$, since \mathfrak{p} is a minimal prime ideal of $\left(b_{1}, \ldots, b_{n-1}\right)$. If $\mathfrak{p} \in K_{2}$, then $b_{n} \notin \mathfrak{p}$ and hence ht $\mathfrak{p} \geq n-1$. Therefore, ht $\mathfrak{p}=n-1$ for all $\mathfrak{p} \in K_{2}$. Since $\bigcap_{\mathfrak{p} \in K_{2}} \mathfrak{p} \not \subset \bigcup_{\mathfrak{p} \in K_{1}} \mathfrak{p}$, choose $x \in \bigcap_{\mathfrak{p} \in K_{2}} \mathfrak{p}$ such that $x \notin \bigcup_{\mathfrak{p} \in K_{1}} \mathfrak{p}$. Since $f \in \mathfrak{p}$ for all $\mathfrak{p} \in K_{1}$, we have $x f \in \bigcap_{\mathfrak{p} \in K} \mathfrak{p}$. This implies that $(x f)^{r} \in\left(b_{1}, \ldots, b_{n-1}\right)$ for some positive integer r.

Let $(x f)^{r}=\sum_{1}^{n-1} d_{i} b_{i}$. Consider the matrix $\theta \in \mathrm{E}_{n}(A)$ which takes $\left[c_{1}, \ldots, c_{n}\right]$ to $\left[c_{1}, \ldots, c_{n-1}, c_{n}+\right.$ $\left.\sum_{1}^{n-1} d_{i} c_{i}\right]$. Let θ_{1} be the matrix : diagonal $\left(1, \ldots, 1, f^{r}\right)$. Then $\theta_{1} \in \operatorname{GL}_{n}\left(A_{f}\right)$. Let $\widetilde{\theta}=\theta_{1} \theta_{f} \theta_{1}^{-1}$. Then $\widetilde{\theta} \in \mathrm{SL}_{n}\left(A_{f}\right)$. Let $\sigma_{1}=\sigma \widetilde{\theta}$. Then

$$
\begin{aligned}
& {\left[a_{1}, \ldots, a_{n}\right] \sigma_{1}=\left[b_{1}, \ldots, b_{n}\right] \tilde{\theta}=\left[b_{1}, \ldots, b_{n}\right] \theta_{1} \theta_{f} \theta_{1}^{-1}} \\
& =\left[b_{1}, \ldots, b_{n-1}, f^{r} b_{n}\right] \theta_{f} \theta_{1}^{-1}=\left[b_{1}, \ldots, b_{n-1}, f^{r} b_{n}+\sum_{1}^{n-1} d_{i} b_{i}\right] \theta_{1}^{-1} \\
& =\left[b_{1}, \ldots, b_{n-1}, f^{r} b_{n}+f^{r} x^{r}\right] \theta_{1}^{-1}=\left[b_{1}, \ldots, b_{n-1}, b_{n}+x^{r}\right] .
\end{aligned}
$$

Now, we claim that no minimal prime ideal of $\left(b_{1}, \ldots, b_{n-1}\right)$ contains $b_{n}+x^{r}$. For, if $\mathfrak{p} \in K_{1}$, then $b_{n} \in \mathfrak{p}$, but $x \notin \mathfrak{p}$. Hence $b_{n}+x^{r} \notin \mathfrak{p}$ for all $\mathfrak{p} \in K_{1}$. If $\mathfrak{p} \in K_{2}$, then $b_{n} \notin \mathfrak{p}$, but $x \in \mathfrak{p}$. Hence $b_{n}+x^{r} \notin \mathfrak{p}$ for all $\mathfrak{p} \in K_{2}$. This proves the claim. Hence ht $\left(b_{1}, \ldots, b_{n-1}, b_{n}+x^{r}\right)>\operatorname{ht}\left(b_{1}, \ldots, b_{n-1}\right)$. Note that $\sigma_{1} \in I$ and $N\left(\sigma_{1}\right)=\operatorname{ht}\left(b_{1}, \ldots, b_{n-1}, b_{n}+x^{r}\right)>\operatorname{ht}\left(b_{1}, \ldots, b_{n-1}\right)=N(\sigma)$. This completes the proof of the lemma.

Lemma 5.6 Let A be an affine domain over a field k of dimension $n \geq 2$ and let f be a non-zero element of A. Let $J \subset A$ be an ideal of height n such that J / J^{2} is generated by n elements. Suppose that $\left(J, w_{J}\right) \neq 0$ in $E(A)$, but the image of $\left(J, w_{J}\right)=0$ in $E\left(A_{f}\right)$. Then, there exists an ideal J_{2} of height n such that $\left(J_{2}\right)_{f}=A_{f}$ and $\left(J, w_{J}\right)=\left(J_{2}, w_{J_{2}}\right)$ in $E(A)$.

Proof Since $\left(J, w_{J}\right) \neq 0$ in $E(A)$ and $\left(J, w_{J}\right)=0$ in $E\left(A_{f}\right), f \in A$ is not a unit. By (4.11), we can choose an ideal J_{1} of height n which is comaximal with J and (f) such that $\left(J, w_{J}\right)+\left(J_{1}, w_{J_{1}}\right)=0$ in $E(A)$. We have $\left(J_{1}, w_{J_{1}}\right) \neq 0$ in $E(A)$. Since the image of $\left(J, w_{J}\right)=0$ in $E\left(A_{f}\right)$, it follows that the image of $\left(J_{1}, w_{J_{1}}\right)=0$ in $E\left(A_{f}\right)$. By (4.2), $w_{J_{1}}$ induces a global orientation of $\left(J_{1}\right)_{f}$. Hence $\left(J_{1}\right)_{f}=\left(b_{1}, \ldots, b_{n}\right)$ and $w_{J_{1}} \otimes A_{f}$ is induced by the set of generators b_{1}, \ldots, b_{n} of $\left(J_{1}\right)_{f} \bmod \left(J_{1}\right)_{f}^{2}$. Choose k large enough such that $f^{2 k} b_{i} \in J_{1}, 1 \leq i \leq n$. Since f is a unit modulo J_{1}, by (5.4), $\left(J_{1}, w_{J_{1}}\right)=\left(J_{1}, \overline{f^{2 k n}} w_{J_{1}}\right)$ in $E(A)$. Hence, without loss of generality, we can assume that $b_{i} \in J_{1}$. Now, by lemma (5.5), we get $\sigma \in \mathrm{SL}_{n}\left(A_{f}\right)$ such that if $\left[b_{1}, \ldots, b_{n}\right] \sigma=\left[c_{1}, \ldots, c_{n}\right]$, then $c_{i} \in J_{1}$ and c_{1}, \ldots, c_{n} generate an ideal of height n in A. We claim that $\left(c_{1}, \ldots, c_{n}\right)=J_{1} \cap J_{2}$, where $\left(J_{2}\right)_{f}=A_{f}$.

Let $\left(c_{1}, \ldots, c_{n}\right)=\mathfrak{a}_{1} \cap \ldots \cap \mathfrak{a}_{r} \cap \mathfrak{a}_{r+1} \ldots \cap \mathfrak{a}_{t}$ be a reduced primary decomposition, where \mathfrak{a}_{i} is \mathfrak{m}_{i}-primary ideal. Assume that $f \in \mathfrak{m}_{i}$ for $r+1 \leq i \leq t$ and $f \notin \mathfrak{m}_{i}$ for $1 \leq i \leq r$. Then $\left(c_{1}, \ldots, c_{n}\right)_{f}=\left(J_{1}\right)_{f}=\bigcap_{1}^{r}\left(\mathfrak{a}_{i}\right)_{f}$. We observe that $J_{1}=\bigcap_{1}^{r} \mathfrak{a}_{i}$. This follows easily from the fact that f is a unit modulo J_{1} and modulo $\mathfrak{a}_{i}, 1 \leq i \leq r$. Write $J_{2}=\bigcap_{r+1}^{t} \mathfrak{a}_{i}$. Then, we have $\left(c_{1}, \ldots, c_{n}\right)=J_{1} \cap J_{2}$ and $\left(J_{2}\right)_{f}=A_{f}$.

Note that $A / J_{1} \xrightarrow{\sim} A_{f} /\left(J_{1}\right)_{f}$. The image of $\sigma \in \mathrm{SL}_{n}\left(A_{f}\right)$ in $\mathrm{SL}_{n}\left(A_{f} /\left(J_{1}\right)_{f}\right)$ gives rise to an element in $\mathrm{SL}_{n}\left(A / J_{1}\right)$ and hence the n generators of $\left(J_{1}\right)_{f} /\left(J_{1}\right)_{f}^{2}$ gives rise to n generators of J_{1} / J_{1}^{2}.

Now, $J_{1} \neq\left(c_{1}, \ldots, c_{n}\right)$, since $\left(J_{1}, w_{J_{1}}\right)=\left(J_{1}, \overline{f^{2 k n}} w_{J_{1}}\right) \neq 0$ in $E(A)$. Hence J_{2} is a proper ideal of height n. Since $(f)+J_{1}=A$ and $\left(J_{2}\right)_{f}=A_{f}$, we have $J_{1}+J_{2}=A$. Since det $(\sigma)=1, \overline{f^{2 k n}} w_{J_{1}}$ is given by the set of generators c_{1}, \ldots, c_{n} of J_{1} modulo J_{1}^{2}. Therefore, $\left(J_{1}, \overline{f^{2 k n}} w_{J_{1}}\right)+\left(J_{2}, w_{J_{2}}\right)=0$ in $E(A)$, where $w_{J_{2}}$ is given by the set of generators c_{1}, \ldots, c_{n} of J_{2} modulo J_{2}^{2}. Since $\left(J, w_{J}\right)+\left(J_{1}, w_{J_{1}}\right)=0$ in $E(A)$, it follows that $\left(J, w_{J}\right)=\left(J_{2}, w_{J_{2}}\right)$ in $E(A)$. This proves the lemma.

Remark 5.7 The hypothesis A is an affine domain ensures that $\operatorname{dim} A_{f}=n$ and hence $E\left(A_{f}\right)$ is defined.

Lemma 5.8 Let A be an affine domain over a field k of dimension $n \geq 2$ and let P be a projective A-module of rank n having trivial determinant. Let $f \in A$ be a non-zero element. Suppose that the projective A_{f}-module P_{f} has a unimodular element. Then, there exists a surjection $\alpha: P \rightarrow J$, where $J \subset A$ is an ideal of height n such that $J_{f}=A_{f}$.

Proof Suppose P has a unimodular element. Then, by (4.10), $e(P, \chi)=0$ in $E(A)$. Let J be an ideal of height n and generated by n elements such that $f \in J$. Then, for some $w_{J},\left(J, w_{J}\right)=0=e(P, \chi)$ in $E(A)$. By (4.9), there exists a surjection $\alpha: P \rightarrow J$ and $J_{f}=A_{f}$.

Now, assume that P has no unimodular element. Let $e(P, \chi)=\left(J, w_{J}\right)$, where J is an ideal of height n such that J / J^{2} is generated by n elements. Now $\left(J, w_{J}\right) \neq 0$ in $E(A)$, but its image in $E\left(A_{f}\right)=0$. Therefore, by (5.6), there exists an ideal J_{2} of height n such that $\left(J_{2}\right)_{f}=A_{f}$ and $\left(J, w_{J}\right)=\left(J_{2}, w_{J_{2}}\right)$ in $E(A)$. Then $e(P, \chi)=\left(J_{2}, w_{J_{2}}\right)$. Hence, by (4.9), there exists a surjection $\alpha: P \rightarrow J_{2}$ such that $\left(J_{2}, w_{J_{2}}\right)$ is obtained from (α, χ). This proves the lemma.

Definition Let A be a Noetherian ring of dimension n and let P be a projective A-module of rank n. Let $\alpha: P \rightarrow J$ be a surjection. We say that α is a generic surjection, if J has height n. In this case J is said to be a generic surjection ideal or generic section ideal of P.

Lemma 5.9 Let A be an affine domain over a field k of dimension $n \geq 2$ and let P be a projective A-module of rank n having trivial determinant. Let $f \in A$ be a non-zero element. Assume that every generic surjection ideal of P is generated by n elements. Then, every generic surjection ideal of P_{f} is generated by n elements.

Proof Let $\beta: P_{f} \rightarrow \widetilde{J}$ be a generic surjection. Let $J^{\prime}=\widetilde{J} \cap A$. Then $J^{\prime} A_{f}=\widetilde{J}$ and $(f)+J^{\prime}=A$. Let χ be a generator of $\wedge^{n}(P)$, and let $\left(J_{f}^{\prime}, w_{J_{f}^{\prime}}\right)$ be obtained from $\left(\beta, \chi_{f}\right)$. Since $\bar{f} \in A / J^{\prime}$ is a unit, by (5.4), we may replace $w_{J_{f}^{\prime}}$ by $\overline{f^{2 m}} w_{J_{f}^{\prime}}$ for some large integer m and assume that $w_{J_{f}^{\prime}}$ is given by a set of generators of $J^{\prime} / J^{\prime 2}$ which induce $w_{J^{\prime}}$. The element $e(P, \chi)-\left(J^{\prime}, w_{J^{\prime}}\right)$ of $E(A)$ is zero in $E\left(A_{f}\right)$. If $e(P, \chi)-\left(J^{\prime}, w_{J^{\prime}}\right)=0$ in $E(A)$, then $e(P, \chi)=\left(J^{\prime}, w_{J^{\prime}}\right)$. Hence, there exists a surjection from P to J^{\prime}, by (4.9). By assumption, J^{\prime} is generated by n elements. Hence \widetilde{J} is generated by n elements. Therefore, assume otherwise. By (4.12), e $(P, \chi)-\left(J^{\prime}, w_{J^{\prime}}\right)=\left(J_{2}, w_{J_{2}}\right)$ in $E(A)$. By (5.6), we can assume that $\left(J_{2}\right)_{f}=A_{f}$. Since $J^{\prime}+A f=A$, we have $J^{\prime}+J_{2}=A$. Hence $e(P, \chi)=\left(J^{\prime}, w_{J^{\prime}}\right)+\left(J_{2}, w_{J_{2}}\right)=\left(J^{\prime} \cap J_{2}, w_{J^{\prime} \cap J_{2}}\right)$ in $E(A)$, where $w_{J^{\prime} \cap J_{2}}$ is obtained from $w_{J^{\prime}}$ and $w_{J_{2}}$. By (4.9), there exists a surjection $\gamma: P \rightarrow J^{\prime} \cap J_{2}$. By hypothesis, $J^{\prime} \cap J_{2}$ is generated by n elements, as it is a generic surjection ideal of P. Hence $J_{f}^{\prime}=\left(J^{\prime} \cap J_{2}\right)_{f}$ is generated by n elements. This proves the lemma.

Theorem 5.10 Let A be an affine domain over \mathbb{R} of dimension $n \geq 2$ and let P be a projective A-module of rank n having trivial determinant. Assume that for every generic surjection $\alpha: P \rightarrow J$, the generic surjection ideal J is generated by n elements. Then P has a unimodular element.

Proof To any generic surjection $\alpha: P \rightarrow J$, we associate an integer $N(P, \alpha)$, which is equal to the number of real maximal ideals containing J (if \mathcal{M} is a maximal ideal of A containing J, then it is called real if the quotient field A / \mathcal{M} is isomorphic to \mathbb{R}, otherwise it is called a complex maximal ideal and in this case A / \mathcal{M} is isomorphic to $\mathbb{C})$. Let $t(P)=\min N(P, \alpha)$, where α varies over all generic surjections of P.

Case 1. Suppose that $t(P)=0$. Let $\alpha: P \rightarrow J$ be a generic surjection with $N(P, \alpha)=0$. This means that J is contained only in complex maximal ideals. By assumption, J is generated by n elements. These n elements give rise to \widetilde{w}_{J}, a local orientation of J, such that the element $\left(J, \widetilde{w}_{J}\right)=0$ in $E(A)$. Let χ be a generator of $\wedge^{n}(P)$ and $e(P, \chi)=\left(J, w_{J}\right)$ in $E(A)$. Then, by (5.1), $\left(J, w_{J}\right)=\left(J, \bar{u} \widetilde{w}_{J}\right)$ in $E(A)$, where $\bar{u} \in A / J$ is a unit. Since J is contained only in complex maximal ideals, \bar{u} is a square. It follows now from (5.4), that $e(P, \chi)=\left(J, w_{J}\right)=\left(J, \bar{u} \widetilde{w}_{J}\right)=\left(J, \widetilde{w}_{J}\right)=0$ in $E(A)$. Therefore, by (4.10), P has a unimodular element.

Case 2. Suppose that $t(P)=1$. Let $\alpha: P \rightarrow J$ be a generic surjection with $N(P, \alpha)=1$. This means that J is contained only in one real maximal ideal. By assumption, J is generated by n elements. These n elements give rise to \widetilde{w}_{J}, a local orientation of J, such that the element $\left(J, \widetilde{w}_{J}\right)=0=\left(J,-\widetilde{w}_{J}\right)$ in $E(A)$. Let χ be a generator of $\wedge^{n}(P)$ and $e(P, \chi)=\left(J, w_{J}\right)$ in $E(A)$. Let $\left(J, w_{J}\right)=\left(J, \bar{u} \widetilde{w}_{J}\right)$ in $E(A)$, where $\bar{u} \in A / J$ is a unit. Then, since J is contained only in one real maximal ideal, it follows, as in case 1 , that either $\bar{u} \in A / J$ is a square or $-\bar{u}$ is a square. Therefore, it follows that either $\left(J, w_{J}\right)=\left(J, \widetilde{w}_{J}\right)$ or $\left(J, w_{J}\right)=\left(J,-\widetilde{w}_{J}\right)$ in $E(A)$. In any case, $\left(J, w_{J}\right)=0$ in $E(A)$ and hence, by (4.10), P has a unimodular element.

Case 3. Now, we show that under the assumption of the theorem $t(P) \leq 1$ and hence the theorem will be proved. Suppose $N(P, \alpha)=r \geq 2$. Let $\mathfrak{m}_{1}, \ldots, \mathfrak{m}_{r}$ be the real maximal ideals containing J. Let $f \in A$ be chosen so that f belongs to only the real maximal ideals $\mathfrak{m}_{2}, \ldots, \mathfrak{m}_{r}$ (Such an f exists, for choose a set of generators h_{1}, \ldots, h_{k} of $\mathfrak{m}_{2} \cap \ldots \cap \mathfrak{m}_{r}$. Take $\left.f=h_{1}^{2}+\ldots+h_{k}^{2}\right)$. Then $N\left(P_{f}, \alpha_{f}\right)=1$ and hence $t\left(P_{f}\right) \leq 1$. Since, for every generic surjection $\alpha: P \rightarrow J, J$ is generated by n elements, it follows from (5.9), that for every generic surjection $\beta: P_{f} \rightarrow J_{f}^{\prime}, J_{f}^{\prime}$ is generated by n elements. Hence, by cases 1 and $2, P_{f}$ has a unimodular element. Therefore, by (5.8), there exists a surjection $\gamma: P \rightarrow J_{1}$, where J_{1} is an ideal of height n such that $\left(J_{1}\right)_{f}=A_{f}$. Since $\mathfrak{m}_{2}, \ldots, \mathfrak{m}_{r}$ are the only real maximal ideals containing f, it follows that $N(P, \gamma)=r-1$. Repeating this process, we see that $t(P) \leq 1$. This proves the theorem.

Chapter 6

The Weak Euler Class Group of a Noetherian Ring

Let A be a Noetherian ring of dimension $n \geq 2$. We define the weak Euler class group $E_{0}(A)$ of A as follows:

Let S be the set of ideals $\mathcal{N} \subset A$ such that $\mathcal{N} / \mathcal{N}^{2}$ is generated by n elements (where \mathcal{N} is \mathcal{M} primary ideal for some maximal ideal \mathcal{M} of height n). Let G be the free abelian group on the set S.

Let $J=\cap \mathcal{N}_{i}$ be the intersection of finitely many ideals \mathcal{N}_{i}, where \mathcal{N}_{i} is \mathcal{M}_{i}-primary and \mathcal{M}_{i} being distinct maximal ideals of height n. Assume that J / J^{2} is generated by n elements. We associate to J, the element $\sum \mathcal{N}_{i}$ of G. By abuse of notation, we denote this element of G by (J). Let H be the subgroup of G generated by elements of the type (J), where $J \subset A$ is an ideal of height n generated by n elements.

Definition 6.1 The weak Euler class group of A is defined as $E_{0}(A)=G / H$.
Let P be a projective A-module of rank n with trivial determinant and let $\lambda: P \rightarrow J_{0}$ be a surjection, where $J_{0} \subset A$ is an ideal of height n. We define $e(P)=\left(J_{0}\right)$ in $E_{0}(A)$. We show that this assignment is well defined.

Let $\mu: P \rightarrow J_{1}$ be another surjection, where J_{1} is an ideal of height n. Then, by (4.3), there exists a surjection $\alpha(T): P[T] \rightarrow I$, where $I \subset A[T]$ is an ideal of height n with $\alpha(0)=\lambda$ and $\alpha(1)=\mu$. Now, using (4.7), there exists an ideal K of height n comaximal with $I \cap A$ such that $I \cap K A[T]$ is generated by n elements. Therefore $J_{0} \cap K$ and $J_{1} \cap K$ are generated by n elements. Hence $\left(J_{0}\right)=\left(J_{1}\right)$ in $E_{0}(A)$.

We note that there is a canonical surjective homomorphism from $E(A)$ to $E_{0}(A)$ obtained by forgetting orientations.

The aim of this chapter is to prove theorem (6.9), i.e. if A is Noetherian ring of even dimension n, then (J) is zero in $E_{0}(A)$ if and only if J is a surjective image of a stably free A-module of rank n.

This is proved along the same lines as (4.2): first we prove some addition and subtraction principles (6.8), and then using the group theoretic lemma (4.1), we prove the theorem.

Lemma 6.2 Let A be a ring and let P be a projective A-module of rank n. Let α be any element of P^{*}. Let $p_{0}, p_{1}, \ldots, p_{n}$ be $n+1$ elements of P. Let $w_{i} \in \wedge^{n}(P)$ be defined as follows : $w_{0}=$ $\alpha\left(p_{0}\right)\left(p_{1} \wedge p_{2} \wedge \ldots \wedge p_{n}\right), w_{i}=\alpha\left(p_{i}\right)\left(p_{0} \wedge \ldots \wedge p_{i-1} \wedge p_{i+1} \wedge \ldots \wedge p_{n}\right), \quad 1 \leq i \leq n$. Then $\sum_{i=0}^{n}(-1)^{i} w_{i}=0$.

Proof Let e denote the element $(1,0) \in A \oplus P$. The map $x \mapsto e \wedge x$ is an isomorphism from $\wedge^{n}(P) \xrightarrow{\theta} \wedge^{n+1}(A \oplus P)$. Let $w=\sum_{i=0}^{n}(-1)^{i} w_{i}$. Now, consider the map $\gamma: P \rightarrow A \oplus P$ defined by $\gamma(p)=(\alpha(p), p)$. We obtain an induced map $\wedge^{n+1} \gamma: \wedge^{n+1} P \rightarrow \wedge^{n+1}(A \oplus P)$. We get $\wedge^{n+1} \gamma\left(p_{0} \wedge\right.$ $\left.\ldots \wedge p_{n}\right)=e \wedge w+p_{0} \wedge \ldots \wedge p_{n}$. But $\wedge^{n+1}(P)=0$ hence $e \wedge w=0$. But, the map θ is an isomorphism, hence $w=0$.

Lemma 6.3 Let A be a Noetherian ring and let P be a projective A-module of rank n. Suppose that we are given the following short exact sequence

$$
0 \rightarrow P_{1} \rightarrow A \oplus P \xrightarrow{(b,-\alpha)} A \rightarrow 0 .
$$

Let $\left(a_{0}, p_{0}\right) \in A \oplus P$ be such that $a_{0} b-\alpha\left(p_{0}\right)=1$. Let $q_{i}=\left(a_{i}, p_{i}\right) \in P_{1}, 1 \leq i \leq n$. Then,
(1) The map $\delta: \wedge^{n}\left(P_{1}\right) \rightarrow \wedge^{n}(P)$ given by $\delta\left(q_{1} \wedge \ldots \wedge q_{n}\right)=a_{0}\left(p_{1} \wedge \ldots \wedge p_{n}\right)+\sum_{i=1}^{n}(-1)^{i} a_{i}\left(p_{0} \wedge\right.$ $\left.\ldots \wedge p_{i-1} \wedge p_{i+1} \wedge \ldots \wedge p_{n}\right)$
is an isomorphism.
(2) $\delta\left(b q_{1} \wedge \ldots \wedge q_{n}\right)=p_{1} \wedge \ldots \wedge p_{n}$.

Proof Let $e=(1,0), f=\left(a_{0}, p_{0}\right)$ in $A \oplus P$. Then $A \oplus P=A f \oplus P_{1}$ and as in (6.2), $f \wedge q_{1} \wedge \ldots \wedge q_{n}=$ $e \wedge w$ in $\wedge^{n+1}(A \oplus P)$, where $w=a_{0}\left(p_{1} \wedge \ldots \wedge p_{n}\right)+\sum_{i=1}^{n}(-1)^{i} a_{i}\left(p_{0} \wedge \ldots \wedge p_{i-1} \wedge p_{i+1} \wedge \ldots \wedge p_{n}\right)$.

Since the map $x \mapsto e \wedge x$ is an isomorphism from $\wedge^{n}(P)$ to $\wedge^{n+1}(A \oplus P)$, result (1) follows. Since $q_{i}=\left(a_{i}, p_{i}\right) \in P_{1}$, we have $b a_{i}=\alpha\left(p_{i}\right), 1 \leq i \leq n$. Moreover, $b a_{0}=1+\alpha\left(p_{0}\right)$. Therefore, (2) follows from (6.2).

Lemma 6.4 Let A be a Noetherian ring and let P be a projective A-module of rank n. Suppose that we are given the following exact sequence

$$
0 \rightarrow P_{1} \rightarrow A \oplus P \stackrel{(b,-\alpha)}{\longrightarrow} A \rightarrow 0
$$

Then, (i) The map $\beta: P_{1} \rightarrow A$ given by $\beta(q)=c$, where $q=(c, p)$, has the property that $\beta\left(P_{1}\right)=\alpha(P)$. (ii) The map $\Phi: P \rightarrow P_{1}$ given by $\Phi(p)=\left(\alpha(p)\right.$, bp) has the property that $\beta \Phi=\alpha$ and $\delta \wedge^{n}(\Phi)$, where δ is as in (6.3), is scalar multiplication by b^{n-1}.

Proof Let $c \in \beta\left(P_{1}\right)$. Then, there exists $q=(c, p) \in P_{1}$ such that $\beta(q)=c$. Since $q \in P_{1}$, we have $b c=\alpha(p)$. Also, there exists $q_{0}=\left(a_{0}, p_{0}\right) \in A \oplus P$ such that $a_{0} b-\alpha\left(p_{0}\right)=1$. Now, $\alpha\left(a_{0} p-c p_{0}\right)=c$, hence $c \in \alpha(P)$. Conversely, let $c=\alpha(p), p \in P$. Then $b c=\alpha(b p)$. This shows that $(c, b p) \in P_{1}$, and hence $c \in \beta\left(P_{1}\right)$. This proves the first part.

The map $\delta: \wedge^{n}\left(P_{1}\right) \rightarrow \wedge^{n}(P)$ is given by

$$
\delta\left(q_{1} \wedge \ldots \wedge q_{n}\right)=a_{0}\left(p_{1} \wedge \ldots \wedge p_{n}\right)+\sum_{i=1}^{n}(-1)^{i} a_{i}\left(p_{0} \wedge \ldots \wedge p_{i-1} \wedge p_{i+1} \wedge \ldots \wedge p_{n}\right),
$$

where $q_{i}=\left(a_{i}, p_{i}\right) \in P_{1}, 1 \leq i \leq n$, and $\left(a_{0}, p_{0}\right) \in A \oplus P$. We have

$$
\begin{aligned}
& \delta \wedge^{n}(\Phi)\left(p_{1} \wedge \ldots \wedge p_{n}\right)=\delta\left(\left(\alpha\left(p_{1}\right), b p_{1}\right) \wedge \ldots \wedge\left(\alpha\left(p_{n}\right), b p_{n}\right)\right) \\
& =a_{0} b^{n}\left(p_{1} \wedge \ldots \wedge p_{n}\right)+\sum_{i=1}^{n}(-1)^{i} \alpha\left(p_{i}\right) b^{n-1}\left(p_{0} \wedge \ldots \widehat{\wedge p_{i}} \ldots \wedge p_{n}\right) \\
& =b^{n-1}\left(\left(1+\alpha\left(p_{0}\right)\right)\left(p_{1} \wedge \ldots \wedge p_{n}\right)+\sum_{i=1}^{n}(-1)^{i} \alpha\left(p_{i}\right)\left(p_{0} \wedge \ldots \widehat{\wedge p_{i}} \ldots \wedge p_{n}\right)\right) \\
& =b^{n-1}\left(p_{1} \wedge \ldots \wedge p_{n}+\alpha\left(p_{0}\right)\left(p_{1} \wedge \ldots \wedge p_{n}\right)+\sum_{i=1}^{n}(-1)^{i} \alpha\left(p_{i}\right)\left(p_{0} \wedge \ldots \widehat{p_{i}} \ldots \wedge p_{n}\right)\right) \\
& =b^{n-1}\left(p_{1} \wedge \ldots \wedge p_{n}\right), \text { by }(6.2) .
\end{aligned}
$$

Lemma 6.5 Let A be a Noetherian ring of dimension $n \geq 2$. Let P be a projective A-module of rank n with trivial determinant and let χ be an orientation of P. Let $\alpha: P \rightarrow J$ be a surjection, where $J \subset A$ be an ideal of height n and let $\left(J, w_{J}\right)$ be obtained from (α, χ). Let $a, b \in A$ be such that ab $=1$ modulo J and let P_{1} be the kernel of the surjection $(b,-\alpha): A \oplus P \rightarrow A$. Let $\beta: P_{1} \rightarrow J$ be as in (6.4) and let χ_{1} be the orientation of P_{1} given by $\delta^{-1} \chi: A \xrightarrow{\sim} \wedge^{n}\left(P_{1}\right)$ (where δ is as in (6.3)). Then $\left(J, \overline{a^{n-1}} w_{J}\right)$ is obtained from $\left(\beta, \chi_{1}\right)$.

Proof We have an exact sequence $0 \rightarrow P_{1} \rightarrow A \oplus P \xrightarrow{(b,-\alpha)} A \rightarrow 0$. The map $\beta: P_{1} \rightarrow J$ is defined by $\beta(q)=c$, where $q=(c, p)$. By (6.4), we have $\beta\left(P_{1}\right)=\alpha(P)=J$. Since P_{1} is stably isomorphic to P, determinant of P_{1} is trivial. Let $\delta: \wedge^{n}\left(P_{1}\right) \xrightarrow{\sim} \wedge^{n}(P)$ be an isomorphism defined in (6.3). Let $\chi_{1}=\delta^{-1} \chi: A \xrightarrow{\sim} \wedge^{n}\left(P_{1}\right)$ be an orientation of P_{1}. Then, by (6.4), the map $\Phi: P \rightarrow P_{1}$ given by $\Phi(p)=(\alpha(p), b p)$ has the property that $\beta \Phi=\alpha$ and $\delta \wedge^{n}(\Phi)$ is a scalar multiplication by b^{n-1}. By (2.16), the map $\Phi \otimes A / J: P / J P \xrightarrow{\sim} P_{1} / J P_{1}$ is an isomorphism. Let $\bar{\gamma}:(A / J)^{n} \xrightarrow{\sim} P / J P$ be an isomorphism such that $\wedge^{n}(\bar{\gamma})=\bar{\chi}$ and $w_{J}=\overline{\alpha \gamma}$. Consider the commutative diagram

Since $\wedge^{n}(\bar{\Phi} \bar{\gamma})=\bar{\delta}^{-1} \overline{b^{n-1}} \bar{\chi}=\overline{b^{n-1}} \bar{\chi}_{1}$. Hence $\bar{\chi}_{1}=\overline{a^{n-1}} \wedge^{n}(\bar{\Phi} \bar{\gamma})$, since $a b=1$ modulo J. Let θ be an automorphism of $(A / J)^{n}$ of determinant $\overline{a^{n-1}}$. Now, consider the isomorphism $\bar{\Phi} \bar{\gamma} \theta:(A / J)^{n} \xrightarrow{\sim}$ $P_{1} / J P_{1}$. Then $\left(J, \widetilde{w}_{J}\right)$ is obtained from $\left(\beta, \chi_{1}\right)$, where $\widetilde{w}_{J}=\overline{\beta \bar{\Phi}} \bar{\theta}=\overline{\alpha \gamma} \theta=w_{J} \theta=\overline{a^{n-1}} w_{J}$. Hence $\left(J, \overline{a^{n-1}} w_{J}\right)$ is obtained from $\left(\beta, \chi_{1}\right)$. This proves the lemma.

Lemma 6.6 Let A be a Noetherian ring of even dimension n. Let P be a stably free A-module of rank n and let χ be a generator of $\wedge^{n}(P)$. Suppose that $e(P, \chi)=\left(J, w_{J}\right)$ in $E(A)$, where J is an ideal of height n and w_{J} is a local orientation of J. Then, there exists an ideal J^{\prime} of height n which is generated by n elements and a local orientation $w_{J^{\prime}}$ of J^{\prime} such that $\left(J, w_{J}\right)=\left(J^{\prime}, w_{J^{\prime}}\right)$ in $E(A)$. Moreover, J^{\prime} can be chosen to be comaximal with any given ideal of height n.

Proof By Bass Cancellation theorem (1.27), we have $P \oplus A \simeq A^{n+1}$. We have $P=A^{n+1} /\left(a_{0}, \ldots, a_{n}\right)$ for some unimodular row $\left(a_{0}, \ldots, a_{n}\right)$ in A^{n+1}. We can assume, by (2.3), that $J^{\prime}=\left(a_{1}, \ldots, a_{n}\right)$ is an ideal of height n. Further, we can assume that J^{\prime} is comaximal with any given ideal of height n.

Let \bar{e}_{i} be the image of the basis vector e_{i} of A^{n+1} in P. Then, there exists a surjective map $\psi: P \rightarrow J^{\prime}$ defined by $\psi\left(\bar{e}_{0}\right)=0, \psi\left(\bar{e}_{i}\right)=a_{i+1}$ if i is odd and $\psi\left(\bar{e}_{i}\right)=-a_{i-1}$ if i is even. The map ψ is well defined, since we have $\sum_{0}^{n} a_{i} \bar{e}_{i}=0$ in P and $\psi\left(\sum_{0}^{n} a_{i} \bar{e}_{i}\right)=0$. Computing $e(P, \chi)$ using ψ, we see that $\left(J, w_{J}\right)=\left(J^{\prime}, w_{J^{\prime}}\right)$.

Lemma 6.7 Let A be a Noetherian ring of even dimension n. Let P be a projective A-module of rank n having trivial determinant and let χ_{P} be a generator of $\wedge^{n}(P)$. Let $e\left(P, \chi_{P}\right)=\left(J, w_{J}\right)$ in $E(A)$, where J is an ideal of height n and w_{J} is a local orientation of J. Suppose \widetilde{w}_{J} is another local orientation of J. Then, there exists a projective A-module P^{\prime} of rank n with $\left[P^{\prime}\right]=[P]$ in $K_{0}(A)$ and a generator $\chi_{P^{\prime}}$ of $\wedge^{n}\left(P^{\prime}\right)$ such that $e\left(P^{\prime}, \chi_{P^{\prime}}\right)=\left(J, \widetilde{w}_{J}\right)$ in $E(A)$.

Proof By (5.1), $\widetilde{w}_{J}=\bar{b} w_{J}$ for some unit $\bar{b} \in A / J$. By (6.5), there exists a projective A-module P^{\prime} of rank n with $\left[P^{\prime}\right]=[P]$ in $K_{0}(A)$ and a generator $\chi_{P^{\prime}}$ of $\wedge^{n}\left(P^{\prime}\right)$ such that $e\left(P^{\prime}, \chi_{P^{\prime}}\right)=\left(J, \overline{b^{n-1}} w_{J}\right)$ in $E(A)$. Applying (5.4), we get the result.

Proposition 6.8 Let A be a Noetherian ring of even dimension n. Let J_{1} and J_{2} be two comaximal ideals of A of heights n and $J_{3}=J_{1} \cap J_{2}$. Then
(i) (Addition Principle) If J_{1} and J_{2} are surjective images of stably free A-modules of rank n, then so is the J_{3}.
(ii) (Subtraction Principle) If J_{1} and J_{3} are surjective images of stably free A-modules of rank n, then so is J_{2}.

Proof (i) Suppose that J_{1} and J_{2} are surjective images of stably free A-modules. Hence, there exist surjections $\psi_{1}: P_{1} \rightarrow J_{1}$ and $\psi_{2}: P_{2} \rightarrow J_{2}$, where P_{1} and P_{2} are stably free A-modules of rank n. We choose orientations χ_{1} and χ_{2} of P_{1} and P_{2} respectively. Then $e\left(P_{1}, \chi_{1}\right)=\left(J_{1}, w_{J_{1}}\right)$ and $e\left(P_{2}, \chi_{2}\right)=\left(J_{2}, w_{J_{2}}\right)$ in $E(A)$ for some local orientations $w_{J_{1}}$ and $w_{J_{2}}$ of J_{1} and J_{2} respectively. By (6.6), we can choose two comaximal ideals J_{1}^{\prime} and J_{2}^{\prime} of height n which are generated by n elements such that

$$
\begin{equation*}
\left(J_{1}, w_{J_{1}}\right)=\left(J_{1}^{\prime}, w_{J_{1}^{\prime}}\right) \quad \text { and } \quad\left(J_{2}, w_{J_{2}}\right)=\left(J_{2}^{\prime}, w_{J_{2}^{\prime}}\right) \tag{1}
\end{equation*}
$$

in $E(A)$. Let $J_{3}^{\prime}=J_{1}^{\prime} \cap J_{2}^{\prime}$. Let

$$
\begin{align*}
& \left(J_{1}, w_{J_{1}}\right)+\left(J_{2}, w_{J_{2}}\right)=\left(J_{3}, w_{J_{3}}\right) \tag{2}\\
& \left(J_{1}^{\prime}, w_{J_{1}^{\prime}}\right)+\left(J_{2}^{\prime}, w_{J_{2}^{\prime}}\right)=\left(J_{3}^{\prime}, w_{J_{3}^{\prime}}\right) \tag{3}
\end{align*}
$$

in $E(A)$. Then, we have

$$
\begin{equation*}
\left(J_{3}, w_{J_{3}}\right)=\left(J_{3}^{\prime}, w_{J_{3}^{\prime}}\right) \tag{4}
\end{equation*}
$$

in $E(A)$. Since J_{1}^{\prime} and J_{2}^{\prime} are generated by n elements, by (3.5), J_{3}^{\prime} is also generated by n elements. Therefore, applying (6.7) with P free, there exists a stably free A-module P_{3} of rank n and an
orientation χ_{3} of P_{3} such that $e\left(P_{3}, \chi_{3}\right)=\left(J_{3}^{\prime}, w_{J_{3}^{\prime}}\right)$. Hence, by (4.9), there exists a surjection from P_{3} to J_{3}.
(ii) Assume that J_{1} and J_{3} are surjective images of stably free A-modules of rank n. Let $\psi_{3}: P_{3} \rightarrow$ $\rightarrow J_{3}$ be a surjection, where P_{3} is a stably free A-module of rank n. Let χ_{3} be an orientation of P_{3}. Then

$$
\begin{equation*}
e\left(P_{3}, \chi_{3}\right)=\left(J_{3}, w_{J_{3}}\right) \tag{5}
\end{equation*}
$$

in $E(A)$ for some local orientation $w_{J_{3}}$ of J_{3}. Let $w_{J_{1}}$ and $w_{J_{2}}$ be local orientations of J_{1} and J_{2} respectively, obtained from $w_{J_{3}}$. Then

$$
\begin{equation*}
\left(J_{1}, w_{J_{1}}\right)+\left(J_{2}, w_{J_{2}}\right)=\left(J_{3}, w_{J_{3}}\right) \tag{6}
\end{equation*}
$$

in $E(A)$. Since J_{1} is a surjective image of a stably free A-module of rank n, by (6.7), there exists a stably free A-module P_{1} of rank n such that $e\left(P_{1}, \chi_{1}\right)=\left(J_{1}, w_{J_{1}}\right)$. Now, since P_{1} is stably free, by (6.6), there exists an ideal J_{1}^{\prime} of height n which is generated by n elements and comaximal with J_{2} such that

$$
\begin{equation*}
\left(J_{1}, w_{J_{1}}\right)=e\left(P_{1}, \chi_{1}\right)=\left(J_{1}^{\prime}, w_{J_{1}^{\prime}}\right) \tag{7}
\end{equation*}
$$

Let $J_{1}^{\prime} \cap J_{2}=J_{4}$. Then $w_{J_{1}^{\prime}}$ and $w_{J_{2}}$ induce a local orientation $w_{J_{4}}$ of J_{4} such that

$$
\begin{equation*}
\left(J_{1}^{\prime}, w_{J_{1}^{\prime}}\right)+\left(J_{2}, w_{J_{2}}\right)=\left(J_{4}, w_{J_{4}}\right) \tag{8}
\end{equation*}
$$

By $(6,7)$, we have $\left(J_{3}, w_{J_{3}}\right)=\left(J_{4}, w_{J_{4}}\right)$ in $E(A)$. By (5), we have $e\left(P_{3}, \chi_{3}\right)=\left(J_{4}, w_{J_{4}}\right)$. Let $J_{1}^{\prime}=$ $\left(a_{1}, \ldots, a_{n}\right)$ and let

$$
\left(J_{1}^{\prime},\left[\bar{a}_{1}, \ldots, \bar{a}_{n}\right]\right)+\left(J_{2}, w_{J_{2}}\right)=\left(J_{4}, \widetilde{w}_{J_{4}}\right) .
$$

Then, since $\left(J_{1}^{\prime},\left[\bar{a}_{1}, \ldots, \bar{a}_{n}\right]\right)=0$ in $E(A)$, we have $\left(J_{2}, w_{J_{2}}\right)=\left(J_{4}, \widetilde{w}_{J_{4}}\right)$ in $E(A)$. By (6.7), there exists a projective A-module Q of rank n which is stably isomorphic to P_{3} and hence stably free, and an orientation χ_{Q} of Q such that

$$
e\left(Q, \chi_{Q}\right)=\left(J_{4}, \widetilde{w}_{J_{4}}\right)
$$

Therefore $e\left(Q, \chi_{Q}\right)=\left(J_{2}, w_{J_{2}}\right)$. By (4.9), there exists a surjection from Q to J_{2} and hence the proposition is proved.

Theorem 6.9 Let A be a Noetherian ring of even dimension n. Let $J \subset A$ be an ideal of height n such that J / J^{2} is generated by n elements. Then $(J)=0$ in $E_{0}(A)$ if and only if J is a surjective image of a stably free A-module of rank n.

Proof We will apply lemma (4.1) to prove this theorem.
Let F be the free abelian group on the set (\mathcal{N}), where \mathcal{N} is \mathcal{M}-primary ideal of height n such that $\mathcal{N} / \mathcal{N}^{2}$ is generated by n elements. Define an equivalence relation on the set (\mathcal{N}) by $(\mathcal{N}) \sim\left(\mathcal{N}_{1}\right)$ if $\sqrt{\mathcal{N}}=\sqrt{\mathcal{N}_{1}}$, i.e. \mathcal{N} and \mathcal{N}_{1} both are \mathcal{M}-primary ideals of A. If $J \subset A$ is an ideal of height n and $J=\cap \mathcal{N}_{i}$ is a reduced primary decomposition of J, then denote (J) the element $\sum\left(\mathcal{N}_{i}\right)$ of F. Let S be the set
$\{(J) \in F \mid J$ is surjective image of a stably free A-module of rank $n\}$. Then
(1) Every element of S is nicely reduced.
(2) Let $x, y \in F$ be nicely reduced such that $x+y$ is also nicely reduced. Then if any two of x, y and $x+y$ belongs to S, then so does the third. This follows from (6.8).
(3) Let $x \in F$ be nicely reduced and $x \notin S$ and let $\left(\mathcal{N}_{i}\right)$, for $i=1, \ldots, r$, be finitely many elements of F. Since x is nicely reduced, we have $x=(J)$ for some height n ideal J. Applying (2.14), there exists an ideal J^{\prime} of height n which is comaximal with $J, \mathcal{N}_{i}, i=1, \ldots, r$ such that $J \cap J^{\prime}$ is generated by n elements. Let $y=\left(J^{\prime}\right)$. Then $x+y \in S$.

Let H^{\prime} be the subgroup of F generated by S. Then, by (4.1), if $x \in H^{\prime}$ is nicely reduced, then $x \in S$.

Let H be the subgroup of F generated by $(J) \in F$ where J is generated by n elements. We claim that $H=H^{\prime}$.

Clearly $H \subset H^{\prime}$. For other inclusion, it is enough to show that $S \subset H$. For this, let $(J) \in S$. Then J is surjective image of a stably free A-module P of rank n. Applying (6.6), there exists an ideal J^{\prime} of height n which is generated by n elements such that J^{\prime} is surjective image of P. By (4.7), there exists an ideal K of height n comaximal with J and J^{\prime} such that $J \cap K$ and $J^{\prime} \cap K$ are generated by n elements. Hence $(J) \in H$ and $H=H^{\prime}$.

Suppose $(J)=0$ in $E_{0}(A)$. Then $(J) \in H=H^{\prime}$ is a nicely reduced element. Hence, by $(*)$, we get that J is surjective image of a stably free A-module of rank n.

Proposition 6.10 Let A be a Noetherian ring of dimension n. Let P and P_{1} be two projective A modules of rank n such that $[P]=\left[P_{1}\right]$ in $K_{0}(A)$. Then, there exists an ideal $J \subset A$ of height $\geq n$ such that J is a surjective image of both P and P_{1}.

Proof Since $\operatorname{dim} A=n$ and $[P]=\left[P_{1}\right]$ in $K_{0}(A)$, we have $P \oplus Q \simeq P_{1} \oplus Q$ for some projective A-module Q. We may assume that Q is free, by replacing Q by $Q \oplus Q^{\prime} \simeq A^{t}$. Now, it follows that $P \oplus A \xrightarrow{\sim} P_{1} \oplus A$ by the Bass Cancellation theorem (1.27). Therefore, there exists a short exact sequence

$$
0 \rightarrow P_{1} \rightarrow A \oplus P \xrightarrow{(b,-\alpha)} A \rightarrow 0 .
$$

Further, without loss of generality, we may replace α by $\alpha+b \gamma$ by a transvection, where $\gamma \in P^{*}$, because this will not change the isomorphism class of ker $((b,-\alpha))=P_{1}$, i.e. if ker $((b,-(\alpha+b \gamma)))=P_{2}$, then $P_{1} \xrightarrow{\sim} P_{2}$. Therefore, using (2.12), we may assume that the ideal $\alpha(P)=J$ is such that height $(J) \geq n$. By $(6.4(i)), J$ is also a surjective image of P_{1}. This proves the proposition.

Corollary 6.11 Let A be a Noetherian ring of even dimension n. Let P be a projective A-module of rank n with trivial determinant. Then $e(P)=0$ in $E_{0}(A)$ if and only if $[P]=[Q \oplus A]$ in $K_{0}(A)$ for some projective A-module Q of rank $n-1$.

Proof First, assume that $[P]=[Q \oplus A]$ in $K_{0}(A)$ for some projective A-module Q of rank $n-1$. Then, by (6.10), $e(P)=e(Q \oplus A)$. By (6.9), $e(Q \oplus A)=0$ in $E_{0}(A)$. Hence $e(P)=0$.

Now, we assume that $e(P)=0$ in $E_{0}(A)$. Let $\psi: P \rightarrow J$ be a surjection, where J is an ideal of height n. Let $e(P, \chi)=\left(J, w_{J}\right)$, where χ is a generator of $\wedge^{n}(P)$ and w_{J} is a local orientation
of J. Since $e(P)=(J)=0$ in $E_{0}(A)$, it follows from (6.9) that J is a surjective image of a stably free A-module of rank n. It follows now from (6.7), that there exists a stably free A-module \widetilde{P} of rank n and a generator $\widetilde{\chi}$ of $\wedge^{n}(\widetilde{P})$ such that $e(\widetilde{P}, \widetilde{\chi})=\left(J, w_{J}\right)$. Since \widetilde{P} is a stably free A-module of rank n, by (6.6), there exists an ideal J_{1} of height n which is generated by n elements and a local orientation $w_{J_{1}}$ of J_{1} such that $\left(J, w_{J}\right)=\left(J_{1}, w_{J_{1}}\right)$. Hence, we have $e(P, \chi)=\left(J, w_{J}\right)=\left(J_{1}, w_{J_{1}}\right)$. Let $J_{1}=\left(b_{1}, \ldots, b_{n}\right)$. Then, by (6.7), there exists a projective A-module P^{\prime} of rank n with $\left[P^{\prime}\right]=[P]$ in $K_{0}(A)$ and a generator $\chi_{P^{\prime}}$ of $\wedge^{n}\left(P^{\prime}\right)$ such that $e\left(P^{\prime}, \chi_{P^{\prime}}\right)=\left(J_{1},\left[\bar{b}_{1}, \ldots, \bar{b}_{n}\right]\right)=0$ in $E(A)$. But, then by (4.10), P^{\prime} has a unimodular element. Hence $P^{\prime}=Q \oplus A$. But $[P]=\left[P^{\prime}\right]$ in $K_{0}(A)$. This proves the corollary.

Corollary 6.12 Let A be a Noetherian ring of even dimension n. Let P be a projective A-module of rank n with trivial determinant. Suppose that $e(P)=(J)$ in $E_{0}(A)$, where $J \subset A$ is an ideal of height n. Then, there exists a projective A-module Q of rank n such that $[Q]=[P]$ in $K_{0}(A)$ and J is a surjective image of Q.

Proof By (2.14), there exists a surjection $\psi: P \rightarrow J \cap J_{1}$, where J_{1} is a height n ideal such that $J+J_{1}=A$. Since $e(P)=(J)=\left(J \cap J_{1}\right)$ in $E_{0}(A)$, it follows that $\left(J_{1}\right)=0$ in $E_{0}(A)$. Using ψ we have

$$
e(P, \chi)=\left(J, w_{J}\right)+\left(J_{1}, w_{J_{1}}\right)
$$

in $E(A)$, where χ is a generator of $\wedge^{n}(P)$. Since $\left(J_{1}\right)=0$ in $E_{0}(A)$, it follows from (6.9) that J_{1} is the surjective image of a stably free A-module of rank n. Therefore, by (6.7), there exists a stably free A-module P_{1} of rank n such that $e\left(P_{1}, \chi_{1}\right)=\left(J_{1}, w_{J_{1}}\right)$, where χ_{1} is a generator of $\wedge^{n}\left(P_{1}\right)$ and $w_{J_{1}}$ is a local orientation of J_{1}. By (6.6), we can choose an ideal J_{2} of height n which is generated by n elements and is comaximal with J such that $\left(J_{1}, w_{J_{1}}\right)=\left(J_{2}, w_{J_{2}}\right)$ for some local orientation $w_{J_{2}}$ of J_{2}. Therefore

$$
e(P, \chi)=\left(J, w_{J}\right)+\left(J_{2}, w_{J_{2}}\right)=\left(J \cap J_{2}, w_{J \cap J_{2}}\right)
$$

where $w_{J \cap J_{2}}$ is a local orientation of $J \cap J_{2}$ induced from w_{J} and $w_{J_{2}}$. Therefore, by (4.9), there exists a surjection from P to $J \cap J_{2}$. Since J_{2} is generated by n elements, we can choose a set of generators b_{1}, \ldots, b_{n} of J_{2}. Let

$$
\left(J, w_{J}\right)+\left(J_{2},\left[\bar{b}_{1}, \ldots, \bar{b}_{n}\right]\right)=\left(J \cap J_{2}, \widetilde{w}_{J \cap J_{2}}\right)
$$

By (6.7), there exists a projective A-module Q with $[Q]=[P]$ in $K_{0}(A)$ such that

$$
e\left(Q, w_{Q}\right)=\left(J \cap J_{2}, \widetilde{w}_{J \cap J_{2}}\right)=\left(J, w_{J}\right) .
$$

Hence, by (4.9), there exists a surjection from Q to J. This proves the corollary.
Proposition 6.13 Let A be a Noetherian ring of even dimension n and let $J \subset A$ be an ideal of height n such that J / J^{2} is generated by n elements. Let $w_{J}:(A / J)^{n} \rightarrow J / J^{2}$ be a surjection. Suppose that the element $\left(J, w_{J}\right)$ of $E(A)$ belongs to the kernel of the canonical homomorphism $E(A) \rightarrow E_{0}(A)$. Then, there exists a stably free A-module P_{1} of rank n and a generator χ_{1} of $\wedge^{n}\left(P_{1}\right)$ such that $e\left(P_{1}, \chi_{1}\right)=\left(J, w_{J}\right)$ in $E(A)$.

Proof Since $\left(J, w_{J}\right) \in E(A)$ belongs to the kernel of the canonical homomorphism $E(A) \rightarrow E_{0}(A)$, it follows that $(J)=0$ in $E_{0}(A)$. Hence, by (6.9), there exists a surjection $\alpha: P \rightarrow J$, where P is stably free A-module of rank n. Let χ be a generator of $\wedge^{n}(P)$. Suppose that $\left(J, \widetilde{w}_{J}\right)$ is obtained from (α, χ). By (5.1), there exists $a \in A$ such that $\bar{a} \in A / J$ is a unit and $w_{J}=\bar{a} \widetilde{w}_{J}$. By (6.5), there exists a projective A-module P_{1} of rank n with $\left[P_{1}\right]=[P]$ in $K_{0}(A)$ and a generator χ_{1} of $\wedge^{n} P_{1}$ such that $e\left(P_{1}, \chi_{1}\right)=\left(J, \overline{a^{n-1}} \widetilde{w}_{J}\right)$ in $E(A)$. Since n is even, by (5.4), we have $\left(J, \overline{a^{n-1}} \widetilde{w}_{J}\right)=\left(J, \bar{a} \widetilde{w}_{J}\right)$ in $E(A)$. Hence $e\left(P_{1}, \chi_{1}\right)=\left(J, w_{J}\right)$ in $E(A)$.

Corollary 6.14 Let A be a Noetherian ring of even dimension n. Let P be a projective A-module of rank n with trivial determinant. Let $\alpha: P \rightarrow J$ be a surjection, where $J \subset A$ is an ideal of height n. Then J is a surjective image of a stably free A-module of rank n if and only if $[P]=[Q \oplus A]$ in $K_{0}(A)$ for some projective A-module Q of rank $n-1$.

Proof Let J be a surjective image of a stably free A-module of rank n. Then, by (6.9), $(J)=0$ in $E_{0}(A)$. Hence $e(P)=(J)=0$ in $E_{0}(A)$. Applying (6.11), the result follows.

The converse also follows from (6.9) and (6.11).

Bibliography

[1] S. M. Bhatwadekar, Some results on a question of Quillen, Proc. Internat. Bombay colloquium on Vector Bundles on Algebraic Varieties, Oxford University Press (1987), pp. 107-125.
[2] S.M. Bhatwadekar and A. Roy, Some theorems about projective modules over polynomial rings, J. Algebra (1984), 150-158.
[3] S. M. Bhatwadekar and Raja Sridharan, Projective generation of curves in polynomial extensions of an affine domain and a question of Nori, Invent. Math. 133 (1998), 161-192.
[4] S. M. Bhatwadekar and Raja Sridharan, Zero cycles and the Euler class groups of smooth real affine varieties, Invent. Math. 136 (1999), 287-322.
[5] S. M. Bhatwadekar and Raja Sridharan, The Euler class group of a Noetherian ring, Compositio Math. 122 (2000), 183-222.
[6] D. Eisenbud and E. G. Evans, Generating modules efficiently: Theorems from algebraic K-Theory, J. Algebra 27 (1973), 278-305.
[7] N. S. Gopalakrishnan, Commutative Algebra, Oxonian Press, India.
[8] N. Mohan Kumar, Complete intersections, J. Math. Kyoto Univ. 17 (1977), 533-538.
[9] N. Mohan Kumar, Some theorems on generation of ideals in affine algebras, Comment. Math. Helv. 59 (1984), 243-254.
[10] M. P. Murthy, A survey of obstruction theory for projective modules of top rank, Contemporary Mathematics
[11] M. P. Murthy and R. G. Swan, Vector bundles over affine surfaces, Invent. Math. 36 (1976), 125-165.
[12] M.P.Murthy, Zero cycles and projective modules, Ann. of Math. 140 (1994), 405-434.
[13] B. Plumstead, The conjecture of Eisenbud and Evans, Am. J. Math 105 (1983), 1417-1433.
[14] Daniel Quillen, Projective modules over polynomial rings, Invent. Math. 36 (1976), 167-171.
[15] Ravi A. Rao, The Bass-Quillen conjecture in dimension three but characteristic $\neq 2,3$ via a question of A.Suslin, Invent. Math. 93 (1988), 609-618.
[16] Raja Sridharan, Non-vanishing sections of algebraic vector bundles, J. Algebra 176 (1995), 947958.
[17] Raja Sridharan, Projective modules and complete intersections, K-Theory 13 (1998), 269-278.
[18] Satya Mandal Projective modules and Complete Intersections, Lecture Notes in Mathematics 1672 (1997), ISBN 3-540-63564-5, Springer-Verlag.
[19] Swan, R. G., Towber, J. A class of projective modules which are nearly free, J. Algebra 36 (1975), 427-434.

