Some results on Euler class groups

Manoj K. Keshari

Department of Mathematics, IIT Mumbai, Mumbai - 400076, India; keshari@math.iitb.ac.in

Abstract: Let A be a regular domain of dimension d containing an infinite field and let n be an integer with $2n \ge d+3$. For a stably free A-module P of rank n, we will define the Euler class of P and prove that (i) P has a unimodular element if and only if the euler class of P is zero in $E^n(A)$ and (ii) we define Whitney class homomorphism $w(P): E^s(A) \to E^{n+s}(A)$, where $E^s(A)$ denotes the sth Euler class group of A for $s \ge 1$. Further we prove that if P has a unimodular element, then w(P) is the zero map.

Mathematics Subject Classification (2000): Primary 13C10.

Key words: Euler class group, Whitney class homomorphism.

1 Introduction

Let A be a commutative Noetherian ring of dimension d and let P be a projective A-module of rank r > d. Then a classical result of Serre [7] says that P has a unimodular element i.e. $P = Q \oplus A$ for some projective A-module Q of rank r - 1. This result is not true in general when $r \leq d$. To find the obstruction for a projective A-module P of rank d to have a unimodular element, Bhatwadekar and Raja Sridharan [2] defined the Euler class group of A w.r.t. a rank 1 projective A-module L, denoted by $E^d(A, L)$. To every pair (P, χ) , where P is a projective A-module of rank d with determinant L and $\chi : L \xrightarrow{\sim} \wedge^d P$ is an isomorphism, they associate an element $e(P, \chi)$ of $E^d(A, L)$. Then they proved that P has a unimodular element if and only if $e(P, \chi)$ is zero in $E^d(A, L)$. In other words, the non-vanishing of $e(P, \chi)$ is the precise obstruction for P to have a unimodular element. We would like to have similar obstruction results for projective A-modules P of rank r < d.

Let A be a regular ring of dimension d containing an infinite field k. For a positive integer n with $2n \ge d+3$, Bhatwadekar and Raja Sridharan [3] defined the n^{th} Euler class group of A, denoted by $E^n(A)$. For a projective A-module P of rank n such that $P \oplus A = A^{n+1}$, they associate an element e(P) of $E^n(A)$ and prove that P has a unimodular element if and only if e(P) is zero in $E^n(A)$. We will generalize this result for all stably free A-modules of rank n.

For a ring A of dimension d, Mandal and Yang [5] defined the s^{th} Euler class group of A for all $1 \leq s \leq d$, denoted by $E^s(A)$. Their definition is a natural generalisation of the one given by Bhatwadekar and Raja Sridharan. For any projective A-module P of rank n < d, they define a group homomorphism $w(P) : E^{d-n} \to E^d(A)$, called the Whitney class homomorphism. Further they prove that if P has a unimodular element, then w(P) is the zero map.

We will generalize above results as follows. Let A be a regular domain of dimension d containing an infinite field k. For a positive integer n with $2n \ge d+3$, we prove the following results:

(i) For a stably free A-module P of rank n, we will associate an element e(P) of $E^n(A)$ and prove that e(P) = 0 in $E^n(A)$ if and only if P has a unimodular element. When $P \oplus A \xrightarrow{\sim} A^{n+1}$, this result is due to Bhatwadekar and Raja Sridharan [3]. (ii) Given a stably free A-module Q of rank n, we define a Whitney class homomorphism w(Q): $E^{s}(A) \to E^{n+s}(A)$. Further, we prove that if Q has a unimodular element, then w(Q) is the zero map.

Note that, when n + s = d, (*ii*) is proved in [5] for arbitrary projective module Q over any Noetherian ring A. We would like to define the above map w(Q) for all projective A-module Q of rank n. For this, we need to define the euler class of Q in $E^n(A)$ (the non-vanishing of which should be the precise obstruction for Q to have a unimodular element). This is an open problem at present.

2 Euler class groups

All the rings considered are commutative Noetherian and all the modules are finitely generated. For a ring A of dimension $d \ge 2$ and $1 \le n \le d$, the *n*th Euler class group of A, denoted by $E^n(A)$ is defined in [5] as follows:

Let $E_n(A)$ denote the group generated by $n \times n$ elementary matrices over A and let $F = A^n$. A local orientation is a pair (I, w), where I is an ideal of A of height n and w is an equivalence class of surjective homomorphisms from F/IF to I/I^2 . The equivalence is defined by $E_n(A/I)$ -maps.

Let $L^n(A)$ denote the set of all pairs (I, w), where I is an ideal of height n such that Spec(A/I) is connected and $w: F/IF \longrightarrow I/I^2$ is a local orientation. Similarly, let $L_0^n(A)$ denote the set of all ideals I of height n such that Spec(A/I) is connected and there is a surjective homomorphism from F/IF to I/I^2 .

Let $G^n(A)$ denote the free abelian group generated by $L^n(A)$ and let $G_0^n(A)$ denote the free abelian group generated by $L_0^n(A)$.

Suppose I is an ideal of height n and $w: F/IF \to I/I^2$ is a local orientation. By ([3], Lemma 4.1), there is a unique decomposition $I = \bigcap_{i=1}^{r} I_i$, such that I_i 's are pairwise comaximal ideals of height n and Spec (A/I_i) is connected. Then w naturally induces local orientations $w_i: F/I_iF \to I_i/I_i^2$. Denote $(I, w) = \sum (I_i, w_i) \in G^n(A)$. Similarly we denote $(I) = \sum (I_i) \in G_0^n(A)$.

We say a local orientation $w: F/IF \to I/I^2$ is global if w can be lifted to a surjection $\Omega: F \to I$. Let $H^n(A)$ be the subgroup of $G^n(A)$ generated by global orientations. Also let $H^n_0(A)$ be the subgroup of $G^n_0(A)$ generated by (I) such that I is a surjective image of F.

The Euler class group of codimension n cycles is defined as $E^n(A) = G^n(A)/H^n(A)$ and the weak Euler class group of codimension n cycles is defined as $E_0^n(A) = G_0^n(A)/H_0^n(A)$.

2.1 Euler class of Stably free modules

Let A be a regular ring of dimension $d \ge 3$ containing an infinite field and let n be an integer such that $2n \ge d+3$. In [3], a map from $\operatorname{Um}_{n+1}(A)$ to $E^n(A)$ is defined and it is proved that, if P is a projective A-module of rank n defined by the unimodular element $[a_0, \ldots, a_n]$, then P has a unimodular element if and only if the image of $[a_0, \ldots, a_n]$ in $E^n(A)$ is zero ([3], Theorem 5.4) (Note that $P \oplus A \xrightarrow{\sim} A^{n+1}$). We will generalize this result for any stably free A-module of rank n.

For $r \ge 1$, let $\operatorname{Um}_{r,n+r}(A)$ be the set of all $r \times (n+r)$ matrices σ in $M_{r,n+r}(A)$ which has a right inverse, i.e. there exists $\tau \in M_{n+r,r}$ such that $\sigma \tau$ is the $r \times r$ identity matrix. For any element $\sigma \in \operatorname{Um}_{r,n+r}(A)$, we have an exact sequence

$$0 \to A^r \xrightarrow{\sigma} A^{n+r} \to P \to 0,$$

where $\sigma(v) = v\sigma$ for $v \in A^r$ and P is a stably free projective A-module of rank n. Hence, every element of $\operatorname{Um}_{r,n+r}(A)$ corresponds to a stably free projective A-module of rank n and conversely, any stably free projective A-module P of rank n will give rise to an element of $\operatorname{Um}_{r,n+r}(A)$ for some r. We will define a map from $\operatorname{Um}_{r,n+r}(A)$ to $E^n(A)$ which is a natural generalization of the map $\operatorname{Um}_{n+1}(A) \to E^n(A)$ defined in [3].

Let σ be an element of $\operatorname{Um}_{r,n+r}(A)$.

$$\sigma = \left[\begin{array}{ccc} a_{1,1} & \dots & a_{1,n+r} \\ \vdots & & \vdots \\ a_{r,1} & \dots & a_{r,n+r} \end{array} \right]$$

Let e_1, \ldots, e_{n+r} be the standard basis of A^{n+r} and let

$$P = A^{n+r} / (\sum_{i=1}^{n+r} a_{1,i} e_i, \dots, \sum_{i=1}^{n+r} a_{r,i} e_i) A.$$

Let p_1, \ldots, p_{n+r} be the images of e_1, \ldots, e_{n+r} respectively in P. Then

$$P = \sum_{i=1}^{n+r} A p_i \text{ with relations } \sum_{i=1}^{n+r} a_{1,i} p_i = 0, \dots, \sum_{i=1}^{n+r} a_{r,i} p_i = 0$$

To the triple $(P, (p_1, \ldots, p_{n+r}), \sigma)$, we associate an element $e(P, (p_1, \ldots, p_{n+r}), \sigma)$ of $E^n(A)$ as follows:

Let $\lambda : P \to J$ be a generic surjection, i.e. $J \subset A$ is an ideal of height n. Since $P \oplus A^r = A^{n+r}$ and $\dim A/J \leq d-n \leq n-3$, by [1], P/JP is a free A/J-module of rank n. Since J/J^2 is a surjective image of P/JP, J/J^2 is generated by n elements.

Let "bar" denote reduction modulo J. By Bass result ([1]), there exists $\Theta \in E_{n+r}(A/J)$ such that $[\overline{a_{1,1}}, \ldots, \overline{a_{1,n+r}}] \Theta = [1, 0, \ldots, 0]$. That means the first row of Θ^{-1} is $[\overline{a_{1,1}}, \ldots, \overline{a_{1,n+r}}]$. Let $\overline{\sigma} \Theta$ be given by

$$\overline{\sigma} \Theta = \begin{bmatrix} \frac{1}{b_{2,1}} & \frac{0}{b_{2,2}} & \dots & \frac{0}{b_{2,n+r}} \\ \vdots & \vdots & \vdots & \vdots \\ \overline{b_{r,1}} & \overline{b_{r,2}} & \dots & b_{r,n+r} \end{bmatrix}$$

Note that $[\overline{b_{2,2}}, \ldots, \overline{b_{2,n+r}}] \in \mathrm{Um}_{n+r-1}(A/J)$. Hence, by Bass result, we can find $\Theta_1 \in E_{n+r-1}(A/J)$ such that $[\overline{b_{2,2}}, \ldots, \overline{b_{2,n+r}}]\Theta_1 = [1, 0, \ldots, 0]$. Further any $\Phi \in E_m(A)$ can be thought of as an element of $E_{m+t}(A)$ as $\begin{bmatrix} Id_t & 0\\ 0 & \Phi \end{bmatrix}$, where Id_t is $t \times t$ identity matrix. Let

$$\overline{\sigma} \Theta \Theta_1 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ \overline{b_{2,1}} & 1 & \dots & 0 \\ \overline{b_{3,1}} & \overline{c_{3,2}} & \dots & \overline{c_{3,n+r}} \\ \vdots & \vdots & \vdots & \vdots \\ \overline{b_{r,1}} & \overline{c_{r,2}} & \dots & c_{r,n+r} \end{bmatrix}.$$

Continuing this way, we get $\widetilde{\Theta} \in E_{n+r}(A/J)$ such that

$$\overline{\sigma}\,\widetilde{\Theta} = \begin{bmatrix} 1 & 0 & \dots & & & 0 \\ \overline{b_{2,1}} & 1 & 0 & \dots & & 0 \\ \overline{b_{3,1}} & \overline{c_{3,2}} & 1 & 0 & \dots & & 0 \\ \vdots & \vdots & \vdots & & & \vdots \\ \overline{b_{r,1}} & \overline{c_{r,2}} & \dots & \overline{d_{r,r-1}} & 1 & \dots & 0 \end{bmatrix}.$$

We can find an elementary matrix $\Psi \in E_{n+r}(A/J)$ such that $\overline{\sigma} \Theta \Psi = [Id_r, \underline{0}]$, where $\underline{0}$ is $r \times n$ zero matrix. Let $\Delta = (\Theta \Psi)^{-1} \in E_{n+r}(A/J)$, then $\overline{\sigma}$ is the first r rows of Δ , i.e. $\overline{\sigma}$ can be completed to an elementary matrix Δ . Since

$$\sum_{i=1}^{n+r} a_{1,i} \, p_i = 0, \dots, \sum_{i=1}^{n+r} a_{r,i} \, p_i = 0,$$

we get

$$\Delta[\overline{p_1},\ldots,\overline{p_{n+r}}]^t = [0,\ldots,0,\overline{q_1},\ldots,\overline{q_n}]^t,$$

where t stands for transpose.

Thus $(\overline{q_1}, \ldots, \overline{q_n})$ is a basis of the free module P/JP. Let $w_J : (A/J)^n \to J/J^2$ be the surjection given by the set of generators $\overline{\lambda(q_1)}, \ldots, \overline{\lambda(q_n)}$ of J/J^2 .

We define $e(P, (p_1, \ldots, p_{n+r}), \sigma) = (J, w_J) \in E^n(A)$. We need to show that $e(P, (p_1, \ldots, p_{n+r}), \sigma)$ is independent of the choice of the elementary completion of $\overline{\sigma}$ and the choice of the generic surjection λ .

We begin with the following result which shows that $e(P, (p_1, \ldots, p_{n+r}), \sigma)$ is independent of the choice of the elementary completion of $\overline{\sigma}$.

Lemma 2.1 Suppose $\Gamma \in E_{n+r}(A/J)$ is chosen so that its first r rows are $\overline{\sigma}$. Let $\Gamma[\overline{p_1}, \ldots, \overline{p_{n+r}}]^t = [0, \ldots, 0, \overline{q'_1}, \ldots, \overline{q'_n}]^t$. Then there exists $\Psi \in E_n(A/J)$ such that $\Psi[\overline{q_1}, \ldots, \overline{q_n}]^t = [\overline{q'_1}, \ldots, \overline{q'_n}]$.

Proof The matrix $\Gamma \Delta^{-1} \in E_{n+r}(A/J)$ is such that its first r rows are $[Id_r, \underline{0}]$. Therefore, there exists $\Psi \in \operatorname{SL}_n(A/J) \cap E_{n+r}(A/J)$ such that $\Psi[\overline{q_1}, \ldots, \overline{q_n}]^t = [\overline{q_1'}, \ldots, \overline{q_n'}]^t$. Since $n > \dim A/J + 1$, by ([8], Theorem 3.2), $\Psi \in E_n(A/J)$.

Let $\widetilde{w_J}: (A/J)^n \to J/J^2$ be the surjection given by the set of generators $\overline{\lambda(q'_1)}, \ldots, \overline{\lambda(q'_n)}$ of J/J^2 . Then, by (2.1), $(J, w_J) = (J, \widetilde{w_J})$ in $E^n(A)$. Thus for a given surjection $\lambda : P \to J$, the element $e(P, (p_1, \ldots, p_{n+r}), \sigma)$ is independent of the choice of the elementary completion of $\overline{\sigma}$.

Now we have to show that $e(P, (p_1, \ldots, p_{n+r}), \sigma)$ is independent of the choice of the generic surjection λ . In other words, we have to show that if $\lambda' : P \to J'$ is another generic surjections where J' is an ideal of A of height n and $w_{J'} : (A/J')^n \to J'/J'^2$ is a surjection obtained as above by completing σ modulo J' to an element of $E_{n+r}(A/J')$, then $(J, w_J) = (J', w_{J'})$ in $E^n(A)$.

This independence is proved in ([3], p. 152-153) in case $P \oplus A = A^{n+1}$. The same proof works in the case $P \oplus A^r = A^{n+r}$, hence we omit the proof. Therefore we have a well defined map $e: \text{Um}_{r,n+r}(A) \to E^n(A)$. We denote $e(P, (p_1, \ldots, p_{n+r}), \sigma) \in E^n(A)$ by e(P) or $e(\sigma)$.

The following result is proved in ([3], Theorem 5.4) in case $P \oplus A$ is free. Since same proof works in our case, we omit the proof.

Theorem 2.2 Let A be a regular ring of dimension d containing an infinite field k and let n be an integer such that $2n \ge d+3$. Let P be a stably free A-module of rank n defined by $\sigma \in \text{Um}_{r,n+r}(A)$. Then P has a unimodular element if and only if $e(P) = e(\sigma) = 0$ in $E^n(A)$.

2.2 Whitney class homomorphism

Let A be a regular domain of dimension $d \ge 2$ containing an infinite field k and let Q be a stably free A-module of rank n with $2n \ge d+3$. In (2.2), we proved that e(Q) = 0 in $E^n(A)$ if and only if Q has a unimodular element. Using this result we will establish a whitney class homomorphism of stably free modules. When n+s = d, then (2.3) is proved in ([5], Theorem 3.1) for any projective A-module Q. Our proof is similar to [5].

Theorem 2.3 Let A be a regular domain of dimension $d \ge 2$ containing an infinite field k. Suppose Q is a stably free A-module of rank n defined by $\sigma \in \text{Um}_{r,n+r}(A)$. Then there exists a homomorphism $w(Q): E^s(A) \to E^{n+s}(A)$ for every integer $s \ge 1$ with $2n + s \ge d + 3$.

Proof Write $F = A^n$ and $F' = A^s$. Let I be an ideal of height s and $w : F'/IF' \to I/I^2$ be an equivalence class of surjections, where the equivalence is defined by $E_s(A/I) = E(F'/IF')$ maps. To each such pair (I, w), we will associate an element $w(Q) \cap (I, w) \in E^{n+s}(A)$.

First we can find an ideal $\widetilde{I} \subset A$ of height $\geq n + s$ and a surjective homomorphism $\psi : Q/IQ \longrightarrow \widetilde{I}/I$ (this is just the existence of a generic surjection of Q/IQ). Let $\psi \otimes A/\widetilde{I} = \widetilde{\psi}$. Then $\widetilde{\psi} : Q/\widetilde{I}Q \longrightarrow \widetilde{I}/(I + \widetilde{I}^2)$ is a surjection.

Since dim $A/\widetilde{I} \leq d - (n+s) \leq n-3$, $Q/\widetilde{I}Q$ is a free A/\widetilde{I} -module, by Bass result [1]. Let "bar" denotes reduction modulo \widetilde{I} . Then $\overline{\sigma} \in \text{Um}_{r,n+r}(\overline{A})$ can be completed to an elementary matrix $\Theta \in E_{n+r}(\overline{A})$. This gives a well defined basis $[\overline{q}_1, \ldots, \overline{q}_n]$ for \overline{Q} which does not depends on the elementary completions of $\overline{\sigma}$ (in the sense that any two basis of \overline{Q} obtained this way will be connected by an element of $E_n(\overline{A})$).

Let $\gamma : F/\widetilde{I}F \xrightarrow{\sim} Q/\widetilde{I}Q$ be the isomorphism given by $\gamma(\overline{e_i}) = \overline{q_i}$ for $i = 1, \ldots, n$, where e_1, \ldots, e_n is the standard basis of the free module F. Let $\beta = \widetilde{\psi}\gamma : F/\widetilde{I}F \longrightarrow \widetilde{I}/(I + \widetilde{I}^2)$ be a surjection and let $\beta' : F/\widetilde{I}F \to \widetilde{I}/\widetilde{I}^2$ be a lift of β .

Further, $w: F'/IF' \to I/I^2$ induces a surjection $\widetilde{w}: F'/\widetilde{I}F' \to (I+\widetilde{I}^2)/\widetilde{I}^2$. Composing \widetilde{w} with the natural inclusion $(I+\widetilde{I}^2)/\widetilde{I}^2 \subset \widetilde{I}/\widetilde{I}^2$, we get a map $w': F'/\widetilde{I}F' \to \widetilde{I}/\widetilde{I}^2$.

Combining w' and β' , it is easy to see that we get a surjective homomorphism

$$\Delta = \beta' \oplus w' : F/\widetilde{I}F \oplus F'/\widetilde{I}F' = (F \oplus F')/\widetilde{I}(F \oplus F') \longrightarrow \widetilde{I}/\widetilde{I}^2$$

(surjectivity follows by considering the exact sequence $0 \to (I + \tilde{I}^2)/\tilde{I}^2 \hookrightarrow \tilde{I}/\tilde{I}^2 \to \tilde{I}/(I + \tilde{I}^2) \to 0$). We have (\tilde{I}, Δ) a local orientation of \tilde{I} . We will show that the image of (\tilde{I}, Δ) in $E^{n+s}(A)$ is independent of choices of ψ , the lift β' and the representative of w in the equivalence class.

Step 1. First we show that for a fixed ψ , (\tilde{I}, Δ) in E^{n+s} is independent of the lift β' and the representative of w.

(a) Suppose $w, w_1 : F'/IF' \to I/I^2$ are two equivalent local orientations of I. Then $w_1 = w\epsilon$ for some $\epsilon \in E(F'/IF')$. Using the canonical homomorphisms $E(F'/IF') \to E(F'/\tilde{I}F') \to E((F \oplus F')/\tilde{I}(F \oplus F'))$, we get that $w'_1 = w'\epsilon_1$ for some $\epsilon_1 \in E((F \oplus F')/\tilde{I}(F \oplus F'))$.

Let Δ_1 be the local orientation of \tilde{I} obtained by using β' and w_1 . Then $\Delta_1 = \Delta \epsilon_1$. Hence $(\tilde{I}, \Delta) = (\tilde{I}, \Delta_1)$ in $E^{n+s}(A)$.

(b) Let $\beta'': F/\widetilde{I}F \to \widetilde{I}/\widetilde{I}^2$ be another lift of β . Then $\phi = \beta' - \beta'': F/\widetilde{I}F \to (I+\widetilde{I}^2)/\widetilde{I}^2$. Since $\widetilde{w}_1: F'/\widetilde{I}F' \to (I+\widetilde{I}^2)/\widetilde{I}^2$ is a surjection, there exists $g: F/\widetilde{I}F \to F'/\widetilde{I}F'$ such that $\widetilde{w}_1g = \phi$.

Let $\epsilon_2 = \begin{pmatrix} 1 & 0 \\ g & 1 \end{pmatrix} \in E((F \oplus F') / \widetilde{I}(F \oplus F'))$. Then $(\beta'' \oplus w'_1)\epsilon_2 = (\beta' \oplus w'_1)$. Therefore, if $\Delta_2 = \beta'' \oplus w'_1$, then $\Delta_2 \epsilon_2 = \Delta_1 = \Delta \epsilon_1$.

This completes the proof of the claim in step 1.

Step 2. Now we will show that $(\tilde{I}, \Delta) \in E^{n+s}(A)$ is independent of ψ also (i.e. it depends only on (I, w)).

Recall that $w: F'/IF' \to I/I^2$ is a surjection. It is easy to see that we can lift w to a surjection $\Omega: F' \to I \cap K$, where K + I = A and K is an ideal of height s (or K = A).

We can find an ideal $\widetilde{K} \subset A$ of height $\geq n + s$ and a surjective homomorphism $\psi' : Q/KQ \longrightarrow \widetilde{K}/K$. Let $\psi' \otimes A/\widetilde{K} = \widetilde{\psi}'$. Then $\widetilde{\psi}' : Q/\widetilde{K}Q \longrightarrow \widetilde{K}/(K + \widetilde{K}^2)$ is a surjection.

Again, since dim $A/\widetilde{K} \leq n-3$, $Q/\widetilde{K}Q$ is a free A/\widetilde{K} -module. If "bar" denotes reduction modulo \widetilde{K} , then $\overline{\sigma} \in \text{Um}_{r,n+r}(A/\widetilde{K})$ can be completed to an elementary matrix which gives a basis $\overline{p}_1, \ldots, \overline{p}_n$ for $Q/\widetilde{K}Q$. Let $\gamma' : F/\widetilde{K}F \xrightarrow{\sim} Q/\widetilde{K}Q$ be the isomorphism given by $\gamma'(\overline{e_i}) = \overline{p}_i$. Let $\eta = \widetilde{\psi'}\gamma' : F/\widetilde{K}F \longrightarrow \widetilde{K}/(I + \widetilde{K}^2)$ be a surjection and let $\eta' : F/\widetilde{K}F \to \widetilde{K}/\widetilde{K}^2$ be a lift of η .

The map $\Omega: F' \to I \cap K$ induces a surjection $\Omega \otimes A/K = \Omega': F'/KF' \to K/K^2$ which in turn induces a surjection $\Omega' \otimes A/\widetilde{K} = w'': F'/\widetilde{K}F' \to (K + \widetilde{K}^2)/\widetilde{K}^2$. Since $(K + \widetilde{K}^2) \subset \widetilde{K}$, we get a map $w'': F'/\widetilde{K}F' \to \widetilde{K}/\widetilde{K}^2$.

Combining w'' and η' , we get a surjection $\Delta' = \eta' \oplus w'' : (F \oplus F') / \widetilde{K}(F \oplus F') \longrightarrow \widetilde{K} / \widetilde{K}^2$.

Claim. $(\widetilde{I}, \Delta) + (\widetilde{K}, \Delta') = 0$ in $E^{n+s}(A)$.

Since I + K = A, we get $\tilde{I} + \tilde{K} = A$. Further, we get a surjection

$$\Psi = \psi \oplus \psi' : Q/(I \cap K)Q \simeq Q/IQ \oplus Q/KQ \longrightarrow \widetilde{I}/I \oplus \widetilde{K}/K \simeq (\widetilde{I} \cap \widetilde{K})/(I \cap K).$$

Let $\widetilde{\Psi}:Q\to \widetilde{I}\cap \widetilde{K}$ be a lift of Ψ such that the following holds:

(i) $\widetilde{\Psi} \otimes A/\widetilde{I} = \widetilde{\psi}$, where $\widetilde{\psi} : Q/\widetilde{I}Q \longrightarrow \widetilde{I}/(I + \widetilde{I}^2)$ is a surjection and (ii) $\widetilde{\Psi} \otimes A/\widetilde{K} = \widetilde{\psi}'$, where $\widetilde{\psi}' : Q/\widetilde{K}Q \longrightarrow \widetilde{K}/(K + \widetilde{K}^2)$ is a surjection.

Let $\widetilde{\Psi}_1 : Q/\widetilde{I}Q \to \widetilde{I}/\widetilde{I}^2$ be a lift of $\widetilde{\Psi} \otimes A/\widetilde{I}$ and let $\widetilde{\Psi}_2 : Q/\widetilde{K}Q \to \widetilde{K}/\widetilde{K}^2$ be a lift of $\widetilde{\Psi} \otimes A/\widetilde{K}$. Then $\widetilde{\Psi}_1$ and $\widetilde{\Psi}_2$ induces a map $\widetilde{\Psi}_3 : Q/(\widetilde{I} \cap \widetilde{K})Q \to (\widetilde{I} \cap \widetilde{K})/(\widetilde{I} \cap \widetilde{K})^2$.

Since $\beta = \tilde{\psi}\gamma = (\tilde{\Psi} \otimes A/\tilde{I})\gamma$ and $\beta' : F/\tilde{I}F \to \tilde{I}/\tilde{I}^2$ is a lift of β , we get that $\alpha_1 = \beta'\gamma^{-1} - \tilde{\Psi}_1$ is a map from $Q/\tilde{I}Q$ to $(I + \tilde{I}^2)/\tilde{I}^2 \subset \tilde{I}/\tilde{I}^2$. Similarly, $\alpha_2 = \eta'(\gamma')^{-1} - \tilde{\Psi}_2$ is a map from $Q/\tilde{K}Q$ to $(K + \tilde{K}^2)/\tilde{K}^2 \subset \tilde{K}/\tilde{K}^2$.

Since $\widetilde{w}: F'/\widetilde{I}F' \to (I+\widetilde{I}^2)/\widetilde{I}^2$ is a surjection, we can find $g_1: Q/\widetilde{I}Q \to F'/\widetilde{I}F'$ such that $\widetilde{w}g_1 = \alpha_1$. Similarly, we can find $g_2: Q/\widetilde{K}Q \to F'/\widetilde{K}F'$ such that $w''g_2 = \alpha_2$ (here $w'' = \Omega' \otimes A/\widetilde{K}$). Let g be given by g_1, g_2 and $\tilde{\gamma}$ be given by γ, γ' . Then

- (a) $\begin{pmatrix} \tilde{\gamma} & 0 \\ 0 & 1 \end{pmatrix}$ is an isomorphism from $(F \oplus F')/(\tilde{I} \cap \tilde{K})(F \oplus F')$ to $(Q \oplus F')/(\tilde{I} \cap \tilde{K})(Q \oplus F')$ and
- (b) $\begin{pmatrix} 1 & 0 \\ g & 1 \end{pmatrix}$ is an automorphism of $(Q \oplus F')/(\widetilde{I} \cap \widetilde{K})(Q \oplus F')$.

Write $\Gamma = \begin{pmatrix} 1 & 0 \\ g & 1 \end{pmatrix} \begin{pmatrix} \tilde{\gamma} & 0 \\ 0 & 1 \end{pmatrix}$. Since $\tilde{\Psi}$ is a lift of Ψ , Ψ is a surjection from $Q/(I \cap K)Q$ to $(\tilde{I} \cap \tilde{K})/(I \cap K)$ and $\Omega: F' \to I \cap K$ is a surjection, we get that $\tilde{\Psi} \oplus \Omega: Q \oplus F' \to \tilde{I} \cap \tilde{K}$ is a surjection.

Write $\Theta = (\widetilde{\Psi} \oplus \Omega) \otimes A/(\widetilde{I} \cap \widetilde{K})$. Then $\Theta : (Q \oplus F')/(\widetilde{I} \cap \widetilde{K})(Q \oplus F') \longrightarrow (\widetilde{I} \cap \widetilde{K})/(\widetilde{I} \cap \widetilde{K})^2$. Let $(\Delta, \Delta') : (F \oplus F')/(\widetilde{I} \cap \widetilde{K})(F \oplus F') \longrightarrow (\widetilde{I} \cap \widetilde{K})/(\widetilde{I} \cap \widetilde{K})^2$ be the surjection induced from Δ, Δ' . We claim that $(\Delta, \Delta') = \Theta \Gamma$. (This follows by checking on $V(\widetilde{I})$ and $V(\widetilde{K})$ separately, but we give a direct proof below.)

Let $\alpha_3 : Q/(\widetilde{I} \cap \widetilde{K})Q \to (\widetilde{I} \cap \widetilde{K})/(\widetilde{I} \cap \widetilde{K})^2$ be the map induced from α_1, α_2 and let $\tau : F/(\widetilde{I} \cap \widetilde{K}) \to (\widetilde{I} \cap \widetilde{K})/(\widetilde{I} \cap \widetilde{K})^2$ be the map induced from β', η' . Then we have $\alpha_3 = \tau \widetilde{\gamma}^{-1} - \widetilde{\Psi}_3$. Let $\overline{\Omega} : F'/(\widetilde{I} \cap \widetilde{K})F' \to (\widetilde{I} \cap \widetilde{K})/(\widetilde{I} \cap \widetilde{K})^2$ be the map induced from \widetilde{w}, w'' . Then we have $\overline{\Omega}g = \alpha_3$.

Now $\Theta\Gamma(0, y) = \Theta(0, y) = \overline{\Omega}(y) = (\Delta, \Delta')(0, y)$ and $\Theta\Gamma(x, 0) = \Theta(\widetilde{\gamma}(x), g\widetilde{\gamma}(x)) = \widetilde{\Psi}_3\widetilde{\gamma}(x) + \overline{\Omega}g\widetilde{\gamma}(x) = \widetilde{\Psi}_3\widetilde{\gamma}(x) + \tau\widetilde{\gamma}^{-1}\widetilde{\gamma}(x) - \widetilde{\Psi}_3\widetilde{\gamma}(x) = \tau(x) = (\Delta, \Delta')(x, 0).$

This proves that $(\Delta, \Delta') = \Theta \Gamma$. By ([3], Theorem 4.2), we get that $(\widetilde{I}, \Delta) + (\widetilde{K}, \Delta') = 0$ in $E^{n+s}(A)$. Since (\widetilde{K}, Δ') depends only on (I, w), it follows that (\widetilde{I}, Δ) is independent of the choice of ψ . This establishes the claim in step 2.

If (I, w) is a global orientation, then we can take K = A in the above proof and it will follow that (\tilde{I}, Δ) is also a global orientation.

Thus the association $(I, w) \mapsto (\widetilde{I}, \Delta) \in E^{n+s}(A)$ defines a homomorphism $\phi(Q) : G^s(A) \to E^{n+s}(A)$, where (I, w) are the free generators of $G^s(A)$. Further $\phi(Q)$ factors through a homomorphism $w(Q) : E^s(A) \to E^{n+s}(A)$ sending $(I, w) \in E^s(A)$ to $(\widetilde{I}, \Delta) \in E^{n+s}(A)$. This completes the proof of the theorem.

Corollary 2.4 Let A be a regular domain of dimension $d \ge 2$ containing an infinite field. Suppose Q is a stably free A-module of rank n. Then there exists a homomorphism $w_0(Q) : E_0^s(A) \to E_0^{n+s}(A)$ for every integer $s \ge 1$ with $2n + s \ge d + 3$.

Proof The proof is similar to that of (2.3) and we give an outline. Write $F = A^n$ and $F' = A^s$.

Suppose (I) is a generator of $G_0^s(A)$. Here I is an ideal of height s, Spec (A/I) is connected and there is a surjection from F'/IF' to I/I^2 . There is a surjection $\psi: Q/IQ \longrightarrow \widetilde{I}/I$, where \widetilde{I} is an ideal of height $\geq n + s$. For such a generator (I), we associate (\widetilde{I}) $\in E_0^{n+s}(A)$.

For well-definedness, fix a local orientation $w: F'/IF' \to I/I^2$ and a surjective lift $\Omega: F' \to I \cap K$ of w, where K is an ideal of height $\geq s$ and K + I = A. Let $\psi': Q/KQ \to \widetilde{K}/K$ be a surjection, where \widetilde{K} is an ideal of height $\geq n + s$. As in (2.3), there exists a surjection from $F \oplus F' \to \widetilde{I} \cap \widetilde{K}$. This shows that $(\widetilde{I}) + (\widetilde{K}) = 0$ in $E_0^{n+s}(A)$ and so $(\widetilde{I}) \in E_0^{n+s}(A)$ is independent of the choice of ψ .

The association $(I) \mapsto (I) \in E_0^{n+s}(A)$ extends to a homomorphism $\phi_0 : G_0^s(A) \to E_0^{n+s}(A)$.

If (I) is global (i.e. I is a surjective homomorphism of F'), then taking K = A in the above argument, we can prove that (\tilde{I}) is also global. So ϕ_0 factors through a homomorphism $w_0(Q) : E_0^s(A) \to E_0^{n+s}(A)$.

Definition 2.5 The homomorphism w(Q) in theorem 2.3 will be called the Whitney class homomorphism. The image of $(I, w) \in E^s(A)$ under w(Q) will be denoted by $w(Q) \cap (I, w)$.

Similarly, the homomorphism $w_0(Q)$ in (2.4) will be called the *weak Whitney class homomorphism*. The image of $(I) \in E_0^s(A)$ under $w_0(Q)$ will be denoted by $w_0(Q) \cap (I)$.

The proof of the following result is same as ([5], Corollary 3.4), hence we omit it.

Corollary 2.6 Let A be a regular domain of dimension $d \ge 2$ containing an infinite field. Suppose Q is a stably free A-module of rank n. For every integer $s \ge 1$ with $2n + s \ge d + 3$, we have

 $w_0(Q)\zeta^s = \zeta^{n+s}w(Q)$ and $C^n(Q^*)\eta^s = \eta^{n+s}w_0(Q)$,

where (i) $\zeta^r : E^r(A) \to E_0^r(A)$ is a natural surjection obtained by forgetting the orientation,

(ii) $\eta^r : E_0^r(A) \to CH^r(A)$ is a natural homomorphism, sending (I) to [A/I]. Here $CH^r(A)$ denotes the Chow group of cycles of codimension r in Spec (A) and

(iii) $C^n(Q^*)$ denote the top Chern class homomorphism [4].

The following result is about vanishing of Whitney class homomorphism. When n+s = d, it is proved in ([5], Theorem 3.5) for arbitrary projective module Q and our proof is an adaptation of [5]. We will follow the proof of (2.3) with necessary modifications.

Theorem 2.7 Let A be a regular domain of dimension $d \ge 2$ containing an infinite field. Suppose Q is a stably free A-module of rank n defined by $\sigma \in \text{Um}_{r,n+r}(A)$. Let $s \ge 1$ be an integer with $2n + s \ge d + 3$. Write $F = A^n$ and $F' = A^s$. Let I be an ideal of height s and let $w : F'/IF' \longrightarrow I/I^2$ be a surjection. If $Q/IQ = P_0 \oplus A/I$, then $w(Q) \cap (I, w) = 0$ in $E^{n+s}(A)$.

In particular, if $Q = P \oplus A$, then the homomorphism $w(Q) : E^s(A) \to E^{n+s}(A)$ is identically zero. Similar statements hold for $w_0(Q)$.

Proof Step 1. We can find an ideal $\widetilde{I} \subset A$ of height n+s and a surjective homomorphism $\psi : Q/IQ \to \widetilde{I}/I$. Let $\widetilde{\psi} = \psi \otimes A/\widetilde{I} : Q/\widetilde{I} \longrightarrow \widetilde{I}/(I + \widetilde{I}^2)$.

Let $\Omega: F' \to I$ be a lift of w and let $\overline{w} = w \otimes A/\widetilde{I}: F'/\widetilde{I}F' \to I/I\widetilde{I}$. Composing \overline{w} with the natural map $I/I\widetilde{I} \hookrightarrow \widetilde{I}/I\widetilde{I} \to \widetilde{I}/\widetilde{I}^2$, we get a map $w': F'/\widetilde{I}F' \to \widetilde{I}/\widetilde{I}^2$.

Since $Q/IQ = P_0 \oplus A/I$, we can write $\psi = (\theta, \overline{a})$ for some $a \in \widetilde{I}$ and $\theta \in P_0^*$. We may assume that $\psi(P_0) = \widetilde{J}/I$, for some ideal $\widetilde{J} \subset A$ of height n + s - 1. Note that $\widetilde{I} = (\widetilde{J}, a)$.

Since dim $A/\widetilde{J} = d - (n + s - 1) \leq n - 2$ and P_0/IP_0 is stably free A/I-module of rank n - 1, $P_0/\widetilde{J}P_0$ is free. If "prime" denotes reduction modulo \widetilde{J} , then σ' can be completed to an elementary matrix in $E_{n+r}(A/\widetilde{J})$. This gives a canonical basis of $P_0/\widetilde{J}P_0$, say q'_1, \ldots, q'_{n-1} . Let $\gamma' : (A/\widetilde{J})^{n-1} \xrightarrow{\sim} P_0/\widetilde{J}P_0$ be the isomorphism given by $[q'_1, \ldots, q'_{n-1}]$.

Let $\gamma : F/\widetilde{I}F = (A/\widetilde{I})^n \xrightarrow{\sim} Q/\widetilde{I}Q = P_0/\widetilde{I}P_0 \oplus A/\widetilde{I}$ be the isomorphism given by $(\gamma', 1)$, i.e. $\gamma = [\overline{q_1}, \ldots, \overline{q_{n-1}}, 1]$. Let $\beta = \widetilde{\psi}\gamma : F/\widetilde{I}F \longrightarrow \widetilde{I}/(I + \widetilde{I}^2)$ and let $\beta' : F/\widetilde{I}F \to \widetilde{I}/\widetilde{I}^2$ be a lift of β .

As in the proof of (2.3), combining w' and β' , we get a surjection $\Delta = \beta' \oplus w' : (F \oplus F') / \widetilde{I}(F \oplus F') \longrightarrow \widetilde{I}/\widetilde{I}^2$ and $(\widetilde{I}, \Delta) = w(Q) \cap (I, w)$. We claim that $(\widetilde{I}, \Delta) = 0$ in $E^{n+s}(A)$.

Step 2. In this step, we will prove the claim. The surjection $\theta : P_0 \longrightarrow \widetilde{J}/I$ induces a surjection $\overline{\theta} = \theta \otimes A/\widetilde{J} : P_0/\widetilde{J}P_0 \longrightarrow \widetilde{J}/(I + \widetilde{J}^2)$. Let $\zeta = \overline{\theta}\gamma' : (A/\widetilde{J})^{n-1} \longrightarrow \widetilde{J}/(I + \widetilde{J}^2)$ and let $\zeta' : (A/\widetilde{J})^{n-1} \to \widetilde{J}/\widetilde{J}^2$ be a lift of ζ .

If $\overline{\zeta'}$ denotes the composition of $\zeta' \otimes A/\widetilde{I} : (A/\widetilde{I})^{n-1} \to \widetilde{J}/\widetilde{J}\widetilde{I}$ with natural maps $\widetilde{J}/\widetilde{J}\widetilde{I} \hookrightarrow \widetilde{I}/\widetilde{J}\widetilde{I} \to \widetilde{I}/\widetilde{I}^2$, we get that $(\overline{\zeta'}, \overline{a})$ is a lift of $\beta : F/\widetilde{I}F \to \widetilde{I}/(I + \widetilde{I}^2)$. Since $w(Q) \cap (I, w)$ is independent of the lift β' of β , we may assume that $\beta' = (\overline{\zeta'}, \overline{a})$.

If $\delta: A^{n-1} \to \widetilde{J}$ is a lift of ζ' , then $(\delta, a, \Omega): F \oplus F' \to \widetilde{I}$ is a lift of (β', w') . If $\widetilde{J'}$ is the image of (δ, Ω) , then $\widetilde{J} = \widetilde{J'} + \widetilde{J^2}$. (To see this, let $y \in \widetilde{J}$, then there exists $x \in A^{n-1}$ such that $\delta(x) - y = y_1 + z$ for some $y_1 \in I$ and $z \in \widetilde{J^2}$. Choose $x_1 \in F'$ such that $y_1 - \Omega(x_1) = z_1 \in I^2 \subset \widetilde{J^2}$. Therefore $\delta(x) - \Omega(x_1) = y$ modulo $\widetilde{J^2}$.)

Since $\widetilde{J} = \widetilde{J'} + \widetilde{J}^2$, we can find $e \in \widetilde{J}^2$ such that $(1-e)\widetilde{J} \subset \widetilde{J'}$ and $\widetilde{J} = (\widetilde{J'}, e)$. Therefore by ([6], Lemma 1), $\widetilde{I} = (\widetilde{J}, a) = (\widetilde{J'}, b)$, where b = e + (1-e)a. Thus $(\delta, b, \Omega) : F \oplus F' \longrightarrow \widetilde{I}$ is a surjection which is a lift of $\beta' \oplus w'$. This proves that $(\widetilde{I}, \Delta) = 0$ in $E^{n+s}(A)$. This completes the proof.

References

- [1] H. Bass, K-Theory and stable algebra, I.H.E.S. 22 (1964), 5-60.
- [2] S.M. Bhatwadekar and Raja Sridharan, The Euler class group of a Noetherian ring, Compositio Math. 122 (2000), 183-222.
- [3] S.M. Bhatwadekar and Raja Sridharan, On Euler classes and stably free projective modules, Proceedings of the international colloquium on Algebra, Arithmetic and Geometry, Mumbai 2000, Narosa Publishing House, 139-158.
- [4] W. Fulton, Intersection theory, Second Ed., Springer Verlag, 1998.
- [5] S. Mandal and Y. Yang, Intersection theory of algebraic obstructions, J. Pure and Applied Algebra 214 (2010), 2279-2293.
- [6] N. Mohan Kumar, Complete intersections, J. MAth. Kyoto Univ. 17 (1977), 533-538.
- [7] J.P. Serre, Sur les modules projectifs, Sem. Dubreil-Pisot 14 (1960-61).
- [8] L.N. Vaserstein, On the stabilisation of the general linear group over a ring, Math. USSR. Sbornik 8 (1969), (English Translation) 383-400.