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Abstract: Let A be a commutative Noetherian ring of dimension d and let P be a projective R =
AlX1,..., X, Y1, ..., Ym, = ]-module of rank r > max {2,dim A + 1}, where f; € A[Y;]. Then

(¢) The natural map <I>f71 : gnLr(R)/ELi(R) — Ki1(R) is surjective (3.8).

(4¢) Assume f; is a monic polynomial. Then @, is an isomorphism (3.8).

(iii) EL'(R®P) acts transitively on Um(RDP). In particular, P is cancellative (3.12).

(4v) If A is an affine algebra over a field, then P has a unimodular element (3.13).

In the case of Laurent polynomial ring (i.e. f; =Y;), (i,4%) are due to Suslin [12], (¢i%) is due to Lindel

[4] and (iv) is due to Bhatwadekar, Lindel and Rao [2].
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1 Introduction

All the rings are assumed to be commutative Noetherian and all the modules are finitely generated.

Let A be a ring of dimension d and let P be a projective A-module of rank n. We say that P
is cancellative if PGA™ = Q@A™ for some projective A-module @ implies P = Q. We say that
P has a unimodular element if P = P'@A for some projective A-module P’.

Assume rank P > dim A. Then (i) Bass [1] proved that EL'(A @ P) acts transitively on
Um(A @ P). In particular, P is cancellative and (i7) Serre [11] proved that P has a unimodular
element.

Later, Plumstead [7] generalized above results by proving that if P is a projective A[T]-module
of rank > dim A = dim A[T] — 1, then (i) P is cancellative and (i7) P has a unimodular element.

Let P be a projective A[X7,...,X;]-module of rank > dim A. Then (i) Ravi Rao [9] proved
that P is cancellative and (i¢) Bhatwadekar and Roy [3] proved that P has a unimodular element,
thus generalizing Plumstead’s results.

Let P be a projective R = A[Xq,..., X, Ylﬂ, ..., Y ]-module of rank > max (2,1 + dim A).
Then (i) Lindel [4] proved that EL'(R @ P) acts transitively on Um(R @ P). In particular, P is
cancellative and (i7) Bhatwadekar, Lindel and Rao [2] proved that P has a unimodular element.

In another direction, Ravi Rao [10] generalized Plumstead’s result by proving that if R =
A[T,1/9(T)] or R = A[T, );1((TT)), ce J;’"((TT))], where g(T') € A[T] is a non-zerodivisor and if P is a
projective R-module of rank > dim A, then P is cancellative. We will generalize Rao’s result by
proving that EL'(R @ P) acts transitively on Um(R @ P) (3.14).

Let R = A[Xq,..., X, Y1,...,Y, ], where f; € A]Y;] and let P be a projective R-module
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of rank > max {2,dim A + 1} Then we show that (i) EL'(R @ P) acts transitively on Um(R @ P)




and (i7) If A is an affine algebra over a field, then P has a unimodular element (3.12, 3.13), thus
generalizing results of ([4], [2]) where it is proved for f; =Y;.

As an application, we prove the following result (3.16): Let k be an algebraically closed field
with 1/d! € k and let A be an affine k-algebra of dimension d. Let R = A[T,1/f(T)] or R =
A[T, J}((TT)) by ’;Z((TT))], where f(T) is a monic polynomial and f(T), f1(T), ..., f-(T) is A[T]-regular
sequence. Then every projective R-module of rank > d is cancellative. (See [5] for motivation)

2 Preliminaries

Let A be a ring and let M be an A-module. For m € M, we define Op(m) = {p(m)|p €
Homyu (M, A)}. We say that m is unimodular if Opr(m) = A. The set of all unimodular elements
of M will be denoted by Um(M). We denote by Auts(M), the group of all A-automorphism
of M. For an ideal J of A, we denote by Aut4(M,J), the kernel of the natural homomorphism
Autg (M) — Auta(M/JM).

We denote by EL' (A@M, .J), the subgroup of Aut 4 (A@M) generated by all the automorphisms
ANgp = (éiz;’;) and Ty, = () iy, ) with a € J,¢ € Homu (M, A) and m € M.

We denote by Um' (A @ M, .J), the set of all (a,m) € Um(A @ M) such that a € 1 + J and by
Um(A@® M, J), the set of all (a,m) € Um*(A® M, J) with m € JM. We will write Um? (A, J) for
Um'(A® A1, J) and Um, (A4, J) for Um(AQA™1,J).

We will write ELL(A, J) for EL*(A @ A™~',.J), ELL(A) for ELL(A, A) and EL'(A @ M) for
EL'(A® M, A).

Remark 2.1 (i) Let I C J be ideals of a ring A and let P be a projective A-module. Then, it
is easy to see that the natural map EL'(A & P, J) — EL' (4 @ 75, 7) is surjective.

(73) Let E,(A) be the group generated by elementary matrices E;;,(a) = (a;;), where ig # jo,
ai; =1, a5, = a € A and remaining a;; = 0 for 1 <4,j < r. Then using ([13], Lemma 2.1), it is
easy to see that E,.(A) = ELL(A).

The following result is a consequence of a theorem of Eisenbud-Evans as stated in ([7], p.1420).

Theorem 2.2 Let R be a ring and let P be a projective R-module of rank r. Let (a, o) € (ROP*).
Then there exists § € P* such that ht I, > r, where I = (a + af)(P). In particular, if the ideal
(a(P),a) has height > r, then ht I > r. Further, if (a(P),a) is an ideal of height > r and I is a
proper ideal of R, then ht [ =r.

The following two results are due to Wiemers ([13], Proposition 2.5 and Theorem 3.2).

Proposition 2.3 Let A be a ring and let R = A[X1,..., X,, Ylﬂ, .., YE Let ¢ be the element
1, X, or Y, —1. If s € A and v 2> maz {3,dim A + 2}, then ELL(R, sc) acts transitively on
Uml(R, sc).



Theorem 2.4 Let A be a ring and let R = A[Xq, ... ,Xn,Ylil, <, YEU Let P be a projective
R-module of rank r 2 maz {2,dim A + 1}. If J denotes the ideal R, X, R or (Y., — 1)R, then
ELY(R@® P,J) acts transitively on Um*(R @ P,.J).

The following result is due to Ravi Rao ([10], Lemma 2.1).

Lemma 2.5 Let B C C be rings of dimension d and x € B such that B, = C,. Then

(1) B/(14+2b)B =C/(1+ xb)C for all b € B.

(it) If I is an ideal of C such that ht I > d and I + xC = C, then there exists b € B such that
1+a2bel.

(iii) If c € C, then ¢ = 1+ + 2%h mod (1 + xb) for some h € B and for all b € B.

Definition 2.6 Let A be a ring and let M, N be A-modules. Suppose f,g : M = N be two
isomorphisms. We say that “f is isotopic to g” if there exists an isomorphism ¢(X) : M[X] =
N[X] such that $(0) = f and ¢(1) = g.

Note that if o € EL*(A@M), then o is isotopic to identity.

The following lemma follows from the well known Quillen splitting lemma ([8], Lemma 1) and

its proof is essentially contained in ([8], Theorem 1).

Lemma 2.7 Let A be a ring and let P be a projective A-module. Let s,t € A be two comazimal
elements. Let o € Auta_, (Pst) which is isotopic to identity. Then o = 750;, where 7 € Auty, (P;)
such that T = id modulo sA and 0 € Auta,(Ps) such that 0 = id modulo tA.

The following two results are due to Suslin ([12], Corrolary 5.7 and Theorem 6.3).

Theorem 2.8 Let A be a ring and let f € A[X] be a monic polynomial. Let o € GL,.(A[X]) be
such that oy € ELy(A[X]). Then a € ELL(A[X]).

Theorem 2.9 Let A be a ring and B = A[X1,...,X;]. Then the canonical map GL,(B)/EL-(B) —
K1(B) is an isomorphism for r > maz {3,dim A + 2}. In particular, if o € GL,.(B) is stably

elementary, then a is elementary.

3 Main Theorem

We begin this section with the following result which is easy to prove. We give the proof for the

sake of completeness.

Lemma 3.1 Let A be a ring and let P be a projective A-module. Let “bar” denote reduction modulo
the nil radical of A. For an ideal J of A, if EL'(A & P,J) acts transitively on Um'(A & P, J),
then EL'(A @ P,.J) acts transitively on Um' (A @ P, .J).



Proof Let (a,p) € Um'(A @ P,J). By hypothesis, there exists a ¢ € EL'(A @ P,.J) such that
o(@,p) = (1,0). Using (2.1), let ¢ € EL'(A ® P,.J) be a lift of o such that p(a,p) = (1 + b,q),
where b € N = nil(A) and ¢ € NP. Note that b € NNJ. Since 1+b is a unit, we get I'y = F% €
EL'(A®P, J) such that T';(1 +b,q) = (1 +b,0). It is easy to see that there exists p,...,p, € P
and ay,...,a, € P* such that ai(p1) + ... + an(p,) = 1. Write h = Y 5 a;(p;). Note that
(140,0) = (1437 bai(pi), 0), Flple(l—i—b, 0) = (14b,p1) and A_p, (1+b,p1) = (1+bh,p1), where
A_po, € EL'Y(A®P,J). Since 1+ bh is a unit, F%(l +bh,p1) = (14bh,0) = (1+ 3.5 ba;(pi), 0).
Applying further transformations as above, we can take (1+ >3 bai(pi),0) to (1,0) by elements
of EL'(A@P, J). O

The following lemma is similar to the Quillen’s splitting lemma (2.7). We will sketch the
proof. Recall that for a ring B and an element s € B, SL., (B, s) denotes the subgroup of SL,,(B)
consisiting of those elements whose first row is (1,0,...,0) modulo the ideal (s).

Lemma 3.2 Let A be a ring and let u,v be two comazimal elements of A. For any s € A, every
o € EL} (Ayy, 8) has a splitting (c1)y o (2)u, where a; € SLi. (Ay, s) and ag € ELL(A,, s).

Proof If a € EL}(Ayy,s), then o = [[/_, a;, where qa; is of the form <(1) IZ%I) or (& I(?M) ,
where M = A" 1 v,w e M.

Define a(X) € ELL(A[X ]y, s) by a(X) = [[}_; a:(X), where a;(X) is of the form ((1) I;ﬁi{])
or (Xiu; Id}S[X] ) as may by the case above.

Since a(0) = id and a(l) = «, « is isotopic to identity. Using proof of (2.7) ([6], Lemma 2.19),
we get that a(X) = (¥1(X))y 0 (¥2(X))u, where 91(X) = a(X) o a(MFX)~' € SLL(A,[X], s)
and ¥9(X) = a(MFX) € EL} (A4,[X],s) with A € A, k> 0. Write ¢ (1) = oy € SL!.(A,, s) and
Po(1) = g € ELL(A,, s), we get that a(1) = a = (a1), 0 (a2).. O

Remark 3.3 We do not know whether a; € EL}(4,,s) in the above result. In particular, we
can ask the following question: Let A be a ring and let u, v be two comaximal elements of A. Let
a € ELL(Ay). Does a has a splitting (a1), o (a2)y, where a; € ELL(A,) and as € ELL(A,)?

Definition 3.4 Let A be a ring of dimension d and let I,m,n € NU{0}. We say that a ring R
is of the type A{d,l,m,n}, if R is an A-algebra generated by X1,...,X;, Y1,..., Y, Th,..., Ty,
fl..l.fm’ YRR g;Ltll e 2L, g;i" , where X;’s, Y;’s and T;’s are variables over A, f; € A[Y;],
gij € A[Ty], hi € A[T;] and h;’s are non-zerodivisors.

For Laurent polynomial ring (i.e. f; =Y;), the following result is due to Wiemers (2.3).

Proposition 3.5 Let A be a ring of dimension d and let R = A[X1,..., X}, Y1,..., Y, 1],

> oM f1-~-f7n

where f; € A[Y;] (i.e. R is of the type A{d,l,m,0}). If s € A and r > maz {3,d + 2}, then
ELL(R, s) acts transitively on Ump(R, s).



Proof Without loss of generality, we may assume that A is reduced. The case m = 0 is due to
Wiemers (2.3). Assume m > 1 and apply induction on m.

Let (ay,...,a,) € Umk(R,s). Consider a multiplicative closed subset S = 1 4 f,, A[V;,] of
A[Y,,]. Then Rs = B[Xl,...,Xl,m,...,m_l,m], where B = A[Y,,];,.s and dim B =
dim A. Since Rg is of the type B{d,l,m — 1,0}, by induction hypothesis on m, there exists
o € EL!(Rs, s) such that o(ai,...,a,) = (1,0,...,0). We can find g € S and o’ € EL.(R,,s)
such that o'(aq,...,a,) = (1,0,...,0).

Write C = A[Xy,..., X}, Y1,...,Y,,, —L——]. Consider the following fiber product diagram

YIS fy e fm—t

c R=0Cy,

.

Cy——= Ry =Cyy,..

Since o/ € EL.(C,y,.,5), by (3.2), o/ = (02);, o (1), where oo € SLL(C,,s) and o1 €
EL:(R,s). Since (o1),(a1,...,a,) = (02);’11(1, 0,...,0), patching o1(ay,...,a,) € Umk(Cy,, ,s)
and (02)71(1,0,...,0) € Um}(C,, s), we get a unimodular row (cy,...,c,) € Ump(C,s). Since C
is of the type A{d, 141, m—1,0}, by induction hypothesis on m, there exists ¢ € EL.(C, s) such that
é(ci,...,¢.) = (1,0,...,0). Taking projection, we get ® € EL.(R, s) such that ®oy(ay,...,a,) =
(1,0,...,0). This completes the proof. a
Corollary 3.6 Let A be a ring of dimension d and let R = A[Xl,...,Xl,Yh...,Ym,ﬁ],
where fi € A[Yi]. Let ¢ be 1 or X;. If s € A and r > max {3,d + 2}, then EL-(R, sc) acts

transitively on Uml(R, sc).

Proof Let (ai,...,a,) € UmL(R,sc). The case ¢ = 1 is done by (3.5). Assume ¢ = X;. We
can assume, after an EL}G(R, sX;)-transformation, that ag,...,a, € sX;R. Then we can find
(b1,...,by) € Um, (R, sX;) such that the following equation holds:

albl—l—...—&—arbT: 1. (Z)
Now consider the A-automorphism g : R — R defined as follows

Xi*—>Xl fOI"L':L...,lfl
X = X;(f1... fm)"N for some large positive integer N.

)

Applying p, we can read the image of equation (i) in the subring S = A[X1,..., X, Y1,...,Y..].
By (2.3), we obtain ¢ € ELL(R, sX;) such that ¢(u(a1),...,u(a,)) = (1,0,...,0). Since p~(X;)
and X generate the same ideal in R, applying u~!, the proof follows. O

Corollary 3.7 Let A be a ring of dimension d and let R = A[Xl,...,Xl,Yl,...,Ym,ﬁ],
where f; € A[Y;]. Then EL:(R) acts transitively on Um,.(R) for r > maz{3,d + 2}.



The following result is similar to ([10], Theorem 5.1). The Laurent polynomial case (i.e. f; =Y;)
is due to Suslin [12].

Theorem 3.8 Let A be a ring of dimension d and let R = A[X1,..., X, Y1,..., Y, ﬁ], where
fi € A[Y:] (i.e. R is of the type A{d,l,m,0}). Then

(i) the canonical map ®, : GL,(R)/ELL(R) — K (R) is surjective for r > maz {2,d + 1}.

(i1) Assume f; € A[Y;] is a monic polynomial for all i. Then for r > maz {3,d+ 2}, any stably
elementary matriz in GL,(R) is in ELL(R). In particular, ®4,o is an isomorphism.

Proof (i) Let [M] € K;(R). We have to show that [M] = [N] in K;(R) for some N € GL4y1(R).
Without loss of generality, we may assume that M € GLg42(R). By (3.5), there exists an

!

o 1) Applying further o’ € EL},,(R),

elementary matrix o € EL},,(R) such that Mo = (

we get o' Mo = ](;[ (1)>, where M’, N € GL441(R). Hence [M] = [N] in K7 (R). This completes
the proof of ().

(74) Let M € GL,(R) be a stably elementary matrix. For m = 0, we are done by (2.9). Assume
m > 1.

Let S =1+ f, A[Y,]). Then Rg = B[Xy,..., X;,Y1,..., Y1, m], where B = A[Y,,]t,.s
and dim B = dim A. Since Rg is of the type B{d,l,m — 1,0}, by induction hypothesis on m,
M € EL,(Rs). Hence there exists g € S such that M € EL.(R,). Let o € EL,(R,) be such that
oM = Id.

Write C = A[Xy,...,X;,Y1,...,Y,,, —=—]. Consider the following fiber product diagram

YIS o fm—t

CHCfm:R

.

Cy ——=Cyy,, = Ry.

By (3.2), 0 = (02)4,, © (01)y, where o9 € SL,(C,) and o1 € ELL(C},,). Since (o1 M), = (Jg)}i,
patching o1 M and (02)7!, we get N € GL,(C) such that Ny, = o1 M.

Wiite D = A[X1,...,X,, Y1,..., Y1, —+—]. Then D[Y,,] = C and D[Y,,]s, = R. Since
N € GL,(D[Y:)]), fm € D[Y;,] is a monic polynomial and Ny, = o1 M is stably elementary, by
(2.8), N is stably elementary. Since C is of the type A{d,l+ 1,m — 1,0}, by induction hypothesis
onm, N € ELL(C). Since oy is elementary, we get that M € EL(R). This completes the proof of
(id). O

Lemma 3.9 Let R be a ring of the type A{d,l,m,n}. Let P be a projective R-module of rank r >
maz {2,1+ d}. Then there exists an s € A, p1,...,pr € P and p1,...,p, € Hom(P, R) such that

the following properties holds.
(i) Ps is free.



(11) (pi(p;)) = diagonal (s,s,...,s).

(i) sP C prA+ ...+ prA.

(iv) The image of s in A,eq is a nonzero divisor.
(v) (0:84) = (0:s%A).

Proof Without loss of generality, we may assume that A is reduced. Let S be the set of all
non-zerodivisors in A. Since dim Ag = 0 and projective Rg-module Ps has constant rank, we
may assume that Ag is a field. Then it is easy to see that Ag[T;, gh—J] = Ag[T;, hi] (assuming ged
(gij,hi) = 1). Therefore Rs = As[X1,.... X0, Y1,.... Y. Th, ... T, i)
of a polynomial ring over a field. Hence projective modules over Rg are stably free. Since Pg is
stably free of rank > max {2,1 + d}, by (3.5), Ps is a free Rg-module of rank r. We can find an

s € S such that P is a free Rg-module. The remaining properties can be checked by taking a basis

is a localization

Piy...,Dr € P of Py, a basis ¢1,...,¢, € Hom(P, R) of P and replacing s by some power of s, if

S

needed. This completes the proof. 0

Lemma 3.10 Let R be a ring of the type A{d,l,m,n}. Let P be a projective R-module of rank r.
Choose s € A, p1,...,pr € P and p1,...,0, € Hom(P, R) satisfying the properties of (3.9). Let
(a,p) € Um(R & P, sA) with p = c1p1 + ... + ¢pr, where ¢; € sR for i =1 to r. Assume there
exists ¢ € EL} (R, s) such that ¢(a,ci,...,¢;) = (1,0,...,0). Then there evists & € EL'(R&® P)
such that @(a,p) = (1,0).

Proof Since ¢ € EL, (R, s), ¢ = [[/_; ¢;, where ¢; = Ay, or Tye with ¢ = (byj, ..., brj) €
R™ and v = (f1,...,fr) € R".
Define a map © : EL}, | (R, s) — EL'(R @ P) as follows

1 T b 1
@(AS%) = (0 Zz—.zlb7,]<)01> and O(T) = (ZT f ((j) ) .
ap i=1JiPi ap

Let & = [[/_, ©(¢;) € EL'(R®P). Then it is easy to see that &(a,p) = (1,0). This completes
the proof. O

Remark 3.11 From the proof of above lemma, it is clear that if ¢ € EL,IOH(R7 sX)) such that
d(a,ci,...,c.) = (1,0,...,0), then ® € EL'(R @ P, X;) such that &(a,p) = (1,0).
For Laurent polynomial ring (i.e. f; =Y; and J = R), the following result is due to Lindel [4].

Theorem 3.12 Let A be a ring of dimension d and let R = A[Xy,...,X;,Y1,..., Y, ﬁ],
where f; € AlY;] (i.e. R is of the type A{d,l,m,0}). Let P be a projective R-module of rank
r > maz {2,d 4+ 1}. If J denote the ideal R or X;R, then EL'(R ® P,J) acts transitively on

Um'(R@ P, J).



Proof Without loss of generality, we may assume that A is reduced. We will use induction on
d. When d = 0, we may assume that A is a field. Hence projective modules over R are stably free
(proof of lemma 3.9). Using (3.6), we are done.

Assume d > 0. By (3.9), there exists a non-zerodivisor s € A, p1,...,p, € P and ¢1,...,¢, €
P* = Homp(P, R) satisfying the properties of (3.9). If s € A is a unit, then P is a free and the
result follows from (3.6). Assume s is not a unit.

Let (a,p) € Um'(R@® P, J). Let “bar” denotes reduction modulo the ideal s>R. Since dim A <
dim A, by induction hypothesis, there exists ¢ € EL*(R @ P, J) such that ¢(@,p) = (1,0). Using
(2.1), let ® € EL*(R @ P,J) be a lift of ¢ and ®(a,p) = (b,q), where b = 1 mod s*>JR and
q € s?JP.

By (3.9), there exists a1,...,a, € sJR such that ¢ = aip1 + ... + a.p,. It follows that
(b,ar,...,a;) € Um,41(R, sJ). By (3.6), there exists ¢ € EL}, | (R, sJ) such that ¢(b, ay,...,a,) =
(1,0,...,0). Applying (3.11), we get ¥ € EL'(R @ P,J) such that ¥(b,q) = (1,0). Therefore
Ud(a,p) = (1,0). This completes the proof. O

For Laurent polynomial ring (i.e. f; =Y;), the following result is due to Bhatwadekar-Lindel-
Rao [2].

Theorem 3.13 Let k be a field and let A be an affine k-algebra of dimension d. Let R =
A[Xl,...,Xl,Yl,...,Ym,ﬁ], where f; € A[Y;] (i.e. R is of the type A{d,l,m,0}). Then
every projective R-module P of rank > d + 1 has a unimodular element.

Proof We assume that A is reduced and use induction on dim A. If dim A = 0, then every
projective module of constant rank is free (3.5, 3.9). Assume dim A > 0.

By (3.9), there exists a non-zerodivisor s € A such that P is free Rs-module. Let “bar” denote
reduction modulo the ideal sR. By induction hypothesis, P has a unimodular element, say p.
Clearly (p,s) € Um(P & R), where p € P is a lift of p. By (2.2), we may assume that ht I > d+ 1,
where I = Op(p). We claim that [(1444) = R(14sa) (i.e. p € Um(Prya)).

Since R is a Jacobson ring, v/I = Nm is the intersection of all maximal ideals of R containing
I. Since I +sR =R, s ¢ (INA). Let m be any maximal ideal of R which contains I. Since A and
R are affine k-algebras, m N A is a maximal ideal of A. Hence m N A contains an element of the
form 1+ sa for some a € A (as s ¢ mN A). Hence mR(1454) = R1454) and [(1154) = R11s4)-
This proves the claim.

Let S =1+ sA. Let t € S be such that p € Um(P;). Choose p; € Um(FPs). Since Rygs is of
the type A,s{d — 1,1,m,0}, by (3.12), there exist ¢ € EL'(P,5) such that ¢(p;) = p. We can
choose t; = tty € S such that ¢ € EL'(Py,). By (2.7), ¢ = (©1)s 0 (92)s,, where oy € Aut(P,)
and ¢; € Aut(P;,). Consider the following fiber product diagram

P Ps

L

Ptl —_— Stl'



Since (p2),(p1) = (#1)5" (), patching @o(p1) € Um(P;) and o7 '(p) € Um(F;), we get a
unimodular element in P. This proves the result. O

The following result generalizes a result of Ravi Rao [10] where it is proved that P is cancellative.

Theorem 3.14 Let A be a ring of dimension d and let R = A[X, f—ql, cey J%"], where g, f; € A[X]
with g a non-zerodivisor. Let P be a projective R-module of rank r > max {2,d + 1}. Then

EL'(R®P) acts transitively on Um(R®P).

Proof We will assume that A is reduced and apply induction on dim A. If dim A = 0, then we
may assume that A is a field. Hence R is a PID and P is free. By (2.3), we are done.

Assume dim A = d > 0. By (3.9), we can choose a non-zerodivisor s € A, p1,...,p, € P and
o1,-..,0r € P* satisfying the properties of (3.9).

Let (a,p) € Um(R®P). Let “bar” denotes reduction modulo sgR. Then dim R < dim R and
r > dim R+ 1. By Serre’s result [11], P has a unimodular element, say g. Then (0,7) € Um(R®P).
By Bass result [1], there exists ¢ € EL'(R®P) such that ¢(@,p) = (0,7). Using (2.1), let & €
EL'(R®P) be a lift of ¢ and ®(a,p) = (b,q), where b € sgR. By (2.2), we may assume that
ht Op(q) > d+1.

Write B = A[X],z = sg,I = Op(q) and C = R. Then dimB = dimC and By, = Cs4. By
(2.5(i1)), there exists h € A[X] such that 1+ sgh € Op(q). Hence there exists ¢ € P* such that
¢(q) =1+ sgh.

By (2.5(iii)), there exists b’ € R such that b—b'(1+ sgh) = 1+ sg+ s2g*h’ for some h' € A[X].
Since A_yy(b,q) = (b —'p(q),q) = (1 + 59+ 57g°h', q) = (bo, q) and Ty (bo, q) = (bo, g — bogq) =
(bo, sgq1) for some ¢; € P and by € A[X] with by = 1 mod sgA[X].

Write sgq1 = c¢1p1 + ... + ¢.p,r for some ¢; € R. Then (bg,c1,...,¢.) € Um:,_H(R, sg). It is
easy to see that by adding some multiples of by to c1, ..., ¢, we may assume that (bg,c1,...,¢.) €
Um'(A[X],sgA[X]). By (2.3), there exists © € EL. ;(A[X],s) such that ©(by,c1,...,¢,) =
(1,0,...,0). Applying (3.10), there exists ¥ € EL'(R®P) such that ¥(bg, sgq1) = (1,0). This
proves the result. 0.

Question 3.15 Let R be a ring of type A{d,l,m,n} and let P be a projective R-module of rank
>maz {2,d 4+ 1}.
(i) Does EL'(R®P) acts transitively on Um(R®P)? In particular, Is P cancellative?

(it) Does P has a unimodular element?

Assume n = 0. Then (7) is (3.12) and for affine algebras over a field, (i¢) is (3.13).
When either P is free or k = I, then the following result is proved in [5].

Theorem 3.16 Let k be an algebraically closed field with 1/d! € k and let A be an affine k-algebra
of dimension d. Let f(T) € A[T] be a monic polynomial and assume that either
N 1
(i) R = AIT, 7]
(#4) R = A[T, f—fl, . fT], where f, f1,..., fn is A[T)-regular sequence.
Then every projective R-module P of rank d is cancellative.

or



Proof By (3.9), there exists a non-zerodivisor s € A satisfying the properties of (3.9). Let
(a,p) € Um(R & P).

Let “bar” denote reduction modulo ideal s®A. Since dim A < dim A4, by (3.12, 3.14), there
exists ¢ € EL'(R @ P) such that ¢(a,p) = (1,0). Let ® € EL'(R @ P) be a lift of ¢. Then
®(a,p) = (b, q), where (b,q) € Um' (R @ P, s?A). Now the proof follows by ([5], Theorem 4.4). O

The proof of the following result is same as of (3.16) using ([5], Theorem 5.5).

Theorem 3.17 Let k be a real closed field and let A be an affine k-algebra of dimension d — 2.
Let f € A[X,T] be a monic polynomial in T which does not belong to any real mazimal ideal of
A[X,T]. Assume that either

(i) R=A[X,T,1/f] or

(it) R=A[X,T, f1/f,---s fn)f], where f, f1,..., fn is A[X,T]-reqular sequence.
Then every projective R-module of rank d — 1 is cancellative.

4 An analogue of Wiemers result

We begin this section with the following result which can be proved by the same arguments as in
([13], Corollary 3.4) and using (3.12)

Theorem 4.1 Let A be a ring of dimension d and R = A[Xy,...,X;,Y1,..., Y, ﬁ],
fi € A[Y;]. Let P be a projective R-module of rank > d+ 1. Then the natural map Autg(P) —

Autz(P/X,P) with R = R/X|R is surjective.

, where

Using the automorphism pu defined in (3.6), the following result can be proved by the same
arguments as in ([13], Proposition 4.1).

Proposition 4.2 Let A be a ring of dimensiond, 1/d! € A and R = A[Xy,...,X;,Y1,..., Y, ﬁ]
with 1 > 1, f; € A[Y;]. Then GLqa11(R, X;JR) acts transitively on Umgi1(R, X;JR), where J is

an ideal of A.

When f; = Y;, the following result is due to Wiemers ([13], Theorem 4.3). The proof of this
result is same as of ([13], Theorem 4.3) using (4.1, 4.2).

Theorem 4.3 Let A be a ring of dimension d with 1/d! € A andlet R = A[Xy,..., X, Y1,..., Y, ﬁ]
with f; € AlY;] fori =1 tom . Let P be a projective R-module of rank > d. If Q is another
projective R-module such that R® P = R® Q and P = Q, then P = @, where “bar” denote

reduction modulo the ideal (X1,...,X;)R .
Using (3.16, 4.3), we get the following result.

Corollary 4.4 Let k be an algebraically closed field with 1/d! € k and let A be an affine k-algebra
of dimension d. Let f(T) € A[T] be a monic polynomial and let R = A[Xy,...,X;, T Then

every projective R-module of rank > d is cancellative.

L]
N ICORN
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