Exercises for Basic Algebra (MA 419) IIT Mumbai, M.K. Keshari

1. If G is a group such that $(a . b)^{i}=a^{i} . b^{i}$ for three consecutive integers i, and for all $a, b \in G$, then G is abelian.

Give an example to show that if the above holds for only two consecutive integers, then G may not be abelian.
2. Suppose H is a subgroup of G such that whenever $H a \neq H b$ then $a H \neq b H$. Prove that $g H g^{-1} \subset H$ for all $g \in G$.
3. If H is a subgroup of finite index in G, prove that there is only a finite number of distinct subgroups in G of the form aHa^{-1}.
4. If H is of finite index in G, prove that there is a subgroup N of G contained in H and of finite index in G such that $a N a^{-1}=N$ for all $a \in G$. Can you give an upper bound for the index of this N in G ?
5. Let G be a finite group whose order is not divisible by 3. Suppose that $(a b)^{3}=a^{3} b^{3}$ for all $a, b \in G$. Show that G is abelian.
6. Let G be an abelian group which has elements of order m, n. Show that G has an element of order $\operatorname{lcm}(m, n)$.
7. If an abelian group has subgroups of order m, n, then it has a subgroup of order $\operatorname{lcm}(m, n)$.
8. Let $U_{n}=(\mathbb{Z} / n \mathbb{Z})^{\times}$. Show that U_{8}, U_{20} are not cyclic groups, $U_{9}, U_{17}, U_{18}, U_{25}, U_{27}$ are cyclic groups.

For what values of n, U_{n} is cyclic?
9. Let G be a finite abelian group in which the number of solutions in G of the equation $x^{n}=1$ is atmost n for every positive integer n. Prove that G must be a cyclic group.
10. Every subgroup of an abelian group is normal. Is the converse true?
11. Give an example of three groups $E \subset F \subset G$, where E is normal in F, F is normal in G, but E is not normal in G.
12. Let $U=\left\{x y x^{-1} y^{-1} \mid x, y \in G\right\}$ and G^{\prime} is the subgroup generated by U, called the "commutator subgroup" of G. Prove that G^{\prime} is a normal subgroup of G and G / G^{\prime} is abelian. Further, if G / N is abelian then $G^{\prime} \subset N$. Also, if $H<G$ and H contains G^{\prime}, then H is normal in G.
13. A subgroup C of G is called a "characteristic subgroup" of G if $\sigma(C) \subset C$ for all automorphism σ of G. Prove that a characteristic subgroup of G must be normal. Show that the converse may not hold.
14. Let $E \subset F \subset G$ be groups such that E is characteristic subgroup of F and F is normal in G, then E is normal in G.
15. Every finite group having more than two elements has a non-trivial automorphism.
16. Let G be a group of order $2 n$. Suppose half the elements of G are of order 2 , and the other half form a subgroup H of order n. Prove that H is of odd order and is an abelian subgroup of G.
17. If $a>1$ is an integer then $n / \varphi\left(a^{n}-1\right)$, where φ is the Euler function.
18. Let G be a group of order $p q, p>q$ are primes. Prove that
(i) G has a subgroup of order p and a subgroup of order q,
(ii) If $q \nmid p-1$, then G is cyclic,
(iii) Given two primes p, q such that $q /(p-1), \exists$ a non-abelian group of order $p q$,
(iv) any two non-abelian group of order $p q$ are isomorphic.
19. (i) For $n \geq 3$, the subgroup generated by 3 -cycles is A_{n}.
(ii) A_{5} has no non-trivial normal subgroup.
(iii) Any proper subgroup of A_{5} has order atmost 12.
20. List all the conjugate classes in $D_{2 n}$ and verify the class equation.
21. If G is a group of order p^{n} and H is a proper subgroup of G. Show that $\exists x \in G-H$ such that $x H x^{-1}=H$.
22. If G is a group of order $p^{n}, p:$ prime, and N is a non-trivial normal subgroup of G, then $Z(G) \cap N \neq 1$.
23. Let G be a group of order $p q r, p<q<r$ primes. Prove that
(i) the r-Sylow subgroup is normal in G,
(ii) G has a normal subgroup of order $q r$,
(iii) if $q \not \backslash(r-1)$, the q-Sylow subgroup of G is normal in G.
24. If G is a group of order $p^{2} q, p, q:$ primes, then G has a non-trivial normal subgroup. Further either a p-Sylow subgroup or a q-Sylow subgroup of G must be normal in G.
25. If P is a p-Sylow subgroup of G, then $N_{G}\left(N_{G}(P)\right)=N_{G}(P)$.
26. Let G be a finite abelian group such that it contains a subgroup $H_{0} \neq 1$ which lies in every subgroup $H \neq 1$. Prove that G must be cyclic. What can you say about the order of G ?
27. Let $G=A \times A$, where A is cyclic of order $p:$ prime. Find the number of automorphism of G.
28. Let G be a finite abelian group with elements a_{1}, \ldots, a_{n}. Prove that $a_{1} a_{2} \ldots a_{n}$ is an element whose square is identity. Further, if G has no element of order 2 or more than one element of order 2 , then $a_{1} a_{2} \ldots a_{n}=1$. Prove that if p is a prime integer, then $(p-1)!=-1 \bmod (p)($ Wilson's theorem $)$.
29. Give an example of a non-abelian group G such that $(x y)^{3}=x^{3} y^{3}$ for all $x, y \in G$.
30. A group can not be written as the set theoretic union of two proper subgroups.
31. (a) If G is a finite group and if P is a p-Sylow subgroup of G, prove that P is the only p-Sylow subgroup in $N_{G}(P)$.
(b) If P is a p-Sylow subgroup of G and if $a^{p^{k}}=1$, then if $a \in N_{G}(P)$, then $a \in P$.
32. Every group of order <60 either is of prime order of has a non-trivial normal subgroup.
33. The normalizer of a proper subgroup A of a p-group G contains A properly.
34. If p, q are primes and $|G|=p^{a} q$, then G has a non-trivial normal subgroup.
35. Let G be a group which acts on a set A. Prove that if $a, b \in A$ and $b=g . a$ for some $g \in G$, then $G_{b}=g G_{a} g^{-1}$, where G_{a} is the stabilizer of a. Deduce that if G acts transitively on A, then the kernel of the action is $\cap_{g \in G} g G_{a} g^{-1}$.
36. Let G be a permutation group on the set A, i.e. $G<S_{A}$. Let $\sigma \in G$ and $a \in A$. Prove that $\sigma G_{a} \sigma^{-1}=G_{\sigma(a)}$. Deduce that if G acts transitively on A then $\cap_{\sigma \in G} \sigma G_{a} \sigma^{-1}=1$.
37. Assume that G is an abelian, transitive subgroup of S_{A}. Show that $\sigma(a) \neq a$ for all $\sigma \in G-\{1\}$ and $a \in A$. Deduce that $|G|=|A|$.
38. List the elements of S_{3} as $1,(1,2),(1,3),(2,3),(1,2,3),(1,3,2)$ and label them with integers $1, \ldots, 6$. Exhibit the image of each element of S_{3} under the left regular representation of S_{3} into S_{6}.
39. Let Q_{8} be the quaternion group of order 8 .
(a) Prove that Q_{8} is isomorphic to a subgroup of S_{8}.
(b) Prove that Q_{8} is not isomorphic to a subgroup of S_{n} for $n \leq 7$. (If Q_{8} acts on any set A of order ≤ 7, show that the stabilizer of any point must contain the subgroup (-1).)
40. Prove that if H has finite index n in G, then there is a normal subgroup K of G with $K \subset H$ and $|G: K| \leq n!$.
41. Prove that if p is a prime and G is a group of order p^{α} for some $\alpha \in \mathbb{Z}^{+}$, then every subgroup of index p is normal in G. Deduce that every group of order p^{2} has a normal subgroup of order p.
42. Prove that every non-abelian group of order 6 has a non-normal subgroup of order 2 . Use this to classify groups of order 6 . (Produce an injective homomorphism into S_{3}).
43. Let G be a finite group and let $\pi: G \rightarrow S_{G}$ be the left regular representation. Prove that if $x \in G$ has order n and $|G|=m n$, then $\pi(x)$ is a product of $m n$-cycles. Deduce that $\pi(x)$ is an odd permutation iff $|x|$ is even and $|G| /|x|$ is odd.
44. Prove that if $S \subset G$ and $g \in G$, then $g N_{G}(S) g^{-1}=N_{G}\left(g S g^{-1}\right)$ and $g C_{G}(S) g^{-1}=$ $C_{G}\left(g S g^{-1}\right)$.
45. If the center of G is of index n, prove that every conjugacy class has atmost n elements.
46. Let $\sigma=(1,2,3,4,5) \in S_{5}$. Find $\tau \in S_{5}$ such that $\tau \sigma \tau^{-1}=\sigma^{-1}$.
47. Assume H is a proper subgroup of the finite group G. Prove $G \neq \cup_{g \in G} g H g^{-1}$.
48. Let G be a transitive permutation group on the finite set A with $|A|>1$. Show that there is some $\sigma \in G$ such that $\sigma(a) \neq a$ for all $a \in A$. (Such a σ is called "fixed point free".)
49. Let g_{1}, \ldots, g_{r} be representatives of the conjugacy classes of the finite group G and assume there elements commute pairwise. Prove that G is abelian.
50. If G is a group of odd order, then for $x \neq 1 \in G, x$ and x^{-1} are not conjugate in G.
51. Show that for $n=2 k$, the conjugacy classes in $D_{2 n}$ are the following: $\{1\},\left\{r^{k}\right\},\left\{r^{ \pm 1}\right\}, \ldots$, $\left\{r^{ \pm(k-1)}\right\},\left\{s r^{2 b} \mid b=1, \ldots, k\right\}$. Give the class equation for $D_{2 n}$.
52. Show that for $n=2 k+1$, the conjugacy classes in $D_{2 n}$ are the following: $\{1\},\left\{r^{ \pm 1}\right\}, \ldots$, $\left\{r^{ \pm k}\right\},\left\{s r^{b} \mid b=1, \ldots, n\right\}$. Give the class equation for $D_{2 n}$.
53. If H is the unique subgroup of a given order in a group G, then H is the characteristic subgroup of G.
54. Exhibit all Sylow 2-subgroups and Sylow 3 -subgroups of D_{12} and $S_{3} \times S_{3}$.
55. Show that a Sylow p-subgroup of $D_{2 n}$ is cyclic and normal for every odd prime p.
56. Exhibit all Sylow 3-subgroups of A_{4} and S_{4}.
57. Exhibit two distinct Sylow 2-subgroups of S_{5} and an element of S_{5} that conjugates one into other.
58. If G is a simple group of order 60 , then $G \xrightarrow{\sim} A_{5}$.
59. If G is a non-abelian simple group of order <100, then $G \xrightarrow{\sim} A_{5}$.
60. (a) If $|G|=105$, then G has normal Sylow 5 -subgroup and a normal Sylow 7 -subgroup.
(b) If $|G|=200$, then G has a normal Sylow 5 -subgroup.
(c) If $|G|=56$, then G has a normal Sylow p-subgroup for some prime $p /|G|$.
61. If $|G|=6545,1365,2907,132,462$, then G has a non-trivial normal subgroup, i.e. G is not simple.
62. If $|G|=231$, then $Z(G)$ contains a Sylow 11-subgroup of G and a Sylow 7 -subgroup is normal in G.
63. If $|G|=105$ and a 3-Sylow subgroup of G is normal in G, then G is abelian.
64. How many elements of order 7 must be there in a simple group of order 168 .
65. Let P be a Sylow p-subgroup of H and let H be a subgroup of K. If P is a normal subgroup of H and H is a normal subgroup of K, then P is normal in K. Deduce that if $P \in \operatorname{Syl}_{p}(G)$ and $H=N_{G}(P)$, then $N_{G}(H)=H$ (i.e. normalizers of Sylow p-subgroups are self-normalizing).
66. Let P be a normal Sylow p-subgroup of G and let H be any subgroup of G. Then $P \cap H$ is the unique Sylow p-subgroup of H.
67. Let R be a normal p-subgroup of G (not necessarily a Sylow subgroup).
(a) Prove that R is contained in every Sylow p-subgroup of G.
(b) If S is another normal p-subgroup of G, then $R S$ is also a normal p-subgroup of G.
(c) The subgroup $O_{p}(G)$ which is generated by all normal p-subgroups of G is the unique largest normal p-subgroup of G and equals the intersection of all Sylow p-subgroups of G. (d) Let $\bar{G}=G / O_{p}(G)$. Then $O_{p}(\bar{G})=\overline{1}$.
68. Prove that if p is a prime and P is a subgroup of S_{p} of order p, then $\left|N_{S_{p}}(P)\right|=p(p-1)$. (Argue that every conjugate of P contains exactly $p-1 p$-cycles and use the formula for the number of p-cycles to compute the index of $N_{S_{p}}(P)$ in S_{p}.)
69. Prove that if p is a prime and P is a subgroup of S_{p} of order p, then $N_{S_{p}}(P) / C_{S_{p}}(P) \xrightarrow{\sim}$ $\operatorname{Aut}(P)$.
70. Prove that if $\sigma \in \operatorname{Aut}(G)$ and φ_{g} is conjugation by g, then $\sigma \varphi_{g} \sigma^{-1}=\varphi_{\sigma(g)}$. Deduce that $\operatorname{Inn}(G)$ is a normal subgroup of $\operatorname{Aut}(G)$. (The group $\operatorname{Aut}(G) / \operatorname{Inn}(G)$ is called the "outer automorphism group of G.)
71. Prove that under any automorphism of D_{8}, r has atmost 2 possible images and s has at most 4 possible images. Deduce that $\left|\operatorname{Aut}\left(D_{8}\right)\right| \leq 8$.
72. Let G be a group of order 203. Prove that if H is a normal subgroup of order 7 in G, then $H \subset Z(G)$. Deduce that G is abelian in this case.
73. Show that $Z\left(G_{1} \times \ldots \times G_{n}\right)=Z\left(G_{1}\right) \times \ldots \times Z\left(G_{n}\right)$.
74. Let A, B be finite groups and let p be a prime. Prove that any Sylow p-subgroup of $A \times B$ is of the form $P \times Q$, where $P \in \operatorname{Syl}_{p}(A)$ and $Q \in S y l_{p}(B)$. Prove that $n_{p}(A \times B)=$ $n_{p}(A) \cdot n_{p}(B)$.
75. Let $\pi \in S_{n}$. Prove that $\varphi_{\pi}: G_{1} \times \ldots \times G_{n} \rightarrow G_{\pi^{-1}(1)} \times \ldots \times G_{\pi^{-1}(n)}$ defined by $\varphi_{\pi}\left(g_{1}, \ldots, g_{n}\right)=\left(g_{\pi^{-1}(1)}, \ldots, g_{\pi^{-1}(n)}\right)$ is an isomorphism.
76. Let $G_{1}=\ldots=G_{n}$ and $G=G_{1} \times \ldots \times G_{n}$. Show that $\varphi_{\pi} \in \operatorname{Aut}(G)$. Show that the map $\pi \mapsto \varphi_{\pi}$ is an injective homomorphism of S_{n} into $\operatorname{Aut}(G)$.
77. Let p be a prime. Let A and B be two cyclic groups of order p with generators x and y respectively. Let $E=A \times B$ be the elementary abelian group of order p^{2}. Prove that the distinct subgroups of E of order p are $\langle x\rangle,\langle x y\rangle,\left\langle x y^{2}\right\rangle, \ldots,\left\langle x y^{p-1}\right\rangle,\langle y\rangle$. (there are $p+1$ of them.)
78. Let p be a prime. Find the number of subgroups of order p in the elementary abelian $\operatorname{group} E_{p^{n}}$.
79. Let $G=A_{1} \times \ldots \times A_{n}$ and let B_{i} be a normal subgroup of A_{i}. Prove that $B=B_{1} \times \ldots \times B_{n}$ is a normal subgroup of G and $G / B \xrightarrow{\sim}\left(A_{1} / B_{1}\right) \times \ldots \times\left(A_{n} / B_{n}\right)$.
80. Find the number of non-isomorphic abelian groups of order 100, 576, 1155, 42875, 2704. Further, give the list of their invariant factors.
81. For $x, y \in G$, prove that $[y, x]=[x, y]^{-1}$. Deduce that for any subsets A, B of $G,[A, B]=$ $[B, A]$.
82. Find the commutator subgroups of S_{4} and A_{4}.
83. Prove that if p is a prime and P is a non-abelian group of order p^{3}, then $P^{\prime}=[P, P]=Z(P)$.
84. Prove that if $G=H K$, where H, K are characteristic subgroups of G with $H \cap K=1$, then $\operatorname{Aut}(G) \xrightarrow{\sim} \operatorname{Aut}(H) \times \operatorname{Aut}(K)$. Deduce that if G is an abelian group of finite order then $\operatorname{Aut}(G)$ is isomorphic to the direct product of the automorphism groups of its Sylow subgroups.
85. Prove that $D_{8 n}$ is not isomorphic to $D_{4 n} \times Z_{2}$.
86. If A, B are normal subgroups of G such that G / A and G / B are both abelian, prove that $G /(A \cap B)$ is abelian.
87. Prove that if K is normal in G, then $K^{\prime}=[K, K]$ is normal in G.
88. Prove that the center of a ring is a subring and the center of a division ring is a field.
89. Show that if R is a commutative ring and $x \in R$ is nilpotent, then (i) either $x=0$ or x is a zero divisor, (ii) $r x$ is nilpotent for all $r \in R$, (iii) $1+x$ is a unit in R, (iv) sum of a nilpotent element and a unit is a unit.
90. A ring R is called a Boolean ring if $a^{2}=a$ for all $a \in R$. Prove that every Boolean ring is commutative and the only Boolean rings that are integral domain is $\mathbb{Z} / 2 \mathbb{Z}$.
91. Let I be any nonempty index set and let R_{i} be a ring for each $i \in I$. Prove that the direct product $\prod_{i \in I} R_{i}$ is a ring under componentwise addition and multiplication.
92. Let R be the collection of sequences (a_{1}, a_{2}, \ldots) of integers a_{1}, a_{2}, \ldots where all but finitely many of the a_{i} 's are 0 . Prove that R is a ring under componentwise addition and multiplication which does not have an identity element. (R is called the direct sum of infinitely many copies of \mathbb{Z}).
93. Give an example of an infinite Boolean ring.
94. Let D be a square free integer and let \mathcal{O} be the ring of integers in the quadratic field $\mathbb{Q}(\sqrt{D})$. For any positive integer n prove that $\mathcal{O}_{n}:=\mathbb{Z}[n w]=\{a+b n w \mid a, b \in \mathbb{Z}\}$ is a subring of \mathcal{O} containing the identity. Prove that $\left|\mathcal{O}: \mathcal{O}_{n}\right|=n$ as abelian groups. Conversely prove that a subring of \mathcal{O} containing the identity and having finite index n is equal to \mathcal{O}_{n}. $\left(\mathcal{O}_{n}\right.$ is called the order of conductor n in the field $\mathbb{Q}(\sqrt{D})$ and \mathcal{O} is called the maximal order in $\mathbb{Q}(\sqrt{D})$.)
95. Let $A=\mathbb{Z} \times \mathbb{Z} \times \ldots$ be the direct product of infinite copies of \mathbb{Z} and let R be the ring of all group homomorphisms from A to itself. Let $\varphi, \psi \in R$ defined by $\varphi\left(a_{1}, a_{2}, \ldots\right)=\left(a_{2}, a_{3}, \ldots\right)$ and $\psi\left(a_{1}, a_{2}, \ldots\right)=\left(0, a_{1}, a_{2}, \ldots\right)$.
(i) Prove that $\varphi \psi$ is identity of R but $\psi \varphi$ is not identity of R.
(ii) Exhibit infinitely many right inverses for φ.
(iii) Find a nonzero element $\pi \in R$ such that $\varphi \pi=0$ but $\pi \varphi \neq 0$.
(iv) Prove that there is no nonzero element $\lambda \in R$ such that $\lambda \varphi=0$ (so φ is a left zero divisor but not a right zero divisor).
96. Let R be a commutative ring with 1 . Define the set $R[[x]]$ of "formal power series" in the indeterminate x with coefficients from R to be all formal infinite sums $\sum_{0}^{\infty} a_{n} x^{n}$. Define the addition and multiplication as $\sum_{0}^{\infty} a_{n} x^{n}+\sum_{0}^{\infty} b_{n} x^{n}=\sum_{0}^{\infty}\left(a_{n}+b_{n}\right) x^{n}$ and $\left(\sum_{0}^{\infty} a_{n} x^{n}\right) \cdot\left(\sum_{0}^{\infty} b_{n} x^{n}\right)=\sum_{0}^{\infty} c_{n} x^{n}$ where $c_{n}=\sum_{0}^{n} a_{k} b_{n-k}$.
(i) Prove that $R[[x]]$ is a commutative ring with 1 .
(ii) Show that $1-x$ is a unit in $R[[x]]$ with inverse $1+x+x^{2}+\ldots$.
(iii) Prove that $\sum_{0}^{\infty} a_{n} x^{n}$ is a unit in $R[[x]]$ iff a_{0} is a unit in R.

97 . If R is an integral domain then show that $R[[x]]$ is also an integral domain.
98. Let F be a field and define the ring $F((x))$ of "formal Laurent series" with coefficients from F by $F((x))=\left\{\sum_{n \geq N}^{\infty} a_{n} x^{n} \mid a_{n} \in F, N \in \mathbb{Z}\right\}$. (Every element of $F((x))$ is a power series in x plus a polynomial in $1 / x$.) Prove that $F((x))$ is a field.
99. Prove that the center of the ring $M_{n}(R)$ is the set of scalar matrices (R is commutative ring with 1).
100. Let $G=\left\{g_{1}, \ldots, g_{n}\right\}$ be a finite group. Prove that the element $N=g_{1}+\ldots+g_{n} \in Z(R G)$.
101. Let $\mathcal{K}=\left\{k_{1}, \ldots, k_{m}\right\}$ be a conjugacy class in the finite group G.
(i) Prove that the element $x=k_{1}+\ldots+k_{m} \in Z(R G)$. [Hint: Check that $g x g^{-1}=x$ for all $g \in G]$
(ii) Let $\mathcal{K}_{1}, \ldots, C K_{r}$ be the conjugacy classes of G and for each \mathcal{K}_{i}, let x_{i} be the element of $R G$ that is the sum of the members of \mathcal{K}_{i}. Prove that $\alpha \in R G$ is in $Z(R G)$ iff $\alpha=$ $a_{1} x_{1}+\ldots+a_{r} x_{r}$ for some $a_{i} \in R$.
102. Find all ring homomorphisms from $\mathbb{Z} / 20 \mathbb{Z} \rightarrow \mathbb{Z} / 30 \mathbb{Z}$ and $\mathbb{Z} \times \mathbb{Z} \rightarrow \mathbb{Z}$.
103. Prove that the ring $M_{2}(\mathbb{R})$ contains a subring that is isomorphic to \mathbb{C}.
104. Show that every two-sided ideal of $M_{n}(R)$ is equal to $M_{n}(J)$ for some ideal J of R. [Hint: Show that the set of entries of matrices in an ideal of $M_{n}(R)$ form an ideal of R.]
105. Let $\varphi: R \rightarrow S$ be a ring homomorphism. (i) Prove that if J is an ideal of S, then $\varphi^{-1}(J)$ is an ideal of R.
(ii) Prove that if φ is surjective and I is an ideal of R, then $\varphi(I)$ is an ideal of S. Give an example where this fails if φ is not surjective.
106. The "characteristic" of a ring is the smallest positive integer n such that $1+\ldots+1=0$ (n times). If no such n exists, characteristic of R is 0 . E.g. characteristic of $\mathbb{Z} / n \mathbb{Z}$ is n and characteristic of \mathbb{Z} is 0 .
(i) Prove the the map $\mathbb{Z} \rightarrow R$ defined as $k \mapsto k .1$ is a ring homomorphism with kernel $n \mathbb{Z}$, where n is the characteristic of R.
(ii) Determine the characteristic of the rings $\mathbb{Q}, \mathbb{Z}[x], \mathbb{Z} / n \mathbb{Z}[x]$.
(iii) Prove that if R is commutative and has characteristic a prime p, then $(a+b)^{p}=a^{p}+b^{p}$ for all $a, b \in R$.
107. Prove that a nonzero Boolean ring has characteristic 2.
108. Prove that an integral domain has characteristic 0 or a prime p.
109. Let R be commutative. Show that the set of nilpotent elements form an ideal, called the nil radical of R.
110. Assume R is commutative and $p(x)=a_{n} x^{n}+\ldots+a_{1} x+a_{0} \in R[x]$.
(i) Prove that $p(x)$ is a unit in $R[x]$ iff a_{0} is a unit in R and a_{1}, \ldots, a_{n} are nilpotent in R. (ii) $p(x)$ is nilpotent in $R[x]$ iff a_{0}, \ldots, a_{n} are nilpotent in $R[x]$.
111. Let R be a ring in which $x^{3}=x$ for all $x \in R$. Show that R is commutative.
112. If R is a finite commutative ring with unity, then every prime ideal of R is maximal.
113. Let L_{j} be the left ideal of $M_{n}(R)$ consisting of arbitrary entries in the $j^{t h}$ column and zero elsewhere and let $E_{i, j}$ be the element of $M_{n}(R)$ with 1 at (i, j) entry and zero elsewhere. Prove that $L_{j}=M_{n}(R) E_{i j}$ for any i.
114. (i) Prove that every prime ideal is a maximal ideal in a Boolean ring.
(ii) Every finitely generated ideal in a Boolean ring is principal.
115. Let R be commutative and for each $a \in R$, there is a positive integer n such that $a^{n}=a$. Prove that every prime ideal of R is maximal.
116. Prove that the nilradical of a commutative ring R is equal to the intersection of all the prime ideals of R.
117. Let R be a commutative ring with $1 \neq 0$. If $a \in R$ is nilpotent then $1-a b$ is a unit for all $b \in R$.
118. Let R be commutative and I an ideal of R. Define radical of I as $\operatorname{rad}(I)=\left\{r \in R \mid r^{n} \in I\right.$ for some $n>0\}$. Prove that $\operatorname{rad}(I)$ is an ideal of R containing I and $\operatorname{rad}(I) / I$ is the nil radical of R / I.
119. An ideal I is called a radical ideal if $\operatorname{rad}(I)=I$. Show every prime ideal of R is a radical ideal. Show $n \mathbb{Z}$ is a radical ideal of \mathbb{Z} iff n is the product of distinct primes in \mathbb{Z}.
120. Let R be commutative and I an ideal. Define $\operatorname{Jac}(I)$ as intersection of all maximal ideals containing $I . \operatorname{Jac}(0)$ is called the Jacobson radical of R.
(i) Show that $\operatorname{Jac}(I)$ is an ideal of R containing I.
(ii) Show that $\operatorname{rad}(I) \subset \operatorname{Jac}(I)$.
(iii) Describe $\operatorname{Jac}(n \mathbb{Z})$ in terms of the prime factorization of n.
121. Let R be the ring of continuous functions from $[0,1]$ to \mathbb{R} and for $c \in[0,1]$, define M_{c} as the set of all elements of R which vanishes at c.
(i) Show that M_{c} is a maximal ideal of R. Conversely, if M is any maximal ideal of R, there is some $c \in[0,1]$ such that $M=M_{c}$.
(ii) If $b, c \in[0,1]$ are distinct, then $M_{c} \neq M_{b}$.
(iii) Show that M_{c} is not equal to the ideal generated by $(x-c)$.
(iv) Prove that M_{c} is not a finitely generated ideal.
122. Let R be the ring of all continuous functions from \mathbb{R} to \mathbb{R} and for each $c \in \mathbb{R}$, let M_{c} be the maximal ideal $\{f \in R \mid f(c)=0\}$.
(i) Let I be the collection of functions f in R with compact support, i.e $f(x)$ vanishes for $|x|$ sufficiently large. Show that I is an ideal of R and is not a prime ideal.
(ii) Let M be a maximal ideal of R containing I, then $M \neq M_{c}$ for any $c \in \mathbb{R}$.
123. Let R be an integral domain and let D be a non-empty subset of R that is closed under multiplication. Prove that the ring of fractions $D^{-1} R$ is isomorphic to a subring of the quotient field of R.
124. Let F be a field. Prove that F contains a unique smallest subfield F_{0} and that F_{0} is isomorphic to either \mathbb{Q} or $\mathbb{Z} / p \mathbb{Z}$ for some prime p (F_{0} is called the "prime subfield" of F). Prove that any subfield of \mathbb{R} must contain \mathbb{Q}.
125. If F is a field, prove that the field of fractions of $F[[x]]$ (the ring of formal power series in the indeterminate x and coefficients in $F)$ is the ring $F((x))$ of formal Laurent series. Show that the field of fractions of the power series ring $\mathbb{Z}[[x]]$ is "properly" contained in $\mathbb{Q}((x))\left(\right.$ e.g. $\left.e^{x}\right)$.
126. * Prove that \mathbb{R} contains a subring A with $1 \in A$ and A maximal (under inclusion) w.r.t. the property that $1 / 2 \notin A$ (Use Zorn's lemma). Let K be the field of fractions of A in \mathbb{R}.
(i) Show that \mathbb{R} is algebraic over K. (If t is transcendental over K, then $1 / 2 \notin A[t]$)
(ii) Show that A is integrally closed in \mathbb{R}. (Show that $1 / 2$ is not in the integral closure of A in \mathbb{R}) (iii) Deduce that $\mathbb{R}=K$. Hence \mathbb{R} is the quotient field of a proper subring.
127. An element $e \in R$ is called an "idempotent" if $e^{2}=e$. Assume e is an idempotent in R and $e r=r e$ for all $r \in R$. Prove that $R e$ and $R(1-e)$ are two-sided ideals of R and that $R \xrightarrow{\sim} R e \times R(1-e)$. Show that e and $1-e$ are identities for the subrings $R e$ and $R(1-e)$.
128. (i) Let R, S be rings with 1 . Prove that every ideal of $R \times S$ is of the form $I \times J$ for some ideals I, J of R, S respectively.
(ii) If R, S are non-zero rings, then $R \times S$ is never a field.
(iii) Let R be a finite Boolean ring. Prove that $R \xrightarrow{\sim} \prod_{1}^{n} \mathbb{Z} / 2 \mathbb{Z}$.
129. Solve the simultaneous system of congruences $(i) x=1 \bmod 8, x=2 \bmod 25, x=3 \bmod$ 81 and $($ ii) $y=5 \bmod 8, y=12 \bmod 25, y=47 \bmod 81$.
130. Let $f_{1}(x), \ldots, f_{k}(x)$ be polynomials with integer coefficients of the same degree d. Let n_{1}, \ldots, n_{k} be integers which are pairwise comaximal. Use Chinese remainder theorem to prove that there exists a polynomial $f(x)$ with integer coefficients and of degree d with $f(x)=f_{1}(x) \bmod n_{1}, \ldots, f(x)=f_{k}(x) \bmod n_{k}$. Show that if $f_{i}(x)$ are monic then we can choose monic $f(x)$.
131. Let m, n be positive integers with n dividing m. Prove that the natural surjective ring projection $\mathbb{Z} / m \mathbb{Z} \rightarrow \mathbb{Z} / n \mathbb{Z}$ is also surjective on the units $(\mathbb{Z} / m \mathbb{Z})^{\times} \rightarrow(\mathbb{Z} / n \mathbb{Z})^{\times}$
132. Let (a) $a=13, n=20$, (b) $a=69, n=89$. Show that a, n are coprime. Find the inverse of $a \bmod n$.
133. Let R be a Euclidean domain. Let m be the minimum ineger in the set of norms of nonzero elements of R. Prove that every non-zero element of R of norm m is a unit. Deduce that a non-zero element of norm 0 is a unit.
134. Let R be a Euclidean domain. Prove that if $\operatorname{gcd}(a, b)=1$ and $a / b c$ then a / c. More generally, if $a / b c$ with non-zero b, c, then $a / \operatorname{gcd}(a, b)$ divides c.
135. Let $R=\mathbb{Z}$ and consider the Diophantine equation $a x+b y=N$ where a, b are non zero. Suppose x_{0}, y_{0} is a solution. Prove that the full set of solutions of this equation is given by $x=x_{0}+m \frac{b}{(a, b)}$ and $y=y_{0}-m \frac{a}{(a, b)}$ as $m \in \mathbb{Z}$. [If x, y is a solution, then $a\left(x-x_{0}\right)=b\left(y_{0}-y\right)$ and use previous exercise.]
136. Find all integer solutions of $17 x+29 y=31$.
137. Find a generator for the ideal $(85,1+13 i)$ in $\mathbb{Z}[i]$, i.e. $\operatorname{gcd}(85,1+13 i)$ by the Euclidean algorithm.

Theorem The only negative values of D for which the ring of integers \mathcal{O} is PID if $D=$ $-1,-2,-3,-7,-11,-19,-43,-67,-163$.
138. (i) For $D=-1,-2,-3,-7,-11, \mathcal{O}$ is a Euclidean domain wrt field norm N. [Modify the proof for $D=-1$]
(ii) For $D=-43,-67,-163, \mathcal{O}$ is not a Euclidean domain with respect to any norm. [Modify the proof for $D=-19$]
139. Prove that the quotient ring $\mathbb{Z}[i] / I$ is finite for any non-zero ideal I.
140. Let $a, b \in R$ be non zero. A "least common multipal" of a, b is an element $e \in R$ such that (i) $a / e, b / e$ and (ii) if $a / e^{\prime}, b / e^{\prime}$ then e / e^{\prime}.
(a) Prove that $\operatorname{lcm}(a, b)$ if exists, is a generator for the unique largest principal ideal contained in $(a) \cap(b)$.
(b) Any two non-zero elements in a Euclidean domain have a lcm which is unique upto multiplication by a unit.
(c) In a Euclidean domain, $\operatorname{lcm}(a, b)=a b / \operatorname{gcd}(a, b)$.
141. Show that any two non-zero elements of a PID have a least common multiple.
142. Let R be an integral domain. Prove that R is a PID if (i) any two non-zero elements $a, b \in R$ have a gcd which can be written in the form $r a+s b$ for $r, s \in R$ and (ii) if a_{1}, a_{2}, \ldots are non zero elements of R such that $a_{i+1} \mid a_{i}$ for all i, then there is a positive integer N such that a_{n} is a unit times a_{N} for all $n>N$.
143. Let $R=\mathbb{Z}[\sqrt{-5}]$. Let $I_{2}=(2,1+\sqrt{-5}), I_{3}=(3,2+\sqrt{-5})$ and $I_{3}^{\prime}=(3,2-\sqrt{-5})$ be ideals of R. (i) Prove that above ideals are non-principal.
(ii) Show that $I_{2}^{2}=(2), I_{2} I_{3}=(1-\sqrt{-5})$ and $I_{2} I_{3}^{\prime}=(1+\sqrt{-5})$. Conclude $(6)=I_{2}^{2} I_{3} I_{3}^{\prime}$.
144. Show that an integral domain R, in which every prime ideal is principal, is a PID.
145. If R is PID and D is a multiplicatively closed subset of R, then $D^{-1} R$ is also a PID.
146. Prove that the rings $F[x, y] /\left(y^{2}-x\right)$ and $F[x, y] /\left(y^{2}-x^{2}\right)$ are not isomorphic for any field F.
147. Let R be an integral domain and let i, j be relatively prime integers. Prove that $\left(x^{i}-y^{j}\right)$ is a prime ideal in $R[x, y]$.
148. (i) Let F be a field. Prove that $F[x]$ contains infinitely many primes.
(ii) Determine all the ideals of $\mathbb{Z}[x] /\left(2, x^{2}+1\right)$.
149. Determine the gcd of $a(x)=x^{3}-2$ and $b(x)=x+1$ in $\mathbb{Q}[x]$ and write the gcd as a linear combination of $a(x)$ and $b(x)$.
150. Prove that if $f(x), g(x) \in \mathbb{Q}[x]$ with $f g \in \mathbb{Z}[x]$, then the product of any coefficient of $f(x)$ with any coefficient of $g(x)$ is an integer.
151. For a field F, let R be the set of all $f(x) \in F[x]$ with coefficient of x equals 0 . Then R is not a UFD.
152. (i) Show that the polynomials $x^{4}+4 x^{3}+6 x^{2}+2 x+1$ and $\frac{(x+2)^{p}-2^{p}}{x} p$ a prime, are irreducible in $\mathbb{Z}[x]$.
(ii) Prove that $x^{n-1}+x^{n-2}+\ldots+1$ is irreducible over \mathbb{Z} iff n is a prime.
153. Show that the additive and multiplicative groups of a field F are never isomorphic.

