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1. INTRODUCTION

Throughout the paper, rings are commutative Noetherian and projective modules are finitely
generated and of constant rank.

If R is a ring of dimension n, then Serre [Se] proved that projective R-modules of
rank > n contain a unimodular element. Plumstead [P] generalized this result and
proved that projective R[X] = R[Z+]-modules of rank > n contain a unimodular ele-
ment. Bhatwadekar and Roy [B-R 2] generalized this result and proved that projective
R[X1, . . . , Xr] = R[Zr

+]-modules of rank > n contain a unimodular element.
In another direction, if A is a ring such that R[X] ⊂ A ⊂ R[X,X−1], then Bhat-

wadekar and Roy [B-R 1] proved that projective A-modules of rank > n contain a
unimodular element. Rao [Ra] improved this result and proved that if B is a birational
overring of R[X], i.e. R[X] ⊂ B ⊂ S−1R[X], where S is the set of non-zerodivisors of
R[X], then projective B-modules of rank > n contain a unimodular element. Bhat-
wadekar, Lindel and Rao [B-L-R, Theorem 5.1, Remark 5.3] generalized this result
and proved that projective B[Zr

+]-modules of rank > n contain a unimodular element
when B is seminormal. Bhatwadekar [Bh, Theorem 3.5] removed the hypothesis of
seminormality used in [B-L-R].

All the above results are best possible in the sense that projective modules of rank n
over above rings need not have a unimodular element. So it is natural to look for ob-
structions for a projective module of rank n over above rings to contain a unimodular
element. We will prove some results in this direction.

Let P be a projective R[Zr
+][T ]-module of rank n = dimR such that Pf and P/TP

contain unimodular elements for some monic polynomial f in the variable T . Then P
contains a unimodular element. The proof of this result is implicit in [B-L-R, Theorem
5.1]. We will generalize this result to projective R[M ][T ]-modules of rank n, where
M ⊂ Zr

+ is a Φ-simplicial monoid in the class C(Φ). For this we need the following
result whose proof is similar to [B-L-R, Theorem 5.1].
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Proposition 1.1. Let R be a ring and P be a projective R[X]-module. Let J ⊂ R be an ideal
such that Ps is extended from Rs for every s ∈ J . Suppose that

(a) P/JP contains a unimodular element.
(b) If I is an ideal of (R/J)[X] of height rank(P )− 1, then there exist σ ∈ Aut ((R/J)[X])

with σ(X) = X and σ ∈ Aut (R[X]) with σ(X) = X which is a lift of σ such that σ(I)

contains a monic polynomial in the variable X .
(c) EL(P/(X, J)P ) acts transitively on Um(P/(X, J)P ).
(d) There exists a monic polynomial f ∈ R[X] such that Pf contains a unimodular element.
Then the natural map Um(P ) → Um(P/XP ) is surjective. In particular, if P/XP

contains a unimodular element, then P contains a unimodular element.

We prove the following result as an application of (1.1).

Theorem 1.2. Let R be a ring of dimension n and M ⊂ Zr
+ a Φ-simplicial monoid in the

class C(Φ). Let P be a projective R[M ][T ]-module of rank n whose determinant is extended
from R. Assume P/TP and Pf contain unimodular elements for some monic polynomial f in
the variable T . Then the natural map Um(P ) → Um(P/TP ) is surjective. In particular, P
contains a unimodular element.

Let R be a ring containing Q of dimension n ≥ 2. If P is a projective R[X]-module
of rank n, then Das and Zinna [D-Z] have obtained an obstruction for P to have
a unimodular element. Let us fix an isomorphism χ : L

∼→ ∧nP , where L is the
determinant of P . To the pair (P, χ), they associated an element e(P, χ) of the Euler
class group E(R[X], L) and proved that P has a unimodular element if and only if
e(P, χ) = 0 in E(R[X], L) [D-Z].

It is desirable to have such an obstruction for projective R[X,Y ]-module P of rank
n. As an application of (1.2), we obtain such a result. Recall that R(X) denotes
the ring obtained from R[X] by inverting all monic polynomials in X . Let L be the
determinant of P and χ : L

∼→ ∧n(P ) be an isomorphism. We define the Euler class
group E(R[X,Y ], L) of R[X,Y ] as the product of Euler class groups E(R(X)[Y ], L ⊗
R(X)[Y ]) of R(X)[Y ] and E(R[Y ], L⊗R[Y ]) of R[Y ] defined by Das and Zinna [D-Z].
To the pair (P, χ), we associate an element e(P, χ) in E(R[X,Y ], L) and prove the
following result (3.4).

Theorem 1.3. Let the notations be as above. Then e(P, χ) = 0 in E(R[X,Y ], L) if and only
if P has a unimodular element.

Let R be a local ring and P be a projective R[T ]-module. Roitman [Ro, Lemma
10] proved that if the projective R[T ]f -module Pf contains a unimodular element for
some monic polynomial f ∈ R[T ], then P contains a unimodular element. Roy [Ry,
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Theorem 1.1] generalized this result and proved that if P and Q are projective R[T ]-
modules with rank(Q) < rank(P ) such that Qf is a direct summand of Pf for some
monic polynomial f ∈ R[T ], then Q is a direct summand of P . Mandal [M, Theorem
2.1] extended Roy’s result to Laurent polynomial rings.

We prove the following result (4.4) which gives Mandal’s [M] in caseA = R[X,X−1].
Recall that a monic polynomial f ∈ R[X] is called special monic if f(0) = 1.

Theorem 1.4. Let R be a local ring and R[X] ⊂ A ⊂ R[X,X−1]. Let P and Q be two
projective A-modules with rank(Q) < rank(P ). If Qf is a direct summand of Pf for some
special monic polynomial f ∈ R[X], then Q is also a direct summand of P .

2. PRELIMINARIES

Definition 2.1. Let R be a ring and P be a projective R-module. An element p ∈ P is
called unimodular if there is a surjective R-linear map ϕ : P � R such that ϕ(p) = 1.
Note that P has a unimodular element if and only if P ' Q⊕R for some R-module Q.
The set of all unimodular elements of P is denoted by Um(P ).

Definition 2.2. Let M be a finitely generated submonoid of Zr
+ of rank r such that

M ⊂ Zr
+ is an integral extension, i.e. for any x ∈ Zr

+, nx ∈ M for some integer n > 0.
Such a monoid M is called a Φ-simplicial monoid of rank r [G2].

Definition 2.3. Let M ⊂ Zr
+ be a Φ-simplicial monoid of rank r. We say that M

belongs to the class C(Φ) if M is seminormal (i.e. if x ∈ gp(M) and x2, x3 ∈ M , then
x ∈ M ) and if we write Zr

+ = {ts11 . . . tsrr | si ≥ 0}, then for 1 ≤ m ≤ r, Mm = M ∩
{ts11 . . . tsmm | si ≥ 0} satisfies the following properties: Given a positive integer c, there
exist integers ci > c for i = 1, . . . ,m − 1 such that for any ring R, the automorphism
η ∈ AutR[tm](R[t1, . . . , tm]) defined by η(ti) = ti + tcim for i = 1, . . . ,m − 1, restricts to
an R-automorphism of R[Mm]. It is easy to see that Mm ∈ C(Φ) and rank Mm = m for
1 ≤ m ≤ r.

Example 2.4. The following monoids belong to C(Φ) [K-S, Example 3.5, 3.9, 3.10].
(i) If M ⊂ Z2

+ is a finitely generated and normal monoid (i.e. x ∈ gp(M) and xn ∈M
for some n > 1, then x ∈M ) of rank 2, then M ∈ C(Φ).

(ii) For a fixed integer n > 0, if M ⊂ Zr
+ is the monoid generated by all monomials

in t1, . . . , tr of total degree n, then M is a normal monoid of rank r and M ∈ C(Φ). In
particular, Zr

+ ∈ C(Φ) and < t21, t
2
2, t

2
3, t1t2, t1t3, t2t3 >∈ C(Φ).

(iii) The submonoid M of Z3
+ generated by < t21, t

2
2, t

2
3, t1t3, t2t3 >∈ C(Φ).

Remark 2.5. Let R be a ring and M ⊂ Zr
+ = {tm1

1 . . . tmr
r |mi ≥ 0} be a monoid of rank r

in the class C(Φ). Let I be an ideal ofR[M ] of height> dimR. Then by [G2, Lemma 6.5]
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and [K-S, Lemma 3.1], there exists an R-automorphism σ of R[M ] such that σ(tr) = tr

and σ(I) contains a monic polynomial in tr with coefficients in R[M ]∩R[t1, . . . , tr−1].
We will state some results for later use.

Theorem 2.6. [K-S, Theorem 3.4] Let R be a ring and M be a Φ-simplicial monoid such that
M ∈ C(Φ). Let P be a projective R[M ]-module of rank > dimR. Then P has a unimodular
element.

Theorem 2.7. [D-K, Theorem 4.5] Let R be a ring and M be a Φ-simplicial monoid. Let
P be a projective R[M ]-module of rank ≥ max{dimR + 1, 2}. Then EL(P ⊕ R[M ]) acts
transitively on Um(P ⊕R[M ]).

The following result is proved in [B-L-R, Criterion-1 and Remark] in case J = Q(P,R0)

is the Quillen ideal of P in R0. The same proof works in our case.

Theorem 2.8. Let R = ⊕i≥0Ri be a graded ring and P be a projective R-module. Let J be
an ideal of R0 such that J is contained in the Quillen ideal Q(P,R0). Let p ∈ P be such that
p1+R+ ∈ Um(P1+R+) and p1+J ∈ Um(P1+J), where R+ = ⊕i≥1Ri. Then P contains a
unimodular element p1 such that p = p1 modulo R+P .

The following result is a consequence of Eisenbud-Evans [E-E], as stated in [P, p.
1420].

Lemma 2.9. Let A be a ring and P be a projective A-module of rank n. Let (α, a) ∈ (P ∗⊕A).
Then there exists an element β ∈ P ∗ such that ht (Ia) ≥ n, where I = (α + aβ)(P ). In
particular, if the ideal (α(P ), a) has height≥ n, then ht I ≥ n. Further, if (α(P ), a) is an ideal
of height ≥ n and I is a proper ideal of A, then ht I = n.

3. PROOFS OF (1.1), (1.2) AND (1.3)

3.1. Proof of Proposition 1.1. Let p0 ∈ Um(P/JP ) and p1 ∈ Um(P/XP ). Let p̃0

and p̃1 be the images of p0 and p1 in P/(X, J)P . By hypothesis (c), there exist δ̃ ∈
EL(P/(X, J)P ) such that δ̃(p̃0) = p̃1. By [B-R 2, Proposition 4.1], δ̃ can be lifted to an
automorphism δ of P/JP . Consider the fiber product diagram for rings and modules

R[X]
(XJ)

//

��

R
J [X]

��
R[X]
(X)

// R[X]
(X,J) .

P
(XJ)P

//

��

P
JP

��
P
XP

// P
(X,J)P .

We can patch δ(p0) and p1 to get a unimodular element p ∈ Um(P/XJP ) such that
p = δ(p0) modulo JP and p = p1 module XP . Writing δ(p0) by p0, we assume that
p = p0 modulo JP and p = p1 module XP .
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Using hypothesis (d), we get an element q ∈ P such that the order ideal OP (q) =

{φ(q)|φ ∈ Hom R[X](P,R[X])} contains a power of f . We may assume that f ∈ OP (q).
Let “bar” denote reduction modulo the ideal (J). Write P = R[X]p0 ⊕ Q for some

projective R[X]-module Q and q = (ap0, q
′) for some q′ ∈ Q. By Eisenbud-Evans (2.9),

there exist τ ∈ EL(P ) such that τ(q) = (ap0, q
′′) and ht(OQ(q′′))R[X]a ≥ rank(P ) −

1. Since τ can be lifted to τ ∈ Aut (P ), replacing P by τ(P ), we may assume that
ht(OQ(q′)) ≥ rank(P )− 1 on the Zariski-open set D(a) of Spec(R[X]).

Let p1, . . . , pr be minimal prime ideals of OQ(q′) in R[X] not containing a. Then
ht(∩r1pi) ≥ rank(P )− 1. By hypothesis (b), we can find σ ∈ Aut (R[X]) with σ(X) = X

and σ ∈ Aut (R[X]) with σ(X) = X which is a lift of σ such that σ(∩r1pi) contains a
monic polynomial in R[X] = R[X]. Note that σ(f) is a monic polynomial. Replacing
R[X] by σ(R[X]), we may assume that ∩r1pi contains a monic polynomial in R[X], and
f ∈ OP (q) is a monic polynomial.

If p is a minimal prime ideals of OQ(q′) in R[X] containing a, then p contains OP (q).
Since f ∈ OP (q), p contains the monic polynomial f . Therefore, all minimal primes of
OQ(q′) contains a monic polynomial, hence OQ(q′) contains a monic polynomial, say
g ∈ R[X]. Let g ∈ R[X] be a monic polynomial which is a lift of g.

Claim: For large N > 0, p2 = p+XNgNq ∈ Um(P1+JR).
Choose φ ∈ P ∗ such that φ(q) = f . Then φ(p2) = φ(p) + XNgNf is a monic

polynomial for large N . Since p = p0 module JP , p = p0 and q = (ap, q′). Therefore,
p2 = p+XNgN (ap, q′) = ((1 + TNgNa)p,XNgNq′).
Since g ∈ OQ(q′) ⊂ OP (p2), we get OP (p) ⊂ OP (p2). Since p ∈ Um(P ), we get

p2 ∈ Um(P ) and hence p2 ∈ Um(P1+JR[X]). SinceOP (p2) contains a monic polynomial,
by [La, Lemma 1.1, p. 79], p2 ∈ Um(P1+JR).

Now p2 = p = p1 modulo XP , we get p2 ∈ Um(P/XP ). By (2.8), there exist p3 ∈
Um(P ) such that p3 = p2 = p1 modulo XP . This completes the proof. �

3.2. Proof of Theorem 1.2. Without loss of generality, we may assume that R is re-
duced. When n = 1, the result follows from well known Quillen [Q] and Suslin
[Su]. When n = 2, the result follows from Bhatwadekar [Bh, Proposition 3.3] where
he proves that if P is a projective R[T ]-module of rank 2 such that Pf contains a uni-
modular element for some monic polynomial f ∈ R[T ], then P contains a unimodular
element. So now we assume n ≥ 3.

Write A = R[M ]. Let J(A,P ) = {s ∈ A|Ps is extended from As} be the Quillen ideal
of P in A. Let J̃ = J(A,P ) ∩ R be the ideal of R and J = J̃R[M ]. We will show that J
satisfies the properties of (1.1).

Let p ∈ Spec(R) with ht(p) = 1 and S = R − p. Then S−1P is a projective module
over S−1A[T ] = Rp[M ][T ]. Since dim(Rp) = 1, by (2.6), S−1P = ∧nPS ⊕ S−1A[T ]n−1.
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Since determinant of P is extended from R, ∧nPS = A[T ]S and hence S−1P is free.
Therefore there exists s ∈ R− p such that Ps is free. Hence s ∈ J̃ and so ht(J̃) ≥ 2.

Since dim(R/J̃) ≤ n − 2 and A[T ]/(J) = (R/J̃)[M ][T ], by (2.6), P/JP contains a
unimodular element.

If I is an ideal of (A/J)[T ] = (R/J̃)[M ][T ] of height ≥ n − 1, then by (2.5), there
exists an R[T ]-automorphism σ ∈ Aut R[T ](A[T ]) such that if σ denotes the induced
automorphism of (A/J)[T ], then σ(I) contains a monic polynomial in T .

By (2.7), EL(P/(T, J)P ) acts transitively on Um(P/(J, T )P ).
Therefore, the result now follows from (1.1). �

Corollary 3.1. Let R be a ring of dimension n, A = R[X1, · · · , Xm] a polynomial ring over
R and P be a projective A[T ]-module of rank n. Assume that P/TP and Pf both contain
a unimodular element for some monic polynomial f(T ) ∈ A[T ]. Then P has a unimodular
element.

Proof. If n = 1, the result follows from well known Quillen [Q] and Suslin [Su] Theo-
rem. When n = 2, the result follows from Bhatwadekar [Bh, Proposition 3.3]. Assume
n ≥ 3. Let L be the determinant of P . If R̃ is the seminormalization of R, then
by Swan [Sw], L⊗ R̃[X1, . . . , Xm] is extended from R̃. By (1.2), P ⊗ R̃[X1, . . . , Xm]

has a unimodular element. Since R̃[X1, . . . , Xn] is the seminormalization of A, by
Bhatwadekar [Bh, Lemma 3.1], P has a unimodular element. �

3.3. Obstruction for Projective Modules to have a Unimodular Element. Let R be a
ring of dimension n ≥ 2 containing Q and P be a projective R[X,Y ]-module of rank n
with determinant L. Let χ : L

∼→ ∧n(P ) be an isomorphism. We call χ an orientation of
P . In general, we shall use ‘hat’ when we move to R(X)[Y ] and ‘bar’ when we move
modulo the ideal (X). For instance, we have:

(1) L⊗R(X)[Y ] = L̂ and L/XL = L,
(2) P ⊗R(X)[Y ] = P̂ and P/XP = P .

Similarly, χ̂ denotes the induced isomorphism L̂
∼→ ∧nP̂ and χ denotes the induced

isomorphism L
∼→ ∧nP .

We now define the Euler class of (P, χ).
Definition 3.2. First we consider the case n ≥ 2 and n 6= 3. Let E(R(X)[Y ], L̂) be the
nth Euler class group of R(X)[Y ] with respect to the line bundle L̂ over R(X)[Y ] and
E(R[Y ], L) be the nth Euler class group of R[Y ] with respect to the line bundle L over
R[Y ] (see [D-Z, Section 6] for definition). We define the nth Euler class group ofR[X,Y ],
denoted by E(R[X,Y ], L), as the product E(R(X)[Y ], L̂)× E(R[Y ], L).
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To the pair (P, χ), we associate an element e(P, χ) of E(R[X,Y ], L), called the Euler
class of (P, χ), as follows:

e(P, χ) = (e(P̂ , χ̂), e(P , χ))

where e(P̂ , χ̂) ∈ E(R(X)[Y ], L̂) is the Euler class of (P̂ , χ̂) and e(P , χ) ∈ E(R[Y ], L) is
the Euler class of (P , χ), defined in [D-Z, Section 6].

Now we treat the case when n = 3. Let Ẽ(R(X)[Y ], L̂) be the nth restricted Euler
class group of R(X)[Y ] with respect to the line bundle L̂ over R(X)[Y ] and Ẽ(R[Y ], L)

be the nth restricted Euler class group of R[Y ] with respect to the line bundle L over
R[Y ] (see [D-Z, Section 7] for definition). We define the Euler class group of R[X,Y ],
again denoted by E(R[X,Y ], L), as the product Ẽ(R(X)[Y ], L̂)× Ẽ(R[Y ], L).

To the pair (P, χ), we associate an element e(P, χ) of E(R[X,Y ], L), called the Euler
class of (P, χ), as follows:

e(P, χ) = (e(P̂ , χ̂), e(P , χ))

where e(P̂ , χ̂) ∈ Ẽ(R(X)[Y ], L̂) is the Euler class of (P̂ , χ̂) and e(P , χ) ∈ Ẽ(R[Y ], L) is
the Euler class of (P , χ), defined in [D-Z, Section 7].

Remark 3.3. Note that when n = 2, the definition of the Euler class group E(R[T ], L)

is slightly different from the case n ≥ 4. See [D-Z, Remark 7.8] for details.

Theorem 3.4. LetR be a ring containing Q of dimension n ≥ 2 and P be a projectiveR[X,Y ]-
module of rank n with determinant L. Let χ : L

∼→ ∧n(P ) be an isomorphism. Then e(P, χ) =

0 in E(R[X,Y ], L) if and only if P has a unimodular element.

Proof. First we assume that P has a unimodular element. Therefore, P̂ and P also
have unimodular elements. If n ≥ 4, by [D-Z, Theorem 6.12], we have e(P̂ , χ̂) = 0 in
E(R(X)[Y ], L̂) and e(P , χ) = 0 in E(R[Y ], L). The case n = 2 is taken care by [D-Z,
Remark 7.8]. Now if n = 3, it follows from [D-Z, Theorem 7.4] that e(P̂ , χ̂) = 0 in
E(R(X)[Y ], L̂) and e(P , χ) = 0 in Ẽ(R[Y ], L). Consequently, e(P, χ) = 0.

Conversely, assume that e(P, χ) = 0. Then e(P̂ , χ̂) = 0 in E(R(X)[Y ], L̂) and
e(P , χ) = 0 in E(R[Y ], L). If n 6= 3, by [D-Z, Theorem 6.12] and [D-Z, Remark 7.8],
P̂ and P have unimodular elements. If n = 3, by [D-Z, Theorem 7.4], P̂ and P have
unimodular elements. Since P̂ has a unimodular element, we can find a monic poly-
nomial f ∈ R[X] such that Pf contains a unimodular element. But then by Theorem
3.1, P has a unimodular element. �

Remark 3.5. Let R be a ring containing Q of dimension n ≥ 2 and P be a projective
R[X1, . . . , Xr]-module (r ≥ 3) of rank n with determinant L. Let χ : L

∼→ ∧r(P ) be an
isomorphism. By induction on r, we can define the Euler class group of R[X1, . . . , Xr]

with respect to the line bundle L, denoted by E(R[X1, . . . , Xr], L), as the product of
E(R(Xr)[X1, . . . , Xr−1], L̂) and E(R[X1, . . . , Xr−1], L).
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To the pair (P, χ), we can associate an invariant e(P, χ) in E(R[X1, . . . , Xr], L) as
follows:

e(P, χ) = (e(P̂ , χ̂), e(P , χ))

where e(P̂ , χ̂) ∈ E(R(Xr)[X1, . . . , Xr−1], L̂) is the Euler class of (P̂ , χ̂) and e(P , χ) ∈
E(R[X1, . . . , Xr−1], L) is the Euler class of (P , χ). Finally we have the following result.

Theorem 3.6. Let R be a ring containing Q of dimension n ≥ 2 and P be a projective
R[X1, . . . , Xr]-module of rank n with determinant L. Let χ : L

∼→ ∧n(P ) be an isomorphism.
Then e(P, χ) = 0 in E(R[X1, . . . , Xr], L) if and only if P has a unimodular element.

4. ANALOGUE OF ROY AND MANDAL

In this section we will prove (1.4). We begin with the following result from [Ry,
Lemma 2.1].

Lemma 4.1. LetR be a ring and P,Q be two projectiveR-modules. Suppose that φ : Q −→ P

is an R-linear map. For an ideal I of R, if φ is a split monomorphism modulo I , then φ1+I :

Q1+I −→ P1+I is also a split monomorphism.

Lemma 4.2. Let (R,M) be a local ring and A be a ring such that R[X] ↪→ A ↪→ R[X,X−1].
Let P and Q be two projective A-modules and φ : Q −→ P be an R-linear map. If φ is a
split monomorphism modulo M and if φf is a split monomorphism for some special monic
polynomial f ∈ R[X], then φ is also a split monomorphism.

Proof. By Lemma 4.1 φ1+MA is a split monomorphism. So, there is an element h in
1 +MA such that φh is a split monomorphism. Since f is a special monic polynomial,
R ↪→ A/f is an integral extension and hence, h and f are comaximal. As φf is also a
split monomorphism, it follows that φ is a split monomorphism. �

Lemma 4.3. Let R be a local ring and A be a ring such that R[X] ↪→ A ↪→ R[X,X−1].
Let P and Q be two projective A-modules and φ, ψ : Q −→ P be R-linear maps. Further
assume that γ : P −→ Q is a A-linear map such that γψ = f1Q for some special monic
polynomial f ∈ R[X]. For large m, there exists a special monic polynomial gm ∈ A such that
Xφ+ (1 +Xm)ψ becomes a split monomorphism after inverting gm.

Proof. As in [Ry, M], first we assume that Q is free. We have γ(Xφ + (1 + Xm)ψ) =

Xγφ+ (1 +Xm)f1Q. Since Q is free, Xγφ+ (1 +Xm)f1Q is a matrix. Clearly for large
integer m, det(Xγφ+ (1 +Xm)f1Q) is a special monic polynomial which can be taken
for gm.

In the general case, find projective A-module Q′ such that Q⊕Q′ is free. Define
maps φ′, ψ′ : Q⊕Q′ −→ P⊕Q′ and γ′ : P⊕Q′ −→ Q⊕Q′ as φ′ = φ⊕0, ψ′ = ψ⊕f1Q′
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and γ′ = γ⊕1Q′ . By the previous case, we can find a special monic polynomial gm for
some large m such that (Xφ′ + (1 +Xm)ψ′)gm becomes a split monomorphism. Hence
Xφ+ (1 +Xm)ψ becomes a split monomorphism after inverting gm. �

The following result generalizes Mandal’s [M].

Theorem 4.4. Let (R,M) be a local ring and R[X] ⊂ A ⊂ R[X,X−1]. Let P and Q be
two projective A-modules with rank(Q) < rank(P ). If Qf is a direct summand of Pf for some
special monic polynomial f ∈ R[X], then Q is also a direct summand of P .

Proof. The method of proof is similar to [Ry, Theorem 1.1], hence we give an outline of
the proof.

Since Qf is a direct summand of Pf , we can find A-linear maps ψ : Q −→ P and
γ : P −→ Q such that γψ = f1Q (possibly after replacing f by a power of f ).

Let ’bar’ denote reduction modulo M. Then we have γ̄ψ̄ = f̄1Q̄. As f is special
monic, ψ̄ is a monomorphism.

We may assume that A = R[X, f1/X
t, . . . , fn/X

t] with fi ∈ R[X]. If fi ∈ MR[X],
then R[X, fi/Xt] = R[X,Y ]/(XtY ). If fi ∈ R[X] −MR[X], then R[X, fi/Xt] is either
R[X] or R[X,X−1] depending on whether f i/Xt is a polynomial in R[X] or F i/X

s

with F i(0) 6= 0 and s > 0.
In general, A is one of R[X], R[X,X−1] or R[X,Y1, . . . , Ym]/(Xt(Y1, . . . , Ym)) for

some m > 0. By [V, Theorem 3.2], any projective R[X,Y1, . . . , Ym]/(Xt(Y1, . . . , Ym))-
module is free. Therefore, in all cases, projective A-modules are free and hence ex-
tended from R[X]. In particular, P̄ and Q̄ are extended from R[X], which is a PID.

Let rank(P ) = r and rank(Q) = s. Therefore, using elementary divisors theorem,
we can find bases {p̄1, · · · , p̄r} and {q̄1, · · · , q̄s} for P̄ and Q̄, respectively, such that
ψ̄(q̄i) = f̄ip̄i for some fi ∈ R[X] and 1 ≤ i ≤ s.

For the rest of the proof, we can follow the proof of [Ry, Theorem 1.1]. �

Now we have the following consequence of (4.4).

Corollary 4.5. Let R be a local ring and R[X] ⊂ A ⊂ R[X,X−1]. Let P , Q be two projective
A-modules such that Pf is isomorphic to Qf for some special monic polynomial f ∈ R[X].
Then,

(1) Q is a direct summand of P⊕L for any projective A-module L.
(2) P is isomorphic to Q if P or Q has a direct summand of rank one.
(3) P⊕L is isomorphic to Q⊕L for all rank one projective A-modules L.
(4) P and Q have same number of generators.

Proof. (1) trivially follows from Theorem 4.4 and (3) follows from (2).
The proof of (4) is same as [Ry, Proposition 3.1 (4)].
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For (2), we can follow the proof of [M, Theorem 2.2 (ii)] by replacing doubly monic
polynomial by special monic polynomial in his arguments. �

Corollary 4.6. Let R be a local ring and R[X] ⊂ A ⊂ R[X,X−1]. Let P be a projective
A-module such that Pf is free for some special monic polynomial f ∈ R[X]. Then P is free.

Proof. Follows from second part of (4.5). �
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