Some results on Euler class groups
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Abstract: Let A be a regular domain of dimension d containing an infinite field and let n be an integer with
2n > d + 3. For a stably free A-module P of rank n, we will define the Euler class of P and prove that (i) P
has a unimodular element if and only if the euler class of P is zero in E"(A) and (i7) we define Whitney class
homomorphism w(P) : E*(A) — E™*(A), where E*(A) denotes the sth Euler class group of A for s > 1. Further

we prove that if P has a unimodular element, then w(P) is the zero map.
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1 Introduction

Let A be a commutative Noetherian ring of dimension d and let P be a projective A-module of rank
r > d. Then a classical result of Serre [7] says that P has a unimodular element i.e. P = Q@A for
some projective A-module @ of rank r — 1. This result is not true in general when r < d. To find
the obstruction for a projective A-module P of rank d to have a unimodular element, Bhatwadekar and
Raja Sridharan [2] defined the Euler class group of A w.r.t. a rank 1 projective A-module L, denoted
by E4(A, L). To every pair (P, x), where P is a projective A-module of rank d with determinant L and
X : L = AYP is an isomorphism, they associate an element e(P,x) of E4(A, L). Then they proved that
P has a unimodular element if and only if e(P, x) is zero in E4(A, L). In other words, the non-vanishing
of e(P, x) is the precise obstruction for P to have a unimodular element. We would like to have similar
obstruction results for projective A-modules P of rank r < d.

Let A be a regular ring of dimension d containing an infinite field k. For a positive integer n with
2n > d + 3, Bhatwadekar and Raja Sridharan [3] defined the n‘* Euler class group of A, denoted by
E™(A). For a projective A-module P of rank n such that P@A = A1 they associate an element e(P)
of E™(A) and prove that P has a unimodular element if and only if e(P) is zero in E™(A). We will
generalize this result for all stably free A-modules of rank n.

For a ring A of dimension d, Mandal and Yang [5] defined the s** Euler class group of A for all
1 < s < d, denoted by E*(A). Their definition is a natural generalisation of the one given by Bhatwadekar
and Raja Sridharan. For any projective A-module P of rank n < d, they define a group homomorphism
w(P) : B4 — E94(A), called the Whitney class homomorphism. Further they prove that if P has a
unimodular element, then w(P) is the zero map.

We will generalize above results as follows. Let A be a regular domain of dimension d containing an
infinite field k. For a positive integer n with 2n > d + 3, we prove the following results:

(i) For a stably free A-module P of rank n, we will associate an element e(P) of E™(A) and prove
that e(P) = 0 in E"(A) if and only if P has a unimodular element. When P®A = A"+ this result is
due to Bhatwadekar and Raja Sridharan [3].



(it) Given a stably free A-module @ of rank n, we define a Whitney class homomorphism w(Q) :
E$(A) — E™*5(A). Further, we prove that if @ has a unimodular element, then w(Q) is the zero map.

Note that, when n+ s = d, (ii) is proved in [5] for arbitrary projective module @) over any Noetherian
ring A. We would like to define the above map w(Q) for all projective A-module @ of rank n. For
this, we need to define the euler class of @ in E™(A) (the non-vanishing of which should be the precise
obstruction for @) to have a unimodular element). This is an open problem at present.

2 Euler class groups

All the rings considered are commutative Noetherian and all the modules are finitely generated. For a
ring A of dimension d > 2 and 1 < n < d, the nth Euler class group of A, denoted by E™(A) is defined
in [5] as follows:

Let E, (A) denote the group generated by n x n elementary matrices over A and let F' = A™. A local
orientation is a pair (I, w), where I is an ideal of A of height n and w is an equivalence class of surjective
homomorphisms from F/IF to I/I?. The equivalence is defined by E,,(A/I)-maps.

Let L™(A) denote the set of all pairs (I, w), where I is an ideal of height n such that Spec (A/T) is
connected and w : F/IF —- I/I? is a local orientation. Similarly, let Lj(A) denote the set of all ideals
I of height n such that Spec (A/I) is connected and there is a surjective homomorphism from F/IF to
I/12.

Let G™(A) denote the free abelian group generated by L™(A) and let Gfj(A) denote the free abelian
group generated by Lj(A).

Suppose [ is an ideal of height n and w : F/IF —- I/I? is a local orientation. By ([3], Lemma 4.1),
there is a unique decomposition I = N]I;, such that I;’s are pairwise comaximal ideals of height n and
Spec (A/I;) is connected. Then w naturally induces local orientations w; : F/I;F — I;/I?. Denote
(I,w) = > (I;,w;) € G*(A). Similarly we denote (I) = > (I;) € Gg(A).

We say a local orientation w : F//IF — I/I? is global if w can be lifted to a surjection  : F —- I.
Let H™(A) be the subgroup of G™(A) generated by global orientations. Also let HJ'(A) be the subgroup
of Gfj(A) generated by (I) such that I is a surjective image of F.

The Euler class group of codimension n cycles is defined as E™"(A) = G"(A)/H"(A) and the weak
Euler class group of codimension n cycles is defined as Ef(A) = G§(A)/HJ (A).

2.1 Euler class of Stably free modules

Let A be a regular ring of dimension d > 3 containing an infinite field and let n be an integer such that
2n > d + 3. In [3], a map from Um,11(A) to E™(A) is defined and it is proved that, if P is a projective
A-module of rank n defined by the unimodular element [ag, ..., a,], then P has a unimodular element if
and only if the image of [ag, ..., a,] in E"(A) is zero ([3], Theorem 5.4) (Note that P&A = A"T1). We
will generalize this result for any stably free A-module of rank n.

For r > 1, let Um, ,,4,(A) be the set of all  x (n+7r) matrices o in M,. ,, 4+, (A) which has a right inverse,

i.e there exists 7 € My, such that o7 is the r x r identity matrix. For any element o € Um, ,,1,.(A),



we have an exact sequence

0— A" 5 A" - P — 0,

where o(v) = vo for v € A™ and P is a stably free projective A-module of rank n. Hence, every element
of Um, 4 (A) corresponds to a stably free projective A-module of rank n and conversely, any stably free
projective A-module P of rank n will give rise to an element of Um, 4, (A) for some r. We will define
a map from Um, ,4,(A) to E"(A) which is a natural generalization of the map Um,41(A) — E™(A)
defined in [3].

Let o be an element of Um, 4, (A4).

a1 ... Glnr
o=
ar1 oo Gpptr
Let e1,..., e, be the standard basis of A" and let
n+r n+r
P = A”J”/(Z a1, €y -y Z ar;ei)A.
i=1 i=1
Let p1,...,pntr be the images of ey, ..., e,4, respectively in P. Then
n+r n+r n+r
P = Z A p; with relations Z a1,;pi =0,..., Z ar;p; =0.
i=1 i=1 i=1

To the triple (P, (p1,...,Dnir),0), we associate an element e(P, (p1,...,Pnir),0) of E™(A) as follows:
Let X : P — J be a generic surjection, i.e. J C A is an ideal of height n. Since P@A” = A™" and
dimA/J <d—n <n-3,by[l], P/JP is a free A/J-module of rank n. Since J/J? is a surjective image
of P/JP, J/J? is generated by n elements.
Let “bar” denote reduction modulo J. By Bass result ([1]), there exists © € E,;,.(A/J) such that

[@11,--,@1ntr © =[1,0,...,0]. That means the first row of ©~1 is [a11,...,@1,4+]. Let 7O be given
by
1 0 0 0
E E e b2,n+r
7O =
m @ e br,n+r

Note that [b2,2,...,b2 ntr] € Umpir—1(A4/J). Hence, by Bass result, we can find ©1 € E,4,_1(A4/J)

such that [ba2,...,b2 n1r|01 =[1,0,...,0]. Further any ® € F,,(A) can be thought of as an element of

Id, 0
E+t(A) as Ot o | where Id; is t x t identity matrix. Let

o 1 ... 0
e @1 — b3’1 C32 ... C3ntr
br,l Cr,2 Cron+tr



Continuing this way, we get © € E,4,.(A/.J) such that

1 0 . 0
by 10 . 0
7O = b3q1 c32 1 0 0
by @5 .. dosi 1 .. 0

s

We can find an elementary matrix ¥ € E,;,(A/J) such that 7OU = [Id,0], where 0 is X n zero
matrix. Let A = (OW)~! € B, ,,(A/J), then 7 is the first r rows of A, i.e. & can be completed to an

elementary matrix A. Since
n+r n—+r

Z ar;pi =0,..., Zampi =0,
i=1 i=1

we get
A[ﬁ?"')pn"rT}t = [07"'707ﬁ7"'7%]t7

where t stands for transpose.
Thus (q1,-..,n) is a basis of the free module P/JP. Let wy : (A/J)™ — J/J? be the surjection

given by the set of generators A(q1),. .., A(gn) of J/J2.
We define e(P, (p1,...,Pntr),0) = (J,wy) € E"(A). We need to show that e(P, (p1,...,Dntr),0) is
independent of the choice of the elementary completion of & and the choice of the generic surjection A.
We begin with the following result which shows that e(P, (p1,...,Pnir), o) is independent of the choice
of the elementary completion of 7.

Lemma 2.1 Suppose I' € E,1,.(A/J) is chosen so that its first r rows are &. Let U[p1,...,Dnir)t =

[0,...,0,¢,,...,q,]t. Then there exists U € E,(A/J) such that O[T, ..., Gt = (4}, .., q4)-

Proof The matrix TA™! € E,,;,.(A/J) is such that its first r rows are [Id,.,0]. Therefore, there exists
U € SL,(A/J) N Enyr(A/J) such that VgL, ..., G]" = [qf,....q,]". Since n > dim A/J + 1, by ([8],
Theorem 3.2), ¥ € E,(A/J). |

Let wy : (A/J)" —= J/J? be the surjection given by the set of generators A(q}),...,A(q,) of J/J.
Then, by (2.1), (Jywy) = (J,wy) in E"(A). Thus for a given surjection A\ : P —— J, the element
e(P, (p1,--+,Pn+r),0) is independent of the choice of the elementary completion of 7.

Now we have to show that e(P, (p1,...,Pntr), o) is independent of the choice of the generic surjection
A. In other words, we have to show that if X' : P —— J’ is another generic surjections where J’ is an
ideal of A of height n and wy, : (A/J')* — J'/J’* is a surjection obtained as above by completing o
modulo J’ to an element of E,4,.(A/J"), then (J,wy) = (J,wy) in E™(A).

This independence is proved in ([3], p. 152-153) in case P@A = A"*!. The same proof works in the
case P@A” = A™" hence we omit the proof. Therefore we have a well defined map e : Um,. 4, (4) —
E"™(A). We denote e(P, (p1,-..,Pntr),0) € E"(A) by e(P) or e(o).

The following result is proved in ([3], Theorem 5.4) in case P®A is free. Since same proof works in

our case, we omit the proof.



Theorem 2.2 Let A be a reqular ring of dimension d containing an infinite field k and let n be an integer
such that 2n > d+3. Let P be a stably free A-module of rank n defined by o € Umy, 4, (A). Then P has
a unimodular element if and only if e(P) = e(o0) =0 in E™(A).

2.2 Whitney class homomorphism

Let A be a regular domain of dimension d > 2 containing an infinite field k£ and let @) be a stably free
A-module of rank n with 2n > d + 3. In (2.2), we proved that ¢(Q) = 0 in E"(A) if and only if @ has
a unimodular element. Using this result we will establish a whitney class homomorphism of stably free
modules. When n+ s = d, then (2.3) is proved in ([5], Theorem 3.1) for any projective A-module Q. Our

proof is similar to [5].

Theorem 2.3 Let A be a regular domain of dimension d > 2 containing an infinite field k. Suppose
Q is a stably free A-module of rank n defined by o € Um, ,,4,(A). Then there exists a homomorphism
w(Q) : E5(A) — E™5(A) for every integer s > 1 with 2n+ s > d + 3.

Proof Write F' = A" and F’' = A®. Let I be an ideal of height s and w : F'/IF’ —- I/I? be an
equivalence class of surjections, where the equivalence is defined by E (A/I) = E(F'/IF') maps. To
each such pair (I, w), we will associate an element w(Q) N (I, w) € E"T5(A).

First we can find an ideal I C A of height > n + s and a surjective homomorphism ¢ : Q/IQ — T/I
(this is just the existence of a generic surjection of Q/IQ). Let w®A/f = 4. Then 1 : Q/TQ —
I/(I + I?) is a surjection.

Since dim A/I < d— (n+s) <n—3, Q/IQ is a free A/I-module, by Bass result [1]. Let “bar” denotes
reduction modulo I. Then & € Um, ,,+,(A) can be completed to an elementary matrix © € E,,1,.(A).
This gives a well defined basis [q;,...,q,] for @ which does not depends on the elementary completions
of & (in the sense that any two basis of @ obtained this way will be connected by an element of E,,(A)).

Let v : F/TF = Q/TQ be the isomorphism given by v(e;) = g, for i = 1,...,n, where ey,..., e, is
the standard basis of the free module F. Let 8 = ¢y : F/IF — I/(I + I2) be a surjection and let
B : F/IF — I/I? be a lift of 8.

Further, w : F'/IF" — I/I? induces a surjection @ : F’/IF’ — (I +12)/I2. Composing @ with the
natural inclusion (I + I2)/1% C I/I2, we get a map w' : F'/IF' — I/I2.

Combining w’ and ', it is easy to see that we get a surjective homomorphism

A=paw : F/IF&F |IF = (F&F)/I(FOF') — 1/1?
(surjectivity follows by considering the exact sequence 0 — (I + I~2)/I~2 — IN/f2 —I/(I+ ﬁ) — 0). We
have (I, A) a local orientation of I. We will show that the image of (I, A) in E"*(A) is independent of

choices of 1, the lift 4’ and the representative of w in the equivalence class.

Step 1. First we show that for a fixed 1, (IN ,A) in E™¢ is independent of the lift 3 and the
representative of w.

(a) Suppose w,w; : F'/IF' —— I/I? are two equivalent local orientations of I. Then w; =
we for some ¢ € E(F'/IF'). Using the canonical homomorphisms E(F'/IF') — E(F'/IF') —

E((FoF')/I(F®F'")), we get that w] = w’e; for some €; € E((F®F')/I(FOF")).



Let A; be the local orientation of T obtained by using 3’ and w;. Then A; = Ae;. Hence (f, A) =
(I,Ay) in E™Fs(A).

(b) Let 8" : F/IF — I/I? be another lift of 3. Then ¢ = ' — 3" : F/IF — (I + I%)/I2. Since
@y : F'JIF' — (I +I2)/I? is a surjection, there exists g : F/IF — F'/IF’ such that @9 = 6.

Let o = (19) € BE(F&F')/I(F&F')). Then (8"@&uw))e; = (F'@w)). Therefore, if Ay = §"@wf,
then AQEQ = Al = Ael.

This completes the proof of the claim in step 1.

Step 2. Now we will show that (I, A) € E"5(A) is independent of ¢ also (i.e. it depends only on
(1,w)).

Recall that w : F'/IF' — I/I? is a surjection. It is easy to see that we can lift w to a surjection
O:F' — INK, where K + 1 = A and K is an ideal of height s (or K = A).

We can find an ideal K C A of height > n + s and a surjective homomorphism ¢’ : Q/KQ —— I?/K
Let v/ ® A/K = ¢'. Then ¢/ : Q/KQ — K /(K + K?) is a surjection.

Again, since dim A/IN( <n-3, Q/I?Q is a free A/f(—module. If “bar” denotes reduction modulo I?,
then & € Umrm_w(A/f() can be completed to an elementary matrix which gives a basis p,,...,p, for
Q/I?Q Let ~' : F/I?F = Q/I?Q be the isomorphism given by +/(g;) = p,. Let n = oy F/I?F —
K /(I + K?) be a surjection and let o : F/KF — K /K2 be a lift of 7.

The map Q : F/ — I N K induces a surjection Q@ A/K = Q' : F'/KF' — K/K? which in turn
induces a surjection ' ® A/K = w" : F'/KF' — (K + K2)/K?2. Since (K + K2?) C K, we get a map
W FRE — RJR?

Combining w” and 7/, we get a surjection A’ = /@w” : (F&F')/K(F®F') — K /K.

Claim. (I,A) + (K,A’) = 0 in E"t5(A).
Since I + K = A, we get I + K = A. Further, we get a surjection
U=y :Q/(INK)Q~Q/IQPQ/KQ — I/I&K/K ~(INK)/INK).

Let U: Q — I N K be a lift of ¥ such that the following holds:

(i) W& A/T =1, where ¢ : Q/IQ — I/(I + I?) is a surjection and
(i) U@ A/K =9/, where ¢/ : Q/KQ — K /(K + K?2) is a surjection.

Let Uy : Q/IQ — I/I% be alift of U@ A/T and let ¥y : Q/KQ — K/K? be a lift of ¥ ® A/K. Then
¥, and Wy induces a map Vs : Q/(INK)Q — (INK)/(INK)2

Since 8 = ¢y = (@@A/f)'y and 3’ : F/TF — f/fz is a lift of 8, we get that oy = By~ ! — U,
is a map from Q/IQ to (I + I12)/I2 ¢ I/I%. Similarly, ay = 7/(7')"! — Wy is a map from Q/KQ to
(K + K?)/K? c K/K>.

Since @ : F'/IF' — (I+12)/I? is a surjection, we can find g1 : Q/IQ — F'/IF’ such that Wg, = a.
Similarly, we can find g, : Q/KQ — F'/KF' such that w”gy = as (here w” = Q' ® A/K).



Let g be given by g1, 92 and 5 be given by 7,~'. Then

(a) (g (1)) is an isomorphism from (F@F')/( )(F@F') to (Q@F’)/(fﬁ [?)(Q@F') and
19Y is an automorphism of (QEF")/(I N K)(Q®F).

Write I' = (5 9) ( 9). Since U is a lift of ¥, U is a surjection from Q/(IDK)Q to INK)/(INK)
and Q: F' — I N K is a surjection, we get that TP QOF — INK isa surjection.

Write © = (UVpQ)® A/(I N K). Then O : (QaF)/(INK)(Q®F') — (INK)/(INK)2. Let
(A,A): (FaF)/(INK)(F&F') — (INK)/(INK)? be the surjection induced from A, A’. We claim
that (A, A’) = OT. (This follows by checking on V(I) and V(K) separately, but we give a direct proof
below.)

Let as : Q/(INK)Q — (INK)/(INK)? be the map induced from o,z and let 7: F/(INK) —
(INK)/(INK)? be the map induced from 3',7. Then we have ag = 73 —W3. Let Q: F//(INK)F' —
(INK)/(INK)? be the map induced from @, w”. Then we have Qg = as.

_ Now OI'(0,y) = ©(0,) = Q(y) = (A, 47)(0,y) and OT(,0) = O(F(2), 93(z)) = Vs7(2) + Ag7(x) =
Usy(x) + 777 15(2) — Vs (z) = 7(2) = (A, A')(,0).

This proves that (A, A’) = ©F. By ([3], Theorem 4.2), we get that (I, A) + (K, A’) = 0 in E"T(A).
Since (K,A’) depends only on (I,w), it follows that (I,A) is independent of the choice of 1. This
establishes the claim in step 2.

If (I,w) is a global orientation, then we can take K = A in the above proof and it will follow that
(I,A) is also a global orientation.

Thus the association (I,w) — (I, A) € E™5(A) defines a homomorphism ¢(Q) : G*(A) — E™+s(A),
where (I,w) are the free generators of G*(A). Further ¢(Q) factors through a homomorphism w(Q) :
E*(A) — E™5(A) sending (I, w) € E*(A) to (I, A) € E"*(A). This completes the proof of the theorem.
|

Corollary 2.4 Let A be a regular domain of dimension d > 2 containing an infinite field. Suppose Q
is a stably free A-module of rank n. Then there exists a homomorphism wo(Q) : E§(A) — EJt°(A) for
every integer s > 1 with 2n+ s > d + 3.

Proof The proof is similar to that of (2.3) and we give an outline. Write F' = A™ and F’ = A®.

Suppose (I) is a generator of G§(A). Here I is an ideal of height s, Spec (A/I) is connected and there
is a surjection from F’/IF’ to I/I?. There is a surjection ¢ : Q/I1Q —~ f/I, where I is an ideal of height
> n + s. For such a generator (I), we associate (I) € EfT5(A).

For well-definedness, fix a local orientation w : F'/IF’' — I/I? and a surjective lift Q: F' — INK
of w, where K is an ideal of height > s and K + 1 = A. Let ¢’ : Q/KQ —— I}/K be a surjection, where
K is an ideal of height > n + s. As in (2.3), there exists a surjection from FGF' —— IN K. This shows
that (I) + (K) = 0 in E}™(A) and so (I) € E}™(A) is independent of the choice of 1.

The association (I) — (I) € B} (A) extends to a homomorphism ¢g : Gi(A) — EjT*(A).



If (I) is global (i.e. I is a surjective homomorphism of F), then taking K = A in the above argument,
we can prove that (I) is also global. So ¢ factors through a homomorphism w(Q) : E3(A) — EJT3(A).
|

Definition 2.5 The homomorphism w(Q) in theorem 2.3 will be called the Whitney class homomor-
phism. The image of (I,w) € E*(A) under w(Q) will be denoted by w(Q) N (I, w).

Similarly, the homomorphism wg (@) in (2.4) will be called the weak Whitney class homomorphism.
The image of (I) € E§(A) under wo(Q) will be denoted by wo(Q) N ().

The proof of the following result is same as ([5], Corollary 3.4), hence we omit it.

Corollary 2.6 Let A be a regular domain of dimension d > 2 containing an infinite field. Suppose Q is
a stably free A-module of rank n. For every integer s > 1 with 2n + s > d + 3, we have

wo(Q)¢" = ¢"w(Q) and C™(Q")n" =n""*wo(Q),

where (i) (" : E"(A) — E{(A) is a natural surjection obtained by forgetting the orientation,

(i) " : Ej(A) — CH"(A) is a natural homomorphism, sending (I) to [A/I]. Here CH"(A) denotes
the Chow group of cycles of codimension r in Spec (A) and

(#i7) C™(Q*) denote the top Chern class homomorphism [4].

The following result is about vanishing of Whitney class homomorphism. When n+s = d, it is proved
in ([5], Theorem 3.5) for arbitrary projective module @ and our proof is an adaptation of [5]. We will
follow the proof of (2.3) with necessary modifications.

Theorem 2.7 Let A be a regular domain of dimension d > 2 containing an infinite field. Suppose Q is
a stably free A-module of rank n defined by o € Um, 1, (A). Let s > 1 be an integer with 2n+s > d+ 3.
Write F = A™ and F' = A%. Let I be an ideal of height s and let w : F'/IF' —— I/I? be a surjection. If
Q/IQ = Py®A/I, then w(Q) N (I,w) =0 in E"T5(A).

In particular, if Q = P®A, then the homomorphism w(Q) : E*(A) — E"5(A) is identically zero.
Similar statements hold for wo(Q).

Proof Step 1. We can find an ideal IcC Aof height n+ s and a surjective homomorphism ¢ : Q/1Q —
—TI/I. Let ¢ = @A/ : Q)T — I/(I + I?).

Let ©: F' — I be a lift of w and let w = w® A/I : F'/IF’ — I/II. Composing W with the natural
map I/II < I/IT — I/I%, we get a map w' : F'/IF' — I/I2.

Since Q/IQ = PydA/I, we can write ¢ = (,a) for some a € I and § € P;. We may assume that
W(Py) = J/I, for some ideal J C A of height n + s — 1. Note that I = (J,a).

Since dim A/J = d— (n+s—1) <n—2 and Py/IP, is stably free A/I-module of rank n—1, Py/J Py
is free. If “prime” denotes reduction modulo J. , then ¢’ can be completed to an elementary matrix in
Eynyr(A/J). This gives a canonical basis of Py/J Py, say q},...,q, . Let ' : (A/J)""1 = Py/JP, be
the isomorphism given by [q],...,q,_1]-

Let v : F/TF = (A/f)” = Q/TQ = PO/TPOEBA/T be the isomorphism given by (7/,1), i.e. v =
[q1,- -, Gn-1,1]. Let ﬁ:zZ’y:F/FIVF—HIN/(I—FFIVQ) and let 3 : F/TF—>T/I~2 be a lift of 5.



As in the proof of (2.3), combining w’ and ', we get a surjection A = '@w’ : (F&F')/I(FOF') —

I/12 and (I,A) = w(Q) N (I, w). We claim that (I, A) = 0 in E"+s(A).

Step 2. In this step, we will prove the claim. The surjection 6 : Py — j/[ induces a surjection 6 =
0@ A/J: Py)JPy — J/(I+ J?). Let ¢ =0+ : (A)J)"* — J/(I + J2) and let ' : (A/J)"" L — J/J?
be a lift of (.

If ¢’ denotes the composition of ¢/ ® A/T : (A/I)*~' — J/JI with natural maps J/JI — I/JI —
I/I%, we get that (C',@) is a lift of 8 : F/IF — I/(I + I?). Since w(Q) N (I, w) is independent of the
lift 3 of 3, we may assume that 3 = ({,a).

If§: A1 — Jis alift of ¢/, then (6,a,Q) : FOF' — I is a lift of (3, w’). If J is the image of (5, ),
then J = J' + J2. (To see this, let y € J, then there exists z € A"~ such that 0(z) —y = y1 + 2 for some
y1 € I and 2z € J2. Choose z; € F' such that y1 — Qxy) =21 € I? C J2. Therefore 6(z) = Qz1) =y
modulo J2.)

Since J = J' + J2, we can find e € J2 such that (1 —¢)J C J" and J = (J',¢). Therefore by ([6],
Lemma 1), I = (J,a) = (J',b), where b = e + (1 — e)a. Thus (6,b,) : F&F' — I is a surjection which

is a lift of #’@w’. This proves that (I,A) =0 in E"**(A). This completes the proof. |
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