UNIMODULAR ELEMENTS IN PROJECTIVE MODULES AND AN andlogue of a result of mandal

MANOJ K. KESHARI AND MD. ALI ZINNA

1. INTRODUCTION

Throughout the paper, rings are commutative Noetherian and projective modules are finitely generated and of constant rank.

If R is a ring of dimension n, then Serre [Se] proved that projective R-modules of rank $>n$ contain a unimodular element. Plumstead $[\mathrm{P}]$ generalized this result and proved that projective $R[X]=R\left[\mathbb{Z}_{+}\right]$-modules of rank $>n$ contain a unimodular element. Bhatwadekar and Roy [B-R 2] generalized this result and proved that projective $R\left[X_{1}, \ldots, X_{r}\right]=R\left[\mathbb{Z}_{+}^{r}\right]$-modules of rank $>n$ contain a unimodular element.

In another direction, if A is a ring such that $R[X] \subset A \subset R\left[X, X^{-1}\right]$, then Bhatwadekar and Roy [B-R 1] proved that projective A-modules of rank $>n$ contain a unimodular element. Rao [Ra] improved this result and proved that if B is a birational overring of $R[X]$, i.e. $R[X] \subset B \subset S^{-1} R[X]$, where S is the set of non-zerodivisors of $R[X]$, then projective B-modules of rank $>n$ contain a unimodular element. Bhatwadekar, Lindel and Rao [B-L-R, Theorem 5.1, Remark 5.3] generalized this result and proved that projective $B\left[\mathbb{Z}_{+}^{r}\right]$-modules of rank $>n$ contain a unimodular element when B is seminormal. Bhatwadekar [Bh, Theorem 3.5] removed the hypothesis of seminormality used in [B-L-R].

All the above results are best possible in the sense that projective modules of rank n over above rings need not have a unimodular element. So it is natural to look for obstructions for a projective module of rank n over above rings to contain a unimodular element. We will prove some results in this direction.

Let P be a projective $R\left[\mathbb{Z}_{+}^{r}\right][T]$-module of rank $n=\operatorname{dim} R$ such that P_{f} and $P / T P$ contain unimodular elements for some monic polynomial f in the variable T. Then P contains a unimodular element. The proof of this result is implicit in [B-L-R, Theorem 5.1]. We will generalize this result to projective $R[M][T]$-modules of rank n, where $M \subset \mathbb{Z}_{+}^{r}$ is a Φ-simplicial monoid in the class $\mathcal{C}(\Phi)$. For this we need the following result whose proof is similar to [B-L-R, Theorem 5.1].

Proposition 1.1. Let R be a ring and P be a projective $R[X]$-module. Let $J \subset R$ be an ideal such that P_{s} is extended from R_{s} for every $s \in J$. Suppose that
(a) $P / J P$ contains a unimodular element.
(b) If I is an ideal of $(R / J)[X]$ of height $\operatorname{rank}(P)-1$, then there exist $\bar{\sigma} \in \operatorname{Aut}((R / J)[X])$ with $\bar{\sigma}(X)=X$ and $\sigma \in \operatorname{Aut}(R[X])$ with $\sigma(X)=X$ which is a lift of $\bar{\sigma}$ such that $\bar{\sigma}(I)$ contains a monic polynomial in the variable X.
(c) $E L(P /(X, J) P)$ acts transitively on $\operatorname{Um}(P /(X, J) P)$.
(d) There exists a monic polynomial $f \in R[X]$ such that P_{f} contains a unimodular element.

Then the natural map $U m(P) \rightarrow U m(P / X P)$ is surjective. In particular, if $P / X P$ contains a unimodular element, then P contains a unimodular element.

We prove the following result as an application of (1.1).
Theorem 1.2. Let R be a ring of dimension n and $M \subset \mathbb{Z}_{+}^{r} a \Phi$-simplicial monoid in the class $\mathcal{C}(\Phi)$. Let P be a projective $R[M][T]$-module of rank n whose determinant is extended from R. Assume $P / T P$ and P_{f} contain unimodular elements for some monic polynomial f in the variable T. Then the natural map $\operatorname{Um}(P) \rightarrow U m(P / T P)$ is surjective. In particular, P contains a unimodular element.

Let R be a ring containing \mathbb{Q} of dimension $n \geq 2$. If P is a projective $R[X]$-module of rank n, then Das and Zinna [D-Z] have obtained an obstruction for P to have a unimodular element. Let us fix an isomorphism $\chi: L \xrightarrow{\sim} \wedge^{n} P$, where L is the determinant of P. To the pair (P, χ), they associated an element $e(P, \chi)$ of the Euler class group $E(R[X], L)$ and proved that P has a unimodular element if and only if $e(P, \chi)=0$ in $E(R[X], L)$ [D-Z].

It is desirable to have such an obstruction for projective $R[X, Y]$-module P of rank n. As an application of (1.2), we obtain such a result. Recall that $R(X)$ denotes the ring obtained from $R[X]$ by inverting all monic polynomials in X. Let L be the determinant of P and $\chi: L \xrightarrow{\sim} \wedge^{n}(P)$ be an isomorphism. We define the Euler class group $E(R[X, Y], L)$ of $R[X, Y]$ as the product of Euler class groups $E(R(X)[Y], L \otimes$ $R(X)[Y])$ of $R(X)[Y]$ and $E(R[Y], L \otimes R[Y])$ of $R[Y]$ defined by Das and Zinna [D-Z]. To the pair (P, χ), we associate an element $e(P, \chi)$ in $E(R[X, Y], L)$ and prove the following result (3.4).

Theorem 1.3. Let the notations be as above. Then $e(P, \chi)=0$ in $E(R[X, Y], L)$ if and only if P has a unimodular element.

Let R be a local ring and P be a projective $R[T]$-module. Roitman [Ro, Lemma 10] proved that if the projective $R[T]_{f}$-module P_{f} contains a unimodular element for some monic polynomial $f \in R[T]$, then P contains a unimodular element. Roy [Ry,

Theorem 1.1] generalized this result and proved that if P and Q are projective $R[T]$ modules with $\operatorname{rank}(Q)<\operatorname{rank}(P)$ such that Q_{f} is a direct summand of P_{f} for some monic polynomial $f \in R[T]$, then Q is a direct summand of P. Mandal [M, Theorem 2.1] extended Roy's result to Laurent polynomial rings.

We prove the following result (4.4) which gives Mandal's $[\mathrm{M}]$ in case $A=R\left[X, X^{-1}\right]$. Recall that a monic polynomial $f \in R[X]$ is called special monic if $f(0)=1$.

Theorem 1.4. Let R be a local ring and $R[X] \subset A \subset R\left[X, X^{-1}\right]$. Let P and Q be two projective A-modules with $\operatorname{rank}(Q)<\operatorname{rank}(P)$. If Q_{f} is a direct summand of P_{f} for some special monic polynomial $f \in R[X]$, then Q is also a direct summand of P.

2. Preliminaries

Definition 2.1. Let R be a ring and P be a projective R-module. An element $p \in P$ is called unimodular if there is a surjective R-linear map $\varphi: P \rightarrow R$ such that $\varphi(p)=1$. Note that P has a unimodular element if and only if $P \simeq Q \oplus R$ for some R-module Q. The set of all unimodular elements of P is denoted by $\operatorname{Um}(P)$.
Definition 2.2. Let M be a finitely generated submonoid of \mathbb{Z}_{+}^{r} of rank r such that $M \subset \mathbb{Z}_{+}^{r}$ is an integral extension, i.e. for any $x \in \mathbb{Z}_{+}^{r}, n x \in M$ for some integer $n>0$. Such a monoid M is called a Φ-simplicial monoid of rank r [G2].

Definition 2.3. Let $M \subset \mathbb{Z}_{+}^{r}$ be a Φ-simplicial monoid of rank r. We say that M belongs to the class $\mathcal{C}(\Phi)$ if M is seminormal (i.e. if $x \in g p(M)$ and $x^{2}, x^{3} \in M$, then $x \in M)$ and if we write $\mathbb{Z}_{+}^{r}=\left\{t_{1}^{s_{1}} \ldots t_{r}^{s_{r}} \mid s_{i} \geq 0\right\}$, then for $1 \leq m \leq r, M_{m}=M \cap$ $\left\{t_{1}^{s_{1}} \ldots t_{m}^{s_{m}} \mid s_{i} \geq 0\right\}$ satisfies the following properties: Given a positive integer c, there exist integers $c_{i}>c$ for $i=1, \ldots, m-1$ such that for any ring R, the automorphism $\eta \in A u t_{R\left[t_{m}\right]}\left(R\left[t_{1}, \ldots, t_{m}\right]\right)$ defined by $\eta\left(t_{i}\right)=t_{i}+t_{m}^{c_{i}}$ for $i=1, \ldots, m-1$, restricts to an R-automorphism of $R\left[M_{m}\right]$. It is easy to see that $M_{m} \in \mathcal{C}(\Phi)$ and rank $M_{m}=m$ for $1 \leq m \leq r$.

Example 2.4. The following monoids belong to $\mathcal{C}(\Phi)$ [K-S, Example 3.5, 3.9, 3.10].
(i) If $M \subset \mathbb{Z}_{+}^{2}$ is a finitely generated and normal monoid (i.e. $x \in g p(M)$ and $x^{n} \in M$ for some $n>1$, then $x \in M$) of rank 2 , then $M \in \mathcal{C}(\Phi)$.
(ii) For a fixed integer $n>0$, if $M \subset \mathbb{Z}_{+}^{r}$ is the monoid generated by all monomials in t_{1}, \ldots, t_{r} of total degree n, then M is a normal monoid of rank r and $M \in \mathcal{C}(\Phi)$. In particular, $\mathbb{Z}_{+}^{r} \in \mathcal{C}(\Phi)$ and $<t_{1}^{2}, t_{2}^{2}, t_{3}^{2}, t_{1} t_{2}, t_{1} t_{3}, t_{2} t_{3}>\in \mathcal{C}(\Phi)$.
(iii) The submonoid M of \mathbb{Z}_{+}^{3} generated by $<t_{1}^{2}, t_{2}^{2}, t_{3}^{2}, t_{1} t_{3}, t_{2} t_{3}>\in \mathcal{C}(\Phi)$.

Remark 2.5. Let R be a ring and $M \subset \mathbb{Z}_{+}^{r}=\left\{t_{1}^{m_{1}} \ldots t_{r}^{m_{r}} \mid m_{i} \geq 0\right\}$ be a monoid of rank r in the class $\mathcal{C}(\Phi)$. Let I be an ideal of $R[M]$ of height $>\operatorname{dim} R$. Then by [G2, Lemma 6.5]
and [K-S, Lemma 3.1], there exists an R-automorphism σ of $R[M]$ such that $\sigma\left(t_{r}\right)=t_{r}$ and $\sigma(I)$ contains a monic polynomial in t_{r} with coefficients in $R[M] \cap R\left[t_{1}, \ldots, t_{r-1}\right]$.

We will state some results for later use.
Theorem 2.6. [K-S, Theorem 3.4] Let R be a ring and M be a Φ-simplicial monoid such that $M \in \mathcal{C}(\Phi)$. Let P be a projective $R[M]$-module of rank $>\operatorname{dim} R$. Then P has a unimodular element.

Theorem 2.7. [D-K, Theorem 4.5] Let R be a ring and M be a Φ-simplicial monoid. Let P be a projective $R[M]$-module of $\operatorname{rank} \geq \max \{\operatorname{dim} R+1,2\}$. Then $E L(P \oplus R[M])$ acts transitively on $\operatorname{Um}(P \oplus R[M])$.

The following result is proved in [B-L-R, Criterion-1 and Remark] in case $J=Q\left(P, R_{0}\right)$ is the Quillen ideal of P in R_{0}. The same proof works in our case.

Theorem 2.8. Let $R=\oplus_{i \geq 0} R_{i}$ be a graded ring and P be a projective R-module. Let J be an ideal of R_{0} such that J is contained in the Quillen ideal $Q\left(P, R_{0}\right)$. Let $p \in P$ be such that $p_{1+R^{+}} \in U m\left(P_{1+R^{+}}\right)$and $p_{1+J} \in U m\left(P_{1+J}\right)$, where $R^{+}=\oplus_{i \geq 1} R_{i}$. Then P contains a unimodular element p_{1} such that $p=p_{1}$ modulo $R^{+} P$.

The following result is a consequence of Eisenbud-Evans [E-E], as stated in [P, p. 1420].

Lemma 2.9. Let A be a ring and P be a projective A-module of rank n. Let $(\alpha, a) \in\left(P^{*} \oplus A\right)$. Then there exists an element $\beta \in P^{*}$ such that $\operatorname{ht}\left(I_{a}\right) \geq n$, where $I=(\alpha+a \beta)(P)$. In particular, if the ideal $(\alpha(P), a)$ has height $\geq n$, then ht $I \geq n$. Further, if $(\alpha(P), a)$ is an ideal of height $\geq n$ and I is a proper ideal of A, then ht $I=n$.

3. PROOFS OF (1.1), (1.2) AND (1.3)

3.1. Proof of Proposition 1.1. Let $p_{0} \in \operatorname{Um}(P / J P)$ and $p_{1} \in \operatorname{Um}(P / X P)$. Let $\widetilde{p_{0}}$ and $\widetilde{p_{1}}$ be the images of p_{0} and p_{1} in $P /(X, J) P$. By hypothesis (c), there exist $\widetilde{\delta} \in$ $E L(P /(X, J) P)$ such that $\widetilde{\delta}\left(\widetilde{p_{0}}\right)=\widetilde{p_{1}}$. By [B-R 2, Proposition 4.1], $\widetilde{\delta}$ can be lifted to an automorphism δ of $P / J P$. Consider the fiber product diagram for rings and modules

We can patch $\delta\left(p_{0}\right)$ and p_{1} to get a unimodular element $p \in \operatorname{Um}(P / X J P)$ such that $p=\delta\left(p_{0}\right)$ modulo $J P$ and $p=p_{1}$ module $X P$. Writing $\delta\left(p_{0}\right)$ by p_{0}, we assume that $p=p_{0}$ modulo $J P$ and $p=p_{1}$ module $X P$.

Using hypothesis (d), we get an element $q \in P$ such that the order ideal $O_{P}(q)=$ $\left\{\phi(q) \mid \phi \in \operatorname{Hom}_{R[X]}(P, R[X])\right\}$ contains a power of f. We may assume that $f \in O_{P}(q)$.

Let "bar" denote reduction modulo the ideal (J). Write $\bar{P}=\overline{R[X]} p_{0} \oplus Q$ for some projective $\overline{R[X]}$-module Q and $\bar{q}=\left(\bar{a} p_{0}, q^{\prime}\right)$ for some $q^{\prime} \in Q$. By Eisenbud-Evans (2.9), there exist $\bar{\tau} \in E L(\bar{P})$ such that $\bar{\tau}(\bar{q})=\left(\bar{a} p_{0}, q^{\prime \prime}\right)$ and $h t\left(O_{Q}\left(q^{\prime \prime}\right)\right){\bar{R}[X]_{\bar{a}}} \geq \operatorname{rank}(P)-$ 1. Since $\bar{\tau}$ can be lifted to $\tau \in \operatorname{Aut}(P)$, replacing P by $\tau(P)$, we may assume that $h t\left(O_{Q}\left(q^{\prime}\right)\right) \geq \operatorname{rank}(P)-1$ on the Zariski-open set $D(\bar{a})$ of Spec $(\overline{R[X]})$.

Let $\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{r}$ be minimal prime ideals of $O_{Q}\left(q^{\prime}\right)$ in $\overline{R[X]}$ not containing \bar{a}. Then $h t\left(\cap_{1}^{r} \mathfrak{p}_{i}\right) \geq \operatorname{rank}(P)-1$. By hypothesis (b), we can find $\bar{\sigma} \in \operatorname{Aut}(\overline{R[X]})$ with $\bar{\sigma}(X)=X$ and $\sigma \in \operatorname{Aut}(R[X])$ with $\sigma(X)=X$ which is a lift of $\bar{\sigma}$ such that $\bar{\sigma}\left(\cap_{1}^{r} \mathfrak{p}_{i}\right)$ contains a monic polynomial in $\overline{R[X]}=\bar{R}[X]$. Note that $\sigma(f)$ is a monic polynomial. Replacing $R[X]$ by $\sigma(R[X])$, we may assume that $\cap_{1}^{r} \mathfrak{p}_{i}$ contains a monic polynomial in $\bar{R}[X]$, and $f \in O_{P}(q)$ is a monic polynomial.

If \mathfrak{p} is a minimal prime ideals of $O_{Q}\left(q^{\prime}\right)$ in $\overline{R[X]}$ containing \bar{a}, then \mathfrak{p} contains $O_{\bar{P}}(\bar{q})$. Since $f \in O_{P}(q), \mathfrak{p}$ contains the monic polynomial \bar{f}. Therefore, all minimal primes of $O_{Q}\left(q^{\prime}\right)$ contains a monic polynomial, hence $O_{Q}\left(q^{\prime}\right)$ contains a monic polynomial, say $\bar{g} \in \bar{R}[X]$. Let $g \in R[X]$ be a monic polynomial which is a lift of \bar{g}.

Claim: For large $N>0, p_{2}=p+X^{N} g^{N} q \in \operatorname{Um}\left(P_{1+J R}\right)$.
Choose $\phi \in P^{*}$ such that $\phi(q)=f$. Then $\phi\left(p_{2}\right)=\phi(p)+X^{N} g^{N} f$ is a monic polynomial for large N. Since $p=p_{0}$ module $J P, \bar{p}=p_{0}$ and $\bar{q}=\left(\overline{a p}, q^{\prime}\right)$. Therefore,
$\bar{p}_{2}=\bar{p}+X^{N} \bar{g}^{N}\left(\overline{a p}, q^{\prime}\right)=\left(\left(1+T^{N} \bar{g}^{N} \bar{a}\right) \bar{p}, X^{N} \bar{g}^{N} q^{\prime}\right)$.
Since $\bar{g} \in O_{Q}\left(q^{\prime}\right) \subset O_{\bar{P}}\left(\bar{p}_{2}\right)$, we get $O_{\bar{P}}(\bar{p}) \subset O_{\bar{P}}\left(\bar{p}_{2}\right)$. Since $\bar{p} \in \operatorname{Um}(\bar{P})$, we get $\bar{p}_{2} \in \operatorname{Um}(\bar{P})$ and hence $p_{2} \in \operatorname{Um}\left(P_{1+J R[X]}\right)$. Since $O_{P}\left(p_{2}\right)$ contains a monic polynomial, by [La, Lemma 1.1, p. 79], $p_{2} \in \operatorname{Um}\left(P_{1+J R}\right)$.

Now $p_{2}=p=p_{1}$ modulo $X P$, we get $p_{2} \in \operatorname{Um}(P / X P)$. By (2.8), there exist $p_{3} \in$ $\operatorname{Um}(P)$ such that $p_{3}=p_{2}=p_{1}$ modulo $X P$. This completes the proof.
3.2. Proof of Theorem 1.2. Without loss of generality, we may assume that R is reduced. When $n=1$, the result follows from well known Quillen [Q] and Suslin [Su]. When $n=2$, the result follows from Bhatwadekar [Bh, Proposition 3.3] where he proves that if P is a projective $R[T]$-module of rank 2 such that P_{f} contains a unimodular element for some monic polynomial $f \in R[T]$, then P contains a unimodular element. So now we assume $n \geq 3$.

Write $A=R[M]$. Let $J(A, P)=\left\{s \in A \mid P_{s}\right.$ is extended from $\left.A_{s}\right\}$ be the Quillen ideal of P in A. Let $\widetilde{J}=J(A, P) \cap R$ be the ideal of R and $J=\widetilde{J} R[M]$. We will show that J satisfies the properties of (1.1).

Let $\mathfrak{p} \in \operatorname{Spec}(R)$ with $h t(\mathfrak{p})=1$ and $S=R-\mathfrak{p}$. Then $S^{-1} P$ is a projective module over $S^{-1} A[T]=R_{\mathfrak{p}}[M][T]$. Since $\operatorname{dim}\left(R_{\mathfrak{p}}\right)=1$, by (2.6), $S^{-1} P=\wedge^{n} P_{S} \oplus S^{-1} A[T]^{n-1}$.

Since determinant of P is extended from $R, \wedge^{n} P_{S}=A[T]_{S}$ and hence $S^{-1} P$ is free. Therefore there exists $s \in R-\mathfrak{p}$ such that P_{s} is free. Hence $s \in \widetilde{J}$ and so ht $(\widetilde{J}) \geq 2$.

Since $\operatorname{dim}(R / \widetilde{J}) \leq n-2$ and $A[T] /(J)=(R / \widetilde{J})[M][T]$, by (2.6), $P / J P$ contains a unimodular element.

If I is an ideal of $(A / J)[T]=(R / \widetilde{J})[M][T]$ of height $\geq n-1$, then by (2.5), there exists an $R[T]$-automorphism $\sigma \in$ Aut $_{R[T]}(A[T])$ such that if $\bar{\sigma}$ denotes the induced automorphism of $(A / J)[T]$, then $\bar{\sigma}(I)$ contains a monic polynomial in T.

By (2.7), $E L(P /(T, J) P)$ acts transitively on $\operatorname{Um}(P /(J, T) P)$.
Therefore, the result now follows from (1.1).

Corollary 3.1. Let R be a ring of dimension $n, A=R\left[X_{1}, \cdots, X_{m}\right]$ a polynomial ring over R and P be a projective $A[T]$-module of rank n. Assume that $P / T P$ and P_{f} both contain a unimodular element for some monic polynomial $f(T) \in A[T]$. Then P has a unimodular element.

Proof. If $n=1$, the result follows from well known Quillen [Q] and Suslin [Su] Theorem. When $n=2$, the result follows from Bhatwadekar [Bh, Proposition 3.3]. Assume $n \geq 3$. Let L be the determinant of P. If \widetilde{R} is the seminormalization of R, then by Swan [Sw], $L \otimes \widetilde{R}\left[X_{1}, \ldots, X_{m}\right]$ is extended from \widetilde{R}. By (1.2), $P \otimes \widetilde{R}\left[X_{1}, \ldots, X_{m}\right]$ has a unimodular element. Since $\widetilde{R}\left[X_{1}, \ldots, X_{n}\right]$ is the seminormalization of A, by Bhatwadekar [Bh, Lemma 3.1], P has a unimodular element.
3.3. Obstruction for Projective Modules to have a Unimodular Element. Let R be a ring of dimension $n \geq 2$ containing \mathbb{Q} and P be a projective $R[X, Y]$-module of rank n with determinant L. Let $\chi: L \xrightarrow{\sim} \wedge^{n}(P)$ be an isomorphism. We call χ an orientation of P. In general, we shall use 'hat' when we move to $R(X)[Y]$ and 'bar' when we move modulo the ideal (X). For instance, we have:
(1) $L \otimes R(X)[Y]=\hat{L}$ and $L / X L=\bar{L}$,
(2) $P \otimes R(X)[Y]=\hat{P}$ and $P / X P=\bar{P}$.

Similarly, $\hat{\chi}$ denotes the induced isomorphism $\hat{L} \xrightarrow{\sim} \wedge^{n} \hat{P}$ and $\bar{\chi}$ denotes the induced isomorphism $\bar{L} \xrightarrow{\sim} \wedge^{n} \bar{P}$.

We now define the Euler class of (P, χ).
Definition 3.2. First we consider the case $n \geq 2$ and $n \neq 3$. Let $E(R(X)[Y], \hat{L})$ be the nth Euler class group of $R(X)[Y]$ with respect to the line bundle \hat{L} over $R(X)[Y]$ and $E(R[Y], \bar{L})$ be the nth Euler class group of $R[Y]$ with respect to the line bundle \bar{L} over $R[Y]$ (see [D-Z, Section 6] for definition). We define the nth Euler class group of $R[X, Y]$, denoted by $E(R[X, Y], L)$, as the product $E(R(X)[Y], \hat{L}) \times E(R[Y], \bar{L})$.

To the pair (P, χ), we associate an element $e(P, \chi)$ of $E(R[X, Y], L)$, called the Euler class of (P, χ), as follows:

$$
e(P, \chi)=(e(\hat{P}, \hat{\chi}), e(\bar{P}, \bar{\chi}))
$$

where $e(\hat{P}, \hat{\chi}) \in E(R(X)[Y], \hat{L})$ is the Euler class of $(\hat{P}, \hat{\chi})$ and $e(\bar{P}, \bar{\chi}) \in E(R[Y], \bar{L})$ is the Euler class of $(\bar{P}, \bar{\chi})$, defined in [D-Z, Section 6].

Now we treat the case when $n=3$. Let $\widetilde{E}(R(X)[Y], \hat{L})$ be the nth restricted Euler class group of $R(X)[Y]$ with respect to the line bundle \hat{L} over $R(X)[Y]$ and $\widetilde{E}(R[Y], \bar{L})$ be the nth restricted Euler class group of $R[Y]$ with respect to the line bundle \bar{L} over $R[Y]$ (see [D-Z, Section 7] for definition). We define the Euler class group of $R[X, Y]$, again denoted by $E(R[X, Y], L)$, as the product $\widetilde{E}(R(X)[Y], \hat{L}) \times \widetilde{E}(R[Y], \bar{L})$.

To the pair (P, χ), we associate an element $e(P, \chi)$ of $E(R[X, Y], L)$, called the Euler class of (P, χ), as follows:

$$
e(P, \chi)=(e(\hat{P}, \hat{\chi}), e(\bar{P}, \bar{\chi}))
$$

where $e(\hat{P}, \hat{\chi}) \in \widetilde{E}(R(X)[Y], \hat{L})$ is the Euler class of $(\hat{P}, \hat{\chi})$ and $e(\bar{P}, \bar{\chi}) \in \widetilde{E}(R[Y], \bar{L})$ is the Euler class of $(\bar{P}, \bar{\chi})$, defined in [D-Z, Section 7].
Remark 3.3. Note that when $n=2$, the definition of the Euler class group $E(R[T], L)$ is slightly different from the case $n \geq 4$. See [D-Z, Remark 7.8] for details.

Theorem 3.4. Let R be a ring containing \mathbb{Q} of dimension $n \geq 2$ and P be a projective $R[X, Y]$ module of rank n with determinant L. Let $\chi: L \xrightarrow{\sim} \wedge^{n}(P)$ be an isomorphism. Then $e(P, \chi)=$ 0 in $E(R[X, Y], L)$ if and only if P has a unimodular element.

Proof. First we assume that P has a unimodular element. Therefore, \hat{P} and \bar{P} also have unimodular elements. If $n \geq 4$, by [D-Z, Theorem 6.12], we have $e(\hat{P}, \hat{\chi})=0$ in $E(R(X)[Y], \hat{L})$ and $e(\bar{P}, \bar{\chi})=0$ in $E(R[Y], \bar{L})$. The case $n=2$ is taken care by [D-Z, Remark 7.8]. Now if $n=3$, it follows from [D-Z, Theorem 7.4] that $e(\hat{P}, \hat{\chi})=0$ in $E(R(X)[Y], \hat{L})$ and $e(\bar{P}, \bar{\chi})=0$ in $\widetilde{E}(R[Y], \bar{L})$. Consequently, $e(P, \chi)=0$.

Conversely, assume that $e(P, \chi)=0$. Then $e(\hat{P}, \hat{\chi})=0$ in $E(R(X)[Y], \hat{L})$ and $e(\bar{P}, \bar{\chi})=0$ in $E(R[Y], \bar{L})$. If $n \neq 3$, by [D-Z, Theorem 6.12] and [D-Z, Remark 7.8], \hat{P} and \bar{P} have unimodular elements. If $n=3$, by [D-Z, Theorem 7.4], \hat{P} and \bar{P} have unimodular elements. Since \hat{P} has a unimodular element, we can find a monic polynomial $f \in R[X]$ such that P_{f} contains a unimodular element. But then by Theorem 3.1, P has a unimodular element.

Remark 3.5. Let R be a ring containing \mathbb{Q} of dimension $n \geq 2$ and P be a projective $R\left[X_{1}, \ldots, X_{r}\right]$-module ($r \geq 3$) of rank n with determinant L. Let $\chi: L \xrightarrow{\sim} \wedge^{r}(P)$ be an isomorphism. By induction on r, we can define the Euler class group of $R\left[X_{1}, \ldots, X_{r}\right]$ with respect to the line bundle L, denoted by $E\left(R\left[X_{1}, \ldots, X_{r}\right], L\right)$, as the product of $E\left(R\left(X_{r}\right)\left[X_{1}, \ldots, X_{r-1}\right], \hat{L}\right)$ and $E\left(R\left[X_{1}, \ldots, X_{r-1}\right], \bar{L}\right)$.

To the pair (P, χ), we can associate an invariant $e(P, \chi)$ in $E\left(R\left[X_{1}, \ldots, X_{r}\right], L\right)$ as follows:

$$
e(P, \chi)=(e(\hat{P}, \hat{\chi}), e(\bar{P}, \bar{\chi}))
$$

where $e(\hat{P}, \hat{\chi}) \in E\left(R\left(X_{r}\right)\left[X_{1}, \ldots, X_{r-1}\right], \hat{L}\right)$ is the Euler class of $(\hat{P}, \hat{\chi})$ and $e(\bar{P}, \bar{\chi}) \in$ $E\left(R\left[X_{1}, \ldots, X_{r-1}\right], \bar{L}\right)$ is the Euler class of $(\bar{P}, \bar{\chi})$. Finally we have the following result.

Theorem 3.6. Let R be a ring containing \mathbb{Q} of dimension $n \geq 2$ and P be a projective $R\left[X_{1}, \ldots, X_{r}\right]$-module of rank n with determinant L. Let $\chi: L \xrightarrow{\sim} \wedge^{n}(P)$ be an isomorphism. Then $e(P, \chi)=0$ in $E\left(R\left[X_{1}, \ldots, X_{r}\right], L\right)$ if and only if P has a unimodular element.

4. Analogue of Roy and Mandal

In this section we will prove (1.4). We begin with the following result from [Ry, Lemma 2.1].

Lemma 4.1. Let R be a ring and P, Q be two projective R-modules. Suppose that $\phi: Q \longrightarrow P$ is an R-linear map. For an ideal I of R, if ϕ is a split monomorphism modulo I, then ϕ_{1+I} : $Q_{1+I} \longrightarrow P_{1+I}$ is also a split monomorphism.

Lemma 4.2. Let (R, \mathcal{M}) be a local ring and A be a ring such that $R[X] \hookrightarrow A \hookrightarrow R\left[X, X^{-1}\right]$. Let P and Q be two projective A-modules and $\phi: Q \longrightarrow P$ be an R-linear map. If ϕ is a split monomorphism modulo \mathcal{M} and if ϕ_{f} is a split monomorphism for some special monic polynomial $f \in R[X]$, then ϕ is also a split monomorphism.

Proof. By Lemma $4.1 \phi_{1+\mathcal{M} A}$ is a split monomorphism. So, there is an element h in $1+\mathcal{M} A$ such that ϕ_{h} is a split monomorphism. Since f is a special monic polynomial, $R \hookrightarrow A / f$ is an integral extension and hence, h and f are comaximal. As ϕ_{f} is also a split monomorphism, it follows that ϕ is a split monomorphism.

Lemma 4.3. Let R be a local ring and A be a ring such that $R[X] \hookrightarrow A \hookrightarrow R\left[X, X^{-1}\right]$. Let P and Q be two projective A-modules and $\phi, \psi: Q \longrightarrow P$ be R-linear maps. Further assume that $\gamma: P \longrightarrow Q$ is a A-linear map such that $\gamma \psi=f 1_{Q}$ for some special monic polynomial $f \in R[X]$. For large m, there exists a special monic polynomial $g_{m} \in A$ such that $X \phi+\left(1+X^{m}\right) \psi$ becomes a split monomorphism after inverting g_{m}.

Proof. As in [Ry, M], first we assume that Q is free. We have $\gamma\left(X \phi+\left(1+X^{m}\right) \psi\right)=$ $X \gamma \phi+\left(1+X^{m}\right) f 1_{Q}$. Since Q is free, $X \gamma \phi+\left(1+X^{m}\right) f 1_{Q}$ is a matrix. Clearly for large integer $m, \operatorname{det}\left(X \gamma \phi+\left(1+X^{m}\right) f 1_{Q}\right)$ is a special monic polynomial which can be taken for g_{m}.

In the general case, find projective A-module Q^{\prime} such that $Q \oplus Q^{\prime}$ is free. Define maps $\phi^{\prime}, \psi^{\prime}: Q \oplus Q^{\prime} \longrightarrow P \oplus Q^{\prime}$ and $\gamma^{\prime}: P \oplus Q^{\prime} \longrightarrow Q \oplus Q^{\prime}$ as $\phi^{\prime}=\phi \oplus 0, \psi^{\prime}=\psi \oplus f 1_{Q^{\prime}}$
and $\gamma^{\prime}=\gamma \oplus 1_{Q^{\prime}}$. By the previous case, we can find a special monic polynomial g_{m} for some large m such that $\left(X \phi^{\prime}+\left(1+X^{m}\right) \psi^{\prime}\right)_{g_{m}}$ becomes a split monomorphism. Hence $X \phi+\left(1+X^{m}\right) \psi$ becomes a split monomorphism after inverting g_{m}.

The following result generalizes Mandal's [M].
Theorem 4.4. Let (R, \mathcal{M}) be a local ring and $R[X] \subset A \subset R\left[X, X^{-1}\right]$. Let P and Q be two projective A-modules with $\operatorname{rank}(Q)<\operatorname{rank}(P)$. If Q_{f} is a direct summand of P_{f} for some special monic polynomial $f \in R[X]$, then Q is also a direct summand of P.

Proof. The method of proof is similar to [Ry, Theorem 1.1], hence we give an outline of the proof.

Since Q_{f} is a direct summand of P_{f}, we can find A-linear maps $\psi: Q \longrightarrow P$ and $\gamma: P \longrightarrow Q$ such that $\gamma \psi=f 1_{Q}$ (possibly after replacing f by a power of f).

Let 'bar' denote reduction modulo \mathcal{M}. Then we have $\bar{\gamma} \bar{\psi}=\bar{f} 1_{\bar{Q}}$. As f is special monic, $\bar{\psi}$ is a monomorphism.

We may assume that $A=R\left[X, f_{1} / X^{t}, \ldots, f_{n} / X^{t}\right]$ with $f_{i} \in R[X]$. If $f_{i} \in \mathcal{M} R[X]$, then $\overline{R\left[X, f_{i} / X^{t}\right]}=\bar{R}[X, Y] /\left(X^{t} Y\right)$. If $f_{i} \in R[X]-\mathcal{M} R[X]$, then $\overline{R\left[X, f_{i} / X^{t}\right]}$ is either $\bar{R}[X]$ or $\bar{R}\left[X, X^{-1}\right]$ depending on whether \bar{f}_{i} / X^{t} is a polynomial in $\bar{R}[X]$ or \bar{F}_{i} / X^{s} with $\bar{F}_{i}(0) \neq 0$ and $s>0$.

In general, \bar{A} is one of $\bar{R}[X], \bar{R}\left[X, X^{-1}\right]$ or $\bar{R}\left[X, Y_{1}, \ldots, Y_{m}\right] /\left(X^{t}\left(Y_{1}, \ldots, Y_{m}\right)\right)$ for some $m>0$. By [V, Theorem 3.2], any projective $\bar{R}\left[X, Y_{1}, \ldots, Y_{m}\right] /\left(X^{t}\left(Y_{1}, \ldots, Y_{m}\right)\right)$ module is free. Therefore, in all cases, projective \bar{A}-modules are free and hence extended from $\bar{R}[X]$. In particular, \bar{P} and \bar{Q} are extended from $\bar{R}[X]$, which is a PID.

Let $\operatorname{rank}(P)=r$ and $\operatorname{rank}(Q)=s$. Therefore, using elementary divisors theorem, we can find bases $\left\{\bar{p}_{1}, \cdots, \bar{p}_{r}\right\}$ and $\left\{\bar{q}_{1}, \cdots, \bar{q}_{s}\right\}$ for \bar{P} and \bar{Q}, respectively, such that $\bar{\psi}\left(\bar{q}_{i}\right)=\bar{f}_{i} \bar{p}_{i}$ for some $f_{i} \in R[X]$ and $1 \leq i \leq s$.

For the rest of the proof, we can follow the proof of [Ry, Theorem 1.1].
Now we have the following consequence of (4.4).
Corollary 4.5. Let R be a local ring and $R[X] \subset A \subset R\left[X, X^{-1}\right]$. Let P, Q be two projective A-modules such that P_{f} is isomorphic to Q_{f} for some special monic polynomial $f \in R[X]$. Then,
(1) Q is a direct summand of $P \oplus L$ for any projective A-module L.
(2) P is isomorphic to Q if P or Q has a direct summand of rank one.
(3) $P \oplus L$ is isomorphic to $Q \oplus L$ for all rank one projective A-modules L.
(4) P and Q have same number of generators.

Proof. (1) trivially follows from Theorem 4.4 and (3) follows from (2).
The proof of (4) is same as [Ry, Proposition 3.1 (4)].

For (2), we can follow the proof of [M, Theorem 2.2 (ii)] by replacing doubly monic polynomial by special monic polynomial in his arguments.

Corollary 4.6. Let R be a local ring and $R[X] \subset A \subset R\left[X, X^{-1}\right]$. Let P be a projective A-module such that P_{f} is free for some special monic polynomial $f \in R[X]$. Then P is free.

Proof. Follows from second part of (4.5).

References

[Bh] S.M. Bhatwadekar, Inversion of monic polynomials and existence of unimodular elements (II), Math. Z. 200 (1989), 233-238.
[B-R 1] S. M. Bhatwadekar, Amit Roy, Stability theorems for overrings of polynomial rings, Invent.Math 68 (1982), 117-127.
[B-R 2] S.M. Bhatwadekar and A. Roy, Some theorems about projective modules over polynomial rings. J. Algebra 86 (1984), 150-158.
[B-L-R] S. M. Bhatwadekar, H. Lindel and R.A. Rao, The Bass Murthy question: Serre dimension of Laurent polynomial extensions, Invent. Math. 81 (1985), 189-203.
[D-K] A. M. Dhorajia and M. K. Keshari, A note on cancellation of projective modules, J. Pure and Applied Algebra 216 (2012), 126-129.
[D-Z] M. K. Das, Md. Ali Zinna, The Euler class group of a polynomial algebra with coefficients in a line bundle, Math. Z. 276 (2014) 757-783.
[E-E] D. Eisenbud and E. G. Evans, Generating modules efficiently: Theorems from algebraic K-Theory, J. Algebra 27 (1973), 278-305.
[G2] J. Gubeladze, The elementary action on unimodular rows over a monoid ring, J. Algebra 148 (1992) 135-161.
[K-S] M. K. Keshari and H. P. Sarwar, Serre dimension of Monoid Algebras, Proceedings - Mathematical Sciences, To appear.
[La] T. Y. Lam, Serre conjecture, in: Lecture Notes in Mathematics, Vol. 635, Springer, Berlin, 1978.
[M] S. Mandal, About direct summands of projective modules over laurent polynomial rings, Proceedings of the AMS Vol 112, No. 4 (1991), 915-918.
[P] B. Plumstead, The conjecture of Eisenbud and Evans, Amer. J. Math 105 (1983), 1417-1433.
[Q] D. Quillen, Projective modules over polynomial rings, Invent. Math. 36 (1976), 167-171.
[Ra] Ravi A. Rao, Stability theorems for overrings of polynomial rings II, J. Algebra 78 (1982), 437-444.
[Ro] M. Roitman, Projective modules over polynomial rings, J. Algebra 58 (1979), 51-63.
[Ry] Amit Roy, Remarks on a result of Roitman, J. Indian Math. Soc. 44 (1980), 117-120.
[Se] J.P. Serre, Sur les modules projectifs, Semin. Dubreil-Pisot 14 (1960-61).
[Su] A.A. Suslin, Projective modules over polynomial rings are free, Math. Dokl. 17 (1976), 1160-1164.
[Sw] R.G. Swan, On Seminormality, J. Algebra 67 (1980), 210-229.
[V] Ton Vorst, The Serre problem for discrete Hodge algebras, Math. Z. 184 (1983), 425-433.

Department of Mathematics, Indian Institute of Technology Bombay, Powai, Mumbai 400076, InDIA.

E-mail address: keshari@math.iitb.ac.in
Department of Mathematics, Indian Institute of Technology Bombay, Powai, Mumbai, IndiA - 400076

E-mail address: zinna@math.iitb.ac.in

