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Abstract: Let A be a commutative Noetherian ring of dimension d and let P be a projective R =

A[X1, . . . , Xl, Y1, . . . , Ym, 1
f1...fm

]-module of rank r ≥ max {2, dim A + 1}, where fi ∈ A[Yi]. Then

(i) The natural map Φr : GLr(R)/EL1
r(R)→ K1(R) is surjective (3.8).

(ii) Assume fi is a monic polynomial. Then Φr+1 is an isomorphism (3.8).

(iii) EL1(R⊕P ) acts transitively on Um(R⊕P ). In particular, P is cancellative (3.12).

(iv) If A is an affine algebra over a field, then P has a unimodular element (3.13).

In the case of Laurent polynomial ring (i.e. fi = Yi), (i, ii) are due to Suslin [12], (iii) is due to Lindel

[4] and (iv) is due to Bhatwadekar, Lindel and Rao [2].
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1 Introduction

All the rings are assumed to be commutative Noetherian and all the modules are finitely generated.
Let A be a ring of dimension d and let P be a projective A-module of rank n. We say that P

is cancellative if P⊕Am ∼→ Q⊕Am for some projective A-module Q implies P ∼→ Q. We say that
P has a unimodular element if P ∼→ P ′⊕A for some projective A-module P ′.

Assume rank P > dimA. Then (i) Bass [1] proved that EL1(A ⊕ P ) acts transitively on
Um(A ⊕ P ). In particular, P is cancellative and (ii) Serre [11] proved that P has a unimodular
element.

Later, Plumstead [7] generalized above results by proving that if P is a projective A[T ]-module
of rank > dimA = dimA[T ]− 1, then (i) P is cancellative and (ii) P has a unimodular element.

Let P be a projective A[X1, . . . , Xl]-module of rank > dimA. Then (i) Ravi Rao [9] proved
that P is cancellative and (ii) Bhatwadekar and Roy [3] proved that P has a unimodular element,
thus generalizing Plumstead’s results.

Let P be a projective R = A[X1, . . . , Xl, Y
±1
1 , . . . , Y ±1

m ]-module of rank ≥ max (2, 1 + dimA).
Then (i) Lindel [4] proved that EL1(R ⊕ P ) acts transitively on Um(R ⊕ P ). In particular, P is
cancellative and (ii) Bhatwadekar, Lindel and Rao [2] proved that P has a unimodular element.

In another direction, Ravi Rao [10] generalized Plumstead’s result by proving that if R =
A[T, 1/g(T )] or R = A[T, f1(T )

g(T ) , . . . ,
fr(T )
g(T ) ], where g(T ) ∈ A[T ] is a non-zerodivisor and if P is a

projective R-module of rank > dimA, then P is cancellative. We will generalize Rao’s result by
proving that EL1(R⊕ P ) acts transitively on Um(R⊕ P ) (3.14).

Let R = A[X1, . . . , Xl, Y1, . . . , Ym,
1

f1...fm
], where fi ∈ A[Yi] and let P be a projective R-module

of rank ≥ max {2,dimA+ 1} Then we show that (i) EL1(R⊕ P ) acts transitively on Um(R⊕ P )
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and (ii) If A is an affine algebra over a field, then P has a unimodular element (3.12, 3.13), thus
generalizing results of ([4], [2]) where it is proved for fi = Yi.

As an application, we prove the following result (3.16): Let k be an algebraically closed field
with 1/d! ∈ k and let A be an affine k-algebra of dimension d. Let R = A[T, 1/f(T )] or R =
A[T, f1(T )

f(T ) , . . . ,
fr(T )
f(T ) ], where f(T ) is a monic polynomial and f(T ), f1(T ), . . . , fr(T ) is A[T ]-regular

sequence. Then every projective R-module of rank ≥ d is cancellative. (See [5] for motivation)

2 Preliminaries

Let A be a ring and let M be an A-module. For m ∈ M , we define OM (m) = {ϕ(m)|ϕ ∈
HomA(M,A)}. We say that m is unimodular if OM (m) = A. The set of all unimodular elements
of M will be denoted by Um(M). We denote by AutA(M), the group of all A-automorphism
of M . For an ideal J of A, we denote by AutA(M,J), the kernel of the natural homomorphism
AutA(M)→ AutA(M/JM).

We denote by EL1(A⊕M,J), the subgroup of AutA(A⊕M) generated by all the automorphisms
∆aϕ =

( 1 aϕ
0 idM

)
and Γm =

(
1 0
m idM

)
with a ∈ J, ϕ ∈ HomA(M,A) and m ∈M .

We denote by Um1(A⊕M,J), the set of all (a,m) ∈ Um(A⊕M) such that a ∈ 1 + J and by
Um(A⊕M,J), the set of all (a,m) ∈ Um1(A⊕M,J) with m ∈ JM . We will write Um1

r(A, J) for
Um1(A⊕Ar−1, J) and Umr(A, J) for Um(A⊕Ar−1, J).

We will write EL1
r(A, J) for EL1(A ⊕ Ar−1, J), EL1

r(A) for EL1
r(A,A) and EL1(A ⊕M) for

EL1(A⊕M,A).

Remark 2.1 (i) Let I ⊂ J be ideals of a ring A and let P be a projective A-module. Then, it
is easy to see that the natural map EL1(A⊕ P, J)→ EL1(AI ⊕

P
IP ,

J
I ) is surjective.

(ii) Let Er(A) be the group generated by elementary matrices Ei0j0(a) = (aij), where i0 6= j0,
aii = 1, ai0j0 = a ∈ A and remaining aij = 0 for 1 ≤ i, j ≤ r. Then using ([13], Lemma 2.1), it is
easy to see that Er(A) = EL1

r(A).
The following result is a consequence of a theorem of Eisenbud-Evans as stated in ([7], p.1420).

Theorem 2.2 Let R be a ring and let P be a projective R-module of rank r. Let (a, α) ∈ (R⊕P ∗).
Then there exists β ∈ P ∗ such that ht Ia ≥ r, where I = (α + aβ)(P ). In particular, if the ideal
(α(P ), a) has height ≥ r, then ht I ≥ r. Further, if (α(P ), a) is an ideal of height ≥ r and I is a
proper ideal of R, then ht I = r.

The following two results are due to Wiemers ([13], Proposition 2.5 and Theorem 3.2).

Proposition 2.3 Let A be a ring and let R = A[X1, . . . , Xn, Y
±1
1 , . . . , Y ±1

m ]. Let c be the element
1, Xn or Ym − 1. If s ∈ A and r = max {3,dimA + 2}, then EL1

r(R, sc) acts transitively on
Um1

r(R, sc).
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Theorem 2.4 Let A be a ring and let R = A[X1, . . . , Xn, Y
±1
1 , . . . , Y ±1

m ]. Let P be a projective
R-module of rank r = max {2,dimA + 1}. If J denotes the ideal R, XnR or (Ym − 1)R, then
EL1(R⊕ P, J) acts transitively on Um1(R⊕ P, J).

The following result is due to Ravi Rao ([10], Lemma 2.1).

Lemma 2.5 Let B ⊂ C be rings of dimension d and x ∈ B such that Bx = Cx. Then
(i) B/(1 + xb)B = C/(1 + xb)C for all b ∈ B.
(ii) If I is an ideal of C such that ht I ≥ d and I + xC = C, then there exists b ∈ B such that

1 + xb ∈ I.
(iii) If c ∈ C, then c = 1 + x+ x2h mod (1 + xb) for some h ∈ B and for all b ∈ B.

Definition 2.6 Let A be a ring and let M,N be A-modules. Suppose f, g : M ∼→ N be two
isomorphisms. We say that “f is isotopic to g” if there exists an isomorphism φ(X) : M [X] ∼→
N [X] such that φ(0) = f and φ(1) = g.

Note that if σ ∈ EL1(A⊕M), then σ is isotopic to identity.

The following lemma follows from the well known Quillen splitting lemma ([8], Lemma 1) and
its proof is essentially contained in ([8], Theorem 1).

Lemma 2.7 Let A be a ring and let P be a projective A-module. Let s, t ∈ A be two comaximal
elements. Let σ ∈ AutAst(Pst) which is isotopic to identity. Then σ = τsθt, where τ ∈ AutAt(Pt)
such that τ = id modulo sA and θ ∈ AutAs(Ps) such that θ = id modulo tA.

The following two results are due to Suslin ([12], Corrolary 5.7 and Theorem 6.3).

Theorem 2.8 Let A be a ring and let f ∈ A[X] be a monic polynomial. Let α ∈ GLr(A[X]) be
such that αf ∈ EL1

r(A[X]f ). Then α ∈ EL1
r(A[X]).

Theorem 2.9 Let A be a ring and B = A[X1, . . . , Xl]. Then the canonical map GLr(B)/EL1
r(B)→

K1(B) is an isomorphism for r ≥ max {3,dimA + 2}. In particular, if α ∈ GLr(B) is stably
elementary, then α is elementary.

3 Main Theorem

We begin this section with the following result which is easy to prove. We give the proof for the
sake of completeness.

Lemma 3.1 Let A be a ring and let P be a projective A-module. Let “bar” denote reduction modulo
the nil radical of A. For an ideal J of A, if EL1(A ⊕ P , J) acts transitively on Um1(A ⊕ P , J),
then EL1(A⊕ P, J) acts transitively on Um1(A⊕ P, J).

3



Proof Let (a, p) ∈ Um1(A ⊕ P, J). By hypothesis, there exists a σ ∈ EL1(A ⊕ P , J) such that
σ(a, p) = (1, 0). Using (2.1), let ϕ ∈ EL1(A ⊕ P, J) be a lift of σ such that ϕ(a, p) = (1 + b, q),
where b ∈ N = nil(A) and q ∈ NP . Note that b ∈ N ∩J . Since 1 + b is a unit, we get Γ1 = Γ −q

1+b
∈

EL1(A⊕P, J) such that Γ1(1 + b, q) = (1 + b, 0). It is easy to see that there exists p1, . . . , pn ∈ P
and α1, . . . , αn ∈ P ∗ such that α1(p1) + . . . + αn(pn) = 1. Write h =

∑n
2 αi(pi). Note that

(1+b, 0) = (1+
∑n

1 bαi(pi), 0), Γ p1
1+b

(1+b, 0) = (1+b, p1) and ∆−bα1(1+b, p1) = (1+bh, p1), where

∆−bα1 ∈ EL1(A⊕P, J). Since 1 + bh is a unit, Γ −p1
1+bh

(1 + bh, p1) = (1 + bh, 0) = (1 +
∑n

2 bαi(pi), 0).

Applying further transformations as above, we can take (1 +
∑n

2 bαi(pi), 0) to (1, 0) by elements
of EL1(A⊕P, J). �

The following lemma is similar to the Quillen’s splitting lemma (2.7). We will sketch the
proof. Recall that for a ring B and an element s ∈ B, SL1

n(B, s) denotes the subgroup of SLn(B)
consisiting of those elements whose first row is (1, 0, . . . , 0) modulo the ideal (s).

Lemma 3.2 Let A be a ring and let u, v be two comaximal elements of A. For any s ∈ A, every
α ∈ EL1

n(Auv, s) has a splitting (α1)v ◦ (α2)u, where α1 ∈ SL1
n(Au, s) and α2 ∈ EL1

n(Av, s).

Proof If α ∈ EL1
n(Auv, s), then α =

∏r
i=1 αi, where αi is of the form

(
1 sv
0 IdM

)
or
(

1 0
wt IdM

)
,

where M = An−1
uv , v, w ∈M .

Define α(X) ∈ EL1
n(A[X]uv, s) by α(X) =

∏r
i=1 αi(X), where αi(X) is of the form

(
1 sXv
0 IdM[X]

)
or
(

1 0
Xwt IdM[X]

)
as may by the case above.

Since α(0) = id and α(1) = α, α is isotopic to identity. Using proof of (2.7) ([6], Lemma 2.19),
we get that α(X) = (ψ1(X))v ◦ (ψ2(X))u, where ψ1(X) = α(X) ◦ α(λukX)−1 ∈ SL1

n(Au[X], s)
and ψ2(X) = α(λukX) ∈ EL1

n(Av[X], s) with λ ∈ A, k � 0. Write ψ1(1) = α1 ∈ SL1
n(Au, s) and

ψ2(1) = α2 ∈ EL1
n(Av, s), we get that α(1) = α = (α1)v ◦ (α2)u. �

Remark 3.3 We do not know whether α1 ∈ EL1
n(Au, s) in the above result. In particular, we

can ask the following question: Let A be a ring and let u, v be two comaximal elements of A. Let
α ∈ EL1

n(Auv). Does α has a splitting (α1)v ◦ (α2)u, where α1 ∈ EL1
n(Au) and α2 ∈ EL1

n(Av)?

Definition 3.4 Let A be a ring of dimension d and let l,m, n ∈ N ∪ {0}. We say that a ring R
is of the type A{d, l,m, n}, if R is an A-algebra generated by X1, . . . , Xl, Y1, . . . , Ym, T1, . . . , Tn,

1
f1...fm

, g11
h1
, . . . ,

g1t1
h1
, . . . , gn1

hn
, . . . ,

gntn

hn
, where Xi’s, Yi’s and Ti’s are variables over A, fi ∈ A[Yi],

gij ∈ A[Ti], hi ∈ A[Ti] and hi’s are non-zerodivisors.

For Laurent polynomial ring (i.e. fi = Yi), the following result is due to Wiemers (2.3).

Proposition 3.5 Let A be a ring of dimension d and let R = A[X1, . . . , Xl, Y1, . . . , Ym,
1

f1...fm
],

where fi ∈ A[Yi] (i.e. R is of the type A{d, l,m, 0}). If s ∈ A and r ≥ max {3, d + 2}, then
EL1

r(R, s) acts transitively on Um1
r(R, s).
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Proof Without loss of generality, we may assume that A is reduced. The case m = 0 is due to
Wiemers (2.3). Assume m ≥ 1 and apply induction on m.

Let (a1, . . . , ar) ∈ Um1
r(R, s). Consider a multiplicative closed subset S = 1 + fmA[Ym] of

A[Ym]. Then RS = B[X1, . . . , Xl, Y1, . . . , Ym−1,
1

f1...fm−1
], where B = A[Ym]fmS and dimB =

dimA. Since RS is of the type B{d, l,m − 1, 0}, by induction hypothesis on m, there exists
σ ∈ EL1

r(RS , s) such that σ(a1, . . . , ar) = (1, 0, . . . , 0). We can find g ∈ S and σ′ ∈ EL1
r(Rg, s)

such that σ′(a1, . . . , ar) = (1, 0, . . . , 0).
Write C = A[X1, . . . , Xl, Y1, . . . , Ym,

1
f1,...,fm−1

]. Consider the following fiber product diagram

C //

��

R = Cfm

��
Cg // Rg = Cgfm

.

Since σ′ ∈ EL1
r(Cgfm

, s), by (3.2), σ′ = (σ2)fm
◦ (σ1)g, where σ2 ∈ SL1

r(Cg, s) and σ1 ∈
EL1

r(R, s). Since (σ1)g(a1, . . . , ar) = (σ2)−1
fm

(1, 0, . . . , 0), patching σ1(a1, . . . , ar) ∈ Um1
r(Cfm , s)

and (σ2)−1(1, 0, . . . , 0) ∈ Um1
r(Cg, s), we get a unimodular row (c1, . . . , cr) ∈ Um1

r(C, s). Since C
is of the type A{d, l+1,m−1, 0}, by induction hypothesis on m, there exists φ ∈ EL1

r(C, s) such that
φ(c1, . . . , cr) = (1, 0, . . . , 0). Taking projection, we get Φ ∈ EL1

r(R, s) such that Φσ1(a1, . . . , ar) =
(1, 0, . . . , 0). This completes the proof. �

Corollary 3.6 Let A be a ring of dimension d and let R = A[X1, . . . , Xl, Y1, . . . , Ym,
1

f1...fm
],

where fi ∈ A[Yi]. Let c be 1 or Xl. If s ∈ A and r ≥ max {3, d + 2}, then EL1
r(R, sc) acts

transitively on Um1
r(R, sc).

Proof Let (a1, . . . , ar) ∈ Um1
r(R, sc). The case c = 1 is done by (3.5). Assume c = Xl. We

can assume, after an EL1
r(R, sXl)-transformation, that a2, . . . , ar ∈ sXlR. Then we can find

(b1, . . . , br) ∈ Umr(R, sXl) such that the following equation holds:

a1b1 + . . .+ arbr = 1. (i)

Now consider the A-automorphism µ : R→ R defined as follows

Xi 7→ Xi for i = 1, ..., l − 1,
Xl 7→ Xl(f1 . . . fm)N for some large positive integer N .

Applying µ, we can read the image of equation (i) in the subring S = A[X1, . . . , Xl, Y1, . . . , Ym].
By (2.3), we obtain ψ ∈ EL1

r(R, sXl) such that ψ(µ(a1), . . . , µ(ar)) = (1, 0, . . . , 0). Since µ−1(Xl)
and Xl generate the same ideal in R, applying µ−1, the proof follows. �

Corollary 3.7 Let A be a ring of dimension d and let R = A[X1, . . . , Xl, Y1, . . . , Ym,
1

f1...fm
],

where fi ∈ A[Yi]. Then EL1
r(R) acts transitively on Umr(R) for r ≥ max{3, d+ 2}.
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The following result is similar to ([10], Theorem 5.1). The Laurent polynomial case (i.e. fi = Yi)
is due to Suslin [12].

Theorem 3.8 Let A be a ring of dimension d and let R = A[X1, . . . , Xl, Y1, . . . , Ym,
1

f1...fm
], where

fi ∈ A[Yi] (i.e. R is of the type A{d, l,m, 0}). Then
(i) the canonical map Φr : GLr(R)/EL1

r(R)→ K1(R) is surjective for r ≥ max {2, d+ 1}.
(ii) Assume fi ∈ A[Yi] is a monic polynomial for all i. Then for r ≥ max {3, d+ 2}, any stably

elementary matrix in GLr(R) is in EL1
r(R). In particular, Φd+2 is an isomorphism.

Proof (i) Let [M ] ∈ K1(R). We have to show that [M ] = [N ] in K1(R) for some N ∈ GLd+1(R).
Without loss of generality, we may assume that M ∈ GLd+2(R). By (3.5), there exists an

elementary matrix σ ∈ EL1
d+2(R) such that Mσ =

(
M ′ a

0 1

)
. Applying further σ′ ∈ EL1

d+2(R),

we get σ′Mσ =

(
N 0
0 1

)
, where M ′, N ∈ GLd+1(R). Hence [M ] = [N ] in K1(R). This completes

the proof of (i).
(ii) Let M ∈ GLr(R) be a stably elementary matrix. For m = 0, we are done by (2.9). Assume

m ≥ 1.
Let S = 1 +fmA[Ym]. Then RS = B[X1, . . . , Xl, Y1, . . . , Ym−1,

1
f1...fm−1

], where B = A[Ym]fmS

and dimB = dimA. Since RS is of the type B{d, l,m − 1, 0}, by induction hypothesis on m,
M ∈ EL1

r(RS). Hence there exists g ∈ S such that M ∈ EL1
r(Rg). Let σ ∈ EL1

r(Rg) be such that
σM = Id.

Write C = A[X1, . . . , Xl, Y1, . . . , Ym,
1

f1...fm−1
]. Consider the following fiber product diagram

C //

��

Cfm
= R

��
Cg // Cgfm

= Rg.

By (3.2), σ = (σ2)fm
◦ (σ1)g, where σ2 ∈ SLr(Cg) and σ1 ∈ EL1

r(Cfm
). Since (σ1M)g = (σ2)−1

fm
,

patching σ1M and (σ2)−1, we get N ∈ GLr(C) such that Nfm = σ1M .
Write D = A[X1, . . . , Xn, Y1, . . . , Ym−1,

1
f1...fm−1

]. Then D[Ym] = C and D[Ym]fm = R. Since
N ∈ GLr(D[Ym]), fm ∈ D[Ym] is a monic polynomial and Nfm = σ1M is stably elementary, by
(2.8), N is stably elementary. Since C is of the type A{d, l+ 1,m− 1, 0}, by induction hypothesis
on m, N ∈ EL1

r(C). Since σ1 is elementary, we get that M ∈ EL1
r(R). This completes the proof of

(ii). �

Lemma 3.9 Let R be a ring of the type A{d, l,m, n}. Let P be a projective R-module of rank r ≥
max {2, 1 + d}. Then there exists an s ∈ A, p1, . . . , pr ∈ P and ϕ1, . . . , ϕr ∈ Hom(P,R) such that
the following properties holds.

(i) Ps is free.
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(ii) (ϕi(pj)) = diagonal (s, s, . . . , s).
(iii) sP ⊂ p1A+ . . .+ prA.
(iv) The image of s in Ared is a nonzero divisor.
(v) (0 : sA) = (0 : s2A).

Proof Without loss of generality, we may assume that A is reduced. Let S be the set of all
non-zerodivisors in A. Since dimAS = 0 and projective RS-module PS has constant rank, we
may assume that AS is a field. Then it is easy to see that AS [Ti,

gij

hi
] = AS [Ti, 1

hi
] (assuming gcd

(gij , hi) = 1). Therefore RS = AS [X1, . . . , Xl, Y1, . . . , Ym, T1, . . . , Tn,
1

f1...fmh1...hn
] is a localization

of a polynomial ring over a field. Hence projective modules over RS are stably free. Since PS is
stably free of rank ≥ max {2, 1 + d}, by (3.5), PS is a free RS-module of rank r. We can find an
s ∈ S such that Ps is a free Rs-module. The remaining properties can be checked by taking a basis
p1, . . . , pr ∈ P of Ps, a basis ϕ1, . . . , ϕr ∈ Hom(P,R) of P ∗s and replacing s by some power of s, if
needed. This completes the proof. �

Lemma 3.10 Let R be a ring of the type A{d, l,m, n}. Let P be a projective R-module of rank r.
Choose s ∈ A, p1, . . . , pr ∈ P and ϕ1, . . . , ϕr ∈ Hom(P,R) satisfying the properties of (3.9). Let
(a, p) ∈ Um(R ⊕ P, sA) with p = c1p1 + . . . + crpr, where ci ∈ sR for i = 1 to r. Assume there
exists φ ∈ EL1

r+1(R, s) such that φ(a, c1, . . . , cr) = (1, 0, . . . , 0). Then there exists Φ ∈ EL1(R⊕P )
such that Φ(a, p) = (1, 0).

Proof Since φ ∈ EL1
r+1(R, s), φ =

∏n
j=1 φj , where φj = ∆sψj

or Γvt with ψj = (b1j , . . . , brj) ∈
Rr∗ and v = (f1, . . . , fr) ∈ Rr.

Define a map Θ : EL1
r+1(R, s)→ EL1(R⊕ P ) as follows

Θ(∆sψj ) =

(
1
∑r
i=1 bijϕi

0 idP

)
and Θ(Γvt) =

(
1 0∑r

i=1 fipi idP

)
.

Let Φ =
∏n
j=1 Θ(φj) ∈ EL1(R⊕P ). Then it is easy to see that Φ(a, p) = (1, 0). This completes

the proof. �

Remark 3.11 From the proof of above lemma, it is clear that if φ ∈ EL1
r+1(R, sXl) such that

φ(a, c1, . . . , cr) = (1, 0, . . . , 0), then Φ ∈ EL1(R⊕ P,Xl) such that Φ(a, p) = (1, 0).
For Laurent polynomial ring (i.e. fi = Yi and J = R), the following result is due to Lindel [4].

Theorem 3.12 Let A be a ring of dimension d and let R = A[X1, . . . , Xl, Y1, . . . , Ym,
1

f1...fm
],

where fi ∈ A[Yi] (i.e. R is of the type A{d, l,m, 0}). Let P be a projective R-module of rank
r ≥ max {2, d + 1}. If J denote the ideal R or XlR, then EL1(R ⊕ P, J) acts transitively on
Um1(R⊕ P, J).
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Proof Without loss of generality, we may assume that A is reduced. We will use induction on
d. When d = 0, we may assume that A is a field. Hence projective modules over R are stably free
(proof of lemma 3.9). Using (3.6), we are done.

Assume d > 0. By (3.9), there exists a non-zerodivisor s ∈ A, p1, . . . , pr ∈ P and φ1, . . . , φr ∈
P ∗ = HomR(P,R) satisfying the properties of (3.9). If s ∈ A is a unit, then P is a free and the
result follows from (3.6). Assume s is not a unit.

Let (a, p) ∈ Um1(R⊕P, J). Let “bar” denotes reduction modulo the ideal s2R. Since dimA <

dimA, by induction hypothesis, there exists ϕ ∈ EL1(R ⊕ P , J) such that ϕ(a, p) = (1, 0). Using
(2.1), let Φ ∈ EL1(R ⊕ P, J) be a lift of ϕ and Φ(a, p) = (b, q), where b ≡ 1 mod s2JR and
q ∈ s2JP .

By (3.9), there exists a1, . . . , ar ∈ sJR such that q = a1p1 + . . . + arpr. It follows that
(b, a1, . . . , ar) ∈ Umr+1(R, sJ). By (3.6), there exists φ ∈ EL1

r+1(R, sJ) such that φ(b, a1, . . . , ar) =
(1, 0, . . . , 0). Applying (3.11), we get Ψ ∈ EL1(R ⊕ P, J) such that Ψ(b, q) = (1, 0). Therefore
ΨΦ(a, p) = (1, 0). This completes the proof. �

For Laurent polynomial ring (i.e. fi = Yi), the following result is due to Bhatwadekar-Lindel-
Rao [2].

Theorem 3.13 Let k be a field and let A be an affine k-algebra of dimension d. Let R =
A[X1, . . . , Xl, Y1, . . . , Ym,

1
f1...fm

], where fi ∈ A[Yi] (i.e. R is of the type A{d, l,m, 0}). Then
every projective R-module P of rank ≥ d+ 1 has a unimodular element.

Proof We assume that A is reduced and use induction on dimA. If dimA = 0, then every
projective module of constant rank is free (3.5, 3.9). Assume dimA > 0.

By (3.9), there exists a non-zerodivisor s ∈ A such that Ps is free Rs-module. Let “bar” denote
reduction modulo the ideal sR. By induction hypothesis, P has a unimodular element, say p.
Clearly (p, s) ∈ Um(P ⊕R), where p ∈ P is a lift of p. By (2.2), we may assume that ht I ≥ d+ 1,
where I = OP (p). We claim that I(1+sA) = R(1+sA) (i.e. p ∈ Um(P1+sA)).

Since R is a Jacobson ring,
√
I = ∩m is the intersection of all maximal ideals of R containing

I. Since I + sR = R, s /∈ (I ∩A). Let m be any maximal ideal of R which contains I. Since A and
R are affine k-algebras, m ∩ A is a maximal ideal of A. Hence m ∩ A contains an element of the
form 1 + sa for some a ∈ A (as s /∈ m ∩ A). Hence mR(1+sA) = R(1+sA) and I(1+sA) = R(1+sA).
This proves the claim.

Let S = 1 + sA. Let t ∈ S be such that p ∈ Um(Pt). Choose p1 ∈ Um(Ps). Since RsS is of
the type AsS{d − 1, l,m, 0}, by (3.12), there exist ϕ ∈ EL1(PsS) such that ϕ(p1) = p. We can
choose t1 = tt2 ∈ S such that ϕ ∈ EL1(Pst1). By (2.7), ϕ = (ϕ1)s ◦ (ϕ2)t1 , where ϕ2 ∈ Aut(Ps)
and ϕ1 ∈ Aut(Pt1). Consider the following fiber product diagram

P //

��

Ps

��
Pt1 // Pst1 .
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Since (ϕ2)t1(p1) = (ϕ1)−1
s (p), patching ϕ2(p1) ∈ Um(Ps) and ϕ−1

1 (p) ∈ Um(Pt), we get a
unimodular element in P . This proves the result. �

The following result generalizes a result of Ravi Rao [10] where it is proved that P is cancellative.

Theorem 3.14 Let A be a ring of dimension d and let R = A[X, f1g , . . . ,
fn

g ], where g, fi ∈ A[X]
with g a non-zerodivisor. Let P be a projective R-module of rank r ≥ max {2, d + 1}. Then
EL1(R⊕P ) acts transitively on Um(R⊕P ).

Proof We will assume that A is reduced and apply induction on dimA. If dimA = 0, then we
may assume that A is a field. Hence R is a PID and P is free. By (2.3), we are done.

Assume dimA = d > 0. By (3.9), we can choose a non-zerodivisor s ∈ A, p1, . . . , pr ∈ P and
φ1, . . . , φr ∈ P ∗ satisfying the properties of (3.9).

Let (a, p) ∈ Um(R⊕P ). Let “bar” denotes reduction modulo sgR. Then dimR < dimR and
r ≥ dimR+1. By Serre’s result [11], P has a unimodular element, say q. Then (0, q) ∈ Um(R⊕P ).
By Bass result [1], there exists φ ∈ EL1(R⊕P ) such that φ(a, p) = (0, q). Using (2.1), let Φ ∈
EL1(R⊕P ) be a lift of φ and Φ(a, p) = (b, q), where b ∈ sgR. By (2.2), we may assume that
ht OP (q) ≥ d+ 1.

Write B = A[X], x = sg, I = OP (q) and C = R. Then dimB = dimC and Bsg = Csg. By
(2.5(ii)), there exists h ∈ A[X] such that 1 + sgh ∈ OP (q). Hence there exists ϕ ∈ P ∗ such that
ϕ(q) = 1 + sgh.

By (2.5(iii)), there exists b′ ∈ R such that b− b′(1 + sgh) = 1 + sg+ s2g2h′ for some h′ ∈ A[X].
Since ∆−b′ϕ(b, q) = (b− b′ϕ(q), q) = (1 + sg + s2g2h′, q) = (b0, q) and Γ−q(b0, q) = (b0, q − b0q) =
(b0, sgq1) for some q1 ∈ P and b0 ∈ A[X] with b0 = 1 mod sgA[X].

Write sgq1 = c1p1 + . . . + crpr for some ci ∈ R. Then (b0, c1, . . . , cr) ∈ Um1
r+1(R, sg). It is

easy to see that by adding some multiples of b0 to c1, . . . , cr, we may assume that (b0, c1, . . . , cr) ∈
Um1(A[X], sgA[X]). By (2.3), there exists Θ ∈ EL1

r+1(A[X], s) such that Θ(b0, c1, . . . , cr) =
(1, 0, . . . , 0). Applying (3.10), there exists Ψ ∈ EL1(R⊕P ) such that Ψ(b0, sgq1) = (1, 0). This
proves the result. �.

Question 3.15 Let R be a ring of type A{d, l,m, n} and let P be a projective R-module of rank
≥max {2, d+ 1}.

(i) Does EL1(R⊕P ) acts transitively on Um(R⊕P )? In particular, Is P cancellative?
(ii) Does P has a unimodular element?

Assume n = 0. Then (i) is (3.12) and for affine algebras over a field, (ii) is (3.13).
When either P is free or k = Fp, then the following result is proved in [5].

Theorem 3.16 Let k be an algebraically closed field with 1/d! ∈ k and let A be an affine k-algebra
of dimension d. Let f(T ) ∈ A[T ] be a monic polynomial and assume that either

(i) R = A[T, 1
f(T ) ] or

(ii) R = A[T, f1f , . . . ,
fn

f ], where f, f1, . . . , fn is A[T ]-regular sequence.
Then every projective R-module P of rank d is cancellative.
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Proof By (3.9), there exists a non-zerodivisor s ∈ A satisfying the properties of (3.9). Let
(a, p) ∈ Um(R⊕ P ).

Let “bar” denote reduction modulo ideal s3A. Since dimA < dimA, by (3.12, 3.14), there
exists φ ∈ EL1(R ⊕ P ) such that φ(a, p) = (1, 0). Let Φ ∈ EL1(R ⊕ P ) be a lift of φ. Then
Φ(a, p) = (b, q), where (b, q) ∈ Um1(R⊕ P, s2A). Now the proof follows by ([5], Theorem 4.4). �

The proof of the following result is same as of (3.16) using ([5], Theorem 5.5).

Theorem 3.17 Let k be a real closed field and let A be an affine k-algebra of dimension d − 2.
Let f ∈ A[X,T ] be a monic polynomial in T which does not belong to any real maximal ideal of
A[X,T ]. Assume that either

(i) R = A[X,T, 1/f ] or
(ii) R = A[X,T, f1/f, . . . , fn/f ], where f, f1, . . . , fn is A[X,T ]-regular sequence.

Then every projective R-module of rank d− 1 is cancellative.

4 An analogue of Wiemers result

We begin this section with the following result which can be proved by the same arguments as in
([13], Corollary 3.4) and using (3.12)

Theorem 4.1 Let A be a ring of dimension d and R = A[X1, . . . , Xl, Y1, . . . , Ym,
1

f1...fm
], where

fi ∈ A[Yi]. Let P be a projective R-module of rank ≥ d + 1. Then the natural map AutR(P ) →
AutR(P/XlP ) with R = R/XlR is surjective.

Using the automorphism µ defined in (3.6), the following result can be proved by the same
arguments as in ([13], Proposition 4.1).

Proposition 4.2 Let A be a ring of dimension d, 1/d! ∈ A and R = A[X1, . . . , Xl, Y1, . . . , Ym,
1

f1...fm
]

with l ≥ 1, fi ∈ A[Yi]. Then GLd+1(R,XlJR) acts transitively on Umd+1(R,XlJR), where J is
an ideal of A.

When fi = Yi, the following result is due to Wiemers ([13], Theorem 4.3). The proof of this
result is same as of ([13], Theorem 4.3) using (4.1, 4.2).

Theorem 4.3 Let A be a ring of dimension d with 1/d! ∈ A and let R = A[X1, . . . , Xl, Y1, . . . , Ym,
1

f1...fm
]

with fi ∈ A[Yi] for i = 1 to m . Let P be a projective R-module of rank ≥ d. If Q is another
projective R-module such that R ⊕ P ∼= R ⊕ Q and P ∼= Q, then P ∼= Q, where “bar” denote
reduction modulo the ideal (X1, . . . , Xl)R .

Using (3.16, 4.3), we get the following result.

Corollary 4.4 Let k be an algebraically closed field with 1/d! ∈ k and let A be an affine k-algebra
of dimension d. Let f(T ) ∈ A[T ] be a monic polynomial and let R = A[X1, . . . , Xl, T,

1
f(T ) ]. Then

every projective R-module of rank ≥ d is cancellative.
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