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1 Introduction

All the rings are assumed to be commutative Noetherian and all the modules are assumed to be
finitely generated.

Let A be a ring of dimension n > 2 and let L be a projective A-module of rank 1. In [2],
Bhatwadekar and Raja Sridharan defined the Euler class group of A with respect to L, denoted by
E(A, L). To the pair (P, ), where P is a projective A-module of rank n with determinant L and
X : L = A"P is a L-orientation of P, they attached an element of the Euler class group, denoted
by e(P, x). One of the main result in [2] is that P has a unimodular element if and only if e(P, x)
is zero in E(A, L).

We will define the Euler class group of A with respect to a projective A-module F' = Q®A of
rank n, denoted by E(A, F'). To the pair (P, x), where P is a projective A-module of rank n and
X : A"F 5 A"P is a F-orientation of P, we associate an element of the Euler class group, denoted
by e(P,x) and prove the following result: P has a unimodular element if and only if e(P, x) is
zero in E(A, F). Note that when F = LA™, E(A, F) is same as the Euler class group F(A, L)
defined in [2].

2 Preliminaries

Let A be a ring and let M be an A-module. For m € M, we define Op(m) = {p(m)|p €
Homy (M, A)}. We say that m is unimodular if Opr(m) = A. The set of all unimodular elements
of M will be denoted by Um(M). Note that if P is a projective A-module and P has a unimodular
element, then P = P®A.

Let P be a projective A-module. Given an element ¢ € P* and an element p € P, we define
an endomorphism ¢, as the composite P % A % P. If (p) = 0, then @2 = 0 and hence 1+ ¢, is
a unipotent automorphism of P.

By a 7transvection”, we mean an automorphism of P of the form 1 + ¢,, where ¢(p) = 0
and either ¢ is unimodular in P* or p is unimodular in P. We denote by EL(P) the subgroup of
Aut(P) generated by all the transvections of P. Note that FL(P) is a normal subgroup of Aut(P).
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Recall that if A is a ring of dimension n and if P is a projective A-module of rank n, then any
surjection « : P —— J is called a generic surjection if J is an ideal of A of height n.
The following result is due to Bhatwadekar and Roy ([3], Proposition 4.1)

Proposition 2.1 Let B be a ring and let I be an ideal of B. Let P be a projective B-module.
Then any element of EL(P/IP) can be lifted to an automorphism of P.

We state some results from [2] for later use.

Lemma 2.2 ([2], Lemma 3.0) Let A be a ring of dimension n and let P be a projective A-module
of rankn. Let A\ : P — Jy and p: P —— Jy be two surjections, where Jy and J1 are ideals of A of
height n. Then there exists an ideal I of A[T] of height n and a surjection o(T) : P[T] — I such
that 1(0) = Jy, I(1) = J1, «(0) = X and a(1) = p.

For a rank 1 projective A-module L and P’ = LA™, the following result is proved in ([2],
Proposition 3.1). Since the same proof works in our case, we omit the proof.

Proposition 2.3 Let A be a ring of dimension n > 2 such that (n — 1)! is a unit in A. Let P
and P' = Q®A be projective A-modules of rank n and let x : AP = A"P’ be an isomorphism.
Suppose that a(T) : P[T] — I be a surjection, where I is an ideal of A[T] of height n. Then
there exists a homomorphism ¢ : P' — P, an ideal K of A of height > n which is comazimal with
(INA) and a surjection p(T) : P'[T] — I N KA[T] such that the following holds:

(i) A™(¢) = ux, where u =1 modulo I N A.
(i1) (a(0) 0 6)(P") = I(0) N K.

(i#i) (a(T) o (T)) @ AT)/I = p(T)@A[T)/1.
(iv) p(0)RA/K = p(1)®A/K.

The following result is labeled as addition principle ([2], Theorem 3.2).

Theorem 2.4 Let A be a ring of dimension n > 2 and let Jy, Ja be two comazimal ideals of A of
height n. Let P = Py®A be a projective A-module of rank n and let ® : P — J; and ¥ : P — Js
be two surjections. Then, there exists a surjection © : P —— JyNJy such that PRA/J; = ORA/.J;
and YA/ J; = ORA/ Js.

The following theorem is labeled as subtraction principle ([2], Theorem 3.3).

Theorem 2.5 Let A be a ring of dimension n > 2 and let J and J' be two comazimal ideals of A
of height > n and n respectively. Let P and P' = Q®A be projective A-modules of rank n and let
X : A"P 5 A"P’ be an isomorphism. Let o : P — JNJ' and 3 : P' — J' be surjections. Let
"bar” denote reduction modulo J' and let @ : P —— J'/J? and B : P’ — J'/J? be surjections
induced from o and 3 respectively. Suppose there exists an isomorphism § : P = P’ such that
36 =@ and A\"(8) = X. Then there exists a surjection § : P —— J such that 02A/J = a®A/J.



Lemma 2.6 (/2], Proposition 6.7) Let A be a ring of dimension n and let P, P' be stably isomor-
phic projective A-modules of rank n. Then there exists an ideal J of A of height > n such that J
18 a surjective image of both P and P'. Further, given any ideal K of height > 1, J can be chosen
to be comazimal with K.

We state the following result from ([1], Proposition 2.11) for later use.

Proposition 2.7 Let A be a ring and let I be an ideal of A of height n. Let f € A be a non-
zerodivisor modulo I and let P = Pi®A be a projective A-module of rank n. Let a : P — I
be a linear map such that the induced map oy : Py —— I is a surjection. Then, there exists
¥ € EL(P}) such that

(1) B=V(a) € P* and

(it) B(P) is an ideal of A of height n contained in I.

3 Euler class group FE(A, F)

Let A be a ring of dimension n > 2 and let F' = Q®A be a projective A-module of rank n. We
define the Euler class group of A with respect to F' as follows:

Let J be an ideal of A of height n such that .J/.J? is generated by n elements. Let o and 3 be two
surjections from F/JF to J/J?. We say that a and 3 are related if there exists an automorphism
o of F/JF of determinant 1 such that ac = (. Clearly, this is an equivalence relation on the set
of all surjections from F/JF to J/J?. Let [a] denote the equivalence class of a. We call [a] a local
F-orientation of J.

Since dim A/J = 0, SLy,;(F/JF) = EL(F/JF) and therefore, by (2.1), the canonical map
from SLa(F) to SLa,;(F/JF) is surjective. Hence, if a surjection « : F/JF —— J/J? can be
lifted to a surjection A : FF —— J, then so can any other surjection § equivalent to «.

A local F-orientation [«] is called a global F-orientation of J if the surjection o can be lifted
to a surjection from F' to J. From now on, we shall identify a surjection o with the equivalence
class [a] to which « belongs.

Let M be a maximal ideal of A of height n and let A" be a M-primary ideal such that N'/N? is
generated by n elements. Let was be a local F-orientation of N. Let G be the free abelian group
on the set of pairs (M, wr), where NV is a M-primary ideal and w s is a local F-orientation of N

Let J = NN; be the intersection of finitely many M;-primary ideals, where M; are distinct
maximal ideals of A of height n. Assume that J/J? is generated by n elements and let w; be a
local F-orientation of J. Then w; gives rise, in a natural way, to local F-orientations w e of V;.
We associate to the pair (J,w;), the element 3 (N, wpr ) of G.

Let H be the subgroup of G generated by the set of pairs (J,w;), where J is an ideal of A of
height n and wy is a global F-orientation of J.

We define the Euler class group of A with respect to F', denoted by E(A, F), as the quotient
group G/H.



Let A be a ring of dimension n. Let P and F' = Q@A be projective A-modules of rank n and
let x : A"F = AP be an isomorphism. We call x a F-orientation of P. To the pair (P, ), we
associate an element e(P, x) of E(A, F) as follows:

Let A : P — Jy be a generic surjection and let "bar” denote reduction modulo the ideal Jy.
Then, we obtain an induced surjection A : P —— Jy/JZ. Since dim A/Jy = 0, every projective
A/ Jo-module of constant rank is free. Hence, we choose an isomorphism ¥ : F/JoF = P/JoP such
that A™(¥) = X. Let wy, be the local F-orientation of Jy given by A o7 : F/JoF — Jy/J&. Let
e(P, x) be the image in E(A, F) of the element (Jy,w; ,) of G. We say that (Jy,wy,) is obtained
from the pair (A, x). We will show that the assignment sending the pair (P, ) to the element
e(P,x) of E(A, F) is well defined.

Let p : P — Ji be another generic surjection. By (2.2), there exists a surjection «(7T") : P[T] —
— I, where T is an ideal of A[T] of height n with a(0) = A, I(0) = Jy, a(l) = p and I(1) = J;.
Using (2.3), we get an ideal K of A of height n and a local F-orientation wg of K such that
(1(0),wr(0)) + (K, wg) = 0= (I(1),wr1)) + (K,wk) in E(A, F). Therefore (Jo,w;,) = (J1,w,)
in E(A, F). Hence e(P, x) is well defined in E(A, F).

We define the Euler class of (P, x) to be e(P, x).

For a projective A-module L of rank 1 and F = LA™ L, the following result is proved in ([2],
Proposition 4.1). Since the same proof works in our case, we omit the proof.

Proposition 3.1 Let A be a ring of dimension n > 2 and let J,Jy,Jo be ideals of A of height
n such that J is comaximal with J; and Jo. Let F = Q®A be a projective A-module of rank n.
Assume that o : F — JNJy and B : F — JNJy be surjections with a®A/J = fRA/J. Suppose
there exists an ideal J3 of height n such that

(1) J3 is comazimal with J, J; and Jo and

(#9) there exists a surjection v : F —— J3 N Jy with a®A/J, = yQA/J;.

Then there exists a surjection \ : F' —— J3 N Jo with \QA/Js = v®A/Js and \QA/Jy =
BRA/J;.

Using (3.1, 2.4 and 2.5) and following the proof of ([2], Theorem 4.2), the next result follows.

Theorem 3.2 Let A be a ring of dimension n > 2 and let F = Q®A be a projective A-module
of rank n. Let J be an ideal of A of height n such that J/J? is generated by n elements. Let
wy : F/JF — J/J? be a local F-orientation of J. Suppose that the image of (J,wy) is zero in
E(A,F). Then wy is a global F-orientation of J.

Using (3.2 and 2.5) and following the proof of ([2], Corollary 4.3), the next result follows.

Corollary 3.3 Let A be a ring of dimension n > 2. Let P and F = Q®A be projective A-modules
of rank n and let x : A"F = A"P be a F-orientation of P. Let J be an ideal of A of height
n such that J/J? is generated by n elements and let wy be a local F-orientation of J. Suppose
e(P,x) = (Jywy) in E(A,F). Then there exists a surjection a : P —— J such that (Jywy) is
obtained from («,x).



Using (3.2, 3.3) and following the proof of (2], Theorem 4.4), the next result follows.

Corollary 3.4 Let A be a ring of dimension n > 2. Let P and F' = Q®A be projective A-modules
of rank n and let x : A"F = A"P be a F-orientation of P. Then e(P,x) = 0 in E(A,F) if and

only if P has a unimodular element.

Let A be a ring of dimension n > 2 and let F' = Q® A be a projective A-module of rank n. Let
"bar” denote reduction modulo the nil radical N of A and let A = A/N and F = F/NF. Let J be
an ideal of A of height n with primary decomposition J = NA/;. Then J = (J+N)/N is an ideal of
A of height n with primary decomposition J = NN;. Moreover, any surjection wy : F/JF — J/J?
induces a surjection Wy : F/JF — J/J? = (J + N)/(J? + N). Hence, the assignment sending
(J,wy) to (J,w7) gives rise to a group homomorphism ® : E(A, F) — E(A,F).

As a consequence of (3.2), we get the following result, the proof of which is same as of ([2],
Corollary 4.6).

Corollary 3.5 The homomorphism ® : E(A, F) — E(A, F) is an isomorphism.

4 Some results on E(A, F)

Let A be a ring of dimension n > 2 and let F' = Q@A be a projective A-module of rank n. Let J
be an ideal of A of height n and let wy : F/JF —- J/J? be a surjection. Let b € A/.J be a unit.
Then composing w; with an automorphism of F/JF with determinant b, we get another local
F-orientation of J, which we denote by bw ;. Further, if w; and w; are two local F-orientations
of J, then it is easy to see that w; = bwy for some unit b € A/J.

We recall the following two results from ([2], Lemma 2.7 and 2.8) respectively.

Lemma 4.1 Let A be a ring and let P be a projective A-module of rank n. Assume 0 — P, —
AeP 2% 4 - 045 an ezact sequence. Let (ag,po) € A®P be such that agb — a(pg) = 1. Let
qi = (as,p;) € Py fori=1,...,n. Then

(i) the map § : APy — A"P given by 6(q1 A ... A qn) = ao(p1 A .. Apn) + D7 (=1)%a;(po A
e Die1 APit1 ... ADn) is an isomorphism.

(i) 0(bgr A .. . ANgp) =p1A...\Dn.

Lemma 4.2 Let A be a ring and let P be a projective A-module of rank n. Assume 0 — P, —
AP (b:;l) A — 0 is an exact sequence. Then
(i) The map B : Py — A given by 8(q) = ¢, where ¢ = (¢, p), has the property that 5(Py) = a(P).
(it) The map @ : P — Py given by ®(p) = (a(p), bp) has the property that So® = « and o A" P

is a scalar multiplication by b" =1, where § is as in (4.1).

The following result can be deduced from (4.1, 4.2). Briefly it says that if there exists a
projective A-module P of rank n with a F-orientation y : A"F = A" P such that e(P, x) = (J,wy)



and if @ € A/J is a unit, then there exists another projective A-module P, with [P;] = [P] in
Ko(A) and a F-orientation x; : A"F = A"P; of Py such that e(Py, x1) = (J, e 1wy).

Lemma 4.3 Let A be a ring of dimension n > 2. Let P and F = Q®A be projective A-modules
of rank n and let x : A"F = A" P be a F-orientation of P. Let a: P — J be a generic surjection
and let (J,wy) be obtained from (a,x). Let a,b € A with ab = 1 modulo J and let Py be the
kernel of the surjection (b, —«) : AOP —— A. Let : Pi — J be as in (4.2) and let x1 be the
F-orientation of Py given by §~1x, where & is as in (4.1). Then (J,a"~1) is obtained from (B3, x1).

Using the above results and following the proof of ([2], Lemmas 5.3, 5.4 and 5.5) respectively,
the next three results follows.

Lemma 4.4 Let A be a ring of dimension n > 2 and let F = Q®A? be projective A-module of
rank n. Let J be an ideal of A of height n and let wy : F/JF —— J/J? be a surjection. Suppose
wy can be lifted to a surjection a: F —— J. Leta € A/J be a unit and let 6 be an automorphism
of F/JF with determinant a®. Then the surjection wy o @ : F/JF —- J/J? can be lifted to a

surjection vy : ' —— J.

Lemma 4.5 Let A be a ring of dimension n > 2 and let F = Q®A? be a projective A-module of
rank n. Let J be an ideal of A of height n and let wy be a local F-orientation of J. Leta € A/J
be a unit. Then (J,wy) = (J,a?wy) in E(A, F).

Lemma 4.6 Let A be a ring of dimension n > 2 and let F' = Q®A be a projective A-module of
rank n. Let J be an ideal of A of height n and let wy be a local F-orientation of J. Suppose
(Jy,wy) #0 in E(A,F). Then there exists an ideal Jy of height n which is comazimal with J and
a local F-orientation wy, of Ji such that (Jywy) + (Ji,wy,) =0 in E(A, F). Further, given any
ideal K of A of height > 1, Jy can be chosen to be comazimal with K.

The following result is similar to ([2], Lemma 5.6).

Lemma 4.7 Let A be an affine domain of dimension n > 2 over a field k and let f be a non-zero
element of A. Let F = Q®A? be a projective A-module of rank n and let J be an ideal of A of
height n such that J/J? is generated by n elements. Suppose that (J,wy) # 0 in E(A, F) but the
image of (J,wy) is zero in E(Ay, Fy). Then there exists an ideal Jo of A of height n such that
(J2)f = Ay and (J,wy) = (Jo,wy,) in E(A,F).

Proof Since (J,wy) # 0 in E(A, F), but its image is zero in E(Ay, Fy), we see that f is not a
unit in A. By (4.6), we can choose an ideal J; of height n which is comaximal with Jf such that
(Jwy) + (Ji,wy,) =0in E(A, F). Since the image of (J,wy) is zero in E(Ay, Fy), it follows that
the image of (J1,wy,) is zero in E(Ay, Fy).

By (3.2), there exists a surjection a : Fy — (J1)s such that a®A;/(J1); = (wy,)s. Choose
a positive integer k such that f?*a : F — J;. Since f is a unit modulo Jy, by (4.5), (J1,wy,) =



(J1, f7wy,) in E(A,F). By (2.7), there exists ¥ € EL(Fy) such that 8 = ¥(a) € F* and
B(F) C Jy is an ideal of height n. Thus S(F) = J; N Ja, where Js is an ideal of A of height n such
that (J2)y = Ay. Hence Jy + Jo = A. From the surjection 3, we get (Ji,wy,) + (J2,wys,) =0 in
E(A,F). Since (Jywy) + (J1,wy,) =01in E(A, F), it follows that (J,wy) = (J2,wy,) in E(A, F).
This proves the result. O

Using (3.3, 4.5 and 4.7) and following the proof of ([2], Lemma 5.8), the following result can
be proved.

Lemma 4.8 Let A be an affine domain of dimension n > 2 over a field k. Let P and F = QP A?
be projective A-modules of rank n with A"P = A"F. Let f be a non-zero element of A. Assume
that every generic surjection ideal of P is surjective image of F. Then every generic surjection
tdeal of Py is surjective image of Fy.

Using above results and following the proof of ([2], Theorem 5.9), the next result follows.

Theorem 4.9 Let A be an affine domain of dimension n > 2 over a real closed field k. Let P
and F = Q®A? be projective A-modules of rank n with A"P = A"F. Assume that every generic
surjection ideal of P is surjective image of F'. Then P has a unimodular element.

In particular, if L = A" P and every generic surjection ideal of P is surjective image of LA™ !,

then P has a unimodular element.

5 Weak Euler Class Group

Let A be a ring of dimension n > 2 and let F' = Q®A be a projective A-module of rank n. We
define the weak Euler class group Eg(A, F') of A with respect to F' as follows:

Let S be the set of ideals A of A such that A//A? is generated by n elements, where N is
M-primary ideal for some maximal ideal M of A of height n. Let G be the free abelian group on
the set S.

Let J = NN; be the intersection of finitely many ideals N;, where N; is M;-primary and M;’s
are distinct maximal ideals of A of height n. Assume that J/J? is generated by n elements. We
associate to J, the element Y N; of G. We denote this element by (.J).

Let H be the subgroup of G generated by elements of the type (J), where J is an ideal of A of
height n which is surjective image of F.

We set Eo(A, F) =G/H.

Let P be a projective A-module of rank n such that AP = A"F. Let A : P — .Jy be a generic
surjection. We define e(P) = (Jp) in Ey(A, F'). We will show that this assignment is well defined.

Let o : P — Jy be another generic surjection. By (2.2), there exists a surjection o(T') : P[T] —
— I, where T is an ideal of A[T] of height n with a(0) = A, I(0) = Jy, a(l) = p and I(1) = J;.
Now, as before, using (2.3), we see that (Jy) = (J1) in FEyg(A, F). This shows that e(P) is well
defined.



Note that there is a canonical surjection from E(A, F') to Eo(A, F') obtained by forgetting the
orientations.
We state the following result which follows from (4.3 and 4.5).

Lemma 5.1 Let A be a ring of even dimension n. Let P and F = Q®A? be projective A-modules
of rank n and let x : A"F = A"P be a F-orientation of P. Let e(P,x) = (J,wy) in E(A,F)
and let wy be another local F-orientation of J. Then there exists a projective A-module Py with
[P1] = [P] in Ko(A) and a F-orientation x1 of P1 such that e(P1,x1) = (J,wy) in E(A, F).

Proposition 5.2 Let A be a ring of even dimension n and let F = Q@A? be a projective A-module
of rank n. Let Jy and Jo be two comaximal ideals of A of height n and let J3 = Jy N Ja. If any two
of J1, J2 and Js are surjective images of projective A-modules of rank n which are stably isomorphic
to F', then so is the third one.

Proof Let P; and P; be two projective A-modules of rank n with [P1] = [P] = [F] in Ky(A)
and let ¥ : P, — J; and 5 : P, — J5 be two surjections. Choose F-orientations y; and ys of
Py and P; respectively. Then e(Py, x1) = (J1,wy,) and e(Py, x2) = (Jo,wy,) in E(A, F).

By (2.6), there exists an ideal J] of height n which is surjective image of both P; and F. Hence
e(Pr,x1) = (J1,wy,) = (Ji,wy) in E(A, F) for some local F-orientation wy; of Ji. Similarly,
there exists an ideal Jj of height n which is surjective image of both P, and F. Hence e(Ps, x2) =
(J2,wy,) = (Jy,wy;) in E(A, F) for some local F-orientation w;; of J3. Further, we may assume
that J{ + J5 = A. Let (J1,wy,) + (J2,wy,) = (J3,wy,) in E(A, F).

Let J; = Ji N J3. By addition principle (2.4), Jj is surjective image of F' and (Jj,w ) +
(J5,wyy) = (J3,wy;) in E(A, F). Hence (J3,wy;) = (Js3,wy,). Since Jj is surjective image of F,
by (5.1), there exists a projective A-module P; with [Ps] = [F] in K((A) and a F-orientation x3
of P3 such that e(Ps, x3) = (J3,wy;) = (J3,wy,) in E(A, F). By (3.3), there exists a surjection
13+ P3 — J3 such that (3, x3) induces (J3,wy,). This proves the first part.

Now assume that J; and J3 are surjective images of P3 and P| respectively, where P and Pf
are projective A-modules of rank n with [Ps;] = [P]] = [F] in K¢(4).

Let e(Ps, x3) = (J3,ws) for some F-orientation 3 of Ps and let (J3,w3) = (J1,w1) + (J2, w2)
in E(A,F). Let e(P{,x}) = (J1,w}) for some F-orientation x} of P{. By (5.1), there exists a
projective A-module P; of rank n with [P] = [P{] in Ko(A) and a F-orientation x; of P; such
that e(Py, x1) = (J1,w1) in E(A, F).

By (2.6), there exists an ideal J4 of height n which is surjective image of F' and P; both and
is comaximal with Jo such that e(P,x1) = (Ji,w1) = (Jg,wq). Write J5 = Jy N Jo. Then
(Jg,wq) + (J2,w2) = (J5,ws). This shows that e(Ps, x3) = (J3,ws) = (J5, ws).

Let e(F,x) = (Jy,wq) = 0. If (Jug,Wa) + (J2,w2) = (J5,ws), then (Jz,w2) = (J5,Ws). Since
e(Ps, x3) = (Js,ws), by (5.1), there exists a projective A-module Ps of rank n with [Ps] = [Ps] in
Ky(A) such that e(f’g,@g) = (J5,ws) = (J2,w2). Hence, by (3.3), Jz is a surjective image of Py
which is stably isomorphic to F. This completes the proof. g



Proposition 5.3 Let A be a ring of even dimension n and let F = Q®A? be a projective A-module
of rank n. Let J be an ideal of A of height n. Then (J) = 0 in Ey(A, F) if and only if J is a

surjective image of a projective A-module of rank n which is stably isomorphic to F.

Proof Let J; be an ideal of A of height n. Assume that J; is surjective image of a projective
A-module of rank n which is stably isomorphic to F. Assume (J1,wy,) is a non-zero element of
E(A,F). We will show that there exist height n ideals J; and J5 with local F-orientations wj,

and w,, respectively such that

(i) Ja, J3 are comaximal with any given ideal of height > 1,

(#) (Ji,wy) = —(J2,wy,) = (J3,wy,) in E(A, F) and

(ii1) Ja, J3 are surjective images of projective A-modules of rank n which are stably isomorphic
to F.

By (4.6), there exists an ideal Jy of height n which is comaximal with J; and any given ideal of
height > 1 such that (Jy,wy,) + (J2,wy,) = 0in E(A, F). By (3.2), J1 N J3 is surjective image of
F. By (5.2), Js is a surjective image of a projective A-module of rank n which is stably isomorphic
to F.

Repeating the above with (Ja,wy,), we get an ideal Js of height n which is comaximal with
any given ideal of height > 1 such that (Ja,wy,) + (J3,wy,) = 0 in E(A, F). Further, J; is a
surjective image of a projective A-module of rank n which is stably isomorphic to F. Thus, we
have (J1,wy,) = —(Jo,wy,) = (J3,wy,) in E(A, F). This proves the above claim.

From the above discussion, we see that given any element h in kernel of the canonical map
®: E(AF) — Ey(A, F), there exists an ideal J of height n such that J is surjective image of
a projective A-module of rank n which is stably isomorphic to F and h = (J, wy) in E(A, F).
Moreover, J can be chosen to be comaximal with any ideal of height > 1.

Now assume (J) = 0 in Eg(A, F). Choose some local F-orientation wy of J. Then (J,wy) €
ker(®). From previous paragraph, we get that there exists an ideal K of height n comaximal
with J such that —(J,wy) = (K,wk) in E(A, F). Further, K is surjective image of a projective
A-module which is stably isomorphic to F.

By (3.2), JNK is surjective image of F. By (5.2), J is surjective image of a projective A-module
of rank n which is stably isomorphic to F'.

Conversely, assume that J is surjective image of a projective A-module P of rank n which
is stably isomorphic to F. Let x be a F-orientation of P. Then e(P,x) = (J,wy) in E(A, F).
By (2.6), there exists an ideal I of height n which is surjective image of P and F' both. Then
e(P,x) = (J,wy) = (I,wy) in E(A, F). Therefore (J) = (I) in Ey(A, F) and hence (J) = 0 in
Ey(A, F). This completes the proof. O

Proposition 5.4 Let A be a ring of even dimension n and let F = Q®A? and P be projective
A-modules of rank n with A"P = A"F. Then e(P) = 0 in Eo(A, F) if and only if [P] = [P®A]
in Ko(A) for some projective A-module Py of rank n — 1.



Proof Assume that [P] = [P1®A] in Ko(A). By (2.6), there exists an ideal J of A of height n
which is surjective image of both P and Py®A. Hence e(Pi®A, x) = (J,wy) = 0in E(A, F), by
(3.4). Hence J is surjective image of F. By (5.3), e(P) = (J) =0 in Eo(A, F).

Conversely, assume that e(P) = 0 in Ey(A,F). Let ¢p : P — J be a generic surjection
and let e(P,x) = (J,wy) in E(A, F) for some F-orientation x of P. Since e(P) = (J) = 0 in
Eo(A, F), by (5.3), J is surjective image of a projective A-module P, with [P1] = [F] in Ky(A).
By (2.6), there exists an height n ideal J; which is surjective image of P; and F both. Let
e(Pr,x1) = (J,wy) = (J1,wy,) for some F-orientation y; of P;.

By (5.1), there exists a rank n projective A-module P, with [P2] = [P] in Ko(A) and a F-
orientation o of Py such that e(Pa, x2) = (J,wy) = (Ji,wy,) in E(A, F). Since Jy is surjective
image of F, (J1,wy,) = 0 in E(A, F) for some local F-orientation w,, of Ji. By (5.1), there
exists a projective A-module P3 with [P;] = [P;] in Ky(A) and a F-orientation 3 of Ps such that
e(P3, x3) = (J1,wy,) =0in E(A, F). Hence P3 = Py®A, by (3.4). Therefore [P] = [Ps] = [P4DA]
in Ko(A). This completes the proof. O

Proposition 5.5 Let A be a ring of even dimension n. Let P and F = Q®A? be projective A-
modules of rank n with A" P = A"F. Suppose that e(P) = (J) in Eq(A, F), where J is an ideal of
A of height n. Then there exists a projective A-module Py of rank n such that [P] = [P1] in Ko(A)

and J is a surjective image of Pj.

Proof Since P/JP is free and J/.J? is generated by n elements, we get a surjection ¢ : P/JP —
— J/J?. By (]2], Corollary 2.14), we can lift ¢ to a surjection ¢ : P — J N J;, where .J; is an
height n ideal comaximal with J. Let e(P,x) = (J,wy) + (J1,wy,) in E(A, F).

Since e(P) = (J) = (JNJy) in Eo(A, F), (J1) =0in Ey(A, F). By (5.3), J; is surjective image
of a projective A-module P, of rank n which is stably isomorphic to F. By (5.1), there exists
rank n projective A-module P; with [P2] = [Ps] in K(A) and a F-orientation x3 of P such that
e(Ps,x3) = (J1,wy,) in E(A, F).

By (2.6), there exists a height n ideal J5 of A which is comaximal with J and is surjective image
of F such that e(Ps, x3) = (J1,wy,) = (J2,wy,) in E(A, F). Hence e(P,x) = (J,wy)+ (J2,wy,) =
(J N J2,wing,)- By (3.3), there exists a surjection ¢ : P —— J N Ja. Since (J2,wy,) = 0 for some
local F-orientation wy, of Jo. Let (J,wy)+ (J2,wy,) = (JNJ2, Wyns,). By (4.3), there exists rank
n projective A-module Py with [P] = [P1] in K¢(A) and e(Py, x1) = (JNJa, Wyng,) = (J,wy). By
(3.3), there exists a surjection o : Py — J. This proves the result. O

The proof of the following result is similar to ([2], Proposition 6.5), hence we omit it.

Proposition 5.6 Let A be a ring of even dimension n and let J be an ideal of A of height n such
that J/J? is generated by n elements. Let F = Q®A? be a projective A-module of rank n and
let wy : F/JF — J/J? be a surjection. Suppose that the element (J,w;) of E(A, F) belongs to
the kernel of the canonical homomorphism E(A,F) — Eo(A, F). Then there erists a projective
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A-module Py of rank n such that [Py] = [F] in Ko(A) and e(P1,x1) = (J,wy) in E(A, F) for some
F-orientation x, of Py.

6 Application

Let A be a ring of dimension n > 2 and let L be a projective A-module of rank 1. We will
define a map A from E(A,L) to E(A, F), where FF = Q®A is a projective A-module of rank n
with determinant L. Let wy : L/JL®(A/J)"~t —- J/J? be a surjection. Since dim A/J = 0,
Q/JQ is isomorphic to L/JL®(A/J)"~2. Choose an isomorphism 0 : Q/JQ = L/JL&H(A/J)"~2
of determinant one. Let w; = wy o (0,id) : Q/JQ®A/J — J/J? be the surjection.

Assume that wj can be lifted to a surjection ® : LHA™"! — J. Write ® = (®1,a). We
may assume that ®;(L®A"2) = K is an ideal of height n — 1. Further, we may assume that
the isomorphism 6 : Q/JQ = L/JL®(A/J)"2 is induced from an isomorphism 6’ : Q/KQ =
L/KL®(A/K)"72 (ie. 0'A/J = 0).

Let (®3,a) : QBA — J = (K,a) be a lift of w;. Then ®:0A4/K : Q/KQ — K/K? is
a surjection. Let ¢ : Q@ — K be a lift of ®o@A/K. Then ¢2(Q) + K2 = K. Hence, there
exists e € K? with e(1 — e) € ¢2(Q) such that ¢2(Q) + Ae = K. Now it is easy to check that
$2(Q)+ Aa = ¢2(Q)+ (e+ (1 —e)a) = K+ Aa = J and (¢2,e+ (1 —e)a) : QDA — J is a lift of
wy.

Hence, we have shown that if w; can be lifted to a surjection from LHA™~! —— J, then
wy can be lifted to a surjection from Q®A to J. Further, if we choose different isomorphism
01 : Q/JQDA/J = L)JLH(A/J)"" ! of determinant one and w; = wy o0y : Q/JQDA/JT —
— J/J?, then w; and w; are connected by an element of EL(Q/JQ®A/J). Hence, if we define
A:E(A /L) — E(AF) by A(wy) = Wy, then this map is well defined. It is easy to see that A is
a group homomorphism.

Similarly, we can define a map A, : E(A, F) — E(A, L) and it is easy to show that Ao A; = id

and A; o A = id. Hence, we get the following interesting result:

Theorem 6.1 Let A be a ring of dimension n > 2. Let L and F' = Q@A be projective A-modules
of rank 1 and n respectively with A\"F = L. Then E(A, L) is isomorphic to E(A, F).

Let J be an ideal of A of height n such that J/.J? is generated by n elements. Further assume
that there exists a surjection o : L&A" ™! —- J. We will show that .J is also a surjective image of
F = Q®A. Let wy be the local L-orientation of J induced from «. Then (J,wy) = 0in E(A, L).
Hence A(J,wy) = (J,wy) =0 in E(A, F). Hence, by (3.2), J is a surjective image of F.

We define the map A : Eg(A, L) — Eo(A, F) by (J) — (J). The above discussion shows that
A is well defined. Similarly, we can define a map A; : Eg(A, F) — Eo(A, L) such that Ao Ay = id
and 51 o A = id. Thus we get the following interesting result:

Theorem 6.2 Let A be a ring of dimensionn > 2. Let L and F = Q@A be projective A-modules
of rank 1 and n respectively with A"F = L. Then Ey(A, L) is isomorphic to Eo(A, F).
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Since, by ([2], 6.8), Eo(A, L) is canonically isomorphic to Ey(A, A), we get the surprising result
that Fo(A, F') is canonically isomorphic to Eg(A4, A™) for any projective A-module F' = Q®A of
rank n.

We end with the following result which follows from (5.3).

Proposition 6.3 Let A be a ring of even dimension n and let J be an ideal of A of height n
such that J/J? is generated by n elements. Let L and P be projective A-modules of rank 1 and n
respectively such that P is stably isomorphic to L&A 1. Then J is surjective image of P if and
only if given any projective A-module Q of rank n — 2 with determinant L, there exists a projective
A-module P, which is stably isomorphic to QDA? such that J is surjective image of P.

References

[1] S.M. Bhatwadekar and M.K. Keshari, A question of Nori: projective generation of ideals, K-
Theory 28 (2003), 329-351.

[2] S.M. Bhatwadekar and Raja Sridharan, The Euler class group of a Noetherian ring, Compositio
Math. 122 (2000), 183-222.

[3] S.M. Bhatwadekar and A. Roy, Some theorems about projective modules over polynomial rings,
J. Algebra 86 (1984), 150-158.

12



