Some results on Euler class groups

Manoj K. Keshari
Department of Mathematics, IIT Mumbai, Mumbai - 400076, India; keshari@math.iitb.ac.in

Abstract

Let A be a regular domain of dimension d containing an infinite field and let n be an integer with $2 n \geq d+3$. For a stably free A-module P of rank n, we will define the Euler class of P and prove that (i) P has a unimodular element if and only if the euler class of P is zero in $E^{n}(A)$ and (ii) we define Whitney class homomorphism $w(P): E^{s}(A) \rightarrow E^{n+s}(A)$, where $E^{s}(A)$ denotes the s th Euler class group of A for $s \geq 1$. Further we prove that if P has a unimodular element, then $w(P)$ is the zero map.

Mathematics Subject Classification (2000): Primary 13C10.
Key words: Euler class group, Whitney class homomorphism.

1 Introduction

Let A be a commutative Noetherian ring of dimension d and let P be a projective A-module of rank $r>d$. Then a classical result of Serre [7] says that P has a unimodular element i.e. $P=Q \oplus A$ for some projective A-module Q of rank $r-1$. This result is not true in general when $r \leq d$. To find the obstruction for a projective A-module P of rank d to have a unimodular element, Bhatwadekar and Raja Sridharan [2] defined the Euler class group of A w.r.t. a rank 1 projective A-module L, denoted by $E^{d}(A, L)$. To every pair (P, χ), where P is a projective A-module of rank d with determinant L and $\chi: L \xrightarrow{\sim} \wedge^{d} P$ is an isomorphism, they associate an element $e(P, \chi)$ of $E^{d}(A, L)$. Then they proved that P has a unimodular element if and only if $e(P, \chi)$ is zero in $E^{d}(A, L)$. In other words, the non-vanishing of $e(P, \chi)$ is the precise obstruction for P to have a unimodular element. We would like to have similar obstruction results for projective A-modules P of rank $r<d$.

Let A be a regular ring of dimension d containing an infinite field k. For a positive integer n with $2 n \geq d+3$, Bhatwadekar and Raja Sridharan [3] defined the $n^{\text {th }}$ Euler class group of A, denoted by $E^{n}(A)$. For a projective A-module P of rank n such that $P \oplus A=A^{n+1}$, they associate an element $e(P)$ of $E^{n}(A)$ and prove that P has a unimodular element if and only if $e(P)$ is zero in $E^{n}(A)$. We will generalize this result for all stably free A-modules of rank n.

For a ring A of dimension d, Mandal and Yang [5] defined the $s^{t h}$ Euler class group of A for all $1 \leq s \leq d$, denoted by $E^{s}(A)$. Their definition is a natural generalisation of the one given by Bhatwadekar and Raja Sridharan. For any projective A-module P of rank $n<d$, they define a group homomorphism $w(P): E^{d-n} \rightarrow E^{d}(A)$, called the Whitney class homomorphism. Further they prove that if P has a unimodular element, then $w(P)$ is the zero map.

We will generalize above results as follows. Let A be a regular domain of dimension d containing an infinite field k. For a positive integer n with $2 n \geq d+3$, we prove the following results:
(i) For a stably free A-module P of rank n, we will associate an element $e(P)$ of $E^{n}(A)$ and prove that $e(P)=0$ in $E^{n}(A)$ if and only if P has a unimodular element. When $P \oplus A \xrightarrow{\sim} A^{n+1}$, this result is due to Bhatwadekar and Raja Sridharan [3].
(ii) Given a stably free A-module Q of rank n, we define a Whitney class homomorphism $w(Q)$: $E^{s}(A) \rightarrow E^{n+s}(A)$. Further, we prove that if Q has a unimodular element, then $w(Q)$ is the zero map.

Note that, when $n+s=d$, (ii) is proved in [5] for arbitrary projective module Q over any Noetherian ring A. We would like to define the above map $w(Q)$ for all projective A-module Q of rank n. For this, we need to define the euler class of Q in $E^{n}(A)$ (the non-vanishing of which should be the precise obstruction for Q to have a unimodular element). This is an open problem at present.

2 Euler class groups

All the rings considered are commutative Noetherian and all the modules are finitely generated. For a ring A of dimension $d \geq 2$ and $1 \leq n \leq d$, the nth Euler class group of A, denoted by $E^{n}(A)$ is defined in [5] as follows:

Let $E_{n}(A)$ denote the group generated by $n \times n$ elementary matrices over A and let $F=A^{n}$. A local orientation is a pair (I, w), where I is an ideal of A of height n and w is an equivalence class of surjective homomorphisms from $F / I F$ to I / I^{2}. The equivalence is defined by $E_{n}(A / I)$-maps.

Let $L^{n}(A)$ denote the set of all pairs (I, w), where I is an ideal of height n such that $\operatorname{Spec}(A / I)$ is connected and $w: F / I F \rightarrow I / I^{2}$ is a local orientation. Similarly, let $L_{0}^{n}(A)$ denote the set of all ideals I of height n such that $\operatorname{Spec}(A / I)$ is connected and there is a surjective homomorphism from $F / I F$ to I / I^{2}.

Let $G^{n}(A)$ denote the free abelian group generated by $L^{n}(A)$ and let $G_{0}^{n}(A)$ denote the free abelian group generated by $L_{0}^{n}(A)$.

Suppose I is an ideal of height n and $w: F / I F \rightarrow I / I^{2}$ is a local orientation. By ([3], Lemma 4.1), there is a unique decomposition $I=\cap_{1}^{r} I_{i}$, such that I_{i} 's are pairwise comaximal ideals of height n and $\operatorname{Spec}\left(A / I_{i}\right)$ is connected. Then w naturally induces local orientations $w_{i}: F / I_{i} F \rightarrow I_{i} / I_{i}^{2}$. Denote $(I, w)=\sum\left(I_{i}, w_{i}\right) \in G^{n}(A)$. Similarly we denote $(I)=\sum\left(I_{i}\right) \in G_{0}^{n}(A)$.

We say a local orientation $w: F / I F \rightarrow I / I^{2}$ is global if w can be lifted to a surjection $\Omega: F \rightarrow I$. Let $H^{n}(A)$ be the subgroup of $G^{n}(A)$ generated by global orientations. Also let $H_{0}^{n}(A)$ be the subgroup of $G_{0}^{n}(A)$ generated by (I) such that I is a surjective image of F.

The Euler class group of codimension n cycles is defined as $E^{n}(A)=G^{n}(A) / H^{n}(A)$ and the weak Euler class group of codimension n cycles is defined as $E_{0}^{n}(A)=G_{0}^{n}(A) / H_{0}^{n}(A)$.

2.1 Euler class of Stably free modules

Let A be a regular ring of dimension $d \geq 3$ containing an infinite field and let n be an integer such that $2 n \geq d+3$. In [3], a map from $\operatorname{Um}_{n+1}(A)$ to $E^{n}(A)$ is defined and it is proved that, if P is a projective A-module of rank n defined by the unimodular element $\left[a_{0}, \ldots, a_{n}\right]$, then P has a unimodular element if and only if the image of $\left[a_{0}, \ldots, a_{n}\right]$ in $E^{n}(A)$ is zero ([3], Theorem 5.4) (Note that $P \oplus A \xrightarrow{\sim} A^{n+1}$). We will generalize this result for any stably free A-module of rank n.

For $r \geq 1$, let $\operatorname{Um}_{r, n+r}(A)$ be the set of all $r \times(n+r)$ matrices σ in $M_{r, n+r}(A)$ which has a right inverse, i.e there exists $\tau \in M_{n+r, r}$ such that $\sigma \tau$ is the $r \times r$ identity matrix. For any element $\sigma \in \operatorname{Um}_{r, n+r}(A)$,
we have an exact sequence

$$
0 \rightarrow A^{r} \xrightarrow{\sigma} A^{n+r} \rightarrow P \rightarrow 0,
$$

where $\sigma(v)=v \sigma$ for $v \in A^{r}$ and P is a stably free projective A-module of rank n. Hence, every element of $\operatorname{Um}_{r, n+r}(A)$ corresponds to a stably free projective A-module of rank n and conversely, any stably free projective A-module P of rank n will give rise to an element of $\operatorname{Um}_{r, n+r}(A)$ for some r. We will define a map from $\operatorname{Um}_{r, n+r}(A)$ to $E^{n}(A)$ which is a natural generalization of the map $\operatorname{Um}_{n+1}(A) \rightarrow E^{n}(A)$ defined in [3].

Let σ be an element of $\operatorname{Um}_{r, n+r}(A)$.

$$
\sigma=\left[\begin{array}{ccc}
a_{1,1} & \cdots & a_{1, n+r} \\
\vdots & & \vdots \\
a_{r, 1} & \ldots & a_{r, n+r}
\end{array}\right]
$$

Let e_{1}, \ldots, e_{n+r} be the standard basis of A^{n+r} and let

$$
P=A^{n+r} /\left(\sum_{i=1}^{n+r} a_{1, i} e_{i}, \ldots, \sum_{i=1}^{n+r} a_{r, i} e_{i}\right) A
$$

Let p_{1}, \ldots, p_{n+r} be the images of e_{1}, \ldots, e_{n+r} respectively in P. Then

$$
P=\sum_{i=1}^{n+r} A p_{i} \text { with relations } \sum_{i=1}^{n+r} a_{1, i} p_{i}=0, \ldots, \sum_{i=1}^{n+r} a_{r, i} p_{i}=0 .
$$

To the triple $\left(P,\left(p_{1}, \ldots, p_{n+r}\right), \sigma\right)$, we associate an element $e\left(P,\left(p_{1}, \ldots, p_{n+r}\right), \sigma\right)$ of $E^{n}(A)$ as follows:
Let $\lambda: P \rightarrow J$ be a generic surjection, i.e. $J \subset A$ is an ideal of height n. Since $P \oplus A^{r}=A^{n+r}$ and $\operatorname{dim} A / J \leq d-n \leq n-3$, by [1], $P / J P$ is a free A / J-module of rank n. Since J / J^{2} is a surjective image of $P / J P, J / J^{2}$ is generated by n elements.

Let "bar" denote reduction modulo J. By Bass result ($[1]$), there exists $\Theta \in E_{n+r}(A / J)$ such that $\left[\overline{a_{1,1}}, \ldots, \overline{a_{1, n+r}}\right] \Theta=[1,0, \ldots, 0]$. That means the first row of Θ^{-1} is $\left[\overline{a_{1,1}}, \ldots, \overline{a_{1, n+r}}\right]$. Let $\bar{\sigma} \Theta$ be given by

$$
\bar{\sigma} \Theta=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
\overline{b_{2,1}} & \overline{b_{2,2}} & \ldots & \overline{b_{2, n+r}} \\
\vdots & \vdots & \vdots & \vdots \\
\overline{b_{r, 1}} & \overline{b_{r, 2}} & \ldots & b_{r, n+r}
\end{array}\right]
$$

Note that $\left[\overline{b_{2,2}}, \ldots, \overline{b_{2, n+r}}\right] \in \operatorname{Um}_{n+r-1}(A / J)$. Hence, by Bass result, we can find $\Theta_{1} \in E_{n+r-1}(A / J)$ such that $\left[\overline{b_{2,2}}, \ldots, \overline{b_{2, n+r}}\right] \Theta_{1}=[1,0, \ldots, 0]$. Further any $\Phi \in E_{m}(A)$ can be thought of as an element of $E_{m+t}(A)$ as $\left[\begin{array}{cc}I d_{t} & 0 \\ 0 & \Phi\end{array}\right]$, where $I d_{t}$ is $t \times t$ identity matrix. Let

$$
\bar{\sigma} \Theta \Theta_{1}=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
\overline{b_{2,1}} & 1 & \ldots & 0 \\
\overline{b_{3,1}} & \overline{c_{3,2}} & \ldots & \overline{c_{3, n+r}} \\
\vdots & \vdots & \vdots & \vdots \\
\overline{b_{r, 1}} & \overline{c_{r, 2}} & \ldots & c_{r, n+r}
\end{array}\right]
$$

Continuing this way, we get $\widetilde{\Theta} \in E_{n+r}(A / J)$ such that

$$
\bar{\sigma} \widetilde{\Theta}=\left[\begin{array}{ccccccc}
1 & 0 & \ldots & & & 0 \\
\overline{b_{2,1}} & 1 & 0 & \ldots & & 0 \\
\overline{b_{3,1}} & \frac{c_{3,2}}{} & 1 & 0 & \ldots & & 0 \\
\vdots & \vdots & \vdots & & & & \vdots \\
\overline{b_{r, 1}} & \overline{r_{r, 2}} & \ldots & \overline{d_{r, r-1}} & 1 & \ldots & 0
\end{array}\right] .
$$

We can find an elementary matrix $\Psi \in E_{n+r}(A / J)$ such that $\bar{\sigma} \widetilde{\Theta} \Psi=\left[I d_{r}, \underline{0}\right]$, where $\underline{0}$ is $r \times n$ zero matrix. Let $\Delta=(\widetilde{\Theta} \Psi)^{-1} \in E_{n+r}(A / J)$, then $\bar{\sigma}$ is the first r rows of Δ, i.e. $\bar{\sigma}$ can be completed to an elementary matrix Δ. Since

$$
\sum_{i=1}^{n+r} a_{1, i} p_{i}=0, \ldots, \sum_{i=1}^{n+r} a_{r, i} p_{i}=0
$$

we get

$$
\Delta\left[\overline{p_{1}}, \ldots, \overline{p_{n+r}}\right]^{t}=\left[0, \ldots, 0, \overline{q_{1}}, \ldots, \overline{q_{n}}\right]^{t},
$$

where t stands for transpose.
Thus $\left(\overline{q_{1}}, \ldots, \overline{q_{n}}\right)$ is a basis of the free module $P / J P$. Let $w_{J}:(A / J)^{n} \rightarrow J / J^{2}$ be the surjection given by the set of generators $\overline{\lambda\left(q_{1}\right)}, \ldots, \overline{\lambda\left(q_{n}\right)}$ of J / J^{2}.

We define $e\left(P,\left(p_{1}, \ldots, p_{n+r}\right), \sigma\right)=\left(J, w_{J}\right) \in E^{n}(A)$. We need to show that $e\left(P,\left(p_{1}, \ldots, p_{n+r}\right), \sigma\right)$ is independent of the choice of the elementary completion of $\bar{\sigma}$ and the choice of the generic surjection λ.

We begin with the following result which shows that $e\left(P,\left(p_{1}, \ldots, p_{n+r}\right), \sigma\right)$ is independent of the choice of the elementary completion of $\bar{\sigma}$.

Lemma 2.1 Suppose $\Gamma \in E_{n+r}(A / J)$ is chosen so that its first r rows are $\bar{\sigma}$. Let $\Gamma\left[\overline{p_{1}}, \ldots, \overline{p_{n+r}}\right]^{t}=$ $\left[0, \ldots, 0, \overline{q_{1}^{\prime}}, \ldots, \overline{q_{n}^{\prime}}\right]^{t}$. Then there exists $\Psi \in E_{n}(A / J)$ such that $\Psi\left[\overline{q_{1}}, \ldots, \overline{q_{n}}\right]^{t}=\left[\overline{q_{1}^{\prime}}, \ldots, \overline{q_{n}^{\prime}}\right]$.

Proof The matrix $\Gamma \Delta^{-1} \in E_{n+r}(A / J)$ is such that its first r rows are $\left[I d_{r}, 0\right]$. Therefore, there exists $\Psi \in \mathrm{SL}_{n}(A / J) \cap E_{n+r}(A / J)$ such that $\Psi\left[\overline{q_{1}}, \ldots, \overline{q_{n}}\right]^{t}=\left[\overline{q_{1}^{\prime}}, \ldots, \overline{q_{n}^{\prime}}\right]^{t}$. Since $n>\operatorname{dim} A / J+1$, by $([8]$, Theorem 3.2), $\Psi \in E_{n}(A / J)$.

Let $\widetilde{w_{J}}:(A / J)^{n} \rightarrow J / J^{2}$ be the surjection given by the set of generators $\overline{\lambda\left(q_{1}^{\prime}\right)}, \ldots, \overline{\lambda\left(q_{n}^{\prime}\right)}$ of J / J^{2}. Then, by $(2.1),\left(J, w_{J}\right)=\left(J, \widetilde{w_{J}}\right)$ in $E^{n}(A)$. Thus for a given surjection $\lambda: P \rightarrow J$, the element $e\left(P,\left(p_{1}, \ldots, p_{n+r}\right), \sigma\right)$ is independent of the choice of the elementary completion of $\bar{\sigma}$.

Now we have to show that $e\left(P,\left(p_{1}, \ldots, p_{n+r}\right), \sigma\right)$ is independent of the choice of the generic surjection λ. In other words, we have to show that if $\lambda^{\prime}: P \rightarrow J^{\prime}$ is another generic surjections where J^{\prime} is an ideal of A of height n and $w_{J^{\prime}}:\left(A / J^{\prime}\right)^{n} \rightarrow J^{\prime} / J^{\prime 2}$ is a surjection obtained as above by completing σ modulo J^{\prime} to an element of $E_{n+r}\left(A / J^{\prime}\right)$, then $\left(J, w_{J}\right)=\left(J^{\prime}, w_{J^{\prime}}\right)$ in $E^{n}(A)$.

This independence is proved in ([3], p. 152-153) in case $P \oplus A=A^{n+1}$. The same proof works in the case $P \oplus A^{r}=A^{n+r}$, hence we omit the proof. Therefore we have a well defined map $e: \operatorname{Um}_{r, n+r}(A) \rightarrow$ $E^{n}(A)$. We denote $e\left(P,\left(p_{1}, \ldots, p_{n+r}\right), \sigma\right) \in E^{n}(A)$ by $e(P)$ or $e(\sigma)$.

The following result is proved in ([3], Theorem 5.4) in case $P \oplus A$ is free. Since same proof works in our case, we omit the proof.

Theorem 2.2 Let A be a regular ring of dimensiond containing an infinite field k and let n be an integer such that $2 n \geq d+3$. Let P be a stably free A-module of rank n defined by $\sigma \in \operatorname{Um}_{r, n+r}(A)$. Then P has a unimodular element if and only if $e(P)=e(\sigma)=0$ in $E^{n}(A)$.

2.2 Whitney class homomorphism

Let A be a regular domain of dimension $d \geq 2$ containing an infinite field k and let Q be a stably free A-module of rank n with $2 n \geq d+3$. In (2.2), we proved that $e(Q)=0$ in $E^{n}(A)$ if and only if Q has a unimodular element. Using this result we will establish a whitney class homomorphism of stably free modules. When $n+s=d$, then (2.3) is proved in ([5], Theorem 3.1) for any projective A-module Q. Our proof is similar to [5].

Theorem 2.3 Let A be a regular domain of dimension $d \geq 2$ containing an infinite field k. Suppose Q is a stably free A-module of rank n defined by $\sigma \in \operatorname{Um}_{r, n+r}(A)$. Then there exists a homomorphism $w(Q): E^{s}(A) \rightarrow E^{n+s}(A)$ for every integer $s \geq 1$ with $2 n+s \geq d+3$.

Proof Write $F=A^{n}$ and $F^{\prime}=A^{s}$. Let I be an ideal of height s and $w: F^{\prime} / I F^{\prime} \rightarrow I / I^{2}$ be an equivalence class of surjections, where the equivalence is defined by $E_{s}(A / I)=E\left(F^{\prime} / I F^{\prime}\right)$ maps. To each such pair (I, w), we will associate an element $w(Q) \cap(I, w) \in E^{n+s}(A)$.

First we can find an ideal $\widetilde{I} \subset A$ of height $\geq n+s$ and a surjective homomorphism $\psi: Q / I Q \rightarrow \widetilde{I} / I$ (this is just the existence of a generic surjection of $Q / I Q)$. Let $\psi \otimes A / \widetilde{I}=\widetilde{\psi}$. Then $\widetilde{\psi}: Q / \widetilde{I} Q \rightarrow$ $\widetilde{I} /\left(I+\widetilde{I}^{2}\right)$ is a surjection.

Since $\operatorname{dim} A / \widetilde{I} \leq d-(n+s) \leq n-3, Q / \widetilde{I} Q$ is a free A / \widetilde{I}-module, by Bass result [1]. Let "bar" denotes reduction modulo \widetilde{I}. Then $\bar{\sigma} \in \operatorname{Um}_{r, n+r}(\bar{A})$ can be completed to an elementary matrix $\Theta \in E_{n+r}(\bar{A})$. This gives a well defined basis $\left[\bar{q}_{1}, \ldots, \bar{q}_{n}\right]$ for \bar{Q} which does not depends on the elementary completions of $\bar{\sigma}$ (in the sense that any two basis of \bar{Q} obtained this way will be connected by an element of $E_{n}(\bar{A})$).

Let $\gamma: F / \widetilde{I} F \xrightarrow{\sim} Q / \widetilde{I} Q$ be the isomorphism given by $\gamma\left(\bar{e}_{i}\right)=\bar{q}_{i}$ for $i=1, \ldots, n$, where e_{1}, \ldots, e_{n} is the standard basis of the free module F. Let $\beta=\widetilde{\psi} \gamma: F / \widetilde{I} F \rightarrow \widetilde{I} /\left(I+\widetilde{I}^{2}\right)$ be a surjection and let $\beta^{\prime}: F / \widetilde{I} F \rightarrow \widetilde{I} / \widetilde{I}^{2}$ be a lift of β.

Further, $w: F^{\prime} / I F^{\prime} \rightarrow I / I^{2}$ induces a surjection $\widetilde{w}: F^{\prime} / \widetilde{I} F^{\prime} \rightarrow\left(I+\widetilde{I}^{2}\right) / \widetilde{I}^{2}$. Composing \widetilde{w} with the natural inclusion $\left(I+\widetilde{I}^{2}\right) / \widetilde{I}^{2} \subset \widetilde{I} / \widetilde{I}^{2}$, we get a map $w^{\prime}: F^{\prime} / \widetilde{I} F^{\prime} \rightarrow \widetilde{I} / \widetilde{I}^{2}$.

Combining w^{\prime} and β^{\prime}, it is easy to see that we get a surjective homomorphism

$$
\Delta=\beta^{\prime} \oplus w^{\prime}: F / \widetilde{I} F \oplus F^{\prime} / \widetilde{I} F^{\prime}=\left(F \oplus F^{\prime}\right) / \widetilde{I}\left(F \oplus F^{\prime}\right) \rightarrow \widetilde{I} / \widetilde{I}^{2}
$$

(surjectivity follows by considering the exact sequence $0 \rightarrow\left(I+\widetilde{I^{2}}\right) / \widetilde{I^{2}} \hookrightarrow \widetilde{I} / \widetilde{I^{2}} \rightarrow \widetilde{I} /\left(I+\widetilde{I^{2}}\right) \rightarrow 0$). We have (\widetilde{I}, Δ) a local orientation of \widetilde{I}. We will show that the image of (\widetilde{I}, Δ) in $E^{n+s}(A)$ is independent of choices of ψ, the lift β^{\prime} and the representative of w in the equivalence class.

Step 1. First we show that for a fixed $\psi,(\widetilde{I}, \Delta)$ in E^{n+s} is independent of the lift β^{\prime} and the representative of w.
(a) Suppose $w, w_{1}: F^{\prime} / I F^{\prime} \rightarrow I / I^{2}$ are two equivalent local orientations of I. Then $w_{1}=$ $w \epsilon$ for some $\epsilon \in E\left(F^{\prime} / I F^{\prime}\right)$. Using the canonical homomorphisms $E\left(F^{\prime} / I F^{\prime}\right) \rightarrow E\left(F^{\prime} / \widetilde{I} F^{\prime}\right) \rightarrow$ $E\left(\left(F \oplus F^{\prime}\right) / \widetilde{I}\left(F \oplus F^{\prime}\right)\right)$, we get that $w_{1}^{\prime}=w^{\prime} \epsilon_{1}$ for some $\epsilon_{1} \in E\left(\left(F \oplus F^{\prime}\right) / \widetilde{I}\left(F \oplus F^{\prime}\right)\right)$.

Let Δ_{1} be the local orientation of \widetilde{I} obtained by using β^{\prime} and w_{1}. Then $\Delta_{1}=\Delta \epsilon_{1}$. Hence $(\widetilde{I}, \Delta)=$ $\left(\widetilde{I}, \Delta_{1}\right)$ in $E^{n+s}(A)$.
(b) Let $\beta^{\prime \prime}: F / \widetilde{I} F \rightarrow \widetilde{I} / \widetilde{I}^{2}$ be another lift of β. Then $\phi=\beta^{\prime}-\beta^{\prime \prime}: F / \widetilde{I} F \rightarrow\left(I+\widetilde{I}^{2}\right) / \widetilde{I}^{2}$. Since $\widetilde{w}_{1}: F^{\prime} / \widetilde{I} F^{\prime} \rightarrow\left(I+\widetilde{I}^{2}\right) / \widetilde{I}^{2}$ is a surjection, there exists $g: F / \widetilde{I} F \rightarrow F^{\prime} / \widetilde{I} F^{\prime}$ such that $\widetilde{w}_{1} g=\phi$.

Let $\epsilon_{2}=\left(\begin{array}{ll}1 & 0 \\ g & 1\end{array}\right) \in E\left(\left(F \oplus F^{\prime}\right) / \widetilde{I}\left(F \oplus F^{\prime}\right)\right)$. Then $\left(\beta^{\prime \prime} \oplus w_{1}^{\prime}\right) \epsilon_{2}=\left(\beta^{\prime} \oplus w_{1}^{\prime}\right)$. Therefore, if $\Delta_{2}=\beta^{\prime \prime} \oplus w_{1}^{\prime}$, then $\Delta_{2} \epsilon_{2}=\Delta_{1}=\Delta \epsilon_{1}$.

This completes the proof of the claim in step 1.

Step 2. Now we will show that $(\widetilde{I}, \Delta) \in E^{n+s}(A)$ is independent of ψ also (i.e. it depends only on $(I, w))$.

Recall that $w: F^{\prime} / I F^{\prime} \rightarrow I / I^{2}$ is a surjection. It is easy to see that we can lift w to a surjection $\Omega: F^{\prime} \rightarrow I \cap K$, where $K+I=A$ and K is an ideal of height $s($ or $K=A)$.

We can find an ideal $\widetilde{K} \subset A$ of height $\geq n+s$ and a surjective homomorphism $\psi^{\prime}: Q / K Q \rightarrow \widetilde{K} / K$. Let $\psi^{\prime} \otimes A / \widetilde{K}=\widetilde{\psi^{\prime}}$. Then $\widetilde{\psi^{\prime}}: Q / \widetilde{K} Q \rightarrow \widetilde{K} /\left(K+\widetilde{K}^{2}\right)$ is a surjection.

Again, since $\operatorname{dim} A / \widetilde{K} \leq n-3, Q / \widetilde{K} Q$ is a free A / \widetilde{K}-module. If "bar" denotes reduction modulo \widetilde{K}, then $\bar{\sigma} \in \operatorname{Um}_{r, n+r}(A / \widetilde{K})$ can be completed to an elementary matrix which gives a basis $\bar{p}_{1}, \ldots, \bar{p}_{n}$ for $Q / \widetilde{K} Q$. Let $\gamma^{\prime}: F / \widetilde{K} F \xrightarrow{\sim} Q / \widetilde{K} Q$ be the isomorphism given by $\gamma^{\prime}\left(\overline{e_{i}}\right)=\bar{p}_{i}$. Let $\eta=\widetilde{\psi}^{\prime} \gamma^{\prime}: F / \widetilde{K} F \rightarrow$ $\widetilde{K} /\left(I+\widetilde{K}^{2}\right)$ be a surjection and let $\eta^{\prime}: F / \widetilde{K} F \rightarrow \widetilde{K} / \widetilde{K}^{2}$ be a lift of η.

The map $\Omega: F^{\prime} \rightarrow I \cap K$ induces a surjection $\Omega \otimes A / K=\Omega^{\prime}: F^{\prime} / K F^{\prime} \rightarrow K / K^{2}$ which in turn induces a surjection $\Omega^{\prime} \otimes A / \widetilde{K}=w^{\prime \prime}: F^{\prime} / \widetilde{K} F^{\prime} \rightarrow\left(K+\widetilde{K}^{2}\right) / \widetilde{K}^{2}$. Since $\left(K+\widetilde{K}^{2}\right) \subset \widetilde{K}$, we get a map $w^{\prime \prime}: F^{\prime} / \widetilde{K} F^{\prime} \rightarrow \widetilde{K} / \widetilde{K}^{2}$.

Combining $w^{\prime \prime}$ and η^{\prime}, we get a surjection $\Delta^{\prime}=\eta^{\prime} \oplus w^{\prime \prime}:\left(F \oplus F^{\prime}\right) / \widetilde{K}\left(F \oplus F^{\prime}\right) \rightarrow \widetilde{K} / \widetilde{K}^{2}$.

Claim. $(\widetilde{I}, \Delta)+\left(\widetilde{K}, \Delta^{\prime}\right)=0$ in $E^{n+s}(A)$.

Since $I+K=A$, we get $\widetilde{I}+\widetilde{K}=A$. Further, we get a surjection

$$
\Psi=\psi \oplus \psi^{\prime}: Q /(I \cap K) Q \simeq Q / I Q \oplus Q / K Q \rightarrow \widetilde{I} / I \oplus \widetilde{K} / K \simeq(\widetilde{I} \cap \widetilde{K}) /(I \cap K)
$$

Let $\widetilde{\Psi}: Q \rightarrow \widetilde{I} \cap \widetilde{K}$ be a lift of Ψ such that the following holds:
(i) $\widetilde{\Psi} \otimes A / \widetilde{I}=\widetilde{\psi}$, where $\widetilde{\psi}: Q / \widetilde{I} Q \rightarrow \widetilde{I} /\left(I+\widetilde{I}^{2}\right)$ is a surjection and
(ii) $\widetilde{\Psi} \otimes A / \widetilde{K}=\widetilde{\psi^{\prime}}$, where $\widetilde{\psi^{\prime}}: Q / \widetilde{K} Q \rightarrow \widetilde{K} /\left(K+\widetilde{K}^{2}\right)$ is a surjection.

Let $\widetilde{\Psi}_{1}: Q / \widetilde{I} Q \rightarrow \widetilde{I} / \widetilde{I}^{2}$ be a lift of $\widetilde{\Psi} \otimes A / \widetilde{I}$ and let $\widetilde{\Psi}_{2}: Q / \widetilde{K} Q \rightarrow \widetilde{K} / \widetilde{K}^{2}$ be a lift of $\widetilde{\Psi} \otimes A / \widetilde{K}$. Then $\widetilde{\Psi}_{1}$ and $\widetilde{\Psi}_{2}$ induces a map $\widetilde{\Psi}_{3}: Q /(\widetilde{I} \cap \widetilde{K}) Q \rightarrow(\widetilde{I} \cap \widetilde{K}) /(\widetilde{I} \cap \widetilde{K})^{2}$.

Since $\beta=\widetilde{\psi} \gamma=(\widetilde{\Psi} \otimes A / \widetilde{I}) \gamma$ and $\beta^{\prime}: F / \widetilde{I} F \rightarrow \widetilde{I} / \widetilde{I}^{2}$ is a lift of β, we get that $\alpha_{1}=\beta^{\prime} \gamma^{-1}-\widetilde{\Psi}_{1}$ is a map from $Q / \widetilde{I} Q$ to $\left(I+\widetilde{I}^{2}\right) / \widetilde{I}^{2} \subset \widetilde{I} / \widetilde{I}^{2}$. Similarly, $\alpha_{2}=\eta^{\prime}\left(\gamma^{\prime}\right)^{-1}-\widetilde{\Psi}_{2}$ is a map from $Q / \widetilde{K} Q$ to $\left(K+\widetilde{K}^{2}\right) / \widetilde{K}^{2} \subset \widetilde{K} / \widetilde{K}^{2}$.

Since $\widetilde{w}: F^{\prime} / \widetilde{I} F^{\prime} \rightarrow\left(I+\widetilde{I}^{2}\right) / \widetilde{I}^{2}$ is a surjection, we can find $g_{1}: Q / \widetilde{I} Q \rightarrow F^{\prime} / \widetilde{I} F^{\prime}$ such that $\widetilde{w} g_{1}=\alpha_{1}$. Similarly, we can find $g_{2}: Q / \widetilde{K} Q \rightarrow F^{\prime} / \widetilde{K} F^{\prime}$ such that $w^{\prime \prime} g_{2}=\alpha_{2}$ (here $\left.w^{\prime \prime}=\Omega^{\prime} \otimes A / \widetilde{K}\right)$.

Let g be given by g_{1}, g_{2} and $\widetilde{\gamma}$ be given by γ, γ^{\prime}. Then
(a) $\left(\begin{array}{cc}\widetilde{\gamma} & 0 \\ 0 & 1\end{array}\right)$ is an isomorphism from $\left(F \oplus F^{\prime}\right) /(\widetilde{I} \cap \widetilde{K})\left(F \oplus F^{\prime}\right)$ to $\left(Q \oplus F^{\prime}\right) /(\widetilde{I} \cap \widetilde{K})\left(Q \oplus F^{\prime}\right)$ and
(b) $\left(\begin{array}{ll}1 & 0 \\ g & 1\end{array}\right)$ is an automorphism of $\left(Q \oplus F^{\prime}\right) /(\widetilde{I} \cap \widetilde{K})\left(Q \oplus F^{\prime}\right)$.

Write $\Gamma=\left(\begin{array}{ll}1 & 0 \\ g & 1\end{array}\right)\left(\begin{array}{cc}\widetilde{\gamma} & 0 \\ 0 & 1\end{array}\right)$. Since $\widetilde{\Psi}$ is a lift of Ψ, Ψ is a surjection from $Q /(I \cap K) Q$ to $(\widetilde{I} \cap \widetilde{K}) /(I \cap K)$ and $\Omega: F^{\prime} \rightarrow I \cap K$ is a surjection, we get that $\widetilde{\Psi} \oplus \Omega: Q \oplus F^{\prime} \rightarrow \widetilde{I} \cap \widetilde{K}$ is a surjection.

Write $\Theta=(\widetilde{\Psi} \oplus \Omega) \otimes A /(\tilde{I} \cap \widetilde{K})$. Then $\Theta:\left(Q \oplus F^{\prime}\right) /(\tilde{I} \cap \widetilde{K})\left(Q \oplus F^{\prime}\right) \rightarrow(\widetilde{I} \cap \widetilde{K}) /(\widetilde{I} \cap \tilde{K})^{2}$. Let $\left(\Delta, \Delta^{\prime}\right):\left(F \oplus F^{\prime}\right) /(\widetilde{I} \cap \widetilde{K})\left(F \oplus F^{\prime}\right) \rightarrow(\widetilde{I} \cap \widetilde{K}) /(\widetilde{I} \cap \widetilde{K})^{2}$ be the surjection induced from Δ, Δ^{\prime}. We claim that $\left(\Delta, \Delta^{\prime}\right)=\Theta \Gamma$. (This follows by checking on $V(\widetilde{I})$ and $V(\widetilde{K})$ separately, but we give a direct proof below.)

Let $\alpha_{3}: Q /(\widetilde{I} \cap \widetilde{K}) Q \rightarrow(\widetilde{I} \cap \widetilde{K}) /(\widetilde{I} \cap \widetilde{K})^{2}$ be the map induced from α_{1}, α_{2} and let $\tau: F /(\widetilde{I} \cap \widetilde{K}) \rightarrow$ $(\widetilde{I} \cap \widetilde{K}) /(\widetilde{I} \cap \widetilde{K})^{2}$ be the map induced from $\beta^{\prime}, \eta^{\prime}$. Then we have $\alpha_{3}=\tau \widetilde{\gamma}^{-1}-\widetilde{\Psi}_{3}$. Let $\bar{\Omega}: F^{\prime} /(\widetilde{I} \cap \widetilde{K}) F^{\prime} \rightarrow$ $(\widetilde{I} \cap \widetilde{K}) /(\widetilde{I} \cap \widetilde{K})^{2}$ be the map induced from $\widetilde{w}, w^{\prime \prime}$. Then we have $\bar{\Omega} g=\alpha_{3}$.

Now $\Theta \Gamma(0, y)=\Theta(0, y)=\bar{\Omega}(y)=\left(\Delta, \Delta^{\prime}\right)(0, y)$ and $\Theta \Gamma(x, 0)=\Theta(\widetilde{\gamma}(x), g \widetilde{\gamma}(x))=\widetilde{\Psi}_{3} \widetilde{\gamma}(x)+\bar{\Omega} g \widetilde{\gamma}(x)=$ $\widetilde{\Psi}_{3} \widetilde{\gamma}(x)+\tau \widetilde{\gamma}^{-1} \widetilde{\gamma}(x)-\widetilde{\Psi}_{3} \widetilde{\gamma}(x)=\tau(x)=\left(\Delta, \Delta^{\prime}\right)(x, 0)$.

This proves that $\left(\Delta, \Delta^{\prime}\right)=\Theta \Gamma$. By $\left([3]\right.$, Theorem 4.2), we get that $(\widetilde{I}, \Delta)+\left(\widetilde{K}, \Delta^{\prime}\right)=0$ in $E^{n+s}(A)$. Since $\left(\widetilde{K}, \Delta^{\prime}\right)$ depends only on (I, w), it follows that (\widetilde{I}, Δ) is independent of the choice of ψ. This establishes the claim in step 2.

If (I, w) is a global orientation, then we can take $K=A$ in the above proof and it will follow that (\widetilde{I}, Δ) is also a global orientation.

Thus the association $(I, w) \mapsto(\widetilde{I}, \Delta) \in E^{n+s}(A)$ defines a homomorphism $\phi(Q): G^{s}(A) \rightarrow E^{n+s}(A)$, where (I, w) are the free generators of $G^{s}(A)$. Further $\phi(Q)$ factors through a homomorphism $w(Q)$: $E^{s}(A) \rightarrow E^{n+s}(A)$ sending $(I, w) \in E^{s}(A)$ to $(\widetilde{I}, \Delta) \in E^{n+s}(A)$. This completes the proof of the theorem.

Corollary 2.4 Let A be a regular domain of dimension $d \geq 2$ containing an infinite field. Suppose Q is a stably free A-module of rank n. Then there exists a homomorphism $w_{0}(Q): E_{0}^{s}(A) \rightarrow E_{0}^{n+s}(A)$ for every integer $s \geq 1$ with $2 n+s \geq d+3$.

Proof The proof is similar to that of (2.3) and we give an outline. Write $F=A^{n}$ and $F^{\prime}=A^{s}$.
Suppose (I) is a generator of $G_{0}^{s}(A)$. Here I is an ideal of height $s, \operatorname{Spec}(A / I)$ is connected and there is a surjection from $F^{\prime} / I F^{\prime}$ to I / I^{2}. There is a surjection $\psi: Q / I Q \rightarrow \widetilde{I} / I$, where \widetilde{I} is an ideal of height $\geq n+s$. For such a generator (I), we associate $(\widetilde{I}) \in E_{0}^{n+s}(A)$.

For well-definedness, fix a local orientation $w: F^{\prime} / I F^{\prime} \rightarrow I / I^{2}$ and a surjective lift $\Omega: F^{\prime} \rightarrow I \cap K$ of w, where K is an ideal of height $\geq s$ and $K+I=A$. Let $\psi^{\prime}: Q / K Q \rightarrow \widetilde{K} / K$ be a surjection, where \widetilde{K} is an ideal of height $\geq n+s$. As in (2.3), there exists a surjection from $F \oplus F^{\prime} \rightarrow \widetilde{I} \cap \widetilde{K}$. This shows that $(\widetilde{I})+(\widetilde{K})=0$ in $E_{0}^{n+s}(A)$ and so $(\widetilde{I}) \in E_{0}^{n+s}(A)$ is independent of the choice of ψ.

The association $(I) \mapsto(\widetilde{I}) \in E_{0}^{n+s}(A)$ extends to a homomorphism $\phi_{0}: G_{0}^{s}(A) \rightarrow E_{0}^{n+s}(A)$.

If (I) is global (i.e. I is a surjective homomorphism of F^{\prime}), then taking $K=A$ in the above argument, we can prove that (\widetilde{I}) is also global. So ϕ_{0} factors through a homomorphism $w_{0}(Q): E_{0}^{s}(A) \rightarrow E_{0}^{n+s}(A)$.

Definition 2.5 The homomorphism $w(Q)$ in theorem 2.3 will be called the Whitney class homomorphism. The image of $(I, w) \in E^{s}(A)$ under $w(Q)$ will be denoted by $w(Q) \cap(I, w)$.

Similarly, the homomorphism $w_{0}(Q)$ in (2.4) will be called the weak Whitney class homomorphism. The image of $(I) \in E_{0}^{s}(A)$ under $w_{0}(Q)$ will be denoted by $w_{0}(Q) \cap(I)$.

The proof of the following result is same as ([5], Corollary 3.4), hence we omit it.
Corollary 2.6 Let A be a regular domain of dimension $d \geq 2$ containing an infinite field. Suppose Q is a stably free A-module of rank n. For every integer $s \geq 1$ with $2 n+s \geq d+3$, we have

$$
w_{0}(Q) \zeta^{s}=\zeta^{n+s} w(Q) \text { and } C^{n}\left(Q^{*}\right) \eta^{s}=\eta^{n+s} w_{0}(Q)
$$

where $(i) \zeta^{r}: E^{r}(A) \rightarrow E_{0}^{r}(A)$ is a natural surjection obtained by forgetting the orientation,
(ii) $\eta^{r}: E_{0}^{r}(A) \rightarrow C H^{r}(A)$ is a natural homomorphism, sending (I) to $[A / I]$. Here $C H^{r}(A)$ denotes the Chow group of cycles of codimension r in $\operatorname{Spec}(A)$ and
(iii) $C^{n}\left(Q^{*}\right)$ denote the top Chern class homomorphism [4].

The following result is about vanishing of Whitney class homomorphism. When $n+s=d$, it is proved in ([5], Theorem 3.5) for arbitrary projective module Q and our proof is an adaptation of [5]. We will follow the proof of (2.3) with necessary modifications.

Theorem 2.7 Let A be a regular domain of dimension $d \geq 2$ containing an infinite field. Suppose Q is a stably free A-module of rank n defined by $\sigma \in \operatorname{Um}_{r, n+r}(A)$. Let $s \geq 1$ be an integer with $2 n+s \geq d+3$. Write $F=A^{n}$ and $F^{\prime}=A^{s}$. Let I be an ideal of height s and let $w: F^{\prime} / I F^{\prime} \rightarrow I / I^{2}$ be a surjection. If $Q / I Q=P_{0} \oplus A / I$, then $w(Q) \cap(I, w)=0$ in $E^{n+s}(A)$.

In particular, if $Q=P \oplus A$, then the homomorphism $w(Q): E^{s}(A) \rightarrow E^{n+s}(A)$ is identically zero. Similar statements hold for $w_{0}(Q)$.

Proof Step 1. We can find an ideal $\widetilde{I} \subset A$ of height $n+s$ and a surjective homomorphism $\psi: Q / I Q \rightarrow$ $\rightarrow \widetilde{I} / I$. Let $\widetilde{\psi}=\psi \otimes A / \widetilde{I}: Q / \widetilde{I} \rightarrow \widetilde{I} /\left(I+\widetilde{I}^{2}\right)$.

Let $\Omega: F^{\prime} \rightarrow I$ be a lift of w and let $\bar{w}=w \otimes A / \widetilde{I}: F^{\prime} / \widetilde{I} F^{\prime} \rightarrow I / I \widetilde{I}$. Composing \bar{w} with the natural $\operatorname{map} I / I \widetilde{I} \hookrightarrow \widetilde{I} / I \widetilde{I} \rightarrow \widetilde{I} / \widetilde{I^{2}}$, we get a $\operatorname{map} w^{\prime}: F^{\prime} / \widetilde{I} F^{\prime} \rightarrow \widetilde{I} / \widetilde{I^{2}}$.

Since $Q / I Q=P_{0} \oplus A / I$, we can write $\psi=(\theta, \bar{a})$ for some $a \in \widetilde{I}$ and $\theta \in P_{0}^{*}$. We may assume that $\psi\left(P_{0}\right)=\widetilde{J} / I$, for some ideal $\widetilde{J} \subset A$ of height $n+s-1$. Note that $\widetilde{I}=(\widetilde{J}, a)$.

Since $\operatorname{dim} A / \widetilde{J}=d-(n+s-1) \leq n-2$ and $P_{0} / I P_{0}$ is stably free A / I-module of rank $n-1, P_{0} / \widetilde{J} P_{0}$ is free. If "prime" denotes reduction modulo \widetilde{J}, then σ^{\prime} can be completed to an elementary matrix in $E_{n+r}(A / \widetilde{J})$. This gives a canonical basis of $P_{0} / \widetilde{J} P_{0}$, say $q_{1}^{\prime}, \ldots, q_{n-1}^{\prime}$. Let $\gamma^{\prime}:(A / \widetilde{J})^{n-1} \xrightarrow{\sim} P_{0} / \widetilde{J} P_{0}$ be the isomorphism given by $\left[q_{1}^{\prime}, \ldots, q_{n-1}^{\prime}\right]$.

Let $\gamma: F / \widetilde{I} F=(A / \widetilde{I})^{n} \xrightarrow{\sim} Q / \widetilde{I} Q=P_{0} / \widetilde{I} P_{0} \oplus A / \widetilde{I}$ be the isomorphism given by $\left(\gamma^{\prime}, 1\right)$, i.e. $\gamma=$ $\left[\overline{q_{1}}, \ldots, \overline{q_{n-1}}, 1\right]$. Let $\beta=\widetilde{\psi} \gamma: F / \widetilde{I} F \rightarrow \widetilde{I} /\left(I+\widetilde{I}^{2}\right)$ and let $\beta^{\prime}: F / \widetilde{I} F \rightarrow \widetilde{I} / \widetilde{I}^{2}$ be a lift of β.

As in the proof of (2.3), combining w^{\prime} and β^{\prime}, we get a surjection $\Delta=\beta^{\prime} \oplus w^{\prime}:\left(F \oplus F^{\prime}\right) / \widetilde{I}\left(F \oplus F^{\prime}\right) \rightarrow$ $\widetilde{I} / \widetilde{I}^{2}$ and $(\widetilde{I}, \Delta)=w(Q) \cap(I, w)$. We claim that $(\widetilde{I}, \Delta)=0$ in $E^{n+s}(A)$.

Step 2. In this step, we will prove the claim. The surjection $\theta: P_{0} \rightarrow \widetilde{J} / I$ induces a surjection $\bar{\theta}=$ $\theta \otimes A / \widetilde{J}: P_{0} / \widetilde{J} P_{0} \rightarrow \widetilde{J} /\left(I+\widetilde{J}^{2}\right)$. Let $\zeta=\bar{\theta} \gamma^{\prime}:(A / \widetilde{J})^{n-1} \rightarrow \widetilde{J} /\left(I+\widetilde{J}^{2}\right)$ and let $\zeta^{\prime}:(A / \widetilde{J})^{n-1} \rightarrow \widetilde{J} / \widetilde{J}^{2}$ be a lift of ζ.

If $\overline{\zeta^{\prime}}$ denotes the composition of $\zeta^{\prime} \otimes A / \widetilde{I}:(A / \widetilde{I})^{n-1} \rightarrow \widetilde{J} / \widetilde{J} \widetilde{I}$ with natural maps $\widetilde{J} / \widetilde{J} \widetilde{I} \hookrightarrow \widetilde{I} / \widetilde{J} \widetilde{I} \rightarrow$ $\widetilde{I} / \widetilde{I}^{2}$, we get that $\left(\overline{\zeta^{\prime}}, \bar{a}\right)$ is a lift of $\beta: F / \widetilde{I} F \rightarrow \widetilde{I} /\left(I+\widetilde{I}^{2}\right)$. Since $w(Q) \cap(I, w)$ is independent of the lift β^{\prime} of β, we may assume that $\beta^{\prime}=\left(\overline{\zeta^{\prime}}, \bar{a}\right)$.

If $\delta: A^{n-1} \rightarrow \widetilde{J}$ is a lift of ζ^{\prime}, then $(\delta, a, \Omega): F \oplus F^{\prime} \rightarrow \widetilde{I}$ is a lift of $\left(\beta^{\prime}, w^{\prime}\right)$. If \widetilde{J}^{\prime} is the image of (δ, Ω), then $\widetilde{J}=\widetilde{J}^{\prime}+\widetilde{J}^{2}$. (To see this, let $y \in \widetilde{J}$, then there exists $x \in A^{n-1}$ such that $\delta(x)-y=y_{1}+z$ for some $y_{1} \in I$ and $z \in \widetilde{J}^{2}$. Choose $x_{1} \in F^{\prime}$ such that $y_{1}-\Omega\left(x_{1}\right)=z_{1} \in I^{2} \subset \widetilde{J}^{2}$. Therefore $\delta(x)-\Omega\left(x_{1}\right)=y$ modulo \widetilde{J}^{2}.)

Since $\widetilde{J}=\widetilde{J}^{\prime}+\widetilde{J}^{2}$, we can find $e \in \widetilde{J}^{2}$ such that $(1-e) \widetilde{J} \subset \widetilde{J}^{\prime}$ and $\widetilde{J}=\left(\widetilde{J^{\prime}}, e\right)$. Therefore by ([6], Lemma 1), $\widetilde{I}=(\widetilde{J}, a)=\left(\widetilde{J^{\prime}}, b\right)$, where $b=e+(1-e) a$. Thus $(\delta, b, \Omega): F \oplus F^{\prime} \rightarrow \widetilde{I}$ is a surjection which is a lift of $\beta^{\prime} \oplus w^{\prime}$. This proves that $(\widetilde{I}, \Delta)=0$ in $E^{n+s}(A)$. This completes the proof.

References

[1] H. Bass, K-Theory and stable algebra, I.H.E.S. 22 (1964), 5-60.
[2] S.M. Bhatwadekar and Raja Sridharan, The Euler class group of a Noetherian ring, Compositio Math. 122 (2000), 183-222.
[3] S.M. Bhatwadekar and Raja Sridharan, On Euler classes and stably free projective modules, Proceedings of the international colloquium on Algebra, Arithmetic and Geometry, Mumbai 2000, Narosa Publishing House, 139-158.
[4] W. Fulton, Intersection theory, Second Ed., Springer Verlag, 1998.
[5] S. Mandal and Y. Yang, Intersection theory of algebraic obstructions, J. Pure and Applied Algebra 214 (2010), 2279-2293.
[6] N. Mohan Kumar, Complete intersections, J. MAth. Kyoto Univ. 17 (1977), 533-538.
[7] J.P. Serre, Sur les modules projectifs, Sem. Dubreil-Pisot 14 (1960-61).
[8] L.N. Vaserstein, On the stabilisation of the general linear group over a ring, Math. USSR. Sbornik 8 (1969), (English Translation) 383-400.

