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1. If G is a group such that (a.b)i = ai.bi for three consecutive integers i, and for all a, b ∈ G,
then G is abelian.

Give an example to show that if the above holds for only two consecutive integers, then G
may not be abelian.

2. Suppose H is a subgroup of G such that whenever Ha 6= Hb then aH 6= bH. Prove that
gHg−1 ⊂ H for all g ∈ G.

3. If H is a subgroup of finite index in G, prove that there is only a finite number of distinct
subgroups in G of the form aHa−1.

4. If H is of finite index in G, prove that there is a subgroup N of G contained in H and of
finite index in G such that aNa−1 = N for all a ∈ G. Can you give an upper bound for
the index of this N in G?

5. Let G be a finite group whose order is not divisible by 3. Suppose that (ab)3 = a3b3 for
all a, b ∈ G. Show that G is abelian.

6. Let G be an abelian group which has elements of order m,n. Show that G has an element
of order lcm(m,n).

7. If an abelian group has subgroups of order m,n, then it has a subgroup of order lcm(m,n).

8. Let Un = (Z/nZ)×. Show that U8, U20 are not cyclic groups, U9, U17, U18, U25, U27 are
cyclic groups.

For what values of n, Un is cyclic?

9. Let G be a finite abelian group in which the number of solutions in G of the equation
xn = 1 is atmost n for every positive integer n. Prove that G must be a cyclic group.

10. Every subgroup of an abelian group is normal. Is the converse true?

11. Give an example of three groups E ⊂ F ⊂ G, where E is normal in F , F is normal in G,
but E is not normal in G.

12. Let U = {xyx−1y−1|x, y ∈ G} and G′ is the subgroup generated by U , called the
“commutator subgroup” of G. Prove that G′ is a normal subgroup of G and G/G′ is
abelian. Further, if G/N is abelian then G′ ⊂ N . Also, if H < G and H contains G′, then
H is normal in G.

13. A subgroup C of G is called a “characteristic subgroup” of G if σ(C) ⊂ C for all
automorphism σ of G. Prove that a characteristic subgroup of G must be normal.

Show that the converse may not hold.



14. Let E ⊂ F ⊂ G be groups such that E is characteristic subgroup of F and F is normal in
G, then E is normal in G.

15. Every finite group having more than two elements has a non-trivial automorphism.

16. Let G be a group of order 2n. Suppose half the elements of G are of order 2, and the
other half form a subgroup H of order n. Prove that H is of odd order and is an abelian
subgroup of G.

17. If a > 1 is an integer then n/ϕ(an − 1), where ϕ is the Euler function.

18. Let G be a group of order pq, p > q are primes. Prove that
(i) G has a subgroup of order p and a subgroup of order q,
(ii) If q 6 |p− 1, then G is cyclic,
(iii) Given two primes p, q such that q/(p− 1), ∃ a non-abelian group of order pq,
(iv) any two non-abelian group of order pq are isomorphic.

19. (i) For n ≥ 3, the subgroup generated by 3-cycles is An.
(ii) A5 has no non-trivial normal subgroup.
(iii) Any proper subgroup of A5 has order atmost 12.

20. List all the conjugate classes in D2n and verify the class equation.

21. If G is a group of order pn and H is a proper subgroup of G. Show that ∃x ∈ G−H such
that xHx−1 = H.

22. If G is a group of order pn, p : prime, and N is a non-trivial normal subgroup of G, then
Z(G) ∩N 6= 1.

23. Let G be a group of order pqr, p < q < r primes. Prove that
(i) the r-Sylow subgroup is normal in G,
(ii) G has a normal subgroup of order qr,
(iii) if q 6 |(r − 1), the q-Sylow subgroup of G is normal in G.

24. If G is a group of order p2q, p, q : primes, then G has a non-trivial normal subgroup.
Further either a p−Sylow subgroup or a q-Sylow subgroup of G must be normal in G.

25. If P is a p-Sylow subgroup of G, then NG(NG(P )) = NG(P ).

26. Let G be a finite abelian group such that it contains a subgroup H0 6= 1 which lies in every
subgroup H 6= 1. Prove that G must be cyclic. What can you say about the order of G?

27. Let G = A × A, where A is cyclic of order p : prime. Find the number of automorphism
of G.



28. Let G be a finite abelian group with elements a1, . . . , an. Prove that a1a2 . . . an is an
element whose square is identity. Further, if G has no element of order 2 or more than
one element of order 2, then a1a2 . . . an = 1. Prove that if p is a prime integer, then
(p− 1)! = −1 mod (p) (Wilson’s theorem).

29. Give an example of a non-abelian group G such that (xy)3 = x3y3 for all x, y ∈ G.

30. A group can not be written as the set theoretic union of two proper subgroups.

31. (a) If G is a finite group and if P is a p-Sylow subgroup of G, prove that P is the only
p-Sylow subgroup in NG(P ).
(b) If P is a p-Sylow subgroup of G and if apk

= 1, then if a ∈ NG(P ), then a ∈ P .

32. Every group of order < 60 either is of prime order of has a non-trivial normal subgroup.

33. The normalizer of a proper subgroup A of a p-group G contains A properly.

34. If p, q are primes and |G| = paq, then G has a non-trivial normal subgroup.

35. Let G be a group which acts on a set A. Prove that if a, b ∈ A and b = g.a for some g ∈ G,
then Gb = gGag

−1, where Ga is the stabilizer of a. Deduce that if G acts transitively on
A, then the kernel of the action is ∩g∈GgGag

−1.

36. Let G be a permutation group on the set A, i.e. G < SA. Let σ ∈ G and a ∈ A. Prove
that σGaσ

−1 = Gσ(a). Deduce that if G acts transitively on A then ∩σ∈GσGaσ
−1 = 1.

37. Assume that G is an abelian, transitive subgroup of SA. Show that σ(a) 6= a for all
σ ∈ G− {1} and a ∈ A. Deduce that |G| = |A|.

38. List the elements of S3 as 1, (1, 2), (1, 3), (2, 3), (1, 2, 3), (1, 3, 2) and label them with integers
1, . . . , 6. Exhibit the image of each element of S3 under the left regular representation of
S3 into S6.

39. Let Q8 be the quaternion group of order 8.
(a) Prove that Q8 is isomorphic to a subgroup of S8.
(b) Prove that Q8 is not isomorphic to a subgroup of Sn for n ≤ 7. (If Q8 acts on any set
A of order ≤ 7, show that the stabilizer of any point must contain the subgroup (−1).)

40. Prove that if H has finite index n in G, then there is a normal subgroup K of G with
K ⊂ H and |G : K| ≤ n!.

41. Prove that if p is a prime and G is a group of order pα for some α ∈ Z+, then every
subgroup of index p is normal in G. Deduce that every group of order p2 has a normal
subgroup of order p.

42. Prove that every non-abelian group of order 6 has a non-normal subgroup of order 2. Use
this to classify groups of order 6. (Produce an injective homomorphism into S3).



43. Let G be a finite group and let π : G→ SG be the left regular representation. Prove that
if x ∈ G has order n and |G| = mn, then π(x)is a product of m n-cycles. Deduce that
π(x) is an odd permutation iff |x| is even and |G|/|x| is odd.

44. Prove that if S ⊂ G and g ∈ G, then gNG(S)g−1 = NG(gSg−1) and gCG(S)g−1 =
CG(gSg−1).

45. If the center of G is of index n, prove that every conjugacy class has atmost n elements.

46. Let σ = (1, 2, 3, 4, 5) ∈ S5. Find τ ∈ S5 such that τστ−1 = σ−1.

47. Assume H is a proper subgroup of the finite group G. Prove G 6= ∪g∈G gHg
−1.

48. Let G be a transitive permutation group on the finite set A with |A| > 1. Show that there
is some σ ∈ G such that σ(a) 6= a for all a ∈ A. (Such a σ is called “fixed point free”.)

49. Let g1, . . . , gr be representatives of the conjugacy classes of the finite group G and assume
there elements commute pairwise. Prove that G is abelian.

50. If G is a group of odd order, then for x 6= 1 ∈ G, x and x−1 are not conjugate in G.

51. Show that for n = 2k, the conjugacy classes in D2n are the following: {1}, {rk}, {r±1}, . . .,
{r±(k−1)}, {sr2b|b = 1, . . . , k}. Give the class equation for D2n.

52. Show that for n = 2k + 1, the conjugacy classes in D2n are the following: {1}, {r±1}, . . .,
{r±k}, {srb|b = 1, . . . , n}. Give the class equation for D2n.

53. If H is the unique subgroup of a given order in a group G, then H is the characteristic
subgroup of G.

54. Exhibit all Sylow 2-subgroups and Sylow 3-subgroups of D12 and S3 × S3.

55. Show that a Sylow p-subgroup of D2n is cyclic and normal for every odd prime p.

56. Exhibit all Sylow 3-subgroups of A4 and S4.

57. Exhibit two distinct Sylow 2-subgroups of S5 and an element of S5 that conjugates one
into other.

58. If G is a simple group of order 60, then G ∼→ A5.

59. If G is a non-abelian simple group of order < 100, then G ∼→ A5.

60. (a) If |G| = 105, then G has normal Sylow 5-subgroup and a normal Sylow 7-subgroup.
(b) If |G| = 200, then G has a normal Sylow 5-subgroup.
(c) If |G| = 56, then G has a normal Sylow p-subgroup for some prime p/|G|.

61. If |G| = 6545, 1365, 2907, 132, 462, then G has a non-trivial normal subgroup, i.e. G is not
simple.



62. If |G| = 231, then Z(G) contains a Sylow 11-subgroup of G and a Sylow 7-subgroup is
normal in G.

63. If |G| = 105 and a 3-Sylow subgroup of G is normal in G, then G is abelian.

64. How many elements of order 7 must be there in a simple group of order 168.

65. Let P be a Sylow p-subgroup of H and let H be a subgroup of K. If P is a normal
subgroup of H and H is a normal subgroup of K, then P is normal in K. Deduce that if
P ∈ Sylp(G) and H = NG(P ), then NG(H) = H (i.e. normalizers of Sylow p-subgroups
are self-normalizing).

66. Let P be a normal Sylow p-subgroup of G and let H be any subgroup of G. Then P ∩H
is the unique Sylow p-subgroup of H.

67. Let R be a normal p-subgroup of G (not necessarily a Sylow subgroup).
(a) Prove that R is contained in every Sylow p-subgroup of G.
(b) If S is another normal p-subgroup of G, then RS is also a normal p-subgroup of G.
(c) The subgroup Op(G) which is generated by all normal p-subgroups of G is the unique
largest normal p-subgroup of G and equals the intersection of all Sylow p-subgroups of G.
(d) Let G = G/Op(G). Then Op(G) = 1.

68. Prove that if p is a prime and P is a subgroup of Sp of order p, then |NSp(P )| = p(p− 1).
(Argue that every conjugate of P contains exactly p− 1 p-cycles and use the formula for
the number of p-cycles to compute the index of NSp(P ) in Sp.)

69. Prove that if p is a prime and P is a subgroup of Sp of order p, then NSp(P )/CSp(P ) ∼→
Aut(P ).

70. Prove that if σ ∈ Aut(G) and ϕg is conjugation by g, then σϕgσ
−1 = ϕσ(g). Deduce that

Inn(G) is a normal subgroup of Aut(G). (The group Aut(G)/Inn(G) is called the “outer
automorphism group of G.)

71. Prove that under any automorphism of D8, r has atmost 2 possible images and s has at
most 4 possible images. Deduce that |Aut(D8)| ≤ 8.

72. Let G be a group of order 203. Prove that if H is a normal subgroup of order 7 in G, then
H ⊂ Z(G). Deduce that G is abelian in this case.

73. Show that Z(G1 × . . .×Gn) = Z(G1)× . . .× Z(Gn).

74. Let A,B be finite groups and let p be a prime. Prove that any Sylow p-subgroup of A×B
is of the form P × Q, where P ∈ Sylp(A) and Q ∈ Sylp(B). Prove that np(A × B) =
np(A).np(B).



75. Let π ∈ Sn. Prove that ϕπ : G1 × . . . × Gn → Gπ−1(1) × . . . × Gπ−1(n) defined by
ϕπ(g1, . . . , gn) = (gπ−1(1), . . . , gπ−1(n)) is an isomorphism.

76. Let G1 = . . . = Gn and G = G1 × . . .×Gn. Show that ϕπ ∈ Aut(G). Show that the map
π 7→ ϕπ is an injective homomorphism of Sn into Aut(G).

77. Let p be a prime. Let A and B be two cyclic groups of order p with generators x and y

respectively. Let E = A×B be the elementary abelian group of order p2. Prove that the
distinct subgroups of E of order p are < x >,< xy >,< xy2 >, . . . , < xyp−1 >,< y >.
(there are p+ 1 of them.)

78. Let p be a prime. Find the number of subgroups of order p in the elementary abelian
group Epn .

79. Let G = A1×. . .×An and let Bi be a normal subgroup of Ai. Prove that B = B1×. . .×Bn

is a normal subgroup of G and G/B ∼→ (A1/B1)× . . .× (An/Bn).

80. Find the number of non-isomorphic abelian groups of order 100, 576, 1155, 42875, 2704.
Further, give the list of their invariant factors.

81. For x, y ∈ G, prove that [y, x] = [x, y]−1. Deduce that for any subsets A,B of G, [A,B] =
[B,A].

82. Find the commutator subgroups of S4 and A4.

83. Prove that if p is a prime and P is a non-abelian group of order p3, then P ′ = [P, P ] = Z(P ).

84. Prove that if G = HK, where H,K are characteristic subgroups of G with H ∩ K = 1,
then Aut(G) ∼→ Aut(H) × Aut(K). Deduce that if G is an abelian group of finite order
then Aut(G) is isomorphic to the direct product of the automorphism groups of its Sylow
subgroups.

85. Prove that D8n is not isomorphic to D4n × Z2.

86. If A,B are normal subgroups of G such that G/A and G/B are both abelian, prove that
G/(A ∩B) is abelian.

87. Prove that if K is normal in G, then K ′ = [K,K] is normal in G.

88. Prove that the center of a ring is a subring and the center of a division ring is a field.

89. Show that if R is a commutative ring and x ∈ R is nilpotent, then (i) either x = 0 or x
is a zero divisor, (ii) rx is nilpotent for all r ∈ R, (iii) 1 + x is a unit in R, (iv) sum of a
nilpotent element and a unit is a unit.

90. A ring R is called a Boolean ring if a2 = a for all a ∈ R. Prove that every Boolean ring is
commutative and the only Boolean rings that are integral domain is Z/2Z.



91. Let I be any nonempty index set and let Ri be a ring for each i ∈ I. Prove that the direct
product

∏
i∈I Ri is a ring under componentwise addition and multiplication.

92. Let R be the collection of sequences (a1, a2, . . .) of integers a1, a2, . . . where all but finitely
many of the ai’s are 0. Prove that R is a ring under componentwise addition and
multiplication which does not have an identity element. (R is called the direct sum of
infinitely many copies of Z).

93. Give an example of an infinite Boolean ring.

94. Let D be a square free integer and let O be the ring of integers in the quadratic field
Q(
√
D). For any positive integer n prove that On := Z[nw] = {a + bnw|a, b ∈ Z} is

a subring of O containing the identity. Prove that |O : On| = n as abelian groups.
Conversely prove that a subring of O containing the identity and having finite index n is
equal to On. (On is called the order of conductor n in the field Q(

√
D) and O is called

the maximal order in Q(
√
D).)

95. Let A = Z×Z× . . . be the direct product of infinite copies of Z and let R be the ring of all
group homomorphisms from A to itself. Let ϕ,ψ ∈ R defined by ϕ(a1, a2, . . .) = (a2, a3, . . .)
and ψ(a1, a2, . . .) = (0, a1, a2, . . .).
(i) Prove that ϕψ is identity of R but ψϕ is not identity of R.
(ii) Exhibit infinitely many right inverses for ϕ.
(iii) Find a nonzero element π ∈ R such that ϕπ = 0 but πϕ 6= 0.
(iv) Prove that there is no nonzero element λ ∈ R such that λϕ = 0 (so ϕ is a left zero
divisor but not a right zero divisor).

96. Let R be a commutative ring with 1. Define the set R[[x]] of “formal power series” in
the indeterminate x with coefficients from R to be all formal infinite sums

∑∞
0 anx

n.
Define the addition and multiplication as

∑∞
0 anx

n +
∑∞

0 bnx
n =

∑∞
0 (an + bn)xn and

(
∑∞

0 anx
n).(

∑∞
0 bnx

n) =
∑∞

0 cnx
n where cn =

∑n
0 akbn−k.

(i) Prove that R[[x]] is a commutative ring with 1.
(ii) Show that 1− x is a unit in R[[x]] with inverse 1 + x+ x2 + . . ..
(iii) Prove that

∑∞
0 anx

n is a unit in R[[x]] iff a0 is a unit in R.

97. If R is an integral domain then show that R[[x]] is also an integral domain.

98. Let F be a field and define the ring F ((x)) of “formal Laurent series” with coefficients
from F by F ((x)) = {

∑∞
n≥N anx

n| an ∈ F,N ∈ Z}. (Every element of F ((x)) is a power
series in x plus a polynomial in 1/x.) Prove that F ((x)) is a field.

99. Prove that the center of the ring Mn(R) is the set of scalar matrices (R is commutative
ring with 1).

100. Let G = {g1, . . . , gn} be a finite group. Prove that the element N = g1 + . . .+gn ∈ Z(RG).



101. Let K = {k1, . . . , km} be a conjugacy class in the finite group G.
(i) Prove that the element x = k1 + . . .+ km ∈ Z(RG). [Hint: Check that gxg−1 = x for
all g ∈ G]
(ii) Let K1, . . . , CKr be the conjugacy classes of G and for each Ki, let xi be the element
of RG that is the sum of the members of Ki. Prove that α ∈ RG is in Z(RG) iff α =
a1x1 + . . .+ arxr for some ai ∈ R.

102. Find all ring homomorphisms from Z/20Z → Z/30Z and Z× Z → Z.

103. Prove that the ring M2(R) contains a subring that is isomorphic to C.

104. Show that every two-sided ideal of Mn(R) is equal to Mn(J) for some ideal J of R. [Hint:
Show that the set of entries of matrices in an ideal of Mn(R) form an ideal of R.]

105. Let ϕ : R→ S be a ring homomorphism. (i) Prove that if J is an ideal of S, then ϕ−1(J)
is an ideal of R.
(ii) Prove that if ϕ is surjective and I is an ideal of R, then ϕ(I) is an ideal of S. Give an
example where this fails if ϕ is not surjective.

106. The “characteristic” of a ring is the smallest positive integer n such that 1 + . . . + 1 = 0
(n times). If no such n exists, characteristic of R is 0. E.g. characteristic of Z/nZ is n
and characteristic of Z is 0.
(i) Prove the the map Z → R defined as k 7→ k.1 is a ring homomorphism with kernel nZ,
where n is the characteristic of R.
(ii) Determine the characteristic of the rings Q,Z[x],Z/nZ[x].
(iii) Prove that if R is commutative and has characteristic a prime p, then (a+b)p = ap+bp

for all a, b ∈ R.

107. Prove that a nonzero Boolean ring has characteristic 2.

108. Prove that an integral domain has characteristic 0 or a prime p.

109. Let R be commutative. Show that the set of nilpotent elements form an ideal, called the
nil radical of R.

110. Assume R is commutative and p(x) = anx
n + . . .+ a1x+ a0 ∈ R[x].

(i) Prove that p(x) is a unit in R[x] iff a0 is a unit in R and a1, . . . , an are nilpotent in R.
(ii) p(x) is nilpotent in R[x] iff a0, . . . , an are nilpotent in R[x].

111. Let R be a ring in which x3 = x for all x ∈ R. Show that R is commutative.

112. If R is a finite commutative ring with unity, then every prime ideal of R is maximal.

113. Let Lj be the left ideal of Mn(R) consisting of arbitrary entries in the jth column and zero
elsewhere and let Ei,j be the element of Mn(R) with 1 at (i, j) entry and zero elsewhere.
Prove that Lj = Mn(R)Eij for any i.



114. (i) Prove that every prime ideal is a maximal ideal in a Boolean ring.
(ii) Every finitely generated ideal in a Boolean ring is principal.

115. Let R be commutative and for each a ∈ R, there is a positive integer n such that an = a.
Prove that every prime ideal of R is maximal.

116. Prove that the nilradical of a commutative ring R is equal to the intersection of all the
prime ideals of R.

117. Let R be a commutative ring with 1 6= 0. If a ∈ R is nilpotent then 1− ab is a unit for all
b ∈ R.

118. Let R be commutative and I an ideal of R. Define radical of I as rad(I) = {r ∈ R|rn ∈ I
for some n > 0}. Prove that rad(I) is an ideal of R containing I and rad(I)/I is the nil
radical of R/I.

119. An ideal I is called a radical ideal if rad(I) = I. Show every prime ideal of R is a radical
ideal. Show nZ is a radical ideal of Z iff n is the product of distinct primes in Z.

120. Let R be commutative and I an ideal. Define Jac(I) as intersection of all maximal ideals
containing I. Jac(0) is called the Jacobson radical of R.
(i) Show that Jac(I) is an ideal of R containing I.
(ii) Show that rad(I) ⊂ Jac(I).
(iii) Describe Jac(nZ) in terms of the prime factorization of n.

121. Let R be the ring of continuous functions from [0, 1] to R and for c ∈ [0, 1], define Mc as
the set of all elements of R which vanishes at c.
(i) Show that Mc is a maximal ideal of R. Conversely, if M is any maximal ideal of R,
there is some c ∈ [0, 1] such that M = Mc.
(ii) If b, c ∈ [0, 1] are distinct, then Mc 6= Mb.
(iii) Show that Mc is not equal to the ideal generated by (x− c).
(iv) Prove that Mc is not a finitely generated ideal.

122. Let R be the ring of all continuous functions from R to R and for each c ∈ R, let Mc be
the maximal ideal {f ∈ R|f(c) = 0}.
(i) Let I be the collection of functions f in R with compact support, i.e f(x) vanishes for
|x| sufficiently large. Show that I is an ideal of R and is not a prime ideal.
(ii) Let M be a maximal ideal of R containing I, then M 6= Mc for any c ∈ R.

123. Let R be an integral domain and let D be a non-empty subset of R that is closed under
multiplication. Prove that the ring of fractions D−1R is isomorphic to a subring of the
quotient field of R.



124. Let F be a field. Prove that F contains a unique smallest subfield F0 and that F0 is
isomorphic to either Q or Z/pZ for some prime p (F0 is called the “prime subfield” of F ).
Prove that any subfield of R must contain Q.

125. If F is a field, prove that the field of fractions of F [[x]] (the ring of formal power series
in the indeterminate x and coefficients in F ) is the ring F ((x)) of formal Laurent series.
Show that the field of fractions of the power series ring Z[[x]] is “properly” contained in
Q((x)) (e.g. ex).

126. * Prove that R contains a subring A with 1 ∈ A and A maximal (under inclusion) w.r.t.
the property that 1/2 6∈ A (Use Zorn’s lemma). Let K be the field of fractions of A in R.
(i) Show that R is algebraic over K. (If t is transcendental over K, then 1/2 6∈ A[t])
(ii) Show that A is integrally closed in R. (Show that 1/2 is not in the integral closure of
A in R) (iii) Deduce that R = K. Hence R is the quotient field of a proper subring.

127. An element e ∈ R is called an “idempotent” if e2 = e. Assume e is an idempotent in R

and er = re for all r ∈ R. Prove that Re and R(1− e) are two-sided ideals of R and that
R

∼→ Re×R(1− e). Show that e and 1− e are identities for the subrings Re and R(1− e).

128. (i) Let R,S be rings with 1. Prove that every ideal of R×S is of the form I × J for some
ideals I, J of R,S respectively.
(ii) If R,S are non-zero rings, then R× S is never a field.
(iii) Let R be a finite Boolean ring. Prove that R ∼→

∏n
1 Z/2Z.

129. Solve the simultaneous system of congruences (i) x = 1 mod 8, x = 2 mod 25, x = 3 mod
81 and (ii) y = 5 mod 8, y = 12 mod 25, y = 47 mod 81.

130. Let f1(x), . . . , fk(x) be polynomials with integer coefficients of the same degree d. Let
n1, . . . , nk be integers which are pairwise comaximal. Use Chinese remainder theorem to
prove that there exists a polynomial f(x) with integer coefficients and of degree d with
f(x) = f1(x) mod n1, . . . , f(x) = fk(x) mod nk. Show that if fi(x) are monic then we can
choose monic f(x).

131. Let m,n be positive integers with n dividing m. Prove that the natural surjective ring
projection Z/mZ → Z/nZ is also surjective on the units (Z/mZ)× → (Z/nZ)×

132. Let (a) a = 13, n = 20, (b) a = 69, n = 89. Show that a, n are coprime. Find the inverse
of a mod n.

133. Let R be a Euclidean domain. Let m be the minimum ineger in the set of norms of non-
zero elements of R. Prove that every non-zero element of R of norm m is a unit. Deduce
that a non-zero element of norm 0 is a unit.

134. Let R be a Euclidean domain. Prove that if gcd(a, b) = 1 and a/bc then a/c. More
generally, if a/bc with non-zero b, c, then a/gcd(a, b) divides c.



135. Let R = Z and consider the Diophantine equation ax + by = N where a, b are non zero.
Suppose x0, y0 is a solution. Prove that the full set of solutions of this equation is given by
x = x0+m b

(a,b) and y = y0−m a
(a,b) asm ∈ Z. [If x, y is a solution, then a(x−x0) = b(y0−y)

and use previous exercise.]

136. Find all integer solutions of 17x+ 29y = 31.

137. Find a generator for the ideal (85, 1 + 13i) in Z[i], i.e. gcd(85, 1 + 13i) by the Euclidean
algorithm.

Theorem The only negative values of D for which the ring of integers O is PID if D =
−1,−2,−3,−7,−11,−19,−43,−67,−163.

138. (i) For D = −1,−2,−3,−7,−11, O is a Euclidean domain wrt field norm N . [Modify the
proof for D = −1]
(ii) For D = −43,−67,−163, O is not a Euclidean domain with respect to any norm.
[Modify the proof for D = −19]

139. Prove that the quotient ring Z[i]/I is finite for any non-zero ideal I.

140. Let a, b ∈ R be non zero. A “least common multipal” of a, b is an element e ∈ R such that
(i) a/e, b/e and (ii) if a/e′, b/e′ then e/e′.
(a) Prove that lcm(a, b) if exists, is a generator for the unique largest principal ideal
contained in (a) ∩ (b).
(b) Any two non-zero elements in a Euclidean domain have a lcm which is unique upto
multiplication by a unit.
(c) In a Euclidean domain, lcm(a, b) = ab/gcd(a, b).

141. Show that any two non-zero elements of a PID have a least common multiple.

142. Let R be an integral domain. Prove that R is a PID if (i) any two non-zero elements
a, b ∈ R have a gcd which can be written in the form ra + sb for r, s ∈ R and (ii) if
a1, a2, . . . are non zero elements of R such that ai+1|ai for all i, then there is a positive
integer N such that an is a unit times aN for all n > N .

143. Let R = Z[
√
−5]. Let I2 = (2, 1+

√
−5), I3 = (3, 2+

√
−5) and I ′3 = (3, 2−

√
−5) be ideals

of R. (i) Prove that above ideals are non-principal.
(ii) Show that I2

2 = (2), I2I3 = (1−
√
−5) and I2I ′3 = (1 +

√
−5). Conclude (6) = I2

2I3I
′
3.

144. Show that an integral domain R, in which every prime ideal is principal, is a PID.

145. If R is PID and D is a multiplicatively closed subset of R, then D−1R is also a PID.

146. Prove that the rings F [x, y]/(y2−x) and F [x, y]/(y2−x2) are not isomorphic for any field
F .



147. Let R be an integral domain and let i, j be relatively prime integers. Prove that (xi − yj)
is a prime ideal in R[x, y].

148. (i) Let F be a field. Prove that F [x] contains infinitely many primes.
(ii) Determine all the ideals of Z[x]/(2, x2 + 1).

149. Determine the gcd of a(x) = x3− 2 and b(x) = x+ 1 in Q[x] and write the gcd as a linear
combination of a(x) and b(x).

150. Prove that if f(x), g(x) ∈ Q[x] with fg ∈ Z[x], then the product of any coefficient of f(x)
with any coefficient of g(x) is an integer.

151. For a field F , let R be the set of all f(x) ∈ F [x] with coefficient of x equals 0. Then R is
not a UFD.

152. (i) Show that the polynomials x4 + 4x3 + 6x2 + 2x + 1 and (x+2)p−2p

x p a prime, are
irreducible in Z[x].
(ii) Prove that xn−1 + xn−2 + . . .+ 1 is irreducible over Z iff n is a prime.

153. Show that the additive and multiplicative groups of a field F are never isomorphic.


