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1 Introduction

All the rings are assumed to be commutative Noetherian and all the modules are assumed to be
finitely generated.

Let A be a ring of dimension n ≥ 2 and let L be a projective A-module of rank 1. In [2],
Bhatwadekar and Raja Sridharan defined the Euler class group of A with respect to L, denoted by
E(A,L). To the pair (P, χ), where P is a projective A-module of rank n with determinant L and
χ : L ∼→ ∧nP is a L-orientation of P , they attached an element of the Euler class group, denoted
by e(P, χ). One of the main result in [2] is that P has a unimodular element if and only if e(P, χ)
is zero in E(A,L).

We will define the Euler class group of A with respect to a projective A-module F = Q⊕A of
rank n, denoted by E(A,F ). To the pair (P, χ), where P is a projective A-module of rank n and
χ : ∧nF ∼→ ∧nP is a F -orientation of P , we associate an element of the Euler class group, denoted
by e(P, χ) and prove the following result: P has a unimodular element if and only if e(P, χ) is
zero in E(A,F ). Note that when F = L⊕An−1, E(A,F ) is same as the Euler class group E(A,L)
defined in [2].

2 Preliminaries

Let A be a ring and let M be an A-module. For m ∈ M , we define OM (m) = {ϕ(m)|ϕ ∈
HomA(M,A)}. We say that m is unimodular if OM (m) = A. The set of all unimodular elements
of M will be denoted by Um(M). Note that if P is a projective A-module and P has a unimodular
element, then P

∼→ P1⊕A.

Let P be a projective A-module. Given an element ϕ ∈ P ∗ and an element p ∈ P , we define
an endomorphism ϕp as the composite P

ϕ→ A
p→ P . If ϕ(p) = 0, then ϕ2

p = 0 and hence 1 + ϕp is
a unipotent automorphism of P .

By a ”transvection”, we mean an automorphism of P of the form 1 + ϕp, where ϕ(p) = 0
and either ϕ is unimodular in P ∗ or p is unimodular in P . We denote by EL(P ) the subgroup of
Aut(P ) generated by all the transvections of P . Note that EL(P ) is a normal subgroup of Aut(P ).
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Recall that if A is a ring of dimension n and if P is a projective A-module of rank n, then any
surjection α : P →→ J is called a generic surjection if J is an ideal of A of height n.

The following result is due to Bhatwadekar and Roy ([3], Proposition 4.1)

Proposition 2.1 Let B be a ring and let I be an ideal of B. Let P be a projective B-module.
Then any element of EL(P/IP ) can be lifted to an automorphism of P .

We state some results from [2] for later use.

Lemma 2.2 ([2], Lemma 3.0) Let A be a ring of dimension n and let P be a projective A-module
of rank n. Let λ : P →→ J0 and µ : P →→ J1 be two surjections, where J0 and J1 are ideals of A of
height n. Then there exists an ideal I of A[T ] of height n and a surjection α(T ) : P [T ]→→ I such
that I(0) = J0, I(1) = J1, α(0) = λ and α(1) = µ.

For a rank 1 projective A-module L and P ′ = L⊕An−1, the following result is proved in ([2],
Proposition 3.1). Since the same proof works in our case, we omit the proof.

Proposition 2.3 Let A be a ring of dimension n ≥ 2 such that (n − 1)! is a unit in A. Let P
and P ′ = Q⊕A be projective A-modules of rank n and let χ : ∧nP ∼→ ∧nP ′ be an isomorphism.
Suppose that α(T ) : P [T ] →→ I be a surjection, where I is an ideal of A[T ] of height n. Then
there exists a homomorphism φ : P ′ → P , an ideal K of A of height ≥ n which is comaximal with
(I ∩A) and a surjection ρ(T ) : P ′[T ]→→ I ∩KA[T ] such that the following holds:

(i) ∧n(φ) = uχ, where u = 1 modulo I ∩A.
(ii) (α(0) ◦ φ)(P ′) = I(0) ∩K.
(iii) (α(T ) ◦ φ(T ))⊗A[T ]/I = ρ(T )⊗A[T ]/I.
(iv) ρ(0)⊗A/K = ρ(1)⊗A/K.

The following result is labeled as addition principle ([2], Theorem 3.2).

Theorem 2.4 Let A be a ring of dimension n ≥ 2 and let J1, J2 be two comaximal ideals of A of
height n. Let P = P1⊕A be a projective A-module of rank n and let Φ : P →→ J1 and Ψ : P →→ J2

be two surjections. Then, there exists a surjection Θ : P →→ J1∩J2 such that Φ⊗A/J1 = Θ⊗A/J1

and Ψ⊗A/J2 = Θ⊗A/J2.

The following theorem is labeled as subtraction principle ([2], Theorem 3.3).

Theorem 2.5 Let A be a ring of dimension n ≥ 2 and let J and J ′ be two comaximal ideals of A
of height ≥ n and n respectively. Let P and P ′ = Q⊕A be projective A-modules of rank n and let
χ : ∧nP ∼→ ∧nP ′ be an isomorphism. Let α : P →→ J ∩ J ′ and β : P ′ →→ J ′ be surjections. Let
”bar” denote reduction modulo J ′ and let α : P →→ J ′/J ′2 and β : P ′ →→ J ′/J ′2 be surjections
induced from α and β respectively. Suppose there exists an isomorphism δ : P ∼→ P ′ such that
βδ = α and ∧n(δ) = χ. Then there exists a surjection θ : P →→ J such that θ⊗A/J = α⊗A/J .
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Lemma 2.6 ([2], Proposition 6.7) Let A be a ring of dimension n and let P, P ′ be stably isomor-
phic projective A-modules of rank n. Then there exists an ideal J of A of height ≥ n such that J
is a surjective image of both P and P ′. Further, given any ideal K of height ≥ 1, J can be chosen
to be comaximal with K.

We state the following result from ([1], Proposition 2.11) for later use.

Proposition 2.7 Let A be a ring and let I be an ideal of A of height n. Let f ∈ A be a non-
zerodivisor modulo I and let P = P1⊕A be a projective A-module of rank n. Let α : P → I

be a linear map such that the induced map αf : Pf →→ If is a surjection. Then, there exists
Ψ ∈ EL(P ∗f ) such that

(i) β = Ψ(α) ∈ P ∗ and
(ii) β(P ) is an ideal of A of height n contained in I.

3 Euler class group E(A, F )

Let A be a ring of dimension n ≥ 2 and let F = Q⊕A be a projective A-module of rank n. We
define the Euler class group of A with respect to F as follows:

Let J be an ideal of A of height n such that J/J2 is generated by n elements. Let α and β be two
surjections from F/JF to J/J2. We say that α and β are related if there exists an automorphism
σ of F/JF of determinant 1 such that ασ = β. Clearly, this is an equivalence relation on the set
of all surjections from F/JF to J/J2. Let [α] denote the equivalence class of α. We call [α] a local
F -orientation of J .

Since dimA/J = 0, SLA/J(F/JF ) = EL(F/JF ) and therefore, by (2.1), the canonical map
from SLA(F ) to SLA/J(F/JF ) is surjective. Hence, if a surjection α : F/JF →→ J/J2 can be
lifted to a surjection ∆ : F →→ J , then so can any other surjection β equivalent to α.

A local F -orientation [α] is called a global F -orientation of J if the surjection α can be lifted
to a surjection from F to J . From now on, we shall identify a surjection α with the equivalence
class [α] to which α belongs.

LetM be a maximal ideal of A of height n and let N be aM-primary ideal such that N/N 2 is
generated by n elements. Let wN be a local F -orientation of N . Let G be the free abelian group
on the set of pairs (N , wN ), where N is aM-primary ideal and wN is a local F -orientation of N .

Let J = ∩N i be the intersection of finitely many Mi-primary ideals, where Mi are distinct
maximal ideals of A of height n. Assume that J/J2 is generated by n elements and let wJ be a
local F -orientation of J . Then wJ gives rise, in a natural way, to local F -orientations wN i

of N i.
We associate to the pair (J,wJ), the element

∑
(N i, wN i

) of G.
Let H be the subgroup of G generated by the set of pairs (J,wJ), where J is an ideal of A of

height n and wJ is a global F -orientation of J .
We define the Euler class group of A with respect to F , denoted by E(A,F ), as the quotient

group G/H.
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Let A be a ring of dimension n. Let P and F = Q⊕A be projective A-modules of rank n and
let χ : ∧nF ∼→ ∧nP be an isomorphism. We call χ a F -orientation of P . To the pair (P, χ), we
associate an element e(P, χ) of E(A,F ) as follows:

Let λ : P →→ J0 be a generic surjection and let ”bar” denote reduction modulo the ideal J0.
Then, we obtain an induced surjection λ : P →→ J0/J

2
0 . Since dimA/J0 = 0, every projective

A/J0-module of constant rank is free. Hence, we choose an isomorphism γ : F/J0F
∼→ P/J0P such

that ∧n(γ) = χ. Let wJ0 be the local F -orientation of J0 given by λ ◦ γ : F/J0F →→ J0/J
2
0 . Let

e(P, χ) be the image in E(A,F ) of the element (J0, wJ0) of G. We say that (J0, wJ0) is obtained
from the pair (λ, χ). We will show that the assignment sending the pair (P, χ) to the element
e(P, χ) of E(A,F ) is well defined.

Let µ : P →→ J1 be another generic surjection. By (2.2), there exists a surjection α(T ) : P [T ]→
→ I, where I is an ideal of A[T ] of height n with α(0) = λ, I(0) = J0, α(1) = µ and I(1) = J1.
Using (2.3), we get an ideal K of A of height n and a local F -orientation wK of K such that
(I(0), wI(0)) + (K,wK) = 0 = (I(1), wI(1)) + (K,wK) in E(A,F ). Therefore (J0, wJ0) = (J1, wJ1)
in E(A,F ). Hence e(P, χ) is well defined in E(A,F ).

We define the Euler class of (P, χ) to be e(P, χ).
For a projective A-module L of rank 1 and F = L⊕An−1, the following result is proved in ([2],

Proposition 4.1). Since the same proof works in our case, we omit the proof.

Proposition 3.1 Let A be a ring of dimension n ≥ 2 and let J, J1, J2 be ideals of A of height
n such that J is comaximal with J1 and J2. Let F = Q⊕A be a projective A-module of rank n.
Assume that α : F →→ J ∩J1 and β : F →→ J ∩J2 be surjections with α⊗A/J = β⊗A/J . Suppose
there exists an ideal J3 of height n such that

(i) J3 is comaximal with J, J1 and J2 and
(ii) there exists a surjection γ : F →→ J3 ∩ J1 with α⊗A/J1 = γ⊗A/J1.
Then there exists a surjection λ : F →→ J3 ∩ J2 with λ⊗A/J3 = γ⊗A/J3 and λ⊗A/J2 =

β⊗A/J2.

Using (3.1, 2.4 and 2.5) and following the proof of ([2], Theorem 4.2), the next result follows.

Theorem 3.2 Let A be a ring of dimension n ≥ 2 and let F = Q⊕A be a projective A-module
of rank n. Let J be an ideal of A of height n such that J/J2 is generated by n elements. Let
wJ : F/JF →→ J/J2 be a local F -orientation of J . Suppose that the image of (J,wJ) is zero in
E(A,F ). Then wJ is a global F -orientation of J .

Using (3.2 and 2.5) and following the proof of ([2], Corollary 4.3), the next result follows.

Corollary 3.3 Let A be a ring of dimension n ≥ 2. Let P and F = Q⊕A be projective A-modules
of rank n and let χ : ∧nF ∼→ ∧nP be a F -orientation of P . Let J be an ideal of A of height
n such that J/J2 is generated by n elements and let wJ be a local F -orientation of J . Suppose
e(P, χ) = (J,wJ) in E(A,F ). Then there exists a surjection α : P →→ J such that (J,wJ) is
obtained from (α, χ).
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Using (3.2, 3.3) and following the proof of ([2], Theorem 4.4), the next result follows.

Corollary 3.4 Let A be a ring of dimension n ≥ 2. Let P and F = Q⊕A be projective A-modules
of rank n and let χ : ∧nF ∼→ ∧nP be a F -orientation of P . Then e(P, χ) = 0 in E(A,F ) if and
only if P has a unimodular element.

Let A be a ring of dimension n ≥ 2 and let F = Q⊕A be a projective A-module of rank n. Let
”bar” denote reduction modulo the nil radical N of A and let A = A/N and F = F/NF . Let J be
an ideal of A of height n with primary decomposition J = ∩N i. Then J = (J+N)/N is an ideal of
A of height n with primary decomposition J = ∩N i. Moreover, any surjection wJ : F/JF →→ J/J2

induces a surjection wJ : F/JF →→ J/J2 = (J + N)/(J2 + N). Hence, the assignment sending
(J,wJ) to (J,wJ) gives rise to a group homomorphism Φ : E(A,F )→→ E(A,F ).

As a consequence of (3.2), we get the following result, the proof of which is same as of ([2],
Corollary 4.6).

Corollary 3.5 The homomorphism Φ : E(A,F )→ E(A,F ) is an isomorphism.

4 Some results on E(A, F )

Let A be a ring of dimension n ≥ 2 and let F = Q⊕A be a projective A-module of rank n. Let J
be an ideal of A of height n and let wJ : F/JF →→ J/J2 be a surjection. Let b ∈ A/J be a unit.
Then composing wJ with an automorphism of F/JF with determinant b, we get another local
F -orientation of J , which we denote by bwJ . Further, if wJ and w̃J are two local F -orientations
of J , then it is easy to see that w̃J = bwJ for some unit b ∈ A/J .

We recall the following two results from ([2], Lemma 2.7 and 2.8) respectively.

Lemma 4.1 Let A be a ring and let P be a projective A-module of rank n. Assume 0 → P1 →
A⊕P (b,−α)→ A → 0 is an exact sequence. Let (a0, p0) ∈ A⊕P be such that a0b − α(p0) = 1. Let
qi = (ai, pi) ∈ P1 for i = 1, . . . , n. Then

(i) the map δ : ∧nP1 → ∧nP given by δ(q1 ∧ . . . ∧ qn) = a0(p1 ∧ . . . ∧ pn) +
∑n

1 (−1)iai(p0 ∧
. . . pi−1 ∧ pi+1 . . . ∧ pn) is an isomorphism.

(ii) δ(bq1 ∧ . . . ∧ qn) = p1 ∧ . . . ∧ pn.

Lemma 4.2 Let A be a ring and let P be a projective A-module of rank n. Assume 0 → P1 →
A⊕P (b,−α)→ A→ 0 is an exact sequence. Then

(i) The map β : P1 → A given by β(q) = c, where q = (c, p), has the property that β(P1) = α(P ).
(ii) The map Φ : P → P1 given by Φ(p) = (α(p), bp) has the property that β ◦Φ = α and δ◦∧nΦ

is a scalar multiplication by bn−1, where δ is as in (4.1).

The following result can be deduced from (4.1, 4.2). Briefly it says that if there exists a
projective A-module P of rank n with a F -orientation χ : ∧nF ∼→ ∧nP such that e(P, χ) = (J,wJ)
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and if a ∈ A/J is a unit, then there exists another projective A-module P1 with [P1] = [P ] in
K0(A) and a F -orientation χ1 : ∧nF ∼→ ∧nP1 of P1 such that e(P1, χ1) = (J, an−1wJ).

Lemma 4.3 Let A be a ring of dimension n ≥ 2. Let P and F = Q⊕A be projective A-modules
of rank n and let χ : ∧nF ∼→ ∧nP be a F -orientation of P . Let α : P →→ J be a generic surjection
and let (J,wJ) be obtained from (α, χ). Let a, b ∈ A with ab = 1 modulo J and let P1 be the
kernel of the surjection (b,−α) : A⊕P →→ A. Let β : P1 →→ J be as in (4.2) and let χ1 be the
F -orientation of P1 given by δ−1χ, where δ is as in (4.1). Then (J, an−1) is obtained from (β, χ1).

Using the above results and following the proof of ([2], Lemmas 5.3, 5.4 and 5.5) respectively,
the next three results follows.

Lemma 4.4 Let A be a ring of dimension n ≥ 2 and let F = Q⊕A2 be projective A-module of
rank n. Let J be an ideal of A of height n and let wJ : F/JF →→ J/J2 be a surjection. Suppose
wJ can be lifted to a surjection α : F →→ J . Let a ∈ A/J be a unit and let θ be an automorphism
of F/JF with determinant a2. Then the surjection wJ ◦ θ : F/JF →→ J/J2 can be lifted to a
surjection γ : F →→ J .

Lemma 4.5 Let A be a ring of dimension n ≥ 2 and let F = Q⊕A2 be a projective A-module of
rank n. Let J be an ideal of A of height n and let wJ be a local F -orientation of J . Let a ∈ A/J
be a unit. Then (J,wJ) = (J, a2wJ) in E(A,F ).

Lemma 4.6 Let A be a ring of dimension n ≥ 2 and let F = Q⊕A be a projective A-module of
rank n. Let J be an ideal of A of height n and let wJ be a local F -orientation of J . Suppose
(J,wJ) 6= 0 in E(A,F ). Then there exists an ideal J1 of height n which is comaximal with J and
a local F -orientation wJ1 of J1 such that (J,wJ) + (J1, wJ1) = 0 in E(A,F ). Further, given any
ideal K of A of height ≥ 1, J1 can be chosen to be comaximal with K.

The following result is similar to ([2], Lemma 5.6).

Lemma 4.7 Let A be an affine domain of dimension n ≥ 2 over a field k and let f be a non-zero
element of A. Let F = Q⊕A2 be a projective A-module of rank n and let J be an ideal of A of
height n such that J/J2 is generated by n elements. Suppose that (J,wJ) 6= 0 in E(A,F ) but the
image of (J,wJ) is zero in E(Af , Ff ). Then there exists an ideal J2 of A of height n such that
(J2)f = Af and (J,wJ) = (J2, wJ2) in E(A,F ).

Proof Since (J,wJ) 6= 0 in E(A,F ), but its image is zero in E(Af , Ff ), we see that f is not a
unit in A. By (4.6), we can choose an ideal J1 of height n which is comaximal with Jf such that
(J,wJ) + (J1, wJ1) = 0 in E(A,F ). Since the image of (J,wJ) is zero in E(Af , Ff ), it follows that
the image of (J1, wJ1) is zero in E(Af , Ff ).

By (3.2), there exists a surjection α : Ff →→ (J1)f such that α⊗Af/(J1)f = (wJ1)f . Choose
a positive integer k such that f2kα : F → J1. Since f is a unit modulo J1, by (4.5), (J1, wJ1) =
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(J1, f2knwJ1) in E(A,F ). By (2.7), there exists Ψ ∈ EL(F ∗f ) such that β = Ψ(α) ∈ F ∗ and
β(F ) ⊂ J1 is an ideal of height n. Thus β(F ) = J1 ∩ J2, where J2 is an ideal of A of height n such
that (J2)f = Af . Hence J1 + J2 = A. From the surjection β, we get (J1, wJ1) + (J2, wJ2) = 0 in
E(A,F ). Since (J,wJ) + (J1, wJ1) = 0 in E(A,F ), it follows that (J,wJ) = (J2, wJ2) in E(A,F ).
This proves the result. �

Using (3.3, 4.5 and 4.7) and following the proof of ([2], Lemma 5.8), the following result can
be proved.

Lemma 4.8 Let A be an affine domain of dimension n ≥ 2 over a field k. Let P and F = Q⊕A2

be projective A-modules of rank n with ∧nP ∼→ ∧nF . Let f be a non-zero element of A. Assume
that every generic surjection ideal of P is surjective image of F . Then every generic surjection
ideal of Pf is surjective image of Ff .

Using above results and following the proof of ([2], Theorem 5.9), the next result follows.

Theorem 4.9 Let A be an affine domain of dimension n ≥ 2 over a real closed field k. Let P
and F = Q⊕A2 be projective A-modules of rank n with ∧nP ∼→ ∧nF . Assume that every generic
surjection ideal of P is surjective image of F . Then P has a unimodular element.

In particular, if L = ∧nP and every generic surjection ideal of P is surjective image of L⊕An−1,
then P has a unimodular element.

5 Weak Euler Class Group

Let A be a ring of dimension n ≥ 2 and let F = Q⊕A be a projective A-module of rank n. We
define the weak Euler class group E0(A,F ) of A with respect to F as follows:

Let S be the set of ideals N of A such that N/N 2 is generated by n elements, where N is
M-primary ideal for some maximal ideal M of A of height n. Let G be the free abelian group on
the set S.

Let J = ∩N i be the intersection of finitely many ideals N i, where N i isMi-primary andMi’s
are distinct maximal ideals of A of height n. Assume that J/J2 is generated by n elements. We
associate to J , the element

∑
N i of G. We denote this element by (J).

Let H be the subgroup of G generated by elements of the type (J), where J is an ideal of A of
height n which is surjective image of F .

We set E0(A,F ) = G/H.
Let P be a projective A-module of rank n such that ∧nP ∼→ ∧nF . Let λ : P →→ J0 be a generic

surjection. We define e(P ) = (J0) in E0(A,F ). We will show that this assignment is well defined.
Let µ : P →→ J1 be another generic surjection. By (2.2), there exists a surjection α(T ) : P [T ]→

→ I, where I is an ideal of A[T ] of height n with α(0) = λ, I(0) = J0, α(1) = µ and I(1) = J1.
Now, as before, using (2.3), we see that (J0) = (J1) in E0(A,F ). This shows that e(P ) is well
defined.
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Note that there is a canonical surjection from E(A,F ) to E0(A,F ) obtained by forgetting the
orientations.

We state the following result which follows from (4.3 and 4.5).

Lemma 5.1 Let A be a ring of even dimension n. Let P and F = Q⊕A2 be projective A-modules
of rank n and let χ : ∧nF ∼→ ∧nP be a F -orientation of P . Let e(P, χ) = (J,wJ) in E(A,F )
and let w̃J be another local F -orientation of J . Then there exists a projective A-module P1 with
[P1] = [P ] in K0(A) and a F -orientation χ1 of P1 such that e(P1, χ1) = (J, w̃J) in E(A,F ).

Proposition 5.2 Let A be a ring of even dimension n and let F = Q⊕A2 be a projective A-module
of rank n. Let J1 and J2 be two comaximal ideals of A of height n and let J3 = J1 ∩J2. If any two
of J1, J2 and J3 are surjective images of projective A-modules of rank n which are stably isomorphic
to F , then so is the third one.

Proof Let P1 and P2 be two projective A-modules of rank n with [P1] = [P2] = [F ] in K0(A)
and let ψ1 : P1 →→ J1 and ψ2 : P2 →→ J2 be two surjections. Choose F -orientations χ1 and χ2 of
P1 and P2 respectively. Then e(P1, χ1) = (J1, wJ1) and e(P2, χ2) = (J2, wJ2) in E(A,F ).

By (2.6), there exists an ideal J ′1 of height n which is surjective image of both P1 and F . Hence
e(P1, χ1) = (J1, wJ1) = (J ′1, wJ′

1
) in E(A,F ) for some local F -orientation wJ′

1
of J ′1. Similarly,

there exists an ideal J ′2 of height n which is surjective image of both P2 and F . Hence e(P2, χ2) =
(J2, wJ2) = (J ′2, wJ′

2
) in E(A,F ) for some local F -orientation wJ′

2
of J ′2. Further, we may assume

that J ′1 + J ′2 = A. Let (J1, wJ1) + (J2, wJ2) = (J3, wJ3) in E(A,F ).
Let J ′3 = J ′1 ∩ J ′2. By addition principle (2.4), J ′3 is surjective image of F and (J ′1, wJ′

1
) +

(J ′2, wJ′
2
) = (J ′3, wJ′

3
) in E(A,F ). Hence (J ′3, wJ′

3
) = (J3, wJ3). Since J ′3 is surjective image of F ,

by (5.1), there exists a projective A-module P3 with [P3] = [F ] in K0(A) and a F -orientation χ3

of P3 such that e(P3, χ3) = (J ′3, wJ′
3
) = (J3, wJ3) in E(A,F ). By (3.3), there exists a surjection

ψ3 : P3 →→ J3 such that (ψ3, χ3) induces (J3, wJ3). This proves the first part.
Now assume that J1 and J3 are surjective images of P3 and P ′1 respectively, where P3 and P ′1

are projective A-modules of rank n with [P3] = [P ′1] = [F ] in K0(A).
Let e(P3, χ3) = (J3, w3) for some F -orientation χ3 of P3 and let (J3, w3) = (J1, w1) + (J2, w2)

in E(A,F ). Let e(P ′1, χ
′
1) = (J1, w

′
1) for some F -orientation χ′1 of P ′1. By (5.1), there exists a

projective A-module P1 of rank n with [P1] = [P ′1] in K0(A) and a F -orientation χ1 of P1 such
that e(P1, χ1) = (J1, w1) in E(A,F ).

By (2.6), there exists an ideal J4 of height n which is surjective image of F and P1 both and
is comaximal with J2 such that e(P1, χ1) = (J1, w1) = (J4, w4). Write J5 = J4 ∩ J2. Then
(J4, w4) + (J2, w2) = (J5, w5). This shows that e(P3, χ3) = (J3, w3) = (J5, w5).

Let e(F, χ) = (J4, w̃4) = 0. If (J4, w̃4) + (J2, w2) = (J5, w̃5), then (J2, w2) = (J5, w̃5). Since
e(P3, χ3) = (J5, w5), by (5.1), there exists a projective A-module P̃3 of rank n with [P̃3] = [P3] in
K0(A) such that e(P̃3, w̃3) = (J5, w̃5) = (J2, w2). Hence, by (3.3), J2 is a surjective image of P̃3

which is stably isomorphic to F . This completes the proof. �
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Proposition 5.3 Let A be a ring of even dimension n and let F = Q⊕A2 be a projective A-module
of rank n. Let J be an ideal of A of height n. Then (J) = 0 in E0(A,F ) if and only if J is a
surjective image of a projective A-module of rank n which is stably isomorphic to F .

Proof Let J1 be an ideal of A of height n. Assume that J1 is surjective image of a projective
A-module of rank n which is stably isomorphic to F . Assume (J1, wJ1) is a non-zero element of
E(A,F ). We will show that there exist height n ideals J2 and J3 with local F -orientations wJ2

and wJ3 respectively such that
(i) J2, J3 are comaximal with any given ideal of height ≥ 1,
(ii) (J1, wJ1) = −(J2, wJ2) = (J3, wJ3) in E(A,F ) and
(iii) J2, J3 are surjective images of projective A-modules of rank n which are stably isomorphic

to F .
By (4.6), there exists an ideal J2 of height n which is comaximal with J1 and any given ideal of

height ≥ 1 such that (J1, wJ1) + (J2, wJ2) = 0 in E(A,F ). By (3.2), J1 ∩ J2 is surjective image of
F . By (5.2), J2 is a surjective image of a projective A-module of rank n which is stably isomorphic
to F .

Repeating the above with (J2, wJ2), we get an ideal J3 of height n which is comaximal with
any given ideal of height ≥ 1 such that (J2, wJ2) + (J3, wJ3) = 0 in E(A,F ). Further, J3 is a
surjective image of a projective A-module of rank n which is stably isomorphic to F . Thus, we
have (J1, wJ1) = −(J2, wJ2) = (J3, wJ3) in E(A,F ). This proves the above claim.

From the above discussion, we see that given any element h in kernel of the canonical map
Φ : E(A,F ) →→ E0(A,F ), there exists an ideal J̃ of height n such that J̃ is surjective image of
a projective A-module of rank n which is stably isomorphic to F and h = (J̃ , wJ̃) in E(A,F ).
Moreover, J̃ can be chosen to be comaximal with any ideal of height ≥ 1.

Now assume (J) = 0 in E0(A,F ). Choose some local F -orientation wJ of J . Then (J,wJ) ∈
ker(Φ). From previous paragraph, we get that there exists an ideal K of height n comaximal
with J such that −(J,wJ) = (K,wK) in E(A,F ). Further, K is surjective image of a projective
A-module which is stably isomorphic to F .

By (3.2), J∩K is surjective image of F . By (5.2), J is surjective image of a projective A-module
of rank n which is stably isomorphic to F .

Conversely, assume that J is surjective image of a projective A-module P of rank n which
is stably isomorphic to F . Let χ be a F -orientation of P . Then e(P, χ) = (J,wJ) in E(A,F ).
By (2.6), there exists an ideal I of height n which is surjective image of P and F both. Then
e(P, χ) = (J,wJ) = (I, wI) in E(A,F ). Therefore (J) = (I) in E0(A,F ) and hence (J) = 0 in
E0(A,F ). This completes the proof. �

Proposition 5.4 Let A be a ring of even dimension n and let F = Q⊕A2 and P be projective
A-modules of rank n with ∧nP ∼→ ∧nF . Then e(P ) = 0 in E0(A,F ) if and only if [P ] = [P1⊕A]
in K0(A) for some projective A-module P1 of rank n− 1.
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Proof Assume that [P ] = [P1⊕A] in K0(A). By (2.6), there exists an ideal J of A of height n
which is surjective image of both P and P1⊕A. Hence e(P1⊕A,χ) = (J,wJ) = 0 in E(A,F ), by
(3.4). Hence J is surjective image of F . By (5.3), e(P ) = (J) = 0 in E0(A,F ).

Conversely, assume that e(P ) = 0 in E0(A,F ). Let ψ : P →→ J be a generic surjection
and let e(P, χ) = (J,wJ) in E(A,F ) for some F -orientation χ of P . Since e(P ) = (J) = 0 in
E0(A,F ), by (5.3), J is surjective image of a projective A-module P1 with [P1] = [F ] in K0(A).
By (2.6), there exists an height n ideal J1 which is surjective image of P1 and F both. Let
e(P1, χ1) = (J, w̃J) = (J1, wJ1) for some F -orientation χ1 of P1.

By (5.1), there exists a rank n projective A-module P2 with [P2] = [P ] in K0(A) and a F -
orientation χ2 of P2 such that e(P2, χ2) = (J, w̃J) = (J1, wJ1) in E(A,F ). Since J1 is surjective
image of F , (J1, w̃J1) = 0 in E(A,F ) for some local F -orientation w̃J1 of J1. By (5.1), there
exists a projective A-module P3 with [P3] = [P2] in K0(A) and a F -orientation χ3 of P3 such that
e(P3, χ3) = (J1, w̃J1) = 0 in E(A,F ). Hence P3 = P4⊕A, by (3.4). Therefore [P ] = [P2] = [P4⊕A]
in K0(A). This completes the proof. �

Proposition 5.5 Let A be a ring of even dimension n. Let P and F = Q⊕A2 be projective A-
modules of rank n with ∧nP ∼→ ∧nF . Suppose that e(P ) = (J) in E0(A,F ), where J is an ideal of
A of height n. Then there exists a projective A-module P1 of rank n such that [P ] = [P1] in K0(A)
and J is a surjective image of P1.

Proof Since P/JP is free and J/J2 is generated by n elements, we get a surjection ψ : P/JP →
→ J/J2. By ([2], Corollary 2.14), we can lift ψ to a surjection ψ : P →→ J ∩ J1, where J1 is an
height n ideal comaximal with J . Let e(P, χ) = (J,wJ) + (J1, wJ1) in E(A,F ).

Since e(P ) = (J) = (J ∩J1) in E0(A,F ), (J1) = 0 in E0(A,F ). By (5.3), J1 is surjective image
of a projective A-module P2 of rank n which is stably isomorphic to F . By (5.1), there exists
rank n projective A-module P3 with [P2] = [P3] in K0(A) and a F -orientation χ3 of P3 such that
e(P3, χ3) = (J1, wJ1) in E(A,F ).

By (2.6), there exists a height n ideal J2 of A which is comaximal with J and is surjective image
of F such that e(P3, χ3) = (J1, wJ1) = (J2, wJ2) in E(A,F ). Hence e(P, χ) = (J,wJ) + (J2, wJ2) =
(J ∩ J2, wJ∩J2). By (3.3), there exists a surjection φ : P →→ J ∩ J2. Since (J2, w̃J2) = 0 for some
local F -orientation w̃J2 of J2. Let (J,wJ)+(J2, w̃J2) = (J ∩J2, w̃J∩J2). By (4.3), there exists rank
n projective A-module P1 with [P ] = [P1] in K0(A) and e(P1, χ1) = (J ∩ J2, w̃J∩J2) = (J,wJ). By
(3.3), there exists a surjection α : P1 →→ J . This proves the result. �

The proof of the following result is similar to ([2], Proposition 6.5), hence we omit it.

Proposition 5.6 Let A be a ring of even dimension n and let J be an ideal of A of height n such
that J/J2 is generated by n elements. Let F = Q⊕A2 be a projective A-module of rank n and
let w̃J : F/JF →→ J/J2 be a surjection. Suppose that the element (J, w̃J) of E(A,F ) belongs to
the kernel of the canonical homomorphism E(A,F ) →→ E0(A,F ). Then there exists a projective
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A-module P1 of rank n such that [P1] = [F ] in K0(A) and e(P1, χ1) = (J, w̃J) in E(A,F ) for some
F -orientation χ1 of P1.

6 Application

Let A be a ring of dimension n ≥ 2 and let L be a projective A-module of rank 1. We will
define a map ∆ from E(A,L) to E(A,F ), where F = Q⊕A is a projective A-module of rank n

with determinant L. Let wJ : L/JL⊕(A/J)n−1 →→ J/J2 be a surjection. Since dimA/J = 0,
Q/JQ is isomorphic to L/JL⊕(A/J)n−2. Choose an isomorphism θ : Q/JQ ∼→ L/JL⊕(A/J)n−2

of determinant one. Let w̃J = wJ ◦ (θ, id) : Q/JQ⊕A/J →→ J/J2 be the surjection.
Assume that wJ can be lifted to a surjection Φ : L⊕An−1 →→ J . Write Φ = (Φ1, a). We

may assume that Φ1(L⊕An−2) = K is an ideal of height n − 1. Further, we may assume that
the isomorphism θ : Q/JQ ∼→ L/JL⊕(A/J)n−2 is induced from an isomorphism θ′ : Q/KQ ∼→
L/KL⊕(A/K)n−2 (i.e. θ′⊗A/J = θ).

Let (Φ2, a) : Q⊕A → J = (K, a) be a lift of w̃J . Then Φ2⊗A/K : Q/KQ →→ K/K2 is
a surjection. Let φ2 : Q → K be a lift of Φ2⊗A/K. Then φ2(Q) + K2 = K. Hence, there
exists e ∈ K2 with e(1 − e) ∈ φ2(Q) such that φ2(Q) + Ae = K. Now it is easy to check that
φ2(Q) +Aa = φ2(Q) + (e+ (1− e)a) = K +Aa = J and (φ2, e+ (1− e)a) : Q⊕A→→ J is a lift of
w̃J .

Hence, we have shown that if wJ can be lifted to a surjection from L⊕An−1 →→ J , then
w̃J can be lifted to a surjection from Q⊕A to J . Further, if we choose different isomorphism
θ1 : Q/JQ⊕A/J ∼→ L/JL⊕(A/J)n−1 of determinant one and w1 = wJ ◦ θ1 : Q/JQ⊕A/J →
→ J/J2, then w̃J and w1 are connected by an element of EL(Q/JQ⊕A/J). Hence, if we define
∆ : E(A,L)→ E(A,F ) by ∆(wJ) = w̃J , then this map is well defined. It is easy to see that ∆ is
a group homomorphism.

Similarly, we can define a map ∆1 : E(A,F )→ E(A,L) and it is easy to show that ∆◦∆1 = id

and ∆1 ◦∆ = id. Hence, we get the following interesting result:

Theorem 6.1 Let A be a ring of dimension n ≥ 2. Let L and F = Q⊕A be projective A-modules
of rank 1 and n respectively with ∧nF ∼→ L. Then E(A,L) is isomorphic to E(A,F ).

Let J be an ideal of A of height n such that J/J2 is generated by n elements. Further assume
that there exists a surjection α : L⊕An−1 →→ J . We will show that J is also a surjective image of
F = Q⊕A. Let wJ be the local L-orientation of J induced from α. Then (J,wJ) = 0 in E(A,L).
Hence ∆(J,wJ) = (J, w̃J) = 0 in E(A,F ). Hence, by (3.2), J is a surjective image of F .

We define the map ∆̃ : E0(A,L) → E0(A,F ) by (J) 7→ (J). The above discussion shows that
∆̃ is well defined. Similarly, we can define a map ∆̃1 : E0(A,F )→ E0(A,L) such that ∆̃ ◦ ∆̃1 = id

and ∆̃1 ◦ ∆̃ = id. Thus we get the following interesting result:

Theorem 6.2 Let A be a ring of dimension n ≥ 2. Let L and F = Q⊕A be projective A-modules
of rank 1 and n respectively with ∧nF ∼→ L. Then E0(A,L) is isomorphic to E0(A,F ).
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Since, by ([2], 6.8), E0(A,L) is canonically isomorphic to E0(A,A), we get the surprising result
that E0(A,F ) is canonically isomorphic to E0(A,An) for any projective A-module F = Q⊕A of
rank n.

We end with the following result which follows from (5.3).

Proposition 6.3 Let A be a ring of even dimension n and let J be an ideal of A of height n
such that J/J2 is generated by n elements. Let L and P be projective A-modules of rank 1 and n

respectively such that P is stably isomorphic to L⊕An−1. Then J is surjective image of P if and
only if given any projective A-module Q of rank n− 2 with determinant L, there exists a projective
A-module P1 which is stably isomorphic to Q⊕A2 such that J is surjective image of P1.
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