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Abstract: Let A be a regular domain of dimension d containing an infinite field and let n be an integer with

2n ≥ d + 3. For a stably free A-module P of rank n, we will define the Euler class of P and prove that (i) P

has a unimodular element if and only if the euler class of P is zero in En(A) and (ii) we define Whitney class

homomorphism w(P ) : Es(A)→ En+s(A), where Es(A) denotes the sth Euler class group of A for s ≥ 1. Further

we prove that if P has a unimodular element, then w(P ) is the zero map.
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1 Introduction

Let A be a commutative Noetherian ring of dimension d and let P be a projective A-module of rank
r > d. Then a classical result of Serre [7] says that P has a unimodular element i.e. P = Q⊕A for
some projective A-module Q of rank r − 1. This result is not true in general when r ≤ d. To find
the obstruction for a projective A-module P of rank d to have a unimodular element, Bhatwadekar and
Raja Sridharan [2] defined the Euler class group of A w.r.t. a rank 1 projective A-module L, denoted
by Ed(A,L). To every pair (P, χ), where P is a projective A-module of rank d with determinant L and
χ : L ∼→ ∧dP is an isomorphism, they associate an element e(P, χ) of Ed(A,L). Then they proved that
P has a unimodular element if and only if e(P, χ) is zero in Ed(A,L). In other words, the non-vanishing
of e(P, χ) is the precise obstruction for P to have a unimodular element. We would like to have similar
obstruction results for projective A-modules P of rank r < d.

Let A be a regular ring of dimension d containing an infinite field k. For a positive integer n with
2n ≥ d + 3, Bhatwadekar and Raja Sridharan [3] defined the nth Euler class group of A, denoted by
En(A). For a projective A-module P of rank n such that P⊕A = An+1, they associate an element e(P )
of En(A) and prove that P has a unimodular element if and only if e(P ) is zero in En(A). We will
generalize this result for all stably free A-modules of rank n.

For a ring A of dimension d, Mandal and Yang [5] defined the sth Euler class group of A for all
1 ≤ s ≤ d, denoted by Es(A). Their definition is a natural generalisation of the one given by Bhatwadekar
and Raja Sridharan. For any projective A-module P of rank n < d, they define a group homomorphism
w(P ) : Ed−n → Ed(A), called the Whitney class homomorphism. Further they prove that if P has a
unimodular element, then w(P ) is the zero map.

We will generalize above results as follows. Let A be a regular domain of dimension d containing an
infinite field k. For a positive integer n with 2n ≥ d+ 3, we prove the following results:

(i) For a stably free A-module P of rank n, we will associate an element e(P ) of En(A) and prove
that e(P ) = 0 in En(A) if and only if P has a unimodular element. When P⊕A ∼→ An+1, this result is
due to Bhatwadekar and Raja Sridharan [3].
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(ii) Given a stably free A-module Q of rank n, we define a Whitney class homomorphism w(Q) :
Es(A) → En+s(A). Further, we prove that if Q has a unimodular element, then w(Q) is the zero map.

Note that, when n+ s = d, (ii) is proved in [5] for arbitrary projective module Q over any Noetherian
ring A. We would like to define the above map w(Q) for all projective A-module Q of rank n. For
this, we need to define the euler class of Q in En(A) (the non-vanishing of which should be the precise
obstruction for Q to have a unimodular element). This is an open problem at present.

2 Euler class groups

All the rings considered are commutative Noetherian and all the modules are finitely generated. For a
ring A of dimension d ≥ 2 and 1 ≤ n ≤ d, the nth Euler class group of A, denoted by En(A) is defined
in [5] as follows:

Let En(A) denote the group generated by n× n elementary matrices over A and let F = An. A local
orientation is a pair (I, w), where I is an ideal of A of height n and w is an equivalence class of surjective
homomorphisms from F/IF to I/I2. The equivalence is defined by En(A/I)-maps.

Let Ln(A) denote the set of all pairs (I, w), where I is an ideal of height n such that Spec (A/I) is
connected and w : F/IF →→ I/I2 is a local orientation. Similarly, let Ln

0 (A) denote the set of all ideals
I of height n such that Spec (A/I) is connected and there is a surjective homomorphism from F/IF to
I/I2.

Let Gn(A) denote the free abelian group generated by Ln(A) and let Gn
0 (A) denote the free abelian

group generated by Ln
0 (A).

Suppose I is an ideal of height n and w : F/IF →→ I/I2 is a local orientation. By ([3], Lemma 4.1),
there is a unique decomposition I = ∩r

1Ii, such that Ii’s are pairwise comaximal ideals of height n and
Spec (A/Ii) is connected. Then w naturally induces local orientations wi : F/IiF →→ Ii/I

2
i . Denote

(I, w) =
∑

(Ii, wi) ∈ Gn(A). Similarly we denote (I) =
∑

(Ii) ∈ Gn
0 (A).

We say a local orientation w : F/IF →→ I/I2 is global if w can be lifted to a surjection Ω : F →→ I.
Let Hn(A) be the subgroup of Gn(A) generated by global orientations. Also let Hn

0 (A) be the subgroup
of Gn

0 (A) generated by (I) such that I is a surjective image of F.

The Euler class group of codimension n cycles is defined as En(A) = Gn(A)/Hn(A) and the weak
Euler class group of codimension n cycles is defined as En

0 (A) = Gn
0 (A)/Hn

0 (A).

2.1 Euler class of Stably free modules

Let A be a regular ring of dimension d ≥ 3 containing an infinite field and let n be an integer such that
2n ≥ d+ 3. In [3], a map from Umn+1(A) to En(A) is defined and it is proved that, if P is a projective
A-module of rank n defined by the unimodular element [a0, . . . , an], then P has a unimodular element if
and only if the image of [a0, . . . , an] in En(A) is zero ([3], Theorem 5.4) (Note that P⊕A ∼→ An+1). We
will generalize this result for any stably free A-module of rank n.

For r ≥ 1, let Umr,n+r(A) be the set of all r×(n+r) matrices σ inMr,n+r(A) which has a right inverse,
i.e there exists τ ∈ Mn+r,r such that στ is the r × r identity matrix. For any element σ ∈ Umr,n+r(A),
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we have an exact sequence
0 → Ar σ→ An+r → P → 0,

where σ(v) = vσ for v ∈ Ar and P is a stably free projective A-module of rank n. Hence, every element
of Umr,n+r(A) corresponds to a stably free projective A-module of rank n and conversely, any stably free
projective A-module P of rank n will give rise to an element of Umr,n+r(A) for some r. We will define
a map from Umr,n+r(A) to En(A) which is a natural generalization of the map Umn+1(A) → En(A)
defined in [3].

Let σ be an element of Umr,n+r(A).

σ =


a1,1 . . . a1,n+r

...
...

ar,1 . . . ar,n+r


Let e1, . . . , en+r be the standard basis of An+r and let

P = An+r/(
n+r∑
i=1

a1,i ei, . . . ,

n+r∑
i=1

ar,i ei)A.

Let p1, . . . , pn+r be the images of e1, . . . , en+r respectively in P . Then

P =
n+r∑
i=1

Api with relations
n+r∑
i=1

a1,i pi = 0, . . . ,
n+r∑
i=1

ar,i pi = 0.

To the triple (P, (p1, . . . , pn+r), σ), we associate an element e(P, (p1, . . . , pn+r), σ) of En(A) as follows:
Let λ : P →→ J be a generic surjection, i.e. J ⊂ A is an ideal of height n. Since P⊕Ar = An+r and

dimA/J ≤ d−n ≤ n− 3, by [1], P/JP is a free A/J-module of rank n. Since J/J2 is a surjective image
of P/JP , J/J2 is generated by n elements.

Let “bar” denote reduction modulo J . By Bass result ([1]), there exists Θ ∈ En+r(A/J) such that
[a1,1, . . . , a1,n+r] Θ = [1, 0, . . . , 0]. That means the first row of Θ−1 is [a1,1, . . . , a1,n+r]. Let σΘ be given
by

σΘ =


1 0 0 0
b2,1 b2,2 . . . b2,n+r

...
...

...
...

br,1 br,2 . . . br,n+r

 .
Note that [b2,2, . . . , b2,n+r] ∈ Umn+r−1(A/J). Hence, by Bass result, we can find Θ1 ∈ En+r−1(A/J)

such that [b2,2, . . . , b2,n+r]Θ1 = [1, 0, . . . , 0]. Further any Φ ∈ Em(A) can be thought of as an element of

Em+t(A) as

[
Idt 0
0 Φ

]
, where Idt is t× t identity matrix. Let

σΘΘ1 =



1 0 0 0
b2,1 1 . . . 0
b3,1 c3,2 . . . c3,n+r

...
...

...
...

br,1 cr,2 . . . cr,n+r

 .
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Continuing this way, we get Θ̃ ∈ En+r(A/J) such that

σ Θ̃ =



1 0 . . . 0
b2,1 1 0 . . . 0
b3,1 c3,2 1 0 . . . 0
...

...
...

...
br,1 cr,2 . . . dr,r−1 1 . . . 0

 .

We can find an elementary matrix Ψ ∈ En+r(A/J) such that σΘ̃Ψ = [Idr, 0], where 0 is r × n zero
matrix. Let ∆ = (Θ̃Ψ)−1 ∈ En+r(A/J), then σ is the first r rows of ∆, i.e. σ can be completed to an
elementary matrix ∆. Since

n+r∑
i=1

a1,i pi = 0, . . . ,
n+r∑
i=1

ar,i pi = 0,

we get
∆[p1, . . . , pn+r]t = [0, . . . , 0, q1, . . . , qn]t,

where t stands for transpose.
Thus (q1, . . . , qn) is a basis of the free module P/JP . Let wJ : (A/J)n →→ J/J2 be the surjection

given by the set of generators λ(q1), . . . , λ(qn) of J/J2.
We define e(P, (p1, . . . , pn+r), σ) = (J,wJ) ∈ En(A). We need to show that e(P, (p1, . . . , pn+r), σ) is

independent of the choice of the elementary completion of σ and the choice of the generic surjection λ.
We begin with the following result which shows that e(P, (p1, . . . , pn+r), σ) is independent of the choice

of the elementary completion of σ.

Lemma 2.1 Suppose Γ ∈ En+r(A/J) is chosen so that its first r rows are σ. Let Γ[p1, . . . , pn+r]t =
[0, . . . , 0, q′1, . . . , q′n]t. Then there exists Ψ ∈ En(A/J) such that Ψ[q1, . . . , qn]t = [q′1, . . . , q′n].

Proof The matrix Γ∆−1 ∈ En+r(A/J) is such that its first r rows are [Idr, 0]. Therefore, there exists
Ψ ∈ SLn(A/J) ∩ En+r(A/J) such that Ψ[q1, . . . , qn]t = [q′1, . . . , q′n]t. Since n > dimA/J + 1, by ([8],
Theorem 3.2), Ψ ∈ En(A/J). �

Let w̃J : (A/J)n →→ J/J2 be the surjection given by the set of generators λ(q′1), . . . , λ(q′n) of J/J2.
Then, by (2.1), (J,wJ) = (J, w̃J) in En(A). Thus for a given surjection λ : P →→ J , the element
e(P, (p1, . . . , pn+r), σ) is independent of the choice of the elementary completion of σ.

Now we have to show that e(P, (p1, . . . , pn+r), σ) is independent of the choice of the generic surjection
λ. In other words, we have to show that if λ′ : P →→ J ′ is another generic surjections where J ′ is an
ideal of A of height n and wJ′ : (A/J ′)n →→ J ′/J ′

2 is a surjection obtained as above by completing σ
modulo J ′ to an element of En+r(A/J ′), then (J,wJ) = (J ′, wJ′) in En(A).

This independence is proved in ([3], p. 152-153) in case P⊕A = An+1. The same proof works in the
case P⊕Ar = An+r, hence we omit the proof. Therefore we have a well defined map e : Umr,n+r(A) →
En(A). We denote e(P, (p1, . . . , pn+r), σ) ∈ En(A) by e(P ) or e(σ).

The following result is proved in ([3], Theorem 5.4) in case P⊕A is free. Since same proof works in
our case, we omit the proof.
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Theorem 2.2 Let A be a regular ring of dimension d containing an infinite field k and let n be an integer
such that 2n ≥ d+ 3. Let P be a stably free A-module of rank n defined by σ ∈ Umr,n+r(A). Then P has
a unimodular element if and only if e(P ) = e(σ) = 0 in En(A).

2.2 Whitney class homomorphism

Let A be a regular domain of dimension d ≥ 2 containing an infinite field k and let Q be a stably free
A-module of rank n with 2n ≥ d + 3. In (2.2), we proved that e(Q) = 0 in En(A) if and only if Q has
a unimodular element. Using this result we will establish a whitney class homomorphism of stably free
modules. When n+ s = d, then (2.3) is proved in ([5], Theorem 3.1) for any projective A-module Q. Our
proof is similar to [5].

Theorem 2.3 Let A be a regular domain of dimension d ≥ 2 containing an infinite field k. Suppose
Q is a stably free A-module of rank n defined by σ ∈ Umr,n+r(A). Then there exists a homomorphism
w(Q) : Es(A) → En+s(A) for every integer s ≥ 1 with 2n+ s ≥ d+ 3.

Proof Write F = An and F ′ = As. Let I be an ideal of height s and w : F ′/IF ′ →→ I/I2 be an
equivalence class of surjections, where the equivalence is defined by Es(A/I) = E(F ′/IF ′) maps. To
each such pair (I, w), we will associate an element w(Q) ∩ (I, w) ∈ En+s(A).

First we can find an ideal Ĩ ⊂ A of height ≥ n+ s and a surjective homomorphism ψ : Q/IQ→→ Ĩ/I

(this is just the existence of a generic surjection of Q/IQ). Let ψ⊗A/Ĩ = ψ̃. Then ψ̃ : Q/ĨQ →→
Ĩ/(I + Ĩ2) is a surjection.

Since dimA/Ĩ ≤ d−(n+s) ≤ n−3, Q/ĨQ is a free A/Ĩ-module, by Bass result [1]. Let “bar” denotes
reduction modulo Ĩ. Then σ ∈ Umr,n+r(A) can be completed to an elementary matrix Θ ∈ En+r(A).
This gives a well defined basis [q1, . . . , qn] for Q which does not depends on the elementary completions
of σ (in the sense that any two basis of Q obtained this way will be connected by an element of En(A)).

Let γ : F/ĨF ∼→ Q/ĨQ be the isomorphism given by γ(ei) = qi for i = 1, . . . , n, where e1, . . . , en is
the standard basis of the free module F . Let β = ψ̃γ : F/ĨF →→ Ĩ/(I + Ĩ2) be a surjection and let
β′ : F/ĨF → Ĩ/Ĩ2 be a lift of β.

Further, w : F ′/IF ′ →→ I/I2 induces a surjection w̃ : F ′/ĨF ′ →→ (I + Ĩ2)/Ĩ2. Composing w̃ with the
natural inclusion (I + Ĩ2)/Ĩ2 ⊂ Ĩ/Ĩ2, we get a map w′ : F ′/ĨF ′ → Ĩ/Ĩ2.

Combining w′ and β′, it is easy to see that we get a surjective homomorphism

∆ = β′⊕w′ : F/ĨF⊕F ′/ĨF ′ = (F⊕F ′)/Ĩ(F⊕F ′) →→ Ĩ/Ĩ2

(surjectivity follows by considering the exact sequence 0 → (I + Ĩ2)/Ĩ2 ↪→ Ĩ/Ĩ2 → Ĩ/(I + Ĩ2) → 0). We
have (Ĩ ,∆) a local orientation of Ĩ. We will show that the image of (Ĩ ,∆) in En+s(A) is independent of
choices of ψ, the lift β′ and the representative of w in the equivalence class.

Step 1. First we show that for a fixed ψ, (Ĩ ,∆) in En+s is independent of the lift β′ and the
representative of w.

(a) Suppose w,w1 : F ′/IF ′ →→ I/I2 are two equivalent local orientations of I. Then w1 =
wε for some ε ∈ E(F ′/IF ′). Using the canonical homomorphisms E(F ′/IF ′) →→ E(F ′/ĨF ′) →
E((F⊕F ′)/Ĩ(F⊕F ′)), we get that w′1 = w′ε1 for some ε1 ∈ E((F⊕F ′)/Ĩ(F⊕F ′)).
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Let ∆1 be the local orientation of Ĩ obtained by using β′ and w1. Then ∆1 = ∆ε1. Hence (Ĩ ,∆) =
(Ĩ ,∆1) in En+s(A).

(b) Let β′′ : F/ĨF → Ĩ/Ĩ2 be another lift of β. Then φ = β′ − β′′ : F/ĨF → (I + Ĩ2)/Ĩ2. Since
w̃1 : F ′/ĨF ′ →→ (I + Ĩ2)/Ĩ2 is a surjection, there exists g : F/ĨF → F ′/ĨF ′ such that w̃1g = φ.

Let ε2 =
(

1 0
g 1

)
∈ E((F⊕F ′)/Ĩ(F⊕F ′)). Then (β′′⊕w′1)ε2 = (β′⊕w′1). Therefore, if ∆2 = β′′⊕w′1,

then ∆2ε2 = ∆1 = ∆ε1.
This completes the proof of the claim in step 1.

Step 2. Now we will show that (Ĩ ,∆) ∈ En+s(A) is independent of ψ also (i.e. it depends only on
(I, w)).

Recall that w : F ′/IF ′ →→ I/I2 is a surjection. It is easy to see that we can lift w to a surjection
Ω : F ′ →→ I ∩K, where K + I = A and K is an ideal of height s (or K = A).

We can find an ideal K̃ ⊂ A of height ≥ n+ s and a surjective homomorphism ψ′ : Q/KQ→→ K̃/K.
Let ψ′⊗A/K̃ = ψ̃′. Then ψ̃′ : Q/K̃Q→→ K̃/(K + K̃2) is a surjection.

Again, since dimA/K̃ ≤ n− 3, Q/K̃Q is a free A/K̃-module. If “bar” denotes reduction modulo K̃,
then σ ∈ Umr,n+r(A/K̃) can be completed to an elementary matrix which gives a basis p1, . . . , pn for
Q/K̃Q. Let γ′ : F/K̃F ∼→ Q/K̃Q be the isomorphism given by γ′(ei) = pi. Let η = ψ̃′γ′ : F/K̃F →→
K̃/(I + K̃2) be a surjection and let η′ : F/K̃F → K̃/K̃2 be a lift of η.

The map Ω : F ′ →→ I ∩ K induces a surjection Ω⊗A/K = Ω′ : F ′/KF ′ →→ K/K2 which in turn
induces a surjection Ω′⊗A/K̃ = w′′ : F ′/K̃F ′ →→ (K + K̃2)/K̃2. Since (K + K̃2) ⊂ K̃, we get a map
w′′ : F ′/K̃F ′ → K̃/K̃2.

Combining w′′ and η′, we get a surjection ∆′ = η′⊕w′′ : (F⊕F ′)/K̃(F⊕F ′) →→ K̃/K̃2.

Claim. (Ĩ ,∆) + (K̃,∆′) = 0 in En+s(A).

Since I +K = A, we get Ĩ + K̃ = A. Further, we get a surjection

Ψ = ψ⊕ψ′ : Q/(I ∩K)Q ' Q/IQ⊕Q/KQ→→ Ĩ/I⊕K̃/K ' (Ĩ ∩ K̃)/(I ∩K).

Let Ψ̃ : Q→ Ĩ ∩ K̃ be a lift of Ψ such that the following holds:

(i) Ψ̃⊗A/Ĩ = ψ̃, where ψ̃ : Q/ĨQ→→ Ĩ/(I + Ĩ2) is a surjection and
(ii) Ψ̃⊗A/K̃ = ψ̃′, where ψ̃′ : Q/K̃Q→→ K̃/(K + K̃2) is a surjection.

Let Ψ̃1 : Q/ĨQ→ Ĩ/Ĩ2 be a lift of Ψ̃⊗A/Ĩ and let Ψ̃2 : Q/K̃Q→ K̃/K̃2 be a lift of Ψ̃⊗A/K̃. Then
Ψ̃1 and Ψ̃2 induces a map Ψ̃3 : Q/(Ĩ ∩ K̃)Q→ (Ĩ ∩ K̃)/(Ĩ ∩ K̃)2.

Since β = ψ̃γ = (Ψ̃⊗A/Ĩ)γ and β′ : F/ĨF → Ĩ/Ĩ2 is a lift of β, we get that α1 = β′γ−1 − Ψ̃1

is a map from Q/ĨQ to (I + Ĩ2)/Ĩ2 ⊂ Ĩ/Ĩ2. Similarly, α2 = η′(γ′)−1 − Ψ̃2 is a map from Q/K̃Q to
(K + K̃2)/K̃2 ⊂ K̃/K̃2.

Since w̃ : F ′/ĨF ′ →→ (I+ Ĩ2)/Ĩ2 is a surjection, we can find g1 : Q/ĨQ→ F ′/ĨF ′ such that w̃g1 = α1.
Similarly, we can find g2 : Q/K̃Q→ F ′/K̃F ′ such that w′′g2 = α2 (here w′′ = Ω′⊗A/K̃).
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Let g be given by g1, g2 and γ̃ be given by γ, γ′. Then

(a)
( eγ 0

0 1

)
is an isomorphism from (F⊕F ′)/(Ĩ ∩ K̃)(F⊕F ′) to (Q⊕F ′)/(Ĩ ∩ K̃)(Q⊕F ′) and

(b)
(

1 0
g 1

)
is an automorphism of (Q⊕F ′)/(Ĩ ∩ K̃)(Q⊕F ′).

Write Γ =
(

1 0
g 1

) ( eγ 0
0 1

)
. Since Ψ̃ is a lift of Ψ, Ψ is a surjection from Q/(I ∩K)Q to (Ĩ ∩ K̃)/(I ∩K)

and Ω : F ′ →→ I ∩K is a surjection, we get that Ψ̃⊕Ω : Q⊕F ′ →→ Ĩ ∩ K̃ is a surjection.

Write Θ = (Ψ̃⊕Ω)⊗A/(Ĩ ∩ K̃). Then Θ : (Q⊕F ′)/(Ĩ ∩ K̃)(Q⊕F ′) →→ (Ĩ ∩ K̃)/(Ĩ ∩ K̃)2. Let
(∆,∆′) : (F⊕F ′)/(Ĩ ∩ K̃)(F⊕F ′) →→ (Ĩ ∩ K̃)/(Ĩ ∩ K̃)2 be the surjection induced from ∆,∆′. We claim
that (∆,∆′) = ΘΓ. (This follows by checking on V (Ĩ) and V (K̃) separately, but we give a direct proof
below.)

Let α3 : Q/(Ĩ ∩ K̃)Q → (Ĩ ∩ K̃)/(Ĩ ∩ K̃)2 be the map induced from α1, α2 and let τ : F/(Ĩ ∩ K̃) →
(Ĩ∩K̃)/(Ĩ∩K̃)2 be the map induced from β′, η′. Then we have α3 = τ γ̃−1−Ψ̃3. Let Ω : F ′/(Ĩ∩K̃)F ′ →
(Ĩ ∩ K̃)/(Ĩ ∩ K̃)2 be the map induced from w̃, w′′. Then we have Ωg = α3.

Now ΘΓ(0, y) = Θ(0, y) = Ω(y) = (∆,∆′)(0, y) and ΘΓ(x, 0) = Θ(γ̃(x), gγ̃(x)) = Ψ̃3γ̃(x) + Ωgγ̃(x) =
Ψ̃3γ̃(x) + τ γ̃−1γ̃(x)− Ψ̃3γ̃(x) = τ(x) = (∆,∆′)(x, 0).

This proves that (∆,∆′) = ΘΓ. By ([3], Theorem 4.2), we get that (Ĩ ,∆) + (K̃,∆′) = 0 in En+s(A).
Since (K̃,∆′) depends only on (I, w), it follows that (Ĩ ,∆) is independent of the choice of ψ. This
establishes the claim in step 2.

If (I, w) is a global orientation, then we can take K = A in the above proof and it will follow that
(Ĩ ,∆) is also a global orientation.

Thus the association (I, w) 7→ (Ĩ ,∆) ∈ En+s(A) defines a homomorphism φ(Q) : Gs(A) → En+s(A),
where (I, w) are the free generators of Gs(A). Further φ(Q) factors through a homomorphism w(Q) :
Es(A) → En+s(A) sending (I, w) ∈ Es(A) to (Ĩ ,∆) ∈ En+s(A). This completes the proof of the theorem.
�

Corollary 2.4 Let A be a regular domain of dimension d ≥ 2 containing an infinite field. Suppose Q
is a stably free A-module of rank n. Then there exists a homomorphism w0(Q) : Es

0(A) → En+s
0 (A) for

every integer s ≥ 1 with 2n+ s ≥ d+ 3.

Proof The proof is similar to that of (2.3) and we give an outline. Write F = An and F ′ = As.

Suppose (I) is a generator of Gs
0(A). Here I is an ideal of height s, Spec (A/I) is connected and there

is a surjection from F ′/IF ′ to I/I2. There is a surjection ψ : Q/IQ→→ Ĩ/I, where Ĩ is an ideal of height
≥ n+ s. For such a generator (I), we associate (Ĩ) ∈ En+s

0 (A).

For well-definedness, fix a local orientation w : F ′/IF ′ →→ I/I2 and a surjective lift Ω : F ′ →→ I ∩K
of w, where K is an ideal of height ≥ s and K + I = A. Let ψ′ : Q/KQ→→ K̃/K be a surjection, where
K̃ is an ideal of height ≥ n+ s. As in (2.3), there exists a surjection from F⊕F ′ →→ Ĩ ∩ K̃. This shows
that (Ĩ) + (K̃) = 0 in En+s

0 (A) and so (Ĩ) ∈ En+s
0 (A) is independent of the choice of ψ.

The association (I) 7→ (Ĩ) ∈ En+s
0 (A) extends to a homomorphism φ0 : Gs

0(A) → En+s
0 (A).
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If (I) is global (i.e. I is a surjective homomorphism of F ′), then taking K = A in the above argument,
we can prove that (Ĩ) is also global. So φ0 factors through a homomorphism w0(Q) : Es

0(A) → En+s
0 (A).

�

Definition 2.5 The homomorphism w(Q) in theorem 2.3 will be called the Whitney class homomor-
phism. The image of (I, w) ∈ Es(A) under w(Q) will be denoted by w(Q) ∩ (I, w).

Similarly, the homomorphism w0(Q) in (2.4) will be called the weak Whitney class homomorphism.
The image of (I) ∈ Es

0(A) under w0(Q) will be denoted by w0(Q) ∩ (I).
The proof of the following result is same as ([5], Corollary 3.4), hence we omit it.

Corollary 2.6 Let A be a regular domain of dimension d ≥ 2 containing an infinite field. Suppose Q is
a stably free A-module of rank n. For every integer s ≥ 1 with 2n+ s ≥ d+ 3, we have

w0(Q)ζs = ζn+sw(Q) and Cn(Q∗)ηs = ηn+sw0(Q),

where (i) ζr : Er(A) →→ Er
0(A) is a natural surjection obtained by forgetting the orientation,

(ii) ηr : Er
0(A) → CHr(A) is a natural homomorphism, sending (I) to [A/I]. Here CHr(A) denotes

the Chow group of cycles of codimension r in Spec (A) and
(iii) Cn(Q∗) denote the top Chern class homomorphism [4].

The following result is about vanishing of Whitney class homomorphism. When n+s = d, it is proved
in ([5], Theorem 3.5) for arbitrary projective module Q and our proof is an adaptation of [5]. We will
follow the proof of (2.3) with necessary modifications.

Theorem 2.7 Let A be a regular domain of dimension d ≥ 2 containing an infinite field. Suppose Q is
a stably free A-module of rank n defined by σ ∈ Umr,n+r(A). Let s ≥ 1 be an integer with 2n+ s ≥ d+3.
Write F = An and F ′ = As. Let I be an ideal of height s and let w : F ′/IF ′ →→ I/I2 be a surjection. If
Q/IQ = P0⊕A/I, then w(Q) ∩ (I, w) = 0 in En+s(A).

In particular, if Q = P⊕A, then the homomorphism w(Q) : Es(A) → En+s(A) is identically zero.
Similar statements hold for w0(Q).

Proof Step 1. We can find an ideal Ĩ ⊂ A of height n+s and a surjective homomorphism ψ : Q/IQ→
→ Ĩ/I. Let ψ̃ = ψ⊗A/Ĩ : Q/Ĩ →→ Ĩ/(I + Ĩ2).

Let Ω : F ′ → I be a lift of w and let w = w⊗A/Ĩ : F ′/ĨF ′ →→ I/IĨ. Composing w with the natural
map I/IĨ ↪→ Ĩ/IĨ →→ Ĩ/Ĩ2, we get a map w′ : F ′/ĨF ′ → Ĩ/Ĩ2.

Since Q/IQ = P0⊕A/I, we can write ψ = (θ, a) for some a ∈ Ĩ and θ ∈ P ∗
0 . We may assume that

ψ(P0) = J̃/I, for some ideal J̃ ⊂ A of height n+ s− 1. Note that Ĩ = (J̃ , a).
Since dimA/J̃ = d− (n+ s− 1) ≤ n− 2 and P0/IP0 is stably free A/I-module of rank n− 1, P0/J̃P0

is free. If “prime” denotes reduction modulo J̃ , then σ′ can be completed to an elementary matrix in
En+r(A/J̃). This gives a canonical basis of P0/J̃P0, say q′1, . . . , q

′
n−1. Let γ′ : (A/J̃)n−1 ∼→ P0/J̃P0 be

the isomorphism given by [q′1, . . . , q
′
n−1].

Let γ : F/ĨF = (A/Ĩ)n ∼→ Q/ĨQ = P0/ĨP0⊕A/Ĩ be the isomorphism given by (γ′, 1), i.e. γ =
[q1, . . . , qn−1, 1]. Let β = ψ̃γ : F/ĨF →→ Ĩ/(I + Ĩ2) and let β′ : F/ĨF → Ĩ/Ĩ2 be a lift of β.
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As in the proof of (2.3), combining w′ and β′, we get a surjection ∆ = β′⊕w′ : (F⊕F ′)/Ĩ(F⊕F ′) →→
Ĩ/Ĩ2 and (Ĩ ,∆) = w(Q) ∩ (I, w). We claim that (Ĩ ,∆) = 0 in En+s(A).

Step 2. In this step, we will prove the claim. The surjection θ : P0 →→ J̃/I induces a surjection θ =
θ⊗A/J̃ : P0/J̃P0 →→ J̃/(I + J̃2). Let ζ = θγ′ : (A/J̃)n−1 →→ J̃/(I + J̃2) and let ζ ′ : (A/J̃)n−1 → J̃/J̃2

be a lift of ζ.
If ζ ′ denotes the composition of ζ ′⊗A/Ĩ : (A/Ĩ)n−1 → J̃/J̃ Ĩ with natural maps J̃/J̃ Ĩ ↪→ Ĩ/J̃ Ĩ →→

Ĩ/Ĩ2, we get that (ζ ′, a) is a lift of β : F/ĨF →→ Ĩ/(I + Ĩ2). Since w(Q) ∩ (I, w) is independent of the
lift β′ of β, we may assume that β′ = (ζ ′, a).

If δ : An−1 → J̃ is a lift of ζ ′, then (δ, a,Ω) : F⊕F ′ → Ĩ is a lift of (β′, w′). If J̃ ′ is the image of (δ,Ω),
then J̃ = J̃ ′+ J̃2. (To see this, let y ∈ J̃ , then there exists x ∈ An−1 such that δ(x)− y = y1 + z for some
y1 ∈ I and z ∈ J̃2. Choose x1 ∈ F ′ such that y1 − Ω(x1) = z1 ∈ I2 ⊂ J̃2. Therefore δ(x) − Ω(x1) = y

modulo J̃2.)
Since J̃ = J̃ ′ + J̃2, we can find e ∈ J̃2 such that (1 − e)J̃ ⊂ J̃ ′ and J̃ = (J̃ ′, e). Therefore by ([6],

Lemma 1), Ĩ = (J̃ , a) = (J̃ ′, b), where b = e+ (1− e)a. Thus (δ, b,Ω) : F⊕F ′ →→ Ĩ is a surjection which
is a lift of β′⊕w′. This proves that (Ĩ ,∆) = 0 in En+s(A). This completes the proof. �
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