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Chapter 0

Introduction

Let A be a commutative Noetherian ring of dimension n and let P be a projective A-module. Then
P is said to have a unimodular element if there exists a surjective A-linear map φ : P →→ A (in other
words P ∼→ Q⊕A). A classical theorem of Serre ([18], Theorem 4.2.1) asserts that if P is a projective
A-module of rank > n, then P has a unimodular element. This result is the best possible in the
general. A standard example to show this is:

Let A = R[X,Y, Z]/(X2 + Y 2 + Z2 − 1) = R[x, y, z] be the coordinate ring of the real 2-sphere.
Let P = A3/A(x, y, z). Then P is a projective A-module of rank 2 and is associated to the tangent
bundle of the real 2-sphere. We have P ⊕ A

∼→ A3 and it is well known that P 6' A2. Hence P does
not have a unimodular element. Thus, Serre’s result is not valid in general if rank P = dimA.

Therefore, it is natural to ask:

Main Question: Let A be a commutative Noetherian ring of dimension n and let P be a projective
A-module of rank n. Can we associate an invariant to P , the vanishing of which would ensure that P
has a unimodular element?

Let A be a smooth affine domain over a field k. Let FnK0(A) denote the subgroup of K0(A)
generated by the images of the residue fields of all the maximal ideals of A. Let P be a projective
A-module of rank n. Then the nth Chern class of P , Cn(P ) =

∑
(−1)i (∧iP ∗) (where P ∗ is the dual

of P ) is an element of FnK0(A). It is easy to see that if P ∼→ Q⊕A, then Cn(P ) = 0.
In the above setting, if k is an algebraically closed, then Murthy ([12], Theorem 3.8) proved that

P has a unimodular element if and only if Cn(P ) = 0. Thus, the only obstruction for P to have a
unimodular element is the possible non-vanishing of its “top Chern class” Cn(P ). However, if k is not
algebraically closed, then the vanishing of the invariant top Chern class is not sufficient, as is shown
by the example of the projective module associated to the tangent bundle of the real 2-sphere.

It is natural to ask, whether in the case of affine domains A of dimension ≥ 2 over arbitrary
base fields, if one can attach a different invariant to a projective A-module P of rank = dimA, the
vanishing of which would ensure that P has a unimodular element. To tackle this question, Nori
defined the notion of the “Euler class group” of a smooth affine variety X = Spec (A) over an infinite
field, attached to any projective A-module P of rank = dimA, an element in this group, called the
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“Euler class” of P and asked whether the vanishing of the Euler class of P would ensure that P has
a unimodular element. In [3], Bhatwadekar and Raja Sridharan settled this question of Nori in the
affirmative for projective modules of trivial determinant. In [3], an explicit description of the Euler
class group is given, which appeared amenable for plausible generalization to arbitrary Noetherian
rings. Indeed such a generalization is possible. In order to answer the Main Question, in [5], to any
Noetherian ring A of dimension n ≥ 2 containing the field of rational numbers, an abelian group E(A)
is attached, defined roughly as follows:

First, one takes the free abelian group on the pairs (J,wJ), where J ⊂ A is an ideal of height
n = dimA such that J/J2 is generated by n elements and wJ a set of n generators of J/J2. The
group E(A) is a quotient of this group by the subgroup generated by (J,wJ), where J = (a1, . . . , an)
and wJ is the induced set of generators of J/J2. It is proved in [5], that if A is a Noetherian ring
containing the field of rationales, then the group E(A) detects the obstruction for a projective A-
module P of rank n with trivial determinant to have a unimodular element, thus answering the Main
Question in the affirmative.

The aim of this thesis is to give a self contained account of the proof of this result and give some
applications. The layout of this thesis is as follows: In chapter 1, we recall some basic definitions and
some well known theorems. In chapter 2, we prove some preliminary results. In chapter 3, we prove
some addition and subtraction principles which are the main ingredients for the proofs of the main
theorems. In chapter 4, we define the notion of Euler class group E(A) and show how to attach to
the pair (P, χ) (where P is a projective A-module of rank n and χ : A ∼→ ∧n(P ) an isomorphism), an
element e(P, χ) of E(A) called the Euler class of (P, χ). We show that P has a unimodular element
if and only if e(P, χ) vanishes. In chapter 5, we use the above result to prove some theorems about
projective modules over real affine varieties. In the last chapter, we define the notion of the weak
Euler class group E0(A), which is obtained as a certain canonical quotient of E(A). We also define the
weak Euler class of a projective A-module of rank n = dimA. It is proved that if A is a Noetherian
ring of even dimension n, and P is a projective A-module of rank n with trivial determinant, then the
weak Euler class e(P ) of P vanishes in E0(A) if and only if [P ] = [Q⊕A] in K0(A) for some projective
A-module Q of rank n− 1.
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Chapter 1

Some Basic Definitions

In this thesis we assume that all rings are commutative Noetherian with unity and all
modules are finitely generated unless otherwise stated. We assume that the multiplicative
closed sets with respect to which we localize do not contain 0. We begin with a few definitions and
subsequently state some basic and useful results without proof.

Definition 1.1 Let A be a ring. The supremum of the lengths r, taken over all strictly increasing
chains p0 ⊂ p1 ⊂ . . . ⊂ pr of prime ideals of A, is called the Krull dimension of A or simply the
dimension of A and is denoted by dimA.

For a prime ideal p of A, the supremum of the lengths r, taken over all strictly increasing chains
p0 ⊂ p1 ⊂ . . . ⊂ pr = p of prime ideals of A, is called the the height of p and is denoted by ht p. Note
that for a Noetherian ring A, ht p <∞.

For an ideal I ⊂ A, the infimum of the heights of p, taken over all prime ideals p ⊂ A such that
I ⊂ p, is defined to be height of I and is denoted by ht I.

For a prime ideal p of A, the supremum of the lengths r, taken over all strictly increasing chains
p = p0 ⊂ p1 ⊂ . . . ⊂ pr of prime ideals of A starting from p, is called the the coheight of p and is
denoted by coht p.

For an ideal I ⊂ A, the supremum of the coheights of p, taken over all prime ideals p ⊂ A such
that I ⊂ p, is defined to be coheight of I and is denoted by coht I.

It follows from the definitions that

ht p = dimAp, coht p = dim(A/p) and ht p + coht p ≤ dimA.

Definition 1.2 An A-module P is said to be projective if it satisfies one of the following equivalent
conditions:

(i) Given A-modules M,N and an A-linear surjective map α : M →→ N , the canonical map from
HomA(P,M) to HomA(P,N) sending θ to αθ is surjective.

(ii) Given an A-module M and a surjective A-linear map α : M →→ P , there exists an A-linear
map β : P →M such that αβ = 1P .
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(iii) There exists an A-module Q such that P ⊕Q ' An for some positive integer n, i.e. P ⊕Q is
free.

Lemma 1.3 (Nakayama Lemma) Let A be a ring and let M be a finitely generated A-module. Let
I ⊂ A be an ideal such that IM = M . Then, there exists a ∈ I such that (1+a)M = 0. In particular,
if I is contained in Jacobson radical of A, then (1 + a) is a unit and hence M = 0.

Corollary 1.4 Let A be a ring and let M be a finitely generated A-module. Let I be an ideal contained
in the Jacobson radical of A and let N be a submodule of M . If N + IM = M , then N = M .

Corollary 1.5 Let A be a local ring with m its maximal ideal. Let M be a finitely generated A-module.
Then µ(M) (the minimum number of generators of M) = dimA/m(M/mM).

Lemma 1.6 Let I be an ideal of A contained in the Jacobson radical of A. Let P, Q be projective
A-modules such that projective A/I-modules P/IP and Q/IQ are isomorphic. Then P and Q are
isomorphic as A-modules.

Proof Let α : P/IP ∼→ Q/IQ be an isomorphism. Since P is projective, α can be lifted to an
A-linear map α : P → Q. We claim that α is an isomorphism.

Since α is surjective, Q = α(P )+IQ. As I is contained in the Jacobson radical of A, by Nakayama
lemma, we get Q = α(P ). Hence α is surjective.

Since Q is projective, there exists an A-linear map β : Q → P such that αβ = IdQ. Let β :
Q/IQ→ P/IP be the map induced by β. Then, we have αβ = IdQ/IQ. As α is an isomorphism, we
get that β is also an isomorphism and in particular, β is surjective. Therefore P = β(Q) + IP . Hence
as before, we see that β is surjective. Now, injectivity of α follows from the fact that αβ = Id. �

Corollary 1.7 Let A be a local ring. Then every projective A-module is free.

Proof Let m be the maximal ideal A and let k = A/m be the residue field of A. Let P be a projective
A-module and let n = dimk(P/mP ). Now, applying (1.6) to the projective modules P and An, we see
that P ∼→ An. �

Definition 1.8 (Zariski Topology) For an ideal I ⊂ A, we denote by V (I), the set of all prime
ideals of A containing I. For f ∈ A, we denote by D(f), the set of all prime ideals of A not containing
the element f . The Zariski topology on Spec (A) is the topology for which all the closed sets are of
the form V (I) for some ideal I of A or equivalently the basic open sets are of the form D(f), f ∈ A.

Definition 1.9 Let P be a projective A-module. In view of (1.7), we define the rank function rankP

as follows:
rankP : Spec (A) → Z is the function defined by rankP (q) = rank of the free Aq-module P ⊗AAq.

If rankP is a constant function taking the value n, then we define the rank of P to be n and denote
it by rank(P ).
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Remark 1.10 rankP is a continuous function (with the discrete topology on Z and Zariski topology
on Spec A). Moreover, rankP is a constant function for every finitely generated projective A-module
P if A has no non trivial idempotent elements.

Remark 1.11 As in corollary (1.7), one can show that if A is a semi-local ring and P is a projective
A-module of constant rank n, then P is free of rank n.

Definition 1.12 Given a projective A-module P and an element p ∈ P , we defineOP (p) = {α(p)|α ∈
P ∗}. We say that p is unimodular if OP (p) = A. The set of all unimodular elements of P is denoted
by Um(P ). If P = An, then, we write Umn(A) for Um(An).

Remark 1.13 OP (p) is an ideal of A and p is unimodular if and only if there exists α ∈ P ∗ such
that α(p) = 1. An element (a1, . . . , an) ∈ An is unimodular if and only if there exists elements
b1, . . . , bn ∈ A such that

∑n
i=1 aibi = 1. If (a1, . . . , an) is unimodular, then we say that the row

[a1, . . . , an] is a unimodular row.

We now state the classical stability theorem of Serre.

Theorem 1.14 (Serre) Let A be a Noetherian ring of dimension n and let P be a projective A-module
of rank > n. Then P ' Q⊕A. ([18], p. 41).

Definition 1.15 Let A be a ring. Let GLn(A) be the subset of Mn(A) consisting of matrices having
determinant equal to a unit in A. Let SLn(A) be the subset of Mn(A) consisting of matrices of
determinant 1. Let eij , i 6= j denote the n×n matrix with 1 in the (i, j) coordinate and having zeros
elsewhere and Eij(a) = In + aeij , a ∈ A. We denote by En(A) the subgroup of SLn(A) generated by
matrices of the type Eij(a), a ∈ A.

Let A be a ring. Then GLn(A) acts on Umn(A). If two rows f, g ∈ Umn(A) are conjugate
under this action, then, we shall write f ∼ g. This defines an equivalence relation on Umn(A). The
equivalence classes of Umn(A) under ∼ are just the orbits of the GLn(A) action. The next proposition
shows how to associate a projective module to a unimodular row.

Proposition 1.16 The orbits of Umn(A) under the GLn(A) action are in 1 − 1 correspondence
with the isomorphism classes of A-modules P for which P ⊕ A ' An. Under this correspondence,
(1, 0, . . . , 0) corresponds to the free module An−1.

Proof To any [b1, . . . , bn] ∈ Umn(A), we can associate P = P (b1, . . . , bn), the kernel of [b1, . . . , bn] :
An →→ A. Such P is a typical module for which P ⊕ A ' An. Suppose β : P (b1, . . . , bn) ∼→
P (c1, . . . , cn) is an isomorphism for another [c1, . . . , cn] ∈ Umn(A). Then, we can complete the
following commutative diagram

0 // P (b1, . . . , bn) //

β

��

An
[b1,...,bn]

//

��
�
�
� A // 0

0 // P (c1, . . . , cn) // An
[c1,...,cn]

// A // 0
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with a suitable isomorphism An ∼→ An (note that the rows are split exact). If σ ∈ GLn(A) denotes
the matrix of this isomorphism, we will have [b1, . . . , bn] = [c1, . . . , cn]σ and hence [b1, . . . , bn] ∼
[c1, . . . , cn]. Conversely, if this equation holds for some σ ∈ GLn(A), then the automorphism An ∼→ An

defined by σ induces an isomorphism of the two kernels : P (b1, . . . , bn) ' P (c1, . . . , cn). �

We now state some well known theorems on unimodular rows.

Theorem 1.17 (Swan, Towber) Let A be a commutative ring and let v = [a2, b, c] ∈ A3 be a
unimodular row. Then v can be completed to a matrix in SL3(A) ([19], Theorem 2.1).

Theorem 1.18 (Suslin) Let A be a commutative ring and let [x0, x1, . . . , xn] ∈ An+1 be a unimodular
row. Let r0, . . . , rn be positive integers such that the product r0r1 . . . rn is divisible by n!. Then the
unimodular row [xr0

0 , x
r1
1 , . . . , x

rn
n ] is completable to a matrix in GLn+1(A) ([18], Theorem 5.3.1).

Theorem 1.19 (Ravi A. Rao) Let A be a Noetherian ring of dimension n. If 1/n! ∈ A, then any
unimodular row v ∈ Umn+1(A[X]) is extended from A, i.e. v ∼GLn+1(A[X]) v(0), i.e. there exists a
matrix in GLn+1(A[X]) which takes v to v(0) ([15], Corollary 2.5).

The following proposition is analogous to (1.16).

Proposition 1.20 For a projective A-module P , the following are equivalent:

(i) For any projective A-module Q, if P ⊕A ∼→ Q⊕A, then P
∼→ Q.

(ii) Given a unimodular element (p, a) ∈ P ⊕ A, there exists an automorphism ∆ of P ⊕ A such
that ∆(p, a) = (0, 1).

Proof (i) ⇒ (ii). Since (p, a) is unimodular element of P ⊕A, there exists an element α ∈ (P ⊕A)∗

such that α(p, a) = 1. Let Q = ker (α). Then, we get the following short exact sequence of A-modules:

0 → Q→ P ⊕A α→ A→ 0

Let β : A → P ⊕ A be an A-linear map such that β(1) = (p, a). Then αβ = 1A. Hence the cyclic
submodule A(p, a) of P ⊕A is isomorphic to A and P ⊕A = Q⊕A(p, a). Therefore, by assumption,
there exists an isomorphism σ : Q ∼→ P .

Let ∆ : Q ⊕ A(p, a) → P ⊕ A be an endomorphism of P ⊕ A defined by ∆(q, 0) = (σ(q), 0) for
q ∈ Q and ∆(p, a) = (0, 1). Then as σ is an isomorphism and A(p, a) ∼→ A, it follows that ∆ is an
automorphism of P ⊕A which sends (p, a) to (0,1).

(ii) ⇒ (i). Let ψ : Q ⊕ A
∼→ P ⊕ A be an isomorphism and let ψ(0, 1) = (p, a). Then as ψ is

an isomorphism, (p, a) is a unimodular element of P ⊕ A. Therefore, by assumption, there exists an
automorphism ∆ of P⊕A such that ∆(p, a) = (0, 1). Hence the isomorphism ∆ψ : Q⊕A ∼→ P⊕A sends
the element (0, 1) of Q⊕A to (0, 1) of P⊕A. Note that Q ∼→ (Q⊕A)/A(0, 1) and P ∼→ (P⊕A)/A(0, 1).
Hence P ∼→ Q. This proves the result. �
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Definition 1.21 Let f1 : M1 → N and f2 : M2 → N be homomorphisms of A-modules. The fiber
product of M1 and M2 over N is a triple (M, g1, g2), where M is an A-module, g1 : M → M1 and
g2 : M → M2 are A-linear maps such that f1g1 = f2g2 and the triple is universal in the sense that
given any other triple (M ′, g′1, g

′
2) of this kind with f1g

′
1 = f2g

′
2, there is a unique homomorphism

h : M ′ →M such that g1h = g′1 and g2h = g′2.

Example 1.22 Let A be a commutative ring let M be an A-module. Let s, t ∈ A be such that
As+At = A. Then

A //

��

As

��

At
// Ast

M //

��

Ms

��

Mt
// Mst

are fiber product diagrams of commutative rings and A-modules respectively.

Lemma 1.23 Let A be a commutative ring and let s, t ∈ A be such that (s, t) = A. Suppose M and
M ′ are two A-modules. Let f1 : Ms → M ′

s be an As-linear map and f2 : Mt → M ′
t be an At-linear

map such that (f1)t = (f2)s.
(1) Then, there is an A-linear map f : M →M ′ such that (f)s = f1 and (f)t = f2.
(2) Further, if f1 and f2 are injective (respectively surjective, isomorphisms), then so is f .

M //

��

f

!!B
BB

BB
BB

B Ms

��

f1

""DD
DD

DD
DD

M ′ //

��

M ′
s

��

Mt
//

f2 !!B
BB

BB
BB

B Mst

f0

""DD
DD

DD
DD

M ′
t

// M ′
st

Definition 1.24 For a projective A-module P , we write (P ) for the isomorphism class of P . The
Grothendieck group K0(A) is an additive abelian group generated by the symbols (P ) with certain
natural relations. To be precise, we let:

G = free abelian group generated by (P ) : P is a projective A-module,
H = subgroup of G generated by (P ⊕Q)− (P )− (Q) : P,Q are projective A-modules,
K0(A) = G/H and [P ] = image of (P ) in K0(A).
Thus we have [P ⊕Q] = [P ] + [Q] in K0(A).

Proposition 1.25 Let A be a ring and let P and Q be projective A-modules. Then the following are
equivalent :

(1) [P ] = [Q] ∈ K0(A),
(2) there exists a projective A-module T such that P ⊕ T ' Q⊕ T ,
(3) there exists a positive integer t such that P ⊕At ' Q⊕At.

11



Definition 1.26 A projective A-module P is said to be stably free if [P ] = [An] in K0(A) for some
n.

Theorem 1.27 (Bass Cancellation Theorem) Let A be a Noetherian ring of dimension n and let
P be a projective A-module of rank > n. Suppose that P ⊕Q ∼→ P ′⊕Q for some projective A-modules
P ′ and Q. Then P

∼→ P ′ i.e. if rank P = rank P ′ > dimA and [P ] = [P ′] in K0(A), then P
∼→ P ′

([18], p. 42).
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Chapter 2

Some Preliminary Results

We begin with some lemmas on general position that are proved using prime avoidance arguments.

Lemma 2.1 Let A be a Noetherian ring, I ⊂ A be an ideal and let p1, . . . , pr be prime ideals of A. Let
I = (a1, . . . , an) *

⋃r
1 pi. Then, there exists b2, . . . , bn ∈ A such that c = a1+b2a2+. . .+bnan /∈

⋃r
1 pi.

Proof Without loss of generality, we may assume that there are no inclusion relations between the
various prime ideals pi. We prove the lemma by induction on the number of prime ideals. Suppose by
induction, we have chosen c2, . . . , cn ∈ A such that d1 = a1 + c2a2 + . . .+ cnan /∈

⋃r−1
1 pi. If d1 /∈ pr,

we set c = d1. We assume therefore, that d1 ∈ pr. Since I * pr, it follows that one of the elements
a2, . . . , an /∈ pr. Without loss of generality, we assume that a2 /∈ pr. We choose an element g ∈ A

such that g ∈
⋂r−1

1 pi and g /∈ pr. Such a choice of g is possible, since there are no inclusion relations
between the various prime ideals pi. The element c = d1 + ga2 is of the form a1 + e2a2 + . . .+ enan

and c /∈
⋃r

1 pi. �

Lemma 2.2 Let A be a Noetherian ring and let I = (a1, . . . , an) ⊂ A be an ideal of height ≥ n. Then,
there exists an elementary matrix θ ∈ En(A) such that [a1, . . . , an]θ = [b1, . . . , bn], I = (b1, . . . , bn)
and ht (b1, . . . , bi) ≥ i, 1 ≤ i ≤ n.

Proof By lemma (2.1), we find elements b2, . . . , bn ∈ A such that the element d1 = a1 + b2a2 +
. . . + bnan does not belong to the minimal prime ideals of A. Hence ht (d1) ≥ 1. The element
d1 is contained in only finitely many height one prime ideals of A, say p1, . . . , pr. Note that I =
(d1, a2, . . . , an). Applying lemma (2.1) once more, we find c1, c3, . . . , cn ∈ A such that the element
d2 = a2 + c1d1 + c3a3 + . . . + cnan does not belong to any pi for 1 ≤ i ≤ r. Hence ht (d1, d2) ≥ 2.
Note that I = (d1, d2, a3, . . . , an). Proceeding as above, we obtain a set of generators d1, . . . , dn of I
with the required properties. We note that the transformations we have performed are all elementary.
Hence a matrix θ exists with the required property. �

Lemma 2.3 Let A be a Noetherian ring and [a1, . . . , an, a] ∈ An+1. Then, there exists [b1, . . . , bn] ∈
An such that ht Ia ≥ n, where I = (a1 + ab1, . . . , an + abn), i.e. if p ∈ Spec (A), I ⊂ p and a /∈ p,
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then ht p ≥ n. In particular, if the ideal (a1, . . . , an, a) has height ≥ n, then ht I ≥ n. Further, if
(a1, . . . , an, a) is an ideal of height ≥ n and I is a proper ideal of A, then ht I = n.

Proof The only prime ideals of A which survive in Aa are those which do not contain a. If every
minimal prime ideal of A contains a, then a is a nilpotent element and every prime ideal contains
a. Hence there is nothing to prove. Assume that a ∈ A is not a nilpotent element. Let p1, . . . , pr

be the minimal prime ideals of A which do not contain a. Applying (2.1), we can find b1 ∈ A such
that (a1 + ab1)Aa 6⊂

⋃r
1 pi. Assume that b1, . . . , bn−1 ∈ A are chosen so that ht (a1 + ab1, . . . , an−1 +

abn−1)Aa ≥ n − 1. Let q1, . . . , qs be the minimal prime ideals of (a1 + ab1, . . . , an−1 + abn−1) which
do not contain a. Applying (2.1), we can find bn ∈ A such that an + abn /∈

⋃s
1 qi and hence ht (a1 +

ab1, . . . , an + abn)Aa ≥ n.

Now, assume that ht (a1, . . . , an, a) ≥ n. We show that ht I ≥ n, where I = (a1+ab1, . . . , an+abn).
Assume ht I = r < n. Let p be a prime ideal of A containing I such that ht p = r. If a /∈ p, then
Ia ⊂ pa and ht pa = r, a contradiction. If a ∈ p, then (I, a) = (a1, . . . , an, a) ∈ p, a contradiction as
ht (a1, . . . , an, a) ≥ n and ht p = r < n. Hence, we have ht I ≥ n.

Assume that ht (a1, . . . , an, a) ≥ n and I is a proper ideal. Then ht I ≤ n, since I is generated by
n elements. Hence ht I = n. �

Lemma 2.4 Let [a0, a1, . . . , an] be a unimodular row. If [a1, . . . , an] is also unimodular, then [a0, a1, . . . , an]
can be taken to [1, 0, . . . , 0] by an elementary transformation.

Proposition 2.5 Let A be a Noetherian ring of dimension d. If n ≥ d+2, then En(A) acts transitively
on Umn(A)

Proof Let (a1, . . . , an) ∈ Umn(A). By (2.3), there exist b1, . . . , bn−1 ∈ A such that (a1+b1an, . . . , an−1+
bn−1an) is a unimodular row. Hence, by (2.4), (a1, . . . , an) can be taken to (1, 0, . . . , 0) by elementary
transformations. �

Lemma 2.6 Let A be a Noetherian ring of dimension n and let [a0, a1, . . . , an] be a unimodular row.
Then, we can elementarily transform [a0, a1, . . . , an] to [b0, . . . , bn] such that (1) ht (b1, . . . , bn) ≥ n

and (2) if J ⊂ A is an ideal of height n, then, we can choose the elementary transformations so that
in addition we have (b1, . . . , bn) + J = A.

Proof Since dim(A/J) = 0, by (2.5), we may perform elementary transformations to obtain [b0, b1, . . . , bn]
such that [b0, b1, . . . , bn] = [0, . . . , 0, 1] modulo J . Further, adding suitable multiple of b0 to b1, . . . , bn,
we may assume by (2.3) that ht (b1, . . . , bn) ≥ n, and in addition that (b1, . . . , bn) + J = A. �

Lemma 2.7 Let A be a Noetherian ring and let J ⊂ A be an ideal. Let J1 ⊂ J and J2 ⊂ J2 be
two ideals of A such that J1 + J2 = J. Then J = J1 + (e) for some e ∈ J2 and J1 = J ∩ J ′, where
J2 + J ′ = A.
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Proof Since J/J1 is an idempotent ideal of A/J1, it is generated by an idempotent element. Let
J/J1 = (e). Since J1 +J2 = J , we can assume that e ∈ J2. Since e is an idempotent element, we have
e− e2 ∈ J1. Take J ′ = J1 + (1− e). Then J2 + J ′ = A, since e ∈ J2. We claim that J ∩ J ′ = J1.

Let x ∈ J ∩ J ′. Then x = y + ez = y1 + (1 − e)z1, where y, y1 ∈ J1 and z, z1 ∈ A. This implies
ez − (1 − e)z1 ∈ J1. But e − e2 ∈ J1, so e2z ∈ J1 and hence ez ∈ J1. Hence x ∈ J1. This proves
J ∩ J ′ = J1. �

Corollary 2.8 Let A be a Noetherian local ring. Let J ⊂ A be an ideal such that J = (f1, . . . , fn)+J2.
Then J = (f1, . . . , fn).

Lemma 2.9 Let A be a Noetherian ring and I ⊂ A an ideal. Let f1, . . . , fn ∈ I and J = (f1, . . . , fn).
Then I = J if and only if I = J + I2 and V (J) = V (I) in Spec (A).

Proof This follows from (2.7), however we give an independent proof. In order to show that J = I,
it is enough to show that Jp = Ip for all p ∈ Spec (A). If p + J , then p + I and Jp = Ip = Ap. If
p ⊃ J , then by hypothesis, p ⊃ I. Since I = (f1, . . . , fn) + I2 by (2.8), we have Jp = Ip. This proves
the lemma. �

Lemma 2.10 (Mohan Kumar) Let A be a Noetherian ring and let I be an ideal of A. Let I/I2 is
generated by n elements as an A/I-module. Let x be any element of A. Then the ideal (I, x) ⊂ A is
generated by n+ 1 elements [8].

Proof Let a1, . . . , an be elements of I such that they generate I modulo I2. In the ringA/(a1, . . . , an),
the ideal I = I/(a1, . . . , an) has the property that I = I2. Hence I is generated by an idempotent.
Let h ∈ I be any lift of this idempotent. We see that I = (a1, . . . , an, h) and h(1− h) ∈ (a1, . . . , an).
So (I, x) = (a1, . . . , an, h, x). We claim that the ideal J = (a1, . . . , an, h+(1−h)x) ⊂ (I, x) is actually
equal to (I, x).

By multiplying h+ (1− h)x by h, we have h2 ∈ J (since h(1− h) ∈ J). Since h = h2 + h(1− h),
we have h ∈ J . Also h+ (1− h)x ∈ J , hence x ∈ J . Thus J = (I, x) which proves the claim. �

Remark 2.11 Implicit in the above proof is a proof of the following assertion. Let A be a ring,
e ∈ A be an idempotent. Then, for any x ∈ A, the ideals (e, x) and (e+ (1− e)x) are equal.

The following is a theorem of Eisenbud and Evans [6] and this is a version proved in ([13], p. 1420).
This was proved in (2.3) when P is free.

Lemma 2.12 Let A be a Noetherian ring and let P be a projective A-module of rank n. Let (α, a) ∈
(P ∗ ⊕ A). Then, there exists an element β ∈ P ∗ such that ht Ia ≥ n, where I = (α + aβ)(P ). In
particular, if the ideal (α(P ), a) has height ≥ n, then ht I ≥ n. Further, if (α(P ), a) is an ideal of
height ≥ n and I is a proper ideal of A,, then ht I = n.

Lemma 2.13 Let A be a Noetherian ring of dimension d and let P be a projective A-module of rank
n > d. Let J ⊂ A be an ideal and let α : P/JP →→ J/J2 be a surjection. Then α can be lifted to a
surjection from P to J .
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Proof Let δ : P → J be a lift of α. Then δ(P ) + J2 = J and hence, by (2.7), there exists c′ ∈ J2

such that δ(P ) + (c′) = J . Now, applying (2.12) to the element (δ, c′) of P ∗ ⊕ A, we see that there
exists γ ∈ P ∗ such that the height of the ideal Nc′ > n, where N = (δ + c′γ)(P ). Since dimA = d

and n > d, it follows that (c′)r ∈ N for some positive integer r. As N + (c′) = J and c′ ∈ J2, we have
N = J , by (2.9). Since δ + c′γ is also a lift of α, we get the result. �

Corollary 2.14 (Moving Lemma) Let A be a Noetherian ring of dimension n ≥ 2 and let P be a
projective A-module of rank n. Let J ⊂ A be an ideal of height n and let α : P/JP →→ J/J2 be a
surjection. Then, there exists an ideal J ′ ⊂ A and a surjection β : P →→ J ∩ J ′ such that:

(i) J + J ′ = A, (ii) β ⊗A/J = α, (iii) ht J ′ ≥ n, and
(iv) Further, given finitely many ideals J1, J2, . . . , Jr of height ≥ 1, J ′ can be chosen with the

additional property that J ′ is comaximal with J1, J2, . . . , Jr.

Proof Let K = J2 ∩ J1 . . . ∩ Jr. Then, by the assumption, htK ≥ 1. Therefore, there exists an
element a ∈ K such that htAa = 1 and hence dim(A/Aa) ≤ n− 1. By (2.13), the surjection α can be
lifted to a surjection δ : P/aP → J/Aa.

Let θ ∈ HomA(P, J) be a lift of δ. Then, as J/Aa = δ(P/aP ), we have θ(P ) +Aa = J . Applying
(2.12) to the element (θ, a) of P ∗ ⊕ A, we see that there exists ψ ∈ P ∗ such that ht J̃a ≥ n, where
J̃ = (θ + aψ)(P ). But (θ(P ), a) = J has height n and J̃ is a proper ideal (J̃ ⊂ J). Hence, by (2.12),
ht J̃ = n. Since J̃ + Aa = J and a ∈ J2, by (2.7), there exists an ideal J ′ of A such that J̃ = J ∩ J ′

and Aa+ J ′ = A. Now, setting β = θ + aψ, we get
(i) β : P →→ J̃ = J ∩ J ′,
(ii) β ⊗A/J = α,
(iii) ht J ′ ≥ n, since ht J̃a ≥ n and
(iv) J ′ is comaximal with J1, . . . , Jr, since Aa+ J ′ = A. �

Lemma 2.15 Let A be a ring and let J be a proper ideal of A. Let J = (a, b) = (c, d). Suppose
[a, b] = [c, d] modulo J2. Then, there exists an automorphism 4 of A2 such that (1) [a, b]4 = [c, d]
and (2) det (4) = 1.

Proof We have a− c, b− d ∈ J2. So, we can write a− c = aa1 + ba2 and b− d = aa3 + ba4, where
ai ∈ J for 1 ≤ i ≤ 4. Let u = 1− a1, v = −a2, w = −a3, and x = 1− a4. Then, we have the following
equation (

u v

w x

)
.

(
a

b

)
=

(
c

d

)
,

Now, we see that ux − vw = 1 − f, for some f ∈ J . There exists t1, t2 ∈ A such that f = dt2 − ct1.
The endomorphism ∆ of A2 given by (

u+ bt2 v − at2
w + bt1 x− at1

)

is an automorphism of determinant 1 with [a, b]∆ = [c, d]. �
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Lemma 2.16 Let A be a Noetherian ring of dimension n and let J ⊂ A be an ideal of height n. Let
P and P1 be projective A-modules of rank n. Let α : P → J and β : P1 → J be maps such that
α ⊗ A/J and β ⊗ A/J are surjective. Let ψ : P → P1 be a homomorphism such that βψ = α. Then
ψ ⊗A/J : P/JP → P1/JP1 is an isomorphism.

Proof By Nakayama lemma, it is enough to prove that if K =
√
J , then ψ : P/KP → P1/KP1 is

an isomorphism. Let “bar” denote reduction modulo K. Note that α and β are surjections. We prove
that α and β are isomorphisms. Since βψ = α, it will follow that ψ is an isomorphism. Since A/K is
semi-local, P/KP and P1/KP1 are free A/K-modules of rank n, by (1.7). Hence, in order to prove
that α and β are isomorphisms, it is enough to prove that J/KJ is a free A/K-module of rank n.
Note that J/KJ = ⊕J/miJ , where mi are the maximal ideals containing K. We prove that J/miJ is
a free A/mi-module of rank n. Since α⊗A/J is surjective, J/J2 is generated by n elements. Hence,
by (2.8), Jmi is generated by n elements. Since ht J = n, Jmi cannot be generated by less than n

elements. Hence µ(Jmi) = n. Hence, by (1.5), J/miJ is a free A/mi-module of rank n. This proves
the lemma. �

Lemma 2.17 Let A be a Noetherian ring and let P be a finitely generated projective A-module. Let
P [T ] denote the projective A[T ]-module P⊗AA[T ]. Let α(T ) : P [T ] →→ A[T ] and β(T ) : P [T ] →→ A[T ]
be two surjections such that α(0) = β(0). Suppose further that the projective A[T ]-modules ker α(T )
and ker β(T ) are extended from A. Then, there exists an automorphism σ(T ) of P [T ] with σ(0) = Id
such that β(T )σ(T ) = α(T ).

Proof First, we show that there exists an automorphism θ(T ) of P [T ] such that θ(0) = Id and
α(T )θ(T ) = α(0)⊗A[T ]. Let Q = ker (α(T )) and L = ker (α(0)). Since Q is extended from A, there
exists an isomorphism µ : L[T ] ∼→ Q. Since the rows of the following diagram

0 // L[T ] //

µ

��

P [T ]
α(0)⊗A[T ]

//

ρ(T )

��
�
�
�

A[T ] //

Id
��

0

0 // Q // P [T ]
α(T )

// A[T ] // 0

are split, we can find an automorphism ρ(T ) of P [T ] such that the above diagram is commutative.
We have α(T )ρ(T ) = α(0) ⊗ A[T ] and hence α(0)ρ(0) = α(0). Consider an automorphism θ(T ) =
ρ(T )(ρ(0) ⊗ A[T ])−1 of P [T ]. Then α(T )θ(T ) = (α(0) ⊗ A[T ])(ρ(0) ⊗ A[T ])−1 = (α(0) ⊗ A[T ]) and
θ(0) = Id.

Similarly, we have an automorphism δ(T ) of P [T ] such that β(T )δ(T ) = β(0)⊗A[T ] and δ(0) = Id.
Consider the automorphism σ(T ) = δ(T )(θ(T ))−1 of P [T ]. As α(0) = β(0), we have β(T )σ(T ) =
(β(0)⊗A[T ])(θ(T ))−1 = (α(0)⊗A[T ])(θ(T ))−1 = α(T ) and σ(0) = Id. This proves the lemma. �

Lemma 2.18 Let A be a ring (not necessarily commutative) and let S ⊂ A be a multiplicative closed
set which is contained in the center of A. Let u(T ) ∈ AS [T ] be a unit such that u(0) = 1. Then, there
exists s ∈ S such that u(sT ) is a unit of A[T ].
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Lemma 2.19 (Quillen) Let A be a ring and let s, t ∈ A be such that As + At = A. Let σ(T ) ∈
GLn(Ast[T ]) be such that σ(0) = Id. Then σ(T ) = (ψ2(T ))t(ψ1(T ))s, where ψ1(T ) ∈ GLn(At[T ])
such that ψ1(0) = Id and ψ1(T ) = Id modulo (s) and ψ2(T ) ∈ GLn(As[T ]) such that ψ2(0) = Id and
ψ2(T ) = Id modulo (t).

Proof Since σ(0) = Id, σ = Id + Tτ(T ). Therefore, by (2.18), we can choose large enough k1 such
that for all k ≥ k1 and for all λ ∈ A, σ(λskT ) ∈ GLn(At[T ]) and σ(λskT ) = Id modulo (sT ). Hence,
we can write σ(λskT ) = (ψ1(T ))s where ψ1(T ) ∈ GLn(At[T ]) and ψ1(T ) = Id modulo (sT ).

Let X and Y be variables. Write δ(X,T, Y ) = σ((X + Y )T )σ(XT )−1. Clearly δ(X,T, Y ) ∈
GLn(Ast[X,T, Y ]), δ(X,T, 0) = Id and δ(X, 0, Y ) = Id. Hence δ(X,T, Y ) = Id + Y T τ̃(X,T, Y ).
We can choose large enough k2 such that for all k ≥ k2 and for all µ ∈ A, δ(X,T, tkµY ) ∈
GLn(As[X,T, Y ]) and is identity modulo (tTY ). Hence, we can write δ(X,T, tkµY ) = (ψ2(X,T, Y ))t,
where ψ2(X,T, Y ) ∈ GLn(As[X,T, Y ]) and ψ2(X,T, Y ) = Id modulo (tT ).

Take k ≥ max (k1, k2). Since As + At = A, we have λsk + µtk = 1 for some λ, µ ∈ A. Now
σ(T ) = σ(T )σ(λskT )−1σ(λskT ). We have σ(λskT ) = (ψ1(T ))s and σ(T )σ(λskT )−1 = σ((λsk +
µtk)T )σ(λskT )−1 = δ(λsk, T, µtk) = (ψ2(λsk, T, 1))t = (ψ2(T ))t. Hence, we have σ(T ) = (ψ2(T ))t(ψ1(T ))s.
This proves the lemma. �

Definition 2.20 Let A be a ring and let M,N be A-modules. Suppose f, g : M ∼→ N be two
isomorphisms. We say that f is isotopic to g if there is an isomorphism φ : M [X] ∼→ N [X] such that
φ(0) = f and φ(1) = g. A matrix θ ∈ GLn(A) is said to be isotopic to identity if the corresponding
automorphism of An is isotopic to identity, i.e. there exists a matrix α(X) ∈ GLn(A[X]) such that
α(0) = Id and α(1) = θ.

Corollary 2.21 Let A be a ring and s, t ∈ A such that As + At = A. Let θ ∈ GLn(Ast) be isotopic
to identity. Then θ splits as θ = (θ1)t(θ2)s, where θ1 ∈ GLn(As) such that θ1 = Id modulo (t) and
θ2 ∈ GLn(At) such that θ2 = Id modulo (s).

Example 2.22 Elementary automorphisms are isotopic to identity. If σ =
∏

(1 + λeij) is an
elementary automorphism of An, then γ(T ) =

∏
(1 + λTeij) is an automorphism of (A[T ])n (in-fact

elementary) such that γ(0) = Id and γ(1) = σ.

Definition 2.23 Let P be a projective A-module of rank n. Let ∧n(P ) denote the nth exterior power
of P . Then ∧n(P ) is a projective A-module of rank 1 and is called the determinant of P . An A-linear
endomorphism α of P gives rise, in a natural way, to an endomorphism ∧n(α) of ∧n(P ). Since rank
of ∧n(P ) = 1, we have EndA(∧n(P )) = A and hence ∧n(α) ∈ A. Note that α is an automorphism if
and only if ∧n(α) is an invertible element of A.

Let P, α be as in the above paragraph. We define the determinant of α to be ∧n(α) and denote it
by det (α). We denote the group of automorphisms of P of determinant 1 by SL(P ).
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Definition 2.24 Let P be a projective A-module. Given an element φ ∈ P ∗ and an element p ∈ P ,
we define an endomorphism φp as the composite P

φ→ A
p→ P.

If φ(p) = 0, then φ2
p = 0 and 1 + φp is a unipotent automorphism of P and hence is an element of

SL(P ).
By a transvection, we mean an automorphism of P of the form 1 + φp, where φ(p) = 0 and either

φ is unimodular in P ∗ or p is unimodular in P . We denote by E(P ) the subgroup of SL(P ) generated
by all the transvections of P .

Remark 2.25 When P = An, a transvection is an element of SLn(A) of the form 1 + vwt, where
v, w ∈ Mn×1(A) and wv = 0 and either v or w is unimodular. For example, eij(λ) = 1 + λeie

t
j is a

transvection. Hence En(A) is a subgroup of E(An).

The following lemma is proved in [2].

Lemma 2.26 Let A be a Noetherian ring, I ⊂ A ideal of A and P a projective A-module. Then any
transvection of P/IP can be lifted to a (unipotent) automorphism of P .

Proof Let φ′ ∈ (P/IP )∗ and p′ ∈ P/IP be such that φ′(p′) = 0. Assume that p′ is unimodular. Let
p ∈ P (resp. θ ∈ P ∗) be a lift of p′ (resp. φ′). Then, we have θ(p) = a for some a ∈ I. Since p′ is
unimodular, there exists a ψ ∈ P ∗ such that ψ(p) = 1 + b for some b ∈ I (as P is projective). Set
φ = (1 + b)θ − aψ. Then φ is a lift of φ′ and φ(p) = 0. Consequently, 1 + φp is an automorphism of
P lifting 1 + φ′p′ .

Now, assume that φ′ is unimodular. Then, there exists q ∈ P such that θ(q) = 1 + b for some
b ∈ I. Set p1 = (1 + b)p− aq. Then θ(p1) = 0. Consequently, 1 + θp1 is an automorphism of P lifting
1 + φ′p′ . �
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Chapter 3

Some Addition and Subtraction

Principles

In [9], Mohan Kumar proved the following theorems

Theorem 3.1 (Addition principle) Let A be a reduced affine ring of dimension n over k, where k
is algebraically closed. Let I and J be two comaximal ideals of height n which are generated by n

elements. Then I ∩ J is also generated by n elements.

Theorem 3.2 (Subtraction principle) Let A be a reduced affine ring of dimension n over k, where k
is algebraically closed. Let I and J be two comaximal ideals of height n. Assume that I and I ∩ J are
generated by n elements. Then J is also generated by n elements.

Theorem 3.3 Let A be a reduced affine ring of dimension n over an algebraically closed field. Let
P be a projective A-module of rank n. If P maps onto an ideal J of height n which is generated by n
elements, then P has a unimodular element.

In this chapter, we prove some addition and subtraction principles. These are modeled upon those
proved by Mohan Kumar. Roughly, the idea is to consider ideals J together with sets of generators
of J/J2 and formulate the addition and subtraction principles using this data.

Theorem 3.4 (Addition Principle) Let A be a Noetherian ring of dimension n ≥ 2. Let J1 and J2

be two comaximal ideals of height n and J3 = J1∩J2. Suppose J1 = (a1, . . . , an) and J2 = (b1, . . . , bn).
Then J3 = (c1, . . . , cn), where ai − ci ∈ J2

1 and bi − ci ∈ J2
2 .

Proof We have J1 = (a1, . . . , an) and J2 = (b1, . . . , bn). Since J1 +J2 = A, we have that [a1, . . . , an]
is a unimodular row over A/J2. Since dim(A/J2) = 0, by (2.5), there exists an elementary matrix
σ ∈ En(A/J2) such that [a1, . . . , an]σ = [1, 0, . . . , 0].

Let σ ∈ En(A) be a lift of σ. Let [a1, . . . , an]σ = [ã1, . . . , ãn]. Then ã1 = 1 modulo J2 and
ã2, . . . , ãn ∈ J2. Hence adding suitable multiples of an to a1, . . . , an−1, we can assume that (1) a1 = 1
modulo J2, (2) if K = (a1, . . . , an−1), then htK = n− 1 and (3) K + J2 = A. Let S = 1 +K. Then
S ∩ J2 6= ∅. Hence [b1, . . . , bn] ∈ An

S is a unimodular row.
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Claim : [b1, . . . , bn] can be taken to [0, . . . , 0, 1] by an element of SLn(AS).

Assume the claim. Then, there exists an element s ∈ S and an automorphism Γ of An
s of

determinant 1 such that [b1, . . . , bn]Γ = [0, . . . , 0, 1]. Since S ∩ J2 6= ∅, without loss of generality,
we may assume that s ∈ J2. Hence, we have (J3)s = (a1, . . . , an)s.

Let s = 1+t, for some t ∈ K. Then (J3)t = (b1, . . . , bn)t. Since t ∈ K, we have that [a1, . . . , an−1] ∈
An−1

t is unimodular row. Hence, by (2.4), [a1, . . . , an] can be taken to [0, . . . , 0, 1] by an elementary
transformation ∆ of An

t . Hence, we have [a1, . . . , an]∆s(Γ−1)t = [b1, . . . , bn].

Let Φ = Γt∆s(Γ−1)t. Then [a1, . . . , an](Γ−1)tΦ = [b1, . . . , bn]. Since ∆s is an elementary
automorphism, Φ is isotopic to identity automorphism of An

st. Hence, by (2.21), there exists a splitting
Φ = (Φ1)t(Φ2)s, where Φ2 is an automorphism of An

t which is identity modulo the ideal (s) and Φ1 is
an automorphism of An

s which is identity modulo the ideal (t). Let

[a1, . . . , an]Γ−1Φ1 = [a′1, . . . , a
′
n] : An

s →→ (J3)s,

[b1, . . . , bn]Φ−1
2 = [b′1, . . . , b

′
n] : An

t →→ (J3)t.

These two surjections patch up to give a surjection ψ = [g1, . . . , gn] : An →→ J3. Since s is unit modulo
J1, the homomorphism A → A/J1 factors through As. Similarly, the homomorphism A → A/J2

factors through At. Now, since φ1 is identity modulo the ideal (t) ⊂ J1 and φ2 is identity modulo
J2, it follows that [g1, . . . , gn] ⊗ A/J1 and [g1, . . . , gn] ⊗ A/J2 differ from [a1, . . . , an] ⊗ A/J1 and
[b1, . . . , bn] ⊗ A/J2 by an element of SLn(A/J1) and SLn(A/J2) respectively. Since dim(A/Ji) = 0
for i = 1, 2, SLn(A/Ji) = En(A/Ji). Hence, using (2.26), we can alter [g1, . . . , gn] by an element of
SLn(A), to get a surjection θ : An →→ J3, say J3 = (c1, . . . , cn), such that ai−ci ∈ J2

1 and bi−ci ∈ J2
2 .

This proves the theorem.

Proof of the claim. First, we assume that n ≥ 3. Let “bar” denote modulo K. Then [b1, . . . , bn]
is a unimodular row in A

n

S . Since dim(A/K) = 1, by (2.5), [b1, . . . , bn] can be taken to [0, . . . , 0, 1] by
an elementary transformation, say ψ ∈ En(AS). Taking a lift ψ ∈ En(AS) of ψ, by (2.26), we see that
[b1, . . . , bn] can be taken to [d1, . . . , dn−1, 1 + dn] by an elementary transformation, where di ∈ KS .
Since 1 + dn is a unit in AS , [d1, . . . , dn−1, 1 + dn] can be taken to [0, . . . , 0, 1 + dn] by an elementary
transformation. Now, [0, . . . , 0, 1 + dn] can be taken to [0, . . . , 0, 1] by an elementary automorphism
of An

S by (2.4). This proves the claim.

When n = 2. Given [b1, b2] is a unimodular row in A2
S . Let a1, a2 ∈ AS be chosen so that

a1b1 + a2b2 = 1. Consider the matrix γ =

[
a1 −b2
a2 b1

]
.

Then [b1, b2]γ = [1, 0] and det (γ) = 1. Hence, the claim is proved. �

Theorem 3.5 (Subtraction Principle) Let A be a Noetherian ring of dimension n ≥ 2. Let J
and J1 be two comaximal ideals of height n. Let J2 = J ∩ J1. Assume that J2 = (a1, . . . , an) and
J1 = (b1, . . . , bn) with ai − bi ∈ J2

1 . Then J = (c1, . . . , cn) with ai − ci ∈ J2.
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Proof Let σ ∈ En(A). Suppose [b1, . . . , bn]σ = [̃b1, . . . , b̃n] and [a1, . . . , an]σ = [ã1, . . . , ãn]. Then,
since bi − ai ∈ J2

1 , we have b̃i − ãi ∈ J2
1 . Therefore, without loss of generality, we can perform

elementary transformations on [b1, . . . , bn].
We have (a1, . . . , an) = J ∩ (b1, . . . , bn). Let “bar” denote modulo J . Then [b1, . . . , bn] is a

unimodular row over A/J . Since dim(A/J) = 0, by (2.5), there exists an elementary transformation
σ ∈ En(A/J) such that [b1, . . . , bn]σ = [1, 0, . . . , 0].

After changing by elementary transformation, we can assume, as in (3.4), that b1 = 1 modulo J ,
bi ∈ J, i = 2, . . . , n and htK = n − 1, where K = (b1, . . . , bn−1). Then K + J = A. Let S = 1 +K.
Consider the natural mapping from A→ AS . Since S ∩ J 6= ∅, we have (a1, . . . , an)S = (b1, . . . , bn)S .

Claim There exists τ ∈ GLn(AS) such that [a1, . . . , an]τ = [b1, . . . , bn].

Assume the claim. Then, there exists an element b = 1 + a ∈ S, a ∈ K and τ ∈ GLn(Ab) such
that [a1, . . . , an]τ = [b1, . . . , bn]. Moreover, since S ∩ J 6= ∅, we can assume that b ∈ J .

Let β : (Ab)n →→ Jb = Ab be defined by β(e1) = 1 and β(ei) = 0, i = 2, . . . , n and let α : (Aa)n →
→ Ja = (a1, . . . , an) be defined by α(ei) = ai. Since [b1, . . . , bn−1] ∈ (Aab)n−1 is a unimodular row,
[b1, . . . , bn] can be taken to [1, 0, . . . , 0] by an elementary transformation ∆ ∈ En(Aab).

Define δ : (Aab)n →→ Jab = Aab = (J1)ab by δ(ei) = bi. Hence, we have αbτa = δ and δ∆ = βa.
From these two relations, we get αbτa∆ = βa. Let ∆̃ = τa∆τ−1

a . Then, we have αb∆̃τa = βa. Hence
αb∆̃ = βaτ

−1
a = (βτ−1)a.

Since ∆ is an elementary automorphism, we have that ∆̃ is isotopic to identity. Hence ∆̃ =
(∆̃1)b(∆̃2)a, by (2.21), where ∆̃1 is an automorphism of (Aa)n which is identity modulo the ideal
(b) and ∆̃2 is an automorphism of (Ab)n which is identity modulo the ideal (a). Hence, we have
αb(∆̃1)b(∆̃2)a = (βτ−1)a and hence, we get (α∆̃1)b = (βτ−1∆̃−1

2 )a. The surjections

α∆̃1 = [c′1, . . . , c
′
n] : (Aa)n →→ Ja

βτ−1∆̃−1
2 = [d′1, . . . , d

′
n] : (Ab)n →→ Jb

patch up to give J = (c1, . . . , cn) such that ci = c′i in Aa and ci = d′i in Ab. Now, we show that
ci − ai ∈ J2. Since b = 1 + a ∈ J , the map A→ A/(b) factors through Aa. Since ∆̃1 = Id (mod (b)),
from the equation α∆̃1 = [c′1, . . . , c

′
n], it follows by going modulo J , that ci − ai ∈ J2.

Proof of the claim. To prove the claim, replace A by AS . Then K = (b1, . . . , bn−1) is an ideal of
height n − 1 such that K ⊂ J(A). Given J = (a1, . . . , an) = (b1, . . . , bn) such that ai − bi ∈ J2 and
htJ = n. To show that there exists τ ∈ GLn(A) such that [a1, . . . , an]τ = [b1, . . . , bn].

Let bi = ai + di, di ∈ J2. Then di =
∑n

j=1 λ
′
ijaj , λ

′
ij ∈ J . Hence, there exists σ ∈ Mn(A) such

that σ = Id (mod J), and [a1, . . . , an]σ = [b1, . . . , bn]. Similarly, there exists θ ∈ Mn(A) such that
θ = Id (mod J) and [b1, . . . , bn]θ = [a1, . . . , an].

Let σ = (λij) and θ = (µij). Then, we have [b1, . . . , bn]θσ = [b1, . . . , bn]. Let γ =
∑n

j=1 λnjµjn.
From the above equation, we get bn = c1b1 + . . .+ cn−1bn−1 + γbn for some c1, . . . , cn−1 ∈ A. Hence,
we have (1−γ)bn ∈ (b1, . . . , bn−1) = K. Since htK = n−1 and K is generated by n−1 elements, any
minimal prime ideal of K is also of height n−1. Hence bn does not belong to any minimal prime ideal
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of K. Hence (1 − γ) ∈
√
K. This implies that (γ) +

√
K = A and so (γ) +K = A. But K ⊂ J(A),

hence (γ) = A. This shows that γ ∈ A is a unit. Hence [λn1, . . . , λnn] is a unimodular row. In fact
[λn1, . . . , λnn] ∈ Umn(A, J), i.e. it is a lift of the unimodular row [0, . . . , 0, 1] in Umn(A/J).

Assume that n ≥ 3. Let “bar” denote modulo K. Since dim(A/K) = 1, by (2.5), the unimodular
row [λn1, . . . , λnn] can be taken to [1, 0, . . . , 0] by an elementary transformation σ1. Since K ⊂
J(A), 1 + K are units in A. We first show that [λn1, . . . , λnn] can be taken to [1, 0, . . . , 0] by
elementary transformation. To see this, first take an elementary lift, say σ1 ∈ En(A) of σ1. Assume
[λn1, . . . , λnn]σ1 = [1 +u1, . . . , un], where ui ∈ K. Since 1 +u1 is a unit, [1 +u1, . . . , un] can be taken
to [1, 0, . . . , 0] by an elementary transformation. Hence, the row [λn1, . . . , λnn] is completable to an
elementary matrix over A. Let ∆ ∈ En(A) be such that

∆ =


∆1 ∗

...
λn1 . . . λnn


n×n

.

Consider the map from En(A) → En(A/J). Let “tilde” denote modulo J . Then

∆̃ =


∆̃1 ∗

...
0 . . . 1


n×n

,

where ∆̃1 ∈ SLn−1(A/J) = En−1(A/J). Let δ ∈ En−1(A) be a lift of ∆̃1. Then, the inverse
δ−1 ∈ En−1(A). Then 

δ−1 0
...

0 . . . 1

∆ =


θ′ ∗

...
λn1 . . . λnn

 ,
where θ′ ∈ Mn−1(A) is such that θ′ = Id (mod J). Hence, after changing by elementary trans-
formation, we can assume that ∆ ∈ En(A) is such that ∆1 = Id (mod J). Let [a1, . . . , an]∆ =
[a′1, . . . , a

′
n−1, bn], where ai − a′i ∈ J2. Then (a1, . . . , an) = (a′1, . . . , a

′
n−1, bn) = (b1, .., bn). Let

a′i = ci + dibn, ci ∈ K and di ∈ A. Consider the matrix

Γ =


1 . . . 0 −d1

...
...

...
0 . . . 1 −dn−1

0 . . . 0 1


n×n

.

Then Γ is an elementary matrix and [a′1, . . . , a
′
n−1, bn]Γ = [c1, . . . , cn−1, bn], where a′i − ci ∈ (bn).

Hence [a1, . . . , an]Γ∆ = [c1, . . . , cn−1, bn] and so (c1, . . . , cn−1, bn) = (b1, . . . , bn). Since ci − ai ∈
J2 + Abn, we have ci − bi ∈ J2 + Abn. Let “bar” denote modulo (bn). Since K + Abn = J , we have
J = (b1, . . . , bn−1) = (c1, . . . , cn−1) and bi − ci ∈ J

2
. Hence, there exists a ψ ∈ Mn−1(A) such that

ψ = Id (mod J) and [b1, . . . , bn−1]ψ = [c1, . . . , cn−1].
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Let ψ = (sij), where sij ∈ A/(bn). Then, we have

hj =
n−1∑
i=1

bisij − cj ∈ (bn), for1 ≤ j ≤ n− 1 .

Let hj = fjbn. Since ψ = Id (mod J), we have sii = 1 + tiibn + dii for 1 ≤ i ≤ n − 1, where
tii ∈ A, dii ∈ K and sij = tijbn + dij for 1 ≤ i, j ≤ n − 1, i 6= j, where tij ∈ A, dij ∈ K. Hence, we
have the following relations

n−1∑
i=1

bi(δij + dij)− cj = bn(fj −
n−1∑
i=1

bitij),

where δij is the Kronecher delta function. Let us denote by

gj = fj −
n−1∑
i=1

bitij , 1 ≤ j ≤ n− 1.

Consider the matrix

α =


1 + d11 . . . d1,n−1 −g1

...
...

...
dn−1,1 . . . 1 + dn−1,n−1 −gn−1

0 . . . 0 1


n×n

.

Then, we have [b1, . . . , bn]α = [c1, . . . , cn−1, bn] and α ∈ GLn(A), since det (α) = 1 + x for some
x ∈ K. But K ⊂ J(A), hence 1 + x is a unit in A. Thus, the claim is proved.

When n = 2, then the claim follows from (2.15). Hence, the theorem is proved.
�

Remark 3.6 In fact, one can prove by the method of ([9], p. 248) that the subtraction principle
(3.5) implies the addition principle (3.4) as follows.

Let I and J be two comaximal ideals of height n. Let I = (a1, . . . , an) and J = (b1, . . . , bn). We
want to show that I∩J = (c1, . . . , cn) with ai−ci ∈ I2 and bi−ci ∈ J2. We can find x1, . . . , xn ∈ I∩J
which generate I ∩ J modulo (I ∩ J)2 such that ai − xi ∈ I2 and bi − xi ∈ J2. Using (2.14), we may
further assume that (x1, . . . , xn) = I∩J∩K, where K is a height n ideal, comaximal with I∩J . Since
I = (a1, . . . , an) and ai − xi ∈ I2, by the subtraction principle, we have J ∩ K = (d1, . . . , dn) such
that xi−di ∈ (J ∩K)2. Since J = (b1, . . . , bn) and bi−xi ∈ J2, bi−di ∈ J2, again by the subtraction
principle, K = (g1, . . . , gn) such that di−gi ∈ K2. Hence xi−gi ∈ K2. Applying subtraction principle
to the ideal I ∩ J and K, we get I ∩ J = (c1, . . . , cn) such that xi − ci ∈ (I ∩ J)2. Hence ai − ci ∈ I2

and bi − ci ∈ J2. This proves the addition principle.

Now, we state the subtraction principle in the general case ([5], Theorem 3.3). Notice that when
P is free, this reduces to (3.5).

Theorem 3.7 (Subtraction Principle) Let A be a Noetherian ring of dimension n ≥ 2. Let P be
a projective A-module of rank n with trivial determinant. Let χ : A ∼→ ∧n(P ) be an isomorphism. Let
J, J ′ be two ideals of A. Let “bar” denote reduction modulo J ′. Assume
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(i) htJ ≥ n, htJ ′ = n and J + J ′ = A.
(ii) α : P →→ J ∩ J ′ and β : An →→ J ′ be two surjections.
(iii) α : P →→ J ′/J ′

2 and β : An →→ J ′/J ′
2 be surjections induced from α and β respectively.

(iv) There exists an isomorphism δ : An ∼→ P such that αδ = β, and ∧n(δ) = χ.
Then, there exists a surjection θ : P →→ J such that θ ⊗A/J = α⊗A/J .

Taking J = A in the above theorem, we obtain the following:

Corollary 3.8 Let A be a Noetherian ring of dimension n ≥ 2. Let P be a projective A-module of
rank n with trivial determinant. Let χ : A ∼→ ∧n(P ) be an isomorphism. Let J ′ ⊂ A be an ideal of
height n. Let “bar” denote reduction modulo J ′. Assume

(i) α : P →→ J ′ and β : An →→ J ′ be two surjections.
(ii) α : P →→ J ′/J ′2 and β : An →→ J ′/J ′2 be surjections induced from α and β respectively.
(iii) There exists an isomorphism δ : An ∼→ P such that αδ = β and ∧n(δ) = χ.
Then P has a unimodular element.
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Chapter 4

The Euler Class Group of a

Noetherian Ring

For the rest of this thesis, we assume that all rings considered contain the field Q of rational numbers.
We make this assumption as we need to apply (4.7) to show that the “Euler class” of a projective
module is well defined. In general, one can define the Euler class group of A with respect to any rank
one projective A-module L. However, we’ll define it with respect to A only.

Let A be a Noetherian ring with dimA = n ≥ 2. We define the Euler class group of A, denoted
by E(A), as follows:

Let J ⊂ A be an ideal of height n such that J/J2 is generated by n elements. Let α and β be two
surjections from (A/J)n to J/J2. We say that α and β are related if there exists an automorphism
σ of (A/J)n of determinant 1 such that ασ = β. It is easy to see that this is an equivalence relation
on the set of generators of J/J2. If α : (A/J)n →→ J/J2 is a surjection, then by [α], we denote the
equivalence class of α. We call such an equivalence class [α] a local orientation of J .

Since dim(A/J) = 0 and n ≥ 2 , we have SLn(A/J) = En(A/J) and therefore, by (2.26), the
canonical map from SLn(A) to SLn(A/J) is surjective. Hence, if a surjection α : (A/J)n →→ J/J2

can be lifted to a surjection θ : An →→ J , and α is equivalent to β : (A/J)n →→ J/J2, then β can also
be lifted to a surjection from An to J . For, let ασ = β for some σ ∈ SLn(A/J). Then, there exists
σ̃ ∈ SLn(A) which is a lift of σ by (2.26). Then θσ̃ : An →→ J is a lift of β.

A local orientation [α] of J is called a global orientation of J if the surjection α : (A/J)n →→ J/J2

can be lifted to a surjection θ : An →→ J .

We shall also, from now on, identify a surjection α with the equivalence class [α] to which α

belongs.

Let M ∈ A be a maximal ideal of height n and N be a M-primary ideal such that N/N 2 is
generated by n elements. Let wN be a local orientation of N . Let G be the free abelian group on the
set of pairs (N , wN ), where N is a M-primary ideal and wN is a local orientation of N .

Let J = ∩N i be the intersection of finitely many ideals N i, where N i is Mi-primary, Mi ⊂ A

being distinct maximal ideals of height n. Assume that J/J2 is generated by n elements. Let wJ be
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a local orientation of J . Then wJ gives rise, in a natural way, to a local orientation wN i
of N i. We

associate to the pair (J,wJ), the element
∑

(N i, wN i
) of G. By abuse of notation, we denote the

element
∑

(N i, wN i
) by (J,wJ).

Let H be the subgroup of G generated by set of pairs (J,wJ), where J is an ideal of height n which
is generated by n elements and wJ is a global orientation of J . We define the Euler class group of A,
E(A) = G/H. Thus E(A) can be thought of as the quotient of the group of local orientations by the
subgroup generated by global orientations.

One of the aims of this chapter is to prove theorem (4.2) which states that if (J,wJ) is zero in
E(A), i.e. (J,wJ) ∈ H, then J is generated by n elements and wJ is a global orientation of J . This
is proved as follows: first assume that J = J1 ∩ J2, where J1 and J2 are two comaximal ideals of
height n which are generated by n elements. Assume wJ be a local orientation of J which is induced
by generators of J1 and J2. Then (J,wJ) = 0 in E(A). By (3.4), J is generated by n elements and
wJ is a global orientation of J . Now assume J2 = J ∩ J1, where J and J1 are comaximal ideals of
height n. Assume J1 = (a1, . . . , an) and J2 = (b1, . . . , bn) such that ai − bi ∈ J2

1 . Assume wJ is a
local orientation of J which is induced by the generators of J2. Then (J,wJ) = 0 in E(A). By (3.5) J
is generated by n elements and wJ is a global orientation of J . Hence, the addition and subtraction
principles are actually special cases of (4.2). Using these two special cases and a formal group theoretic
lemma (4.1), we prove the theorem. Using this, we show (4.10) that E(A) detects the obstruction for
a projective module of trivial determinant to have a unimodular element.

Lemma 4.1 Let F be the free abelian group with basis (ei)i∈I . Let ∼ be an equivalence relation on
(ei)i∈I . Define x ∈ F to be “reduced” if x = e1 + . . . + er and ei 6= ej for i 6= j. For x ∈ F with
x = e1 + . . . + er, define “support” of x to be the set {e1, . . . , er} and denote it by supp (x). Define
x ∈ F to be “nicely reduced” if x = e1 + . . .+ er and ei 6= ej for i 6= j and such that no ei belongs to
the equivalence class of other ej for i, j = 1, . . . , r and i 6= j. Let S ⊂ F be such that :

(1) Every element of S is nicely reduced.
(2) Let x, y ∈ F be nicely reduced such that x + y is also nicely reduced. Then, if any two of x, y

and x+ y belongs to S so does the third one.
(3) Let x ∈ F , x /∈ S and x is nicely reduced and let J ⊂ I be a finite set. Then, there exists y ∈ F

satisfying the following properties:
(i) y is nicely reduced, (ii) x+ y ∈ S and (iii) y + ej is nicely reduced ∀ j ∈ J .
Let H be the subgroup of F generated by S. Then, if x ∈ H is nicely reduced, then x ∈ S.

Remark Let x, y be elements of F with positive coefficients and z = x + y be nicely reduced.
Then x and y are nicely reduced.

Proof Let
y1 + . . .+ yr + x = z1 + . . .+ zs (∗),

where yi, zj ∈ S, 1 ≤ i ≤ r, 1 ≤ j ≤ s. If z1 + . . . + zs is nicely reduced, then by previous remark
y1 + . . .+ yr is also nicely reduced. Hence z1 + . . .+ zs ∈ S and y1 + ...+ yr ∈ S, by assumption (2).
Then x ∈ S, by assumption (2).
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Now, assume that z1+ . . .+zs is not nicely reduced. Given an equality of the type (∗), we associate
a non-negative integer n(∗) in the following manner: For a basis element ei of F , we associate a number
n(ei(∗)) as follows: n(ei(∗))+1 is the cardinality of the set {t|ei+zt is not nicely reduced for 1 ≤ t ≤ s}
and let n(∗) =

∑
n(ei(∗)) for the equation (∗), where the sum is over those ei’s which belong to the

set
⋃s

1 supp(zt). We note that n(∗) = 0 if and only if z1 + . . .+ zs is nicely reduced.
Since z1 + . . .+ zs is not nicely reduced (i.e. n(∗) is positive), there exist zk, zl, 1 ≤ k, l ≤ s, k 6= l

such that zk + zl is not nicely reduced. Without loss of generality, we can assume that k = 1, l = 2.
Let z1 = e1 + w1, z2 = e′1 + w2 and e1 ∼ e′1. Since x is nicely reduced, at least one of e1, e′1 ∈ supp
(yi) for some 1 ≤ i ≤ r. Without loss of generality, we can assume that e1 ∈ supp (y1) and assume
that y1 = e1 + u1. The equation (∗) can be written as

u1 + y2 + . . .+ yr + x = w1 + z2 + . . .+ zs (∗1)

If e1 ∈ S, then by assumption (2) u1, w1 ∈ S. Then, we see that n(∗1) < n(∗). Hence, by induction,
we are through.

Now, we assume that e1 /∈ S. Then, by assumption (2) w1, u1 /∈ S. Let J be the set {i ∈ I| ei ∈⋃s
1 supp (zt)}. Then J ⊂ I is a finite set and w1 ∈ F is nicely reduced such that w1 /∈ S. By

assumption (3), there exists θ ∈ F such that (i) θ is nicely reduced, (ii) w1 + θ ∈ S and (iii) θ+ ej is
nicely reduced ∀j ∈ J . Now, we claim that θ + u1 ∈ S.

Proof of the claim. Let J ′ be the set {i ∈ I|ei ∈
⋃s

1 supp(zt)
⋃

supp(θ)}. Then J ′ ⊂ I is a finite
set. Then, by assumption (3), there exists θ′ ∈ F such that (i) θ′ is nicely reduced, (ii) e1 + θ′ ∈ S
and (iii) θ′ + ej is nicely reduced ∀j ∈ J ′.

We have w1 + θ ∈ S, e1 + θ′ ∈ S. As w1 + θ + e1 + θ′ is nicely reduced, by assumption (2),
w1 + θ + e1 + θ′ ∈ S. Hence e1 + w1 + θ + θ′ ∈ S and e1 + w1 = z1 ∈ S. Then, by assumption (2),
θ+θ′ ∈ S. We have e1 +u1 = y1 ∈ S and e1 +u1 +θ+θ′ ∈ S, as it is nicely reduced. Since e1 +θ′ ∈ S,
we have θ + u1 ∈ S. Thus, the claim is proved.

Now, the equation (∗1) can be written as

(u1 + θ) + y2 + . . .+ yr + x = (w1 + θ) + z2 + . . .+ zs (∗2),

where θ + u1 ∈ S and θ + w1 ∈ S. Hence, we see that n(∗2) < n(∗1), since n(e1(∗2)) < n(e1(∗1))
and n(ei(∗2)) = n(ei(∗1)) or 0 for i 6= 1 according as ei ∈

⋃s
1 supp (zi) or ei ∈ supp (θ). Hence, by

induction, the lemma follows. �

Theorem 4.2 Let A be a Noetherian ring of dimension n ≥ 2. Let J ⊂ A be an ideal of height n
such that J/J2 is generated by n elements and let wJ : (A/J)n →→ J/J2 be a local orientation of J .
Suppose that the image of (J,wJ) is zero in the Euler class group E(A) of A. Then J is generated by
n elements and wJ is a global orientation of J .

Proof Let F be the free abelian group on the set of pairs (N , wN ) such that N/N 2 is generated by
n elements (where N isM-primary ideal andM is a maximal ideal of height n). Define an equivalence
relation on the set of pairs (N , wN ) by (N , wN ) ∼ (N 1, wN 1

) if
√
N =

√
N 1, i.e. N ,N 1 both are

M-primary ideals of A. Let J ⊂ A be an ideal of height n such that J/J2 is generated by n elements
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and J = ∩N i be a reduced primary decomposition of J . Then, denote (J,wJ) =
∑

(N i, wi), where
wi is induced from wJ .

Let S = {(J,wJ) ∈ F |J = (a1, . . . , an) andwJ = (a1, . . . , an)}. We check that the conditions 1, 2
and 3 of lemma (4.1) hold.

(1) If (J,wJ) ∈ S, then it is nicely reduced. Since, if J =
⋂r

i=1N i, then each N i is comaximal
with the other N j , j 6= i and (J,wJ) = (N 1, w1) + . . .+ (N r, wr).

(2) If (J,wJ) and (J ′, wJ′) are nicely reduced elements of F such that (J,wJ) + (J ′, wJ′) is also
nicely reduced (i.e. J + J ′ = A), then, by the addition principle (3.4) and subtraction principle (3.5),
it follows that if any two of (J,wJ), (J ′, wJ′) and (J,wJ) + (J ′, wJ′) belong to S, then so does the
third.

(3) Similarly, by (2.14), condition 3 of lemma (4.1) holds. Now, applying (4.1), the theorem is
proved. �

Lemma 4.3 Let A be a Noetherian ring and let P be a projective A-module of rank n. Let λ : P →→ J0

and µ : P →→ J1 be surjections, where J0, J1 ⊂ A are ideals of height n. Then, there exists an
ideal I of A[T ] of height n and a surjection α(T ) : P [T ] →→ I such that I(0) = J0, α(0) = λ and
I(1) = J1, α(1) = µ, where for a ∈ A, I(a) = {F (a) : F (T ) ∈ I}.

Proof Let α(T ) = Tµ(T ) + (1 − T )λ(T ), where λ(T ) = λ ⊗ A[T ] and µ(T ) = µ ⊗ A[T ]. Then
α(0) = λ and α(1) = µ.

Claim (α(T )(P [T ]) + (T (1− T ))) = (J0A[T ], T ) ∩ (J1A[T ], 1− T ).

Clearly LHS ⊂ RHS. Now, let G = Tf + g = (1 − T )f1 + g1 ∈ RHS, where f, f1 ∈ A[T ], g ∈
J0A[T ], g1 ∈ J1A[T ]. Then T (f+f1) = f1+g1−g. Write G = (1−T )f1+g1 = T (1−T )(f+f1)+(1−
T )g+Tg1. We want to show that (1−T )g+Tg1 ∈ LHS. Now, there exist p(T ), q(T ) ∈ P [T ] such that
λ(T )(p(T )) = g and µ(T )(q(T )) = g1. Hence α(T )((1− T )p(T )) = T (1− T )µ(T )(p(T )) + (1− T )2g ∈
LHS and so (1−T )2g ∈ LHS. But (1−T )2g = (1−T )g−T (1−T )g. Hence (1−T )g ∈ LHS. Similarly,
taking Tq(T ), we can show that Tg1 ∈ LHS. This proves the claim.

Now, replacing α(T ) by α(T ) + T (1 − T )β(T ) for a suitable β(T ) ∈ P [T ]∗, we may assume, by
(2.12), that α(P [T ]) = I has height n. This proves the lemma. �

Lemma 4.4 Let A be a ring and J ⊂ A an ideal. Let B = A1+J . Then JB is contained in the
Jacobson radical of B.

Lemma 4.5 Let A be a ring and let p1 $ p2 $ p3 be a chain of prime ideals of A[T ]. Then, we can
not have p1 ∩A = p2 ∩A = p3 ∩A.

Proof Let us assume contrary. By going modulo p1 ∩ A, we can assume that A is a domain and
p1 ∩ A = p2 ∩ A = p3 ∩ A = 0. Let S = A − {0}. Then S−1A[T ], being principal ideal domain, is of
dimension 1. But S−1p1 $ S−1p2 $ S−1p3. This is a contradiction. �

Lemma 4.6 Let A be a Noetherian ring and let I ⊂ A[T ] be an ideal of height k. Then ht (I ∩A) ≥
k − 1.
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Proof First, we assume that I = p is a prime ideal. Then, we claim that ht p = ht (p ∩ A) if
p = (p ∩A)[T ] and ht p = ht (p ∩A) + 1 if p % (p ∩A)[T ].

Any prime chain q0 $ . . . $ qr $ (p ∩ A) in A extends to a prime chain q0[T ] $ . . . $ qr[T ] $
(p ∩ A)[T ] ⊂ p in A[T ]. Hence, ht p ≥ the given values. Now, let ht (p ∩ A) = r. Then, by the
dimension theorem, (p∩A) is minimal over an ideal a = (a1, . . . , ar). Then (p∩A)[T ] is minimal over
a[T ], so ht ((p ∩A)[T ]) ≤ r. Thus, we have ht p = ht (p ∩A) in the case p = (p ∩A)[T ].

Now, assume (p ∩ A)[T ] $ p, say f ∈ p − (p ∩ A)[T ]. We will be done if we can show that p is
a minimal prime over a[T ] + fA[T ], for then ht p ≤ r + 1. Let p′ be a prime between these. Then
a ⊂ (p′ ∩ A) ⊂ (p ∩ A), so (p′ ∩ A) = (p ∩ A), since (p ∩ A) is minimal prime over a. In particular,
(p ∩A)[T ] $ p′ ⊂ p. By (4.5), we have p = p′.

Now, we prove the lemma for any ideal I ⊂ A[T ]. Let
√
I =

⋂r
1 pi, where p1, . . . , pr are minimal

primes over I. Then
√

(I ∩A) =
⋂r

1(pi ∩ A). The prime ideals minimal over I ∩ A occur among
p1 ∩ A, . . . , pr ∩ A. Choose pi such that ht (I ∩ A) = ht (pi ∩ A). Then ht (I ∩ A) = ht (pi ∩ A) ≥
ht pi − 1 ≥ ht I − 1. This proves the lemma. �

Roughly, the aim of the next proposition (4.7) is to show that if I ⊂ A[T ] is an ideal of height n
which is the surjective image of an extended projective module P [T ] of rank n, then, there exists an
ideal K of A of height ≥ n such that I is comaximal with KA[T ] and I ∩KA[T ] is generated by n

elements. We construct K as follows: we choose K such that I(0) ∩K is generated by n elements.
Further, we choose K to be comaximal with I∩A. This is achieved using (2.12). Then, using patching
argument, we show that I ∩KA[T ] is generated by n elements.

Proposition 4.7 Let A be a Noetherian ring of dimension n ≥ 2 such that (n − 1)! is invertible in
A. Let P be a projective A-module of rank n with trivial determinant. Let χ : A ∼→ ∧n(P ) be an
isomorphism. Suppose that α(T ) : P [T ] →→ I is a surjection, where I ⊂ A[T ] is an ideal of height n.
Then, there exists a homomorphism φ : An → P , an ideal K ⊂ A of height ≥ n which is comaximal
with I ∩A and a surjection ρ(T ) : (A[T ])n →→ I ∩KA[T ] such that:

(i) φ⊗A/N is an isomorphism, where N = (I ∩A) and ∧n(φ) = uχ, where u = 1 modulo I ∩A.
(ii) (α(0)φ)(An) = I(0) ∩K.
(iii) α(T )φ(T )⊗A[T ]/I = ρ(T )⊗A[T ]/I.
(iv) ρ(0)⊗A/K = ρ(1)⊗A/K.

Proof First, we show the existence of φ satisfying (i) and (ii).
Since ht I = n, we have htN ≥ n − 1, by (4.6), and hence dim(A/N) ≤ 1. Since P has trivial

determinant, by Serre’s theorem (1.14), there exists an isomorphism η : (A/N)n ∼→ P/NP . We
can alter η by an automorphism of (A/N)n to obtain an isomorphism δ : (A/N)n ∼→ P/NP such
that ∧n(δ) = χ, where “bar” denotes reduction modulo N . Let δ : An → P be a lift of δ. Since
NA1+N ⊂ J(A1+N ), by (1.6), δ1+N : (A1+N )n → P1+N is an isomorphism.

Let J = I(0), where I(0) = {F (0)|F (T ) ∈ I} and β = α(0) : P →→ J . The equality δ(An)+NP =
P shows that (βδ)(An) + NJ = J . Since NJ ⊂ J2, by (2.7), there exists c ∈ NJ such that
(βδ)(An)+(c) = J . Therefore, applying (2.12) to (βδ, c), we see that there exists γ ∈ (An)∗ such that
the ideal (βδ + cγ)(An) has height at least minimum of n and ht J . Since (βδ + cγ)(An) + (c) = J
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and c ∈ J2, by (2.7), (βδ + cγ)(An) = J ∩K, where K is either A or an ideal of height n which is
comaximal with (c), and hence with N and J .

The next step of the proof is to show that there exists a map φ : An → P which lifts δ and such
that βφ(An) = J ∩K. This is achieved by altering δ by an element of Hom(An, NP ).

Since c ∈ NJ, c =
∑
aidi, where ai ∈ N and di ∈ J . Any element of (An)∗ of the form dγ, where

d ∈ J , has its image contained in J . Now, since di ∈ J and β : P →→ J is surjective, there exists
νi : An → P such that βνi = diγ. Let ν =

∑
aiνi. Then cγ = Σaidiγ =

∑
aiβνi = βν, where ν = 0

modulo N . Let φ = (δ + ν). Then φ is also a lift of δ and hence ∧nφ = uχ, where u = 1 modulo N .
Moreover φ has the property that

βφ(An) = (βδ + βν)(An) = (βδ + β
∑
aiνi)(An) = (βδ +

∑
ai βνi)(An)

= (βδ +
∑
aidiγ)(An) = (βδ + cγ)(An) = J ∩K. This proves (i) and (ii).

Since K + N = A, we have I + KA[T ] = A[T ]. Let I ′ = I ∩ KA[T ]. Then I ′(0) = J ∩ K and
I ′/I ′

2 = I/I2 ⊕KA[T ]/K2A[T ].

Since NA1+N ⊂ J(A1+N ), by (1.6), φ1+N : (A1+N )n ∼→ P1+N is an isomorphism. Further,
I ′1+N = I1+N , as K ∩ (1 + N) 6= ∅. Therefore, the map (α(T )φ(T ))1+N : (A1+N [T ])n → I ′1+N is
surjective, where φ(T ) = φ ⊗ A[T ]. Hence, there exists a ∈ N such that the map (α(T )φ(T ))1+a :
(A1+a[T ])n → I ′1+a is surjective. We can assume that 1 + a ∈ K, as N +K = A. Since a ∈ N ⊂ I,
we have I ′a = KAa[T ]. Therefore, we get a surjection (βφ)⊗Aa[T ] : (Aa[T ])n →→ I ′a.

The elements (βφ)⊗Aa(1+aA)[T ] and (α(T )φ(T ))a(1+aA) are surjections from
(Aa(1+aA)[T ])n →→ Aa(1+aA)[T ] and as α(0) = β, they are equal modulo (T ). Note that dimAa(1+aA) ≤
n− 1 (for if m is any maximal ideal of A, then either a ∈ m or (1 + aA)∩m 6= ∅). The kernels of the
surjections (βφ)⊗Aa(1+aA) and (α(T )φ(T ))a(1+aA) are stably free modules given by unimodular rows.
These are extended from Aa(1+aA) by (1.19), since (n− 1)! is invertible in A. By (2.17), there exists
an σ(T ) ∈ GLn(Aa(1+aA)[T ]) such that σ(0) = Id and (α(T )φ(T ))a(1+aA)σ(T ) = (βφ)⊗Aa(1+aA)[T ].

Let (1 + aa′) = (1 + a)(1 + aa′′), where a′′ ∈ A is chosen so that the following properties hold:

(1) det (σ(T )) is a unit belonging to Aa(1+aa′)[T ] and

(2) (α(T ) φ(T ))a(1+aa′) σ(T ) = (βφ)⊗Aa(1+aa′)[T ].

Let b = (1+aa′). Then σ(T ) ∈ GLn(Aab[T ]) with σ(0) = Id. Since σ(0) = Id, by lemma (2.19), we
see that σ(T ) = τ(T )aθ(T )b, where τ(T ) is an Ab[T ]-automorphism of (Ab[T ])n such that τ(0) = Id
and τ = Id modulo (a) and θ(T ) is an Aa[T ]-automorphism of (Aa[T ])n such that θ(0) = Id and
θ = Id modulo (b).

We have ((α(T )φ(T ))bτ(T ))a = (((βφ)⊗Aa[T ])(θ(T ))−1)b. Hence, the surjections (α(T )φ(T ))b.τ(T ) :
(Ab[T ])n →→ I ′b and ((βφ) ⊗ Aa[T ])(θ(T ))−1 : (Aa[T ])n →→ I ′a patch to yield a surjection ρ(T ) :
(A[T ])n →→ I ′ such that ρ(0) = βφ.

Since θ(T ) = Id modulo the ideal (b) and b ∈ K, it follows from the construction of ρ(T ) that
ρ(T )(ei) − (βφ ⊗ A[T ])(ei) ∈ K2A[T ] ∀i (where ei are the coordinate functions of A[T ]n). Hence
ρ(0)⊗ A/K = ρ(1)⊗ A/K. Further, using the fact that τ(T ) = Id modulo the ideal (a), we see that
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(α(T )φ(T ))⊗A[T ]/I = ρ(T )⊗A[T ]/I. This proves (iii) and (iv) and hence, the proposition is proved.

(A[T ])n //

��

ρ(T )

## ##GG
GG

GG
GG

GG
(Ab[T ])n

��

(α(T )φ(T ))bτ(T )

$$ $$IIIIIIIIII

I ′ //

��

I ′b

��

(Aa[T ])n //

((βφ)⊗Aa[T ])(θ(T ))−1
## ##GGGGGGGGG

(Aab[T ])n

$$IIIIIIIII

I ′a // I ′ab

�

Remark 4.8 Now, we discuss (4.7) in the context of the Euler class group E(A). Let I ⊂ A[T ]
be an ideal of height n, where A is of dimension n. Suppose I is a surjective image of a projective
A[T ]-module P [T ], where P is a projective A-module of rank n having trivial determinant. Further,
assume that I(0) and I(1) are ideals of height n. Now, tensoring the surjection from P [T ] to I and
φ : An → P given in (4.7) with A[T ]/I and composing, we get a ‘local orientation’ w(T ) of I, i.e. a
surjection w(T ) : (A[T ]/I)n →→ I/I2, which in turn gives rise to local orientations w(0) : (A/I(0))n →
→ I(0)/I(0)2 and w(1) : (A/I(1))n →→ I(1)/I(1)2 of I(0) and I(1) respectively.

The gist of (4.7) is that there exists an ideal K ⊂ A of height n and a local orientation wK of K,
which is the class of the surjection ρ(0)⊗A/K : (A/K)n →→ K/K2, such that

(I(0), w(0)) + (K,wK) = 0 = (I(1), w(1)) + (K,wK)

in E(A). Therefore, (I(0), w(0)) = (I(1), w(1)) in E(A).
In case when K = A, we get ρ(T ) : (A[T ])n →→ I, hence I is generated by n elements. Hence w(0)

and w(1) are global orientations of I(0) and I(1) respectively. So (I(0), w(0)) = 0 = (I(1), w(1)) in
E(A).

Let P be a projective A-module of rank n with trivial determinant. Let χ : A ∼→ ∧n(P ) be an
isomorphism. We call χ an orientation of P and χ(1) a generator of ∧n(P ). We write χ for χ(1). To
the pair (P, χ), we associate an element e(P, χ) of E(A) as follows:

Let λ : P →→ J0 be a surjection, where J0 ⊂ A is an ideal of height n. Let “bar” denote reduction
modulo J0. We obtain an induced surjection λ : P/J0P →→ J0/J

2
0 . We choose an isomorphism

γ : (A/J0)n ∼→ P/J0P such that ∧n(γ) = χ.
Let wJ0 be a local orientation of J0 given by λγ : (A/J0)n →→ J0/J

2
0 . Let e(P, χ) be the image in

E(A) of the element (J0, wJ0) of G. We say that (J0, wJ0) is obtained from the pair (λ, χ). We show
that the assignment sending the pair (P, χ) to the element e(P, χ) of E(A) is well defined.

Let µ : P →→ J1 be another surjection, where J1 ⊂ A is an ideal of height n. Then, by (4.3), there
exists an ideal I of A[T ] of height n and a surjection α(T ) : P [T ] →→ I such that α(0) = λ α(1) = µ,
I(0) = J0 and I(1) = J1.
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Then, from the above discussion, we have (J0, wJ0) = (J1, wJ1) in E(A), where wJ0 = λγ and
wJ1 = µγ. Hence e(P, χ) does not depend on the choice of the surjection.

Now, let λ : P →→ J0 be a surjection, where J0 ⊂ A is an ideal of height n. If δ : (A/J0)n ∼→ P/J0P

is another isomorphism such that ∧n(δ) = χ, then δ and γ differ by an element of SLn(A/J0). Hence,
there exists an σ ∈ SLn(A/J0) such that δ = σγ. This shows that e(P, χ) does not depend on the
choice of γ and proves that e(P, χ) is well defined. We define the Euler class of (P, χ) to be e(P, χ).
�

Corollary 4.9 Let A be a Noetherian ring of dimension n ≥ 2. Let P be a projective A-module of rank
n with trivial determinant and χ be an orientation of P . Let J ⊂ A be an ideal of height n such that
J/J2 is generated by n elements. Let wJ be a local orientation of J . Suppose that e(P, χ) = (J,wJ)
in E(A). Then, there exists a surjection α : P →→ J such that (J,wJ) is obtained from (α, χ).

Proof We can regard wJ as a surjection : (A/J)n →→ J/J2. We choose an isomorphism λ :
P/JP

∼→ (A/J)n such that ∧n(λ) = (χ)−1, where “bar” denotes modulo J . Consider the surjection
α = wJλ : P/JP →→ J/J2. By (2.14), there exists an ideal J ′ ⊂ A and a surjection β : P →→ J ∩ J ′

such that:
(i)J + J ′ = A, (ii)β ⊗A/J = α, and (iii) height (J ′) ≥ n.
If J ′ = A, then β : P →→ J is such that β ⊗ A/J = α. Hence β satisfies the required property.

Otherwise, if htJ ′ = n, then, we have e(P, χ) = (J,wJ) + (J ′, wJ′) in E(A) (where wJ′ is obtained
using P ). By the assumption of the theorem, e(P, χ) = (J,wJ) in E(A). Hence, we have (J ′, wJ′) = 0
in E(A). Therefore, by (4.2), there exists a surjection γ : An →→ J ′ such that wJ′ = γ ⊗A/J ′. Now,
applying the subtraction principle (3.7), we get a surjection α : P →→ J such that (J,wJ) is obtained
from the pair (α, χ). This proves the corollary. �

Corollary 4.10 Let A be a Noetherian ring of dimension n ≥ 2. Let P be a projective A-module of
rank n with trivial determinant and let χ be an orientation of P . Then e(P, χ) = 0 if and only if P
has a unimodular element. In particular, if the determinant of P is trivial and P has a unimodular
element, then every generic section ideal J of P (i.e. an ideal J of height n which is a surjective
image of P ) is generated by n elements.

Proof Let α : P →→ J be a surjection, where J is an ideal of height n. Let e(P, χ) = (J,wJ) in
E(A), where (J,wJ) is obtained from the pair (α, χ). First, assume that e(P, χ) = 0. Then (J,wJ) = 0
in E(A). Hence, by (4.2), there exists a surjection β : An →→ J such that wJ = β ⊗ A/J . Now,
applying (3.8), we see that P has a unimodular element.

Now, we assume that P has a unimodular element, i.e. P = Q⊕A. Then α = (θ, a) as an element
of P ∗ = Q∗⊕A. By performing an elementary automorphism of P , i.e. replacing θ by θ+aθ′, we may
assume by (2.12), that ht θ(Q) = n− 1. Let K = θ(Q). Note that, since determinant of Q is trivial,
without loss of generality, we may assume that χ is induced by an isomorphism χ′ : A ∼→ ∧n−1(Q).

Since dim(A/K) ≤ 1, there exists an isomorphism γ : (A/K)n−1 ∼→ Q/KQ such that ∧n−1(γ) = χ′

modulo K. The surjection (θ ⊗ A/K)γ : (A/K)n−1 →→ K/K2 can be lifted to a map δ : An−1 → K

such that δ(An−1) +K2 = K. Let δ(An−1) = K ′. Then, since K ′ +K2 = K, by (2.7), K = K ′ + (e),
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with e ∈ K2 and e2 − e ∈ K ′. Therefore, by (2.10), J = K + (a) = K ′ + (b), where b = e+ (1− e)a.
Now, consider the surjection (δ, b) : An →→ J . As e ∈ K2, we have that wJ is obtained by tensoring
the surjection (δ, b) with A/J . Hence, by definition, e(P, χ) = 0 in E(A). This proves the corollary.
�

Lemma 4.11 Let A be a Noetherian ring of dimension n ≥ 2. Let J ⊂ A be an ideal of height n such
that J/J2 is generated by n elements. Let wJ be a local orientation of J . Suppose that (J,wJ) 6= 0 in
E(A). Then, there exists an ideal J1 of height n which is comaximal with J and a local orientation
wJ1 of J1 such that (J,wJ) + (J1, wJ1) = 0 in E(A). Further, given any element f ∈ A such that
ht fA = 1, J1 can be chosen with the additional property that it is comaximal with (f).

Proof Let α : (A/J)n →→ J/J2 be a surjection corresponding to wJ . Then, by (2.14), there exists
an ideal J1 of height ≥ n which is comaximal with fJ and a surjection β : An →→ J ∩ J1 such that
β ⊗ A/J = α. Since (J,wJ) 6= 0 in E(A), J1 is a proper ideal of height n. Let wJ1 be the local
orientation of J1 induced by β. Then (J,wJ) + (J1, wJ1) = 0 in E(A). �

Lemma 4.12 Let A be a Noetherian ring of dimension n ≥ 2. Then, any element of the Euler class
group E(A) is of the form (J,wJ), where J is an ideal of A of height n such that J/J2 is generated
by n elements and wJ is a local orientation of J .

Proof First, we show that if (J,wJ) ∈ E(A), (J,wJ) 6= 0 and f ∈ A such that ht fA = 1, then
−(J,wJ) = (J1, wJ1) ∈ E(A) with J1 + fJ = A. By (4.11), there exists an ideal J1 of height n which
is comaximal with fJ and a local orientation wJ1 of J1 such that (J,wJ) + (J1, wJ1) = 0 in E(A).
Hence −(J,wJ) = (J1, wJ1). Therefore, any element z ∈ E(A) is of the form z =

∑r
1(Ji, wJi). It

is enough to show that any element z ∈ E(A) of the form z = (J1, wJ1) + (J2, wJ2) can be written
as z = (J ′, wJ′) in E(A) for some ideal J ′ of height n and a local orientation wJ′ of J ′. Then, by
induction, the result will follow.

Without loss of generality, we may assume that both (J1, wJ1) and (J2, wJ2) are not zero in E(A).
Choosing f ∈ J1∩J2 and ht (f) = 1 and applying (4.11), we see that there exists an ideal J0 of height n
which is comaximal with J1 and J2 and a local orientation wJ0 of J0 such that (J1, wJ1)+(J0, wJ0) = 0
in E(A). Hence, we have z = −(J0, wJ0) + (J2, wJ2). Now, −(J0, wJ0) = (K1, wK1) in E(A), where
K1 is comaximal with J0 and J2. We have z = (K1, wK1) + (J2, wJ2), where K1 + J2 = A. Therefore,
we have z = (J ′, wJ′) in E(A), where J ′ = K1 ∩ J2 and wJ′ is a local orientation of J ′ induced from
wK1 and wJ2 . This proves the lemma. �

Let A be a Noetherian ring of dimension n ≥ 2. Let a be the nil radical of A. Let “bar” denote
modulo a. Let G(A) be the free abelian group on the set (N , wN ), where N is M-primary ideal of
height n such that N/N 2 is generated by n elements and wN is a local orientation of N . Similarly,
we define G(A). If N is M-primary ideal, then N = (N + a)/a is also M-primary and if N/N 2 is
generated by the images of (a1, . . . , an), then N/(N )2 is also generated by the images of (a1, . . . , an).
Hence, if (N , wN ) ∈ G(A), then (N , wN ) ∈ G(A).

Let J ⊂ A be an ideal of height n with primary decomposition as J = ∩N i, where N i is Mi-
primary, Mi a maximal ideal of A. Then J = (J +N)/N = J/J ∩N ⊂ A is an ideal of height n with
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primary decomposition as J = ∩N i. The following diagram is commutative

J/J2 //

��

⊕N i/N 2
i

��

J/J2 // ⊕N i/N
2

i

Hence, any surjection wJ : (A/J)n →→ J/J2 induces a surjection wJ : (A/J)n →→ J/J
2

= (J +
N)/(J2 + N). From the above discussion, it follows that the assignment sending (J,wJ) to (J,wJ)
gives rise to a group homomorphism Φ : E(A) → E(A).

As a consequence of (4.2), we have the following:

Corollary 4.13 The homomorphism Φ : E(A) → E(A) is an isomorphism.

Proof Let wJ : (A/J)n →→ J/J
2

be a surjection. Let J ⊃ a be an ideal of height n such that
J/a = J . Then wJ can be considered as a surjective map from (A/J)n to J/(J2 + a). Let α : An → J

be an A-linear map which is a lift of wJ . Let α(An) = (f1, . . . , fn). Then (f1, . . . , fn)+J2+a = J . By
(2.7), there exists an element e ∈ J2 such that (f1, . . . , fn)+a+Ae = J , and e(1−e) ∈ ((f1, . . . , fn)+a).
Then e ∈ A/((f1, . . . , fn) + a) is an idempotent.

Since a is a nilpotent ideal and idempotent elements can be lifted modulo a nilpotent ideal, we
can lift e ∈ A/((f1, . . . , fn) + a) to an idempotent element of A/(f1, . . . , fn). Let f ∈ A be such
that f ∈ A/(f1, . . . , fn) is a lift of e ∈ A/((f1, . . . , fn) + a), i.e. f − f2 ∈ (f1, . . . , fn) and f − e ∈
((f1, . . . , fn)+ a). Let J1 = (f1, . . . , fn, f). Then (f1, . . . , fn)+J2

1 = J1 and J1 + a = (f1, . . . , fn, f)+
a = (f1, . . . , fn, e) + a = J (as f − e ∈ ((f1, . . . , fn) + a)). Let “bar” denote modulo a. Then J1 = J

and J1/J
2

1 = (f1, . . . , fn). Hence (f1, . . . , fn) = J/J
2

= J/(J2 + a). This implies that wJ is induced
from α. Hence, the map Φ is surjective.

Now, we prove that the map Φ is injective. By (4.12), every element of E(A) is of the form
(J,wJ). Hence, it is enough to prove that for (J,wJ) ∈ E(A) ( where J ⊂ A is an ideal of height
n and wJ : (A/J)n →→ J/J2 is a local orientation of J), if the image of (J,wJ) = 0 in E(A), then
(J,wJ) = 0 in E(A). Assume that the image of (J,wJ) = (J,wJ) = 0 in E(A). Then, by (4.2), wJ is a
global orientation of J , i.e. there exists a surjection γ : (A/a)n →→ (J+a)/a such that wJ = γ⊗A/J .

We are given surjections α : An →→ J/J2 (which is obtained by wJ by composing with the
natural map An →→ (A/J)n) and β : An →→ (J + a)/a = J/(J ∩ a) (which is obtained by γ by
composing with natural map An →→ (A/a)n) such that they induce the same surjective map from An

to J/(J2 + (J ∩ a)).
Since J/(J2 ∩ a) is the fiber product of J/J2 and J/(J ∩ a) over J/(J2, J ∩ a), α and β patch to

yield a map δ : An → J/(J2 ∩ a).

J/(J2 ∩ a) //

��

J/J2

��

J/(J ∩ a) // J/(J2, J ∩ a)
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Let θ : An → J be a lift of δ. Then θ is a lift of α and β. Hence, we have
(i) θ(An) + J2 = J , and (ii) θ(An) + (J ∩ a) = J . Since a is nilpotent,

√
θ(An) =

√
J are same by

(ii). Hence θ(An) = J by (i) and (2.9).
Since θ is a lift of α, we get (J,wJ) = 0 in E(A). Hence Φ is injective and hence an isomorphism.

This proves the corollary. �
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Chapter 5

Some Results on E(A)

If A is an affine domain of dimension n over an algebraically closed field and P is a projective A-
module of rank n and trivial determinant, then it follows from a result of Mohan Kumar (3.3) that
if P maps onto an ideal J of height n which is generated by n elements, then P has a unimodular
element and hence all its generic section ideals (i.e. ideals of height n which are surjective image of P )
are generated by n elements (4.10). But this is not necessarily true if the base field is not algebraically
closed. For example, all the reduced generic section ideals of the tangent bundle of the real 2-sphere
are generated by 2 elements ([4], (5.6-i)). There are however non-reduced generic section ideals of the
tangent bundle which are not generated by 2 elements ([3], (5.2)).

This phenomenon is explained by the result (5.10) of this chapter, which asserts that for any n-
dimensional real affine domain, a projective module of rank n with trivial determinant, all of whose
generic section ideals are generated by n elements, has a unimodular element. To prove this result,
we first prove some lemmas.

Let A be a Noetherian ring of dimension n ≥ 2. Let J ⊂ A be an ideal of height n and wJ :
(A/J)n →→ J/J2 be a local orientation of J . Let b ∈ A/J be a unit. Let σ : (A/J)n ∼→ (A/J)n be
an automorphism with det (σ) = b. Then wJσ is another local orientation of J , which we denote by
bwJ .

Lemma 5.1 Let A, J be as above. Let wJ and w̃J be two local orientations of J . Then w̃J = bwJ for
some unit b ∈ A/J .

Proof We have two surjections wJ : (A/J)n →→ J/J2 and w̃J : (A/J)n →→ J/J2. We will define a
map ψ : (A/J)n → (A/J)n such that wJψ = w̃J .

Let {ei, i = 1, . . . , n} be a basis of (A/J)n. Given w̃J(ei) = ai, wJ(ei) = bi. Let ai =
∑
cijbj .

Define ψ(ei) =
∑

j cijej . Then wJψ = w̃J . Now, by (2.16) ψ is an isomorphism. Let det (ψ) = b.
Then w̃J = bwJ . This proves the lemma. �

Lemma 5.2 Let A be a ring and let J ⊂ A be an ideal which is generated by two elements a1, a2. Let
a ∈ A be a unit modulo J and b ∈ A be such that ab = 1 modulo J . Suppose that the unimodular row
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(b, a2,−a1) is completable to a matrix in SL3(A). Then, there exists a matrix τ ∈ M2(A) with det
(τ) = a modulo J such that [a1, a2]τ t = [b1, b2], where b1, b2 generate J .

Proof Choose a completion σ ∈ SL3(A) of the unimodular row (b, a2,−a1). Suppose that second
and third rows of σ are (d, λ11, λ12) and (e, λ21, λ22) respectively.

Let γ : A3 →→ J be a surjection given by γ(e1) = 0, γ(e2) = a1, γ(e3) = a2. The vectors
(b, a2,−a1), (d, λ11, λ12) and (e, λ21, λ22) generate A3. Hence, their images under γ generate J . Hence
J = (b1, b2), where b1 = a1λ11 + a2λ12 and b2 = a1λ21 + a2λ22. Let τ = (λij) ∈ M2(A). Since
σ ∈ SL3(A) and a1, a2 ∈ J , we get det(τ) = a modulo J . Further, [a1, a2]τ t = [b1, b2]. This proves
the lemma. �

Lemma 5.3 Let A be a Noetherian ring of dimension n ≥ 2, J ⊂ A an ideal of height n and
wJ : (A/J)n →→ J/J2 a surjection. Suppose that wJ can be lifted to a surjection α : An →→ J . Let
a ∈ A be a unit modulo J . Let θ be an automorphism of (A/J)n with determinant a2. Then, the
surjection wJθ : (A/J)n →→ J/J2 can be lifted to a surjection γ : An →→ J .

Proof Let P = An−2 and α : P ⊕ A2 →→ J be map defined by (a3, . . . , an, a1, a2) such that
wJ = α⊗A/J . Let J ′ = (a3, . . . , an) and let “tilde” denote reduction modulo J ′. Then α̃ : Ã2 →→ J̃

is defined by α̃(0, 1, 0) = ã1, α̃(0, 0, 1) = ã2.
Since a ∈ A is a unit modulo J , there exists an element b ∈ A such that ab = 1(modJ). Then

(b̃2, ã2,−ã1) is a unimodular row, which is completable to an invertible matrix in SL3(Ã), by (1.17).
Hence, by (5.2), there exists a matrix τ̃ ∈ M2(Ã) such that [ã1, ã2]τ̃ = [b̃1, b̃2], where J̃ = (b̃1, b̃2) and
det (τ̃) = ã2(modJ).

Define a surjection γ′ : P ⊕ A2 →→ J by setting γ′ = α, on P and γ′(0, 1, 0) = b1, γ
′(0, 0, 1) = b2.

Define θ′ : (A/J)n ∼→ (A/J)n by

(
In−2 0

0 τ

)
.

Then, det θ′ = a2. It follows that wJθ
′ = γ′ ⊗ A/J . Hence wJθ

′ can be lifted to a surjection
An →→ J .

Since dim(A/J) = 0, we have SLn(A/J) = En(A/J) and the canonical map from SLn(A) →→
SLn(A/J) is surjective. Now, since det θ = det θ′ = a2, it follows that wJθ can also be lifted to a
surjection An →→ J . �

Lemma 5.4 Let A be a Noetherian ring of dimension n ≥ 2, J ⊂ A an ideal of height n and wJ a
local orientation of J . Let a ∈ A/J be a unit. Then (J,wJ) = (J, a2wJ) in E(A).

Proof If (J,wJ) = 0 in E(A), then, by (4.2), wJ can be lifted to a surjection from An → J . By
(5.3), a2wJ can also be lifted to a surjection from An → J . Hence (J, a2wJ) = 0 in E(A). Hence, the
result follows in this case.

Now, assume that (J,wJ) 6= 0 in E(A), where wJ : (A/J)n →→ J/J2 is a surjection. By (2.14),
there exists an ideal J1 of height n which is comaximal with J and a surjection α : An →→ J ∩J1 such
that α⊗A/J = wJ (If J1 = A, then (J,wJ) = 0 in E(A)). Let wJ1 = α⊗A/J1.
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Let x+ y = 1, x ∈ J, y ∈ J1. If we set b = a2(1− x) + x, then b = a2 (mod J) and b = 1 (mod J1).
Applying (5.3), there exists a surjection γ : An →→ J∩J1 such that γ⊗A/J = a2wJ , γ⊗A/J1 = wJ1 .

From the surjection α, we get (J,wJ) + (J1, wJ1) = 0 in E(A) and from the surjection γ, we get
(J, a2wJ) + (J1, wJ1) = 0 in E(A). Thus (J,wJ) = (J, a2wJ) in E(A). This proves the lemma. �

Lemma 5.5 Let A be a Noetherian ring of dimension n ≥ 1 and let J ⊂ A be an ideal of height n. Let
f 6= 0 ∈ A such that JAf is a proper ideal of Af . Assume JAf = (a1, . . . , an), where ai ∈ J . Then,
there exists σ ∈ SLn(Af ) such that [a1, . . . , an]σ = [b1, . . . , bn], where bi ∈ J and ht (b1, . . . , bn) = n.

Proof Let I be the set {σ ∈ SLn(Af ) : [a1, . . . , an]σ = [b1, . . . , bn], bi ∈ J}. Then I 6= ∅, since
Id ∈ I. For σ ∈ I, if [a1, . . . , an]σ = [b1, . . . , bn] ∈ An, bi ∈ J , let N(σ) denote ht (b1, . . . , bn). Then,
it is enough to prove that there exists σ ∈ I such that N(σ) = n. This is proved by showing that for
any σ ∈ I with N(σ) < n, there exists σ1 ∈ I such that N(σ1) > N(σ).

Let σ ∈ I be such that N(σ) < n. Let [a1, . . . , an]σ = [b1, . . . , bn] ∈ An, bi ∈ J . Then, by (2.3),
there exists [c1, . . . , cn−1] ∈ An−1 such that ht J ′bn

≥ n− 1, where J ′ = (b1 + c1bn, . . . , bn−1 + cn−1bn).
The transformation τ sending [b1, . . . , bn] to [b1 + c1bn, . . . , bn−1 + cn−1bn, bn] is elementary. Hence
στ ∈ I. Note that N(σ) = N(στ). Hence, if necessary, we can replace σ by στ and assume that if a
prime ideal p of A contains (b1, . . . , bn−1) and does not contain bn, then, we have ht p ≥ n− 1. Now,
we claim that N(σ) = ht (b1, . . . , bn−1).

We have N(σ) ≤ n − 1. Since N(σ) = ht (b1, . . . , bn), we have ht (b1, . . . , bn−1) ≤ N(σ) ≤ n − 1.
Let p be a minimal prime ideal of (b1, . . . , bn−1) such that ht p = ht (b1, . . . , bn−1). If bn /∈ p, then
ht p) ≥ n− 1. Hence, we have the inequalities n− 1 ≤ ht (b1, . . . , bn−1) ≤ N(σ) ≤ n− 1. This implies
that N(σ) = ht (b1, . . . , bn−1) = n− 1. If bn ∈ p, then ht (b1, . . . , bn−1) = ht (b1, . . . , bn) = N(σ). This
proves the claim.

Let K denote the set of minimal prime ideals of (b1, . . . , bn−1). Let K1 = {p ∈ K : bn ∈ p} and
let K2 = K − K1. Note that K1 6= ∅. For, if K1 = ∅, no minimal prime ideal of (b1, . . . , bn−1)
contains bn. Then ht (b1, . . . , bn) > ht (b1, . . . , bn−1). But, ht (b1, . . . , bn) = N(σ) = ht (b1, . . . , bn−1).
This proves that K1 6= ∅. Now, we claim that f ∈ p for all p ∈ K1.

For, if f /∈ p for some p ∈ K1, then, since p is minimal prime ideal of (b1, . . . , bn−1), we have
ht p ≤ n − 1. Since bn ∈ p ∈ K1, we have p is minimal prime ideal of (b1, . . . , bn) and f /∈ p. Hence
ht pAf = ht p ≤ n− 1. But (b1, . . . , bn)Af ⊂ pAf and ht (b1, . . . , bn)Af = ht (a1, . . . , an)Af = n. This
is a contradiction. This proves that f ∈ p for all p ∈ K1.

If p ∈ K, then ht p ≤ n − 1, since p is a minimal prime ideal of (b1, . . . , bn−1). If p ∈ K2, then
bn /∈ p and hence ht p ≥ n − 1. Therefore, ht p = n − 1 for all p ∈ K2. Since

⋂
p∈K2

p 6⊂
⋃

p∈K1
p,

choose x ∈
⋂

p∈K2
p such that x /∈

⋃
p∈K1

p. Since f ∈ p for all p ∈ K1, we have xf ∈
⋂

p∈K p. This
implies that (xf)r ∈ (b1, . . . , bn−1) for some positive integer r.

Let (xf)r =
∑n−1

1 dibi. Consider the matrix θ ∈ En(A) which takes [c1, . . . , cn] to [c1, . . . , cn−1, cn+∑n−1
1 dici]. Let θ1 be the matrix : diagonal (1, . . . , 1, fr). Then θ1 ∈ GLn(Af ). Let θ̃ = θ1θfθ

−1
1 .

Then θ̃ ∈ SLn(Af ). Let σ1 = σθ̃. Then
[a1, . . . , an]σ1 = [b1, . . . , bn]θ̃ = [b1, . . . , bn]θ1θfθ

−1
1

= [b1, . . . , bn−1, f
rbn]θfθ

−1
1 = [b1, . . . , bn−1, f

rbn +
∑n−1

1 dibi]θ−1
1

= [b1, . . . , bn−1, f
rbn + frxr]θ−1

1 = [b1, . . . , bn−1, bn + xr].
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Now, we claim that no minimal prime ideal of (b1, . . . , bn−1) contains bn +xr. For, if p ∈ K1, then
bn ∈ p, but x /∈ p. Hence bn + xr /∈ p for all p ∈ K1. If p ∈ K2, then bn /∈ p, but x ∈ p. Hence
bn + xr /∈ p for all p ∈ K2. This proves the claim. Hence ht (b1, . . . , bn−1, bn + xr) > ht (b1, . . . , bn−1).
Note that σ1 ∈ I and N(σ1) = ht (b1, . . . , bn−1, bn + xr) > ht (b1, . . . , bn−1) = N(σ). This completes
the proof of the lemma. �

Lemma 5.6 Let A be an affine domain over a field k of dimension n ≥ 2 and let f be a non-zero
element of A. Let J ⊂ A be an ideal of height n such that J/J2 is generated by n elements. Suppose
that (J,wJ) 6= 0 in E(A), but the image of (J,wJ) = 0 in E(Af ). Then, there exists an ideal J2 of
height n such that (J2)f = Af and (J,wJ) = (J2, wJ2) in E(A).

Proof Since (J,wJ) 6= 0 in E(A) and (J,wJ) = 0 in E(Af ), f ∈ A is not a unit. By (4.11), we can
choose an ideal J1 of height n which is comaximal with J and (f) such that (J,wJ) + (J1, wJ1) = 0
in E(A). We have (J1, wJ1) 6= 0 in E(A). Since the image of (J,wJ) = 0 in E(Af ), it follows that
the image of (J1, wJ1) = 0 in E(Af ). By (4.2), wJ1 induces a global orientation of (J1)f . Hence
(J1)f = (b1, . . . , bn) and wJ1 ⊗ Af is induced by the set of generators b1, . . . , bn of (J1)f mod (J1)2f .
Choose k large enough such that f2kbi ∈ J1, 1 ≤ i ≤ n. Since f is a unit modulo J1, by (5.4),
(J1, wJ1) = (J1, f2knwJ1) in E(A). Hence, without loss of generality, we can assume that bi ∈ J1.
Now, by lemma (5.5), we get σ ∈ SLn(Af ) such that if [b1, . . . , bn]σ = [c1, . . . , cn], then ci ∈ J1 and
c1, . . . , cn generate an ideal of height n in A. We claim that (c1, . . . , cn) = J1 ∩ J2, where (J2)f = Af .

Let (c1, . . . , cn) = a1 ∩ . . . ∩ ar ∩ ar+1 . . . ∩ at be a reduced primary decomposition, where ai

is mi-primary ideal. Assume that f ∈ mi for r + 1 ≤ i ≤ t and f /∈ mi for 1 ≤ i ≤ r. Then
(c1, . . . , cn)f = (J1)f =

⋂r
1(ai)f . We observe that J1 =

⋂r
1 ai. This follows easily from the fact that f

is a unit modulo J1 and modulo ai, 1 ≤ i ≤ r. Write J2 =
⋂t

r+1 ai. Then, we have (c1, . . . , cn) = J1∩J2

and (J2)f = Af .

Note that A/J1
∼→ Af/(J1)f . The image of σ ∈ SLn(Af ) in SLn(Af/(J1)f ) gives rise to an element

in SLn(A/J1) and hence the n generators of (J1)f/(J1)2f gives rise to n generators of J1/J
2
1 .

Now, J1 6= (c1, . . . , cn), since (J1, wJ1) = (J1, f2knwJ1) 6= 0 in E(A). Hence J2 is a proper ideal of
height n. Since (f)+J1 = A and (J2)f = Af , we have J1+J2 = A. Since det (σ) = 1, f2knwJ1 is given
by the set of generators c1, . . . , cn of J1 modulo J2

1 . Therefore, (J1, f2knwJ1) + (J2, wJ2) = 0 in E(A),
where wJ2 is given by the set of generators c1, . . . , cn of J2 modulo J2

2 . Since (J,wJ) + (J1, wJ1) = 0
in E(A), it follows that (J,wJ) = (J2, wJ2) in E(A). This proves the lemma. �

Remark 5.7 The hypothesis A is an affine domain ensures that dimAf = n and hence E(Af ) is
defined.

Lemma 5.8 Let A be an affine domain over a field k of dimension n ≥ 2 and let P be a projective
A-module of rank n having trivial determinant. Let f ∈ A be a non-zero element. Suppose that the
projective Af -module Pf has a unimodular element. Then, there exists a surjection α : P →→ J , where
J ⊂ A is an ideal of height n such that Jf = Af .

40



Proof Suppose P has a unimodular element. Then, by (4.10), e(P, χ) = 0 in E(A). Let J be an ideal
of height n and generated by n elements such that f ∈ J . Then, for some wJ , (J,wJ) = 0 = e(P, χ)
in E(A). By (4.9), there exists a surjection α : P →→ J and Jf = Af .

Now, assume that P has no unimodular element. Let e(P, χ) = (J,wJ), where J is an ideal of
height n such that J/J2 is generated by n elements. Now (J,wJ) 6= 0 in E(A), but its image in
E(Af ) = 0. Therefore, by (5.6), there exists an ideal J2 of height n such that (J2)f = Af and
(J,wJ) = (J2, wJ2) in E(A). Then e(P, χ) = (J2, wJ2). Hence, by (4.9), there exists a surjection
α : P →→ J2 such that (J2, wJ2) is obtained from (α, χ). This proves the lemma. �

Definition Let A be a Noetherian ring of dimension n and let P be a projective A-module of rank
n. Let α : P →→ J be a surjection. We say that α is a generic surjection, if J has height n. In this
case J is said to be a generic surjection ideal or generic section ideal of P .

Lemma 5.9 Let A be an affine domain over a field k of dimension n ≥ 2 and let P be a projective
A-module of rank n having trivial determinant. Let f ∈ A be a non-zero element. Assume that every
generic surjection ideal of P is generated by n elements. Then, every generic surjection ideal of Pf is
generated by n elements.

Proof Let β : Pf →→ J̃ be a generic surjection. Let J ′ = J̃ ∩A. Then J ′Af = J̃ and (f) + J ′ = A.
Let χ be a generator of ∧n(P ), and let (J ′f , wJ′f

) be obtained from (β, χf ). Since f ∈ A/J ′ is a

unit, by (5.4), we may replace wJ′f
by f2mwJ′f

for some large integer m and assume that wJ′f
is

given by a set of generators of J ′/J ′2 which induce wJ′ . The element e(P, χ) − (J ′, wJ′) of E(A)
is zero in E(Af ). If e(P, χ) − (J ′, wJ′) = 0 in E(A), then e(P, χ) = (J ′, wJ′). Hence, there exists
a surjection from P to J ′, by (4.9). By assumption, J ′ is generated by n elements. Hence J̃ is
generated by n elements. Therefore, assume otherwise. By (4.12), e(P, χ) − (J ′, wJ′) = (J2, wJ2) in
E(A). By (5.6), we can assume that (J2)f = Af . Since J ′ + Af = A, we have J ′ + J2 = A. Hence
e(P, χ) = (J ′, wJ′) + (J2, wJ2) = (J ′ ∩ J2, wJ′∩J2) in E(A), where wJ′∩J2 is obtained from wJ′ and
wJ2 . By (4.9), there exists a surjection γ : P →→ J ′ ∩ J2. By hypothesis, J ′ ∩ J2 is generated by n

elements, as it is a generic surjection ideal of P . Hence J ′f = (J ′ ∩ J2)f is generated by n elements.
This proves the lemma. �

Theorem 5.10 Let A be an affine domain over R of dimension n ≥ 2 and let P be a projective
A-module of rank n having trivial determinant. Assume that for every generic surjection α : P →→ J ,
the generic surjection ideal J is generated by n elements. Then P has a unimodular element.

Proof To any generic surjection α : P →→ J , we associate an integer N(P, α), which is equal to the
number of real maximal ideals containing J (if M is a maximal ideal of A containing J , then it is
called real if the quotient field A/M is isomorphic to R, otherwise it is called a complex maximal ideal
and in this case A/M is isomorphic to C). Let t(P ) = min N(P, α), where α varies over all generic
surjections of P .
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Case 1. Suppose that t(P ) = 0. Let α : P →→ J be a generic surjection with N(P, α) = 0.
This means that J is contained only in complex maximal ideals. By assumption, J is generated
by n elements. These n elements give rise to w̃J , a local orientation of J , such that the element
(J, w̃J) = 0 in E(A). Let χ be a generator of ∧n(P ) and e(P, χ) = (J,wJ) in E(A). Then, by (5.1),
(J,wJ) = (J, uw̃J) in E(A), where u ∈ A/J is a unit. Since J is contained only in complex maximal
ideals, u is a square. It follows now from (5.4), that e(P, χ) = (J,wJ) = (J, uw̃J) = (J, w̃J) = 0 in
E(A). Therefore, by (4.10), P has a unimodular element.

Case 2. Suppose that t(P ) = 1. Let α : P →→ J be a generic surjection with N(P, α) = 1. This
means that J is contained only in one real maximal ideal. By assumption, J is generated by n elements.
These n elements give rise to w̃J , a local orientation of J , such that the element (J, w̃J) = 0 = (J,−w̃J)
in E(A). Let χ be a generator of ∧n(P ) and e(P, χ) = (J,wJ) in E(A). Let (J,wJ) = (J, uw̃J) in
E(A), where u ∈ A/J is a unit. Then, since J is contained only in one real maximal ideal, it follows,
as in case 1, that either u ∈ A/J is a square or −u is a square. Therefore, it follows that either
(J,wJ) = (J, w̃J) or (J,wJ) = (J,−w̃J) in E(A). In any case, (J,wJ) = 0 in E(A) and hence, by
(4.10), P has a unimodular element.

Case 3. Now, we show that under the assumption of the theorem t(P ) ≤ 1 and hence the theorem
will be proved. Suppose N(P, α) = r ≥ 2. Let m1, . . . ,mr be the real maximal ideals containing J .
Let f ∈ A be chosen so that f belongs to only the real maximal ideals m2, . . . ,mr (Such an f exists,
for choose a set of generators h1, . . . , hk of m2∩ . . .∩mr. Take f = h2

1 + . . .+h2
k). Then N(Pf , αf ) = 1

and hence t(Pf ) ≤ 1. Since, for every generic surjection α : P →→ J, J is generated by n elements,
it follows from (5.9), that for every generic surjection β : Pf →→ J ′f , J

′
f is generated by n elements.

Hence, by cases 1 and 2, Pf has a unimodular element. Therefore, by (5.8), there exists a surjection
γ : P →→ J1, where J1 is an ideal of height n such that (J1)f = Af . Since m2, . . . ,mr are the only
real maximal ideals containing f , it follows that N(P, γ) = r− 1. Repeating this process, we see that
t(P ) ≤ 1. This proves the theorem. �
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Chapter 6

The Weak Euler Class Group of a

Noetherian Ring

Let A be a Noetherian ring of dimension n ≥ 2. We define the weak Euler class group E0(A) of A as
follows:

Let S be the set of ideals N ⊂ A such that N/N 2 is generated by n elements (where N is M-
primary ideal for some maximal ideal M of height n). Let G be the free abelian group on the set
S.

Let J = ∩N i be the intersection of finitely many ideals N i, where N i is Mi-primary and Mi

being distinct maximal ideals of height n. Assume that J/J2 is generated by n elements. We associate
to J , the element

∑
N i of G. By abuse of notation, we denote this element of G by (J). Let H be the

subgroup of G generated by elements of the type (J), where J ⊂ A is an ideal of height n generated
by n elements.

Definition 6.1 The weak Euler class group of A is defined as E0(A) = G/H.

Let P be a projective A-module of rank n with trivial determinant and let λ : P →→ J0 be a
surjection, where J0 ⊂ A is an ideal of height n. We define e(P ) = (J0) in E0(A). We show that this
assignment is well defined.

Let µ : P →→ J1 be another surjection, where J1 is an ideal of height n. Then, by (4.3), there
exists a surjection α(T ) : P [T ] →→ I, where I ⊂ A[T ] is an ideal of height n with α(0) = λ and
α(1) = µ. Now, using (4.7), there exists an ideal K of height n comaximal with I ∩ A such that
I ∩ KA[T ] is generated by n elements. Therefore J0 ∩ K and J1 ∩ K are generated by n elements.
Hence (J0) = (J1) in E0(A).

We note that there is a canonical surjective homomorphism from E(A) to E0(A) obtained by
forgetting orientations.

The aim of this chapter is to prove theorem (6.9), i.e. if A is Noetherian ring of even dimension
n, then (J) is zero in E0(A) if and only if J is a surjective image of a stably free A-module of rank n.

43



This is proved along the same lines as (4.2): first we prove some addition and subtraction principles
(6.8), and then using the group theoretic lemma (4.1), we prove the theorem.

Lemma 6.2 Let A be a ring and let P be a projective A-module of rank n. Let α be any element
of P ∗. Let p0, p1, . . . , pn be n + 1 elements of P . Let wi ∈ ∧n(P ) be defined as follows : w0 =
α(p0)(p1∧p2∧. . .∧pn), wi = α(pi)(p0∧. . .∧pi−1∧pi+1∧. . .∧pn), 1 ≤ i ≤ n. Then

∑n
i=0(−1)iwi = 0.

Proof Let e denote the element (1, 0) ∈ A ⊕ P . The map x 7→ e ∧ x is an isomorphism from
∧n(P ) θ→ ∧n+1(A ⊕ P ). Let w =

∑n
i=0(−1)iwi. Now, consider the map γ : P → A ⊕ P defined by

γ(p) = (α(p), p). We obtain an induced map ∧n+1γ : ∧n+1P → ∧n+1(A ⊕ P ). We get ∧n+1γ(p0 ∧
. . .∧pn) = e∧w+p0∧ . . .∧pn. But ∧n+1(P ) = 0 hence e∧w = 0. But, the map θ is an isomorphism,
hence w = 0.

�

Lemma 6.3 Let A be a Noetherian ring and let P be a projective A-module of rank n. Suppose that
we are given the following short exact sequence

0 → P1 → A⊕ P (b,−α)−→ A→ 0.

Let (a0, p0) ∈ A⊕ P be such that a0b− α(p0) = 1. Let qi = (ai, pi) ∈ P1 , 1 ≤ i ≤ n. Then,
(1) The map δ : ∧n(P1) → ∧n(P ) given by δ(q1 ∧ . . .∧ qn) = a0(p1 ∧ . . .∧ pn) +

∑n
i=1(−1)iai(p0 ∧

. . . ∧ pi−1 ∧ pi+1 ∧ . . . ∧ pn)
is an isomorphism.

(2) δ(bq1 ∧ . . . ∧ qn) = p1 ∧ . . . ∧ pn.

Proof Let e = (1, 0), f = (a0, p0) in A⊕P . Then A⊕P = Af⊕P1 and as in (6.2), f ∧q1∧ . . .∧qn =
e ∧ w in ∧n+1(A⊕ P ), where w = a0(p1 ∧ . . . ∧ pn) +

∑n
i=1(−1)iai(p0 ∧ . . . ∧ pi−1 ∧ pi+1 ∧ . . . ∧ pn).

Since the map x 7→ e ∧ x is an isomorphism from ∧n(P ) to ∧n+1(A⊕ P ), result (1) follows. Since
qi = (ai, pi) ∈ P1, we have bai = α(pi), 1 ≤ i ≤ n. Moreover, ba0 = 1 + α(p0). Therefore, (2) follows
from (6.2). �

Lemma 6.4 Let A be a Noetherian ring and let P be a projective A-module of rank n. Suppose that
we are given the following exact sequence

0 → P1 → A⊕ P (b,−α)−→ A→ 0.

Then, (i)The map β : P1 → A given by β(q) = c, where q = (c, p), has the property that β(P1) = α(P ).
(ii) The map Φ : P → P1 given by Φ(p) = (α(p), bp) has the property that βΦ = α and δ∧n (Φ), where
δ is as in (6.3), is scalar multiplication by bn−1.

Proof Let c ∈ β(P1),. Then, there exists q = (c, p) ∈ P1 such that β(q) = c. Since q ∈ P1, we have
bc = α(p). Also, there exists q0 = (a0, p0) ∈ A⊕P such that a0b−α(p0) = 1. Now, α(a0p− cp0) = c,
hence c ∈ α(P ). Conversely, let c = α(p), p ∈ P . Then bc = α(bp). This shows that (c, bp) ∈ P1, and
hence c ∈ β(P1). This proves the first part.
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The map δ : ∧n(P1) → ∧n(P ) is given by

δ(q1 ∧ . . . ∧ qn) = a0(p1 ∧ . . . ∧ pn) +
n∑

i=1

(−1)iai(p0 ∧ . . . ∧ pi−1 ∧ pi+1 ∧ . . . ∧ pn),

where qi = (ai, pi) ∈ P1, 1 ≤ i ≤ n, and (a0, p0) ∈ A⊕ P. We have
δ ∧n (Φ)(p1 ∧ . . . ∧ pn) = δ((α(p1), bp1) ∧ . . . ∧ (α(pn), bpn))
= a0b

n(p1 ∧ . . . ∧ pn) +
∑n

i=1(−1)iα(pi)bn−1(p0 ∧ . . . ∧̂pi . . . ∧ pn)
= bn−1((1 + α(p0))(p1 ∧ . . . ∧ pn) +

∑n
i=1(−1)iα(pi)(p0 ∧ . . . ∧̂pi . . . ∧ pn))

= bn−1(p1 ∧ . . . ∧ pn + α(p0)(p1 ∧ . . . ∧ pn) +
∑n

i=1(−1)iα(pi)(p0 ∧ . . . ∧̂pi . . . ∧ pn))
= bn−1(p1 ∧ . . . ∧ pn),by (6.2). �

Lemma 6.5 Let A be a Noetherian ring of dimension n ≥ 2. Let P be a projective A-module of rank
n with trivial determinant and let χ be an orientation of P . Let α : P →→ J be a surjection, where
J ⊂ A be an ideal of height n and let (J,wJ) be obtained from (α, χ). Let a, b ∈ A be such that ab = 1
modulo J and let P1 be the kernel of the surjection (b,−α) : A ⊕ P →→ A. Let β : P1 →→ J be as in
(6.4) and let χ1 be the orientation of P1 given by δ−1χ : A ∼→ ∧n(P1) (where δ is as in (6.3)). Then
(J, an−1wJ) is obtained from (β, χ1).

Proof We have an exact sequence 0 → P1 → A⊕P (b,−α)−→ A→ 0. The map β : P1 →→ J is defined
by β(q) = c, where q = (c, p). By (6.4), we have β(P1) = α(P ) = J . Since P1 is stably isomorphic
to P , determinant of P1 is trivial. Let δ : ∧n(P1)

∼→ ∧n(P ) be an isomorphism defined in (6.3). Let
χ1 = δ−1χ : A ∼→ ∧n(P1) be an orientation of P1. Then, by (6.4), the map Φ : P → P1 given by
Φ(p) = (α(p), bp) has the property that βΦ = α and δ ∧n (Φ) is a scalar multiplication by bn−1. By
(2.16), the map Φ ⊗ A/J : P/JP ∼→ P1/JP1 is an isomorphism. Let γ : (A/J)n ∼→ P/JP be an
isomorphism such that ∧n(γ) = χ and wJ = αγ. Consider the commutative diagram

P1/JP1
β

// //
OO

Φγ

J/J2

(A/J)n

wJ

:: ::uuuuuuuuu

Since ∧n(Φγ) = δ
−1
bn−1χ = bn−1χ1. Hence χ1 = an−1 ∧n (Φγ), since ab = 1 modulo J . Let θ be

an automorphism of (A/J)n of determinant an−1. Now, consider the isomorphism Φγθ : (A/J)n ∼→
P1/JP1. Then (J, w̃J) is obtained from (β, χ1), where w̃J = βΦγθ = αγθ = wJθ = an−1wJ . Hence
(J, an−1wJ) is obtained from (β, χ1). This proves the lemma. �

Lemma 6.6 Let A be a Noetherian ring of even dimension n. Let P be a stably free A-module of
rank n and let χ be a generator of ∧n(P ). Suppose that e(P, χ) = (J,wJ) in E(A), where J is an
ideal of height n and wJ is a local orientation of J . Then, there exists an ideal J ′ of height n which
is generated by n elements and a local orientation wJ′ of J ′ such that (J,wJ) = (J ′, wJ′) in E(A).
Moreover, J ′ can be chosen to be comaximal with any given ideal of height n.
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Proof By Bass Cancellation theorem (1.27), we have P⊕A ' An+1. We have P = An+1/(a0, . . . , an)
for some unimodular row (a0, . . . , an) in An+1. We can assume, by (2.3), that J ′ = (a1, . . . , an) is an
ideal of height n. Further, we can assume that J ′ is comaximal with any given ideal of height n.

Let ei be the image of the basis vector ei of An+1 in P . Then, there exists a surjective map
ψ : P →→ J ′ defined by ψ(e0) = 0, ψ(ei) = ai+1 if i is odd and ψ(ei) = −ai−1 if i is even. The map ψ
is well defined, since we have

∑n
0 aiei = 0 in P and ψ(

∑n
0 aiei) = 0. Computing e(P, χ) using ψ, we

see that (J,wJ) = (J ′, wJ′).
�

Lemma 6.7 Let A be a Noetherian ring of even dimension n. Let P be a projective A-module of
rank n having trivial determinant and let χP be a generator of ∧n(P ). Let e(P, χP ) = (J,wJ) in
E(A), where J is an ideal of height n and wJ is a local orientation of J . Suppose w̃J is another local
orientation of J . Then, there exists a projective A-module P ′ of rank n with [P ′] = [P ] in K0(A) and
a generator χP ′ of ∧n(P ′) such that e(P ′, χP ′) = (J, w̃J) in E(A).

Proof By (5.1), w̃J = bwJ for some unit b ∈ A/J . By (6.5), there exists a projective A-module P ′

of rank n with [P ′] = [P ] in K0(A) and a generator χP ′ of ∧n(P ′) such that e(P ′, χP ′) = (J, bn−1wJ)
in E(A). Applying (5.4), we get the result. �

Proposition 6.8 Let A be a Noetherian ring of even dimension n. Let J1 and J2 be two comaximal
ideals of A of heights n and J3 = J1 ∩ J2. Then

(i) (Addition Principle) If J1 and J2 are surjective images of stably free A-modules of rank n, then
so is the J3.

(ii) (Subtraction Principle) If J1 and J3 are surjective images of stably free A-modules of rank n,
then so is J2.

Proof (i) Suppose that J1 and J2 are surjective images of stably free A-modules. Hence, there exist
surjections ψ1 : P1 →→ J1 and ψ2 : P2 →→ J2, where P1 and P2 are stably free A-modules of rank
n. We choose orientations χ1 and χ2 of P1 and P2 respectively. Then e(P1, χ1) = (J1, wJ1) and
e(P2, χ2) = (J2, wJ2) in E(A) for some local orientations wJ1 and wJ2 of J1 and J2 respectively. By
(6.6), we can choose two comaximal ideals J ′1 and J ′2 of height n which are generated by n elements
such that

(J1, wJ1) = (J ′1, wJ′1
) and (J2, wJ2) = (J ′2, wJ′2

) (1)

in E(A). Let J ′3 = J ′1 ∩ J ′2. Let

(J1, wJ1) + (J2, wJ2) = (J3, wJ3) (2)

(J ′1, wJ′1
) + (J ′2, wJ′2

) = (J ′3, wJ′3
) (3)

in E(A). Then, we have
(J3, wJ3) = (J ′3, wJ′3

) (4)

in E(A). Since J ′1 and J ′2 are generated by n elements, by (3.5), J ′3 is also generated by n elements.
Therefore, applying (6.7) with P free, there exists a stably free A-module P3 of rank n and an
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orientation χ3 of P3 such that e(P3, χ3) = (J ′3, wJ′3
). Hence, by (4.9), there exists a surjection from

P3 to J3.
(ii) Assume that J1 and J3 are surjective images of stably free A-modules of rank n. Let ψ3 : P3 →

→ J3 be a surjection, where P3 is a stably free A-module of rank n. Let χ3 be an orientation of P3.
Then

e(P3, χ3) = (J3, wJ3) (5)

in E(A) for some local orientation wJ3 of J3. Let wJ1 and wJ2 be local orientations of J1 and J2

respectively, obtained from wJ3 . Then

(J1, wJ1) + (J2, wJ2) = (J3, wJ3) (6)

in E(A). Since J1 is a surjective image of a stably free A-module of rank n, by (6.7), there exists a
stably free A-module P1 of rank n such that e(P1, χ1) = (J1, wJ1). Now, since P1 is stably free, by
(6.6), there exists an ideal J ′1 of height n which is generated by n elements and comaximal with J2

such that
(J1, wJ1) = e(P1, χ1) = (J ′1, wJ′1

). (7)

Let J ′1 ∩ J2 = J4. Then wJ′1
and wJ2 induce a local orientation wJ4 of J4 such that

(J ′1, wJ′1
) + (J2, wJ2) = (J4, wJ4). (8)

By (6,7), we have (J3, wJ3) = (J4, wJ4) in E(A). By (5), we have e(P3, χ3) = (J4, wJ4). Let J ′1 =
(a1, . . . , an) and let

(J ′1, [a1, . . . , an]) + (J2, wJ2) = (J4, w̃J4).

Then, since (J ′1, [a1, . . . , an]) = 0 in E(A), we have (J2, wJ2) = (J4, w̃J4) in E(A). By (6.7), there
exists a projective A-module Q of rank n which is stably isomorphic to P3 and hence stably free, and
an orientation χQ of Q such that

e(Q,χQ) = (J4, w̃J4).

Therefore e(Q,χQ) = (J2, wJ2). By (4.9), there exists a surjection from Q to J2 and hence the
proposition is proved. �

Theorem 6.9 Let A be a Noetherian ring of even dimension n. Let J ⊂ A be an ideal of height n
such that J/J2 is generated by n elements. Then (J) = 0 in E0(A) if and only if J is a surjective
image of a stably free A-module of rank n.

Proof We will apply lemma (4.1) to prove this theorem.
Let F be the free abelian group on the set (N ), where N is M-primary ideal of height n such that

N/N 2 is generated by n elements. Define an equivalence relation on the set (N ) by (N ) ∼ (N 1) if√
N =

√
N 1, i.e. N and N 1 both are M-primary ideals of A. If J ⊂ A is an ideal of height n and

J = ∩N i is a reduced primary decomposition of J , then denote (J) the element
∑

(N i) of F . Let S
be the set
{(J) ∈ F |J is surjective image of a stably free A-module of rank n}. Then
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(1) Every element of S is nicely reduced.
(2) Let x, y ∈ F be nicely reduced such that x+ y is also nicely reduced. Then if any two of x, y

and x+ y belongs to S, then so does the third. This follows from (6.8).
(3) Let x ∈ F be nicely reduced and x /∈ S and let (N i), for i = 1, . . . , r, be finitely many elements

of F . Since x is nicely reduced, we have x = (J) for some height n ideal J . Applying (2.14), there
exists an ideal J ′ of height n which is comaximal with J,N i, i = 1, . . . , r such that J ∩J ′ is generated
by n elements. Let y = (J ′). Then x+ y ∈ S.

Let H ′ be the subgroup of F generated by S. Then, by (4.1), if x ∈ H ′ is nicely reduced, then
x ∈ S. (∗)

Let H be the subgroup of F generated by (J) ∈ F where J is generated by n elements. We claim
that H = H ′.

Clearly H ⊂ H ′. For other inclusion, it is enough to show that S ⊂ H. For this, let (J) ∈ S. Then
J is surjective image of a stably free A-module P of rank n. Applying (6.6), there exists an ideal J ′

of height n which is generated by n elements such that J ′ is surjective image of P . By (4.7), there
exists an ideal K of height n comaximal with J and J ′ such that J ∩K and J ′ ∩K are generated by
n elements. Hence (J) ∈ H and H = H ′.

Suppose (J) = 0 in E0(A). Then (J) ∈ H = H ′ is a nicely reduced element. Hence, by (∗), we get
that J is surjective image of a stably free A-module of rank n. �

Proposition 6.10 Let A be a Noetherian ring of dimension n. Let P and P1 be two projective A-
modules of rank n such that [P ] = [P1] in K0(A). Then, there exists an ideal J ⊂ A of height ≥ n

such that J is a surjective image of both P and P1.

Proof Since dimA = n and [P ] = [P1] in K0(A), we have P ⊕ Q ' P1 ⊕ Q for some projective
A-module Q. We may assume that Q is free, by replacing Q by Q ⊕ Q′ ' At. Now, it follows that
P ⊕ A

∼→ P1 ⊕ A by the Bass Cancellation theorem (1.27). Therefore, there exists a short exact
sequence

0 → P1 → A⊕ P (b,−α)−→ A→ 0.

Further, without loss of generality, we may replace α by α+bγ by a transvection, where γ ∈ P ∗, because
this will not change the isomorphism class of ker ((b,−α)) = P1, i.e. if ker ((b,−(α + bγ))) = P2,
then P1

∼→ P2. Therefore, using (2.12), we may assume that the ideal α(P ) = J is such that height
(J) ≥ n. By (6.4 (i)), J is also a surjective image of P1. This proves the proposition. �

Corollary 6.11 Let A be a Noetherian ring of even dimension n. Let P be a projective A-module of
rank n with trivial determinant. Then e(P ) = 0 in E0(A) if and only if [P ] = [Q ⊕ A] in K0(A) for
some projective A-module Q of rank n− 1.

Proof First, assume that [P ] = [Q ⊕ A] in K0(A) for some projective A-module Q of rank n − 1.
Then, by (6.10), e(P ) = e(Q⊕A). By (6.9), e(Q⊕A) = 0 in E0(A). Hence e(P ) = 0.

Now, we assume that e(P ) = 0 in E0(A). Let ψ : P →→ J be a surjection, where J is an ideal
of height n. Let e(P, χ) = (J,wJ), where χ is a generator of ∧n(P ) and wJ is a local orientation
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of J . Since e(P ) = (J) = 0 in E0(A), it follows from (6.9) that J is a surjective image of a stably
free A-module of rank n. It follows now from (6.7), that there exists a stably free A-module P̃ of
rank n and a generator χ̃ of ∧n(P̃ ) such that e(P̃ , χ̃) = (J,wJ). Since P̃ is a stably free A-module
of rank n, by (6.6), there exists an ideal J1 of height n which is generated by n elements and a local
orientation wJ1 of J1 such that (J,wJ) = (J1, wJ1). Hence, we have e(P, χ) = (J,wJ) = (J1, wJ1). Let
J1 = (b1, . . . , bn). Then, by (6.7), there exists a projective A-module P ′ of rank n with [P ′] = [P ] in
K0(A) and a generator χP ′ of ∧n(P ′) such that e(P ′, χP ′) = (J1, [b1, . . . , bn]) = 0 in E(A). But, then
by (4.10), P ′ has a unimodular element. Hence P ′ = Q ⊕ A. But [P ] = [P ′] in K0(A). This proves
the corollary. �

Corollary 6.12 Let A be a Noetherian ring of even dimension n. Let P be a projective A-module of
rank n with trivial determinant. Suppose that e(P ) = (J) in E0(A), where J ⊂ A is an ideal of height
n. Then, there exists a projective A-module Q of rank n such that [Q] = [P ] in K0(A) and J is a
surjective image of Q.

Proof By (2.14), there exists a surjection ψ : P →→ J ∩ J1, where J1 is a height n ideal such that
J + J1 = A. Since e(P ) = (J) = (J ∩ J1) in E0(A), it follows that (J1) = 0 in E0(A). Using ψ we
have

e(P, χ) = (J,wJ) + (J1, wJ1)

in E(A), where χ is a generator of ∧n(P ). Since (J1) = 0 in E0(A), it follows from (6.9) that J1 is
the surjective image of a stably free A-module of rank n. Therefore, by (6.7), there exists a stably
free A-module P1 of rank n such that e(P1, χ1) = (J1, wJ1), where χ1 is a generator of ∧n(P1) and
wJ1 is a local orientation of J1. By (6.6), we can choose an ideal J2 of height n which is generated by
n elements and is comaximal with J such that (J1, wJ1) = (J2, wJ2) for some local orientation wJ2 of
J2. Therefore

e(P, χ) = (J,wJ) + (J2, wJ2) = (J ∩ J2, wJ∩J2),

where wJ∩J2 is a local orientation of J ∩J2 induced from wJ and wJ2 . Therefore, by (4.9), there exists
a surjection from P to J ∩ J2. Since J2 is generated by n elements, we can choose a set of generators
b1, . . . , bn of J2. Let

(J,wJ) + (J2, [b1, . . . , bn]) = (J ∩ J2, w̃J∩J2).

By (6.7), there exists a projective A-module Q with [Q] = [P ] in K0(A) such that

e(Q,wQ) = (J ∩ J2, w̃J∩J2) = (J,wJ).

Hence, by (4.9), there exists a surjection from Q to J . This proves the corollary. �

Proposition 6.13 Let A be a Noetherian ring of even dimension n and let J ⊂ A be an ideal of height
n such that J/J2 is generated by n elements. Let wJ : (A/J)n →→ J/J2 be a surjection. Suppose that
the element (J,wJ) of E(A) belongs to the kernel of the canonical homomorphism E(A) →→ E0(A).
Then, there exists a stably free A-module P1 of rank n and a generator χ1 of ∧n(P1) such that
e(P1, χ1) = (J,wJ) in E(A).
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Proof Since (J,wJ) ∈ E(A) belongs to the kernel of the canonical homomorphism E(A) → E0(A),
it follows that (J) = 0 in E0(A). Hence, by (6.9), there exists a surjection α : P →→ J , where P is
stably free A-module of rank n. Let χ be a generator of ∧n(P ). Suppose that (J, w̃J) is obtained from
(α, χ). By (5.1), there exists a ∈ A such that a ∈ A/J is a unit and wJ = aw̃J . By (6.5), there exists
a projective A-module P1 of rank n with [P1] = [P ] in K0(A) and a generator χ1 of ∧nP1 such that
e(P1, χ1) = (J, an−1w̃J) in E(A). Since n is even, by (5.4), we have (J, an−1w̃J) = (J, aw̃J) in E(A).
Hence e(P1, χ1) = (J,wJ) in E(A). �

Corollary 6.14 Let A be a Noetherian ring of even dimension n. Let P be a projective A-module of
rank n with trivial determinant. Let α : P →→ J be a surjection, where J ⊂ A is an ideal of height
n. Then J is a surjective image of a stably free A-module of rank n if and only if [P ] = [Q ⊕ A] in
K0(A) for some projective A-module Q of rank n− 1.

Proof Let J be a surjective image of a stably free A-module of rank n. Then, by (6.9), (J) = 0 in
E0(A). Hence e(P ) = (J) = 0 in E0(A). Applying (6.11), the result follows.

The converse also follows from (6.9) and (6.11). �
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