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Abstract

(i) Let R be a ring of dimension 0 and A = R[Y1, . . . , Yn, (f1 . . . fm)−1], where m ≤ n,

Y1, . . . , Yn are variables over R and fi ∈ R[Yi]. Then all projective A-modules are free and

Er(A) acts transitively on Umr(A) for r ≥ 3.

(ii) Let R be a ring of dimension d and A be one of R[Y ] of R[Y, Y −1], where Y is a variable

over R. Let P be a projective A-module of rank ≥ d + 1 satisfying property Ω(R) (see 4.8 for

definition of property Ω(R)). Then E(A⊕P ) acts transitively on Um(A⊕P ). When P is free, this

result is due to Yengui: A = R[Y ] and Abedelfatah: A = R[Y, Y −1].

1 Introduction

Rings are assumed to be commutative with unity and modules are finitely generated. The dimension

of a ring means its Krull dimension and projective modules are of constant rank.

Let R be a Noetherian ring of dimension d and A = R[Y1, . . . , Yn, (f1 . . . fm)−1], where m ≤ n,

Y1, . . . , Yn are variables over R and fi ∈ R[Yi]. If P is a projective A-module of rank ≥ max{2, d+ 1},
then author-Dhorajia ([6], Theorem 3.12) proved that E(A⊕P ) acts transitively on Um(A⊕P ). In

particular P is cancellative, i.e. P⊕At ∼→ Q⊕At for some projective A-module Q =⇒ P
∼→ Q. The

case n = m = 0 of this result is due to Bass [4], n = 1,m = 0 is due to Plumstead [15], n = m = 1

and f1 = Y1 is due to Mandal [14] (he proved that P is cancellative), m = 0 is due to Rao [17] (he

proved that P is cancellative) and Laurent polynomial case fi = Yi is due to Lindel [13].

Heitmann ([9], Corollary 2.7) generalized Bass’ result to all commutative non-Noetherian rings. It

is natural to ask if analog of above results hold for non-Noetherian rings.

Let R be a ring of dimension 0 and A = R[Y1, . . . , Yn] be a polynomial ring in n variables Y1, . . . , Yn

over R. Then Brewer-Costa [5] proved that all projective A-modules are free, generalizing the well

known Quillen-Suslin theorem [16, 20] (see Ellouz-Lombardi-Yengui [8] for a constructive proof).

Abedelfatah [2] generalized Brewer-Costa’s result by proving that Er(A) acts transitively on Umr(A)

for r ≥ 3. We generalize these results as follows (see 3.2, 3.3). This is non-Noetherian analog of

author-Dhorajia’s result in case d = 0.

Theorem 1.1 Let R be a ring of dimension 0 and A = R[Y1, . . . , Yn, (f1 . . . fm)−1], where m ≤ n,

Y1, . . . , Yn are variables over R and fi ∈ R[Yi]. Then all projective A-modules are free and Er(A) acts

transitively on Umr(A) for r ≥ 3.
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Let R be a ring of dimension d and n ≥ d+ 2. Then Yengui [23] proved that En(R[Y ]) acts transi-

tively on Umn(R[Y ]) which is non-Noetherian analog of Plumstead’s result in free case. Abedelfatah

[1] proved that En(R[Y, Y −1]) acts transitively on Umn(R[Y, Y −1]) which is non-Noetherian analog

of Mandal’s result in free case. We generalize both results as follows (4.9). See (4.8) for definition of

property Ω(R).

Theorem 1.2 Let R be a ring of dimension d and A be one of R[Y ] or R[Y, Y −1], where Y is a

variable over R. If P is a projective A-module of rank ≥ d+1 satisfying property Ω(R), then E(A⊕P )

acts transitively on Um(A⊕P ). In particular P is cancellative.

We generalize (1.2) for Prüfer domain as follows (see 5.3): Let R be a Prüfer domain of dimension

d and A = R[Y, f−1], where Y is a variable over R and f ∈ R[Y ]. If P is a projective A-module of

rank ≥ d+ 1, then E(A⊕P ) acts transitively on Um(A⊕P ).

2 Preliminaries

Let A be a ring, J an ideal of A and M an A-module. We say that m ∈ M is unimodular if there

exist φ ∈ M∗ = HomA(M,A) such that φ(m) = 1. The set of unimodular elements of M is denoted

by Um(M). We write Um1(A⊕M,J) for the set of (a,m) ∈ Um(A⊕M) such that a ∈ 1 + J . We

write Um(A⊕M,J) for the set of (a,m) ∈ Um1(A⊕M,J) such that m ∈ JM . We write Umr(A, J)

for Um(A⊕Ar−1, J).

The group of A-automorphism of M is denoted by AutA(M). We write E1(A ⊕M,J) for the

subgroup of AutA(A⊕M) generated by automorphisms ∆aϕ and Γm, where

∆aϕ =

(
1 aϕ

0 idM

)
and Γm =

(
1 0

m idM

)
with a ∈ J, ϕ ∈M∗, m ∈M.

We write E1(A⊕M) for E1(A⊕M,A). Let Er+1(A) denote the subgroup of SLr+1(A) generated

by elementary matrices I + aeij , where a ∈ A, i 6= j and eij is the matrix with only non-zero entry 1

at (i, j)-th place. We write E1
r+1(A, J) for the subgroup of Er+1(A) generated by ∆a and Γb, where

∆a =

(
1 a

0 idF

)
and Γb =

(
1 0

bt idF

)
, where F = Ar, a ∈ JF, b ∈ F.

Let p ∈ M and ϕ ∈ M∗ be such that ϕ(m) = 0. Let ϕp ∈ End(M) be defined as ϕp(q) = ϕ(q)p.

Then 1 + ϕp is an automorphism of M . The automorphism 1 + ϕp of M is called a transvection of

M if either p ∈ Um(M) or ϕ ∈ Um(M∗). We write E(M) for the subgroup of Aut(M) generated by

transvections of M .

Due to following result of Bak-Basu-Rao ([3], theorem 3.10), we can interchange E(A⊕P ) and

E1(A⊕P ).

Theorem 2.1 Let A be a ring and P a projective A-module of rank ≥ 2. Then E1(A⊕P ) = E(A⊕P ).
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The following result of Heitmann ([9], Corollary 2.7) generalizes Bass’s cancellation [4] to non-

Noetherian rings.

Theorem 2.2 Let A be a ring of dimension d and P a projective A-module of rank ≥ d + 1. Then

E(A⊕P ) acts transitively on Um(A⊕P ). In particular P is cancellative.

The following result of Brewer-Costa [5] generalizes Quillen-Suslin theorem [16, 20] to all zero-

dimensional rings.

Theorem 2.3 Let R be a ring of dimension 0 and A = R[Y1, . . . , Yn] a polynomial ring in n variables

Y1, . . . , Yn over R. Then all projective A-modules are free.

We will state five results which are proved with assumption that rings are Noetherian. But the

same proof works for non-Noetherian rings.

Lemma 2.4 ([7], Remark 2.2) Let A be a ring, I an ideal of A and P a projective A-module. Then

the natural map E(A⊕P )→ E( A⊕P
I(A⊕P )

) is surjective.

Lemma 2.5 ([6], Lemma 3.1) Let A be a ring, J an ideal of A and P a projective A-module. Let “bar”

denote reduction modulo the nil-radical of A. Assume E1(A⊕P , J) acts transitively on Um1(A⊕P , J).

Then E1(A⊕P, J) acts transitively on Um1(A⊕P, J).

Lemma 2.6 ([13], Lemma 1.1) Let A be a reduced ring and P an A-module. Assume s ∈ A is a

non-zerodivisor such that Ps is free of rank r ≥ 1. Then there exist p1, . . . , pr ∈ P , φ1, . . . , φr ∈ P ∗

and t ∈ N such that

(i) stP ⊂ F and stP ∗ ⊂ G with F =
∑r

1Api and G =
∑r

1Aφi.

(ii) (φi(pj))1≤i,j≤r = diagonal (st, . . . , st).

Lemma 2.7 ([6] Lemma 3.10) Let A be a reduced ring and P a projective A-module of rank r. Assume

there exist a non-zerodivisor s ∈ A such that Ps is free. Choose p1, . . . , pr ∈ P , ϕ1, . . . , ϕr ∈ P ∗

satisfying (2.6). Let (a, p) ∈ Um(A⊕P, sA) with p = c1p1 + . . .+crpr, where ci ∈ sA for all i. Assume

there exist φ ∈ E1
r+1(A, sA) such that φ(a, c1, . . . , cr) = (1, 0, . . . , 0). Then there exist Φ ∈ E(A⊕P )

such that Φ(a, p) = (1, 0).

Lemma 2.8 ([22], Lemma 4.2) Let A be a reduced ring and P an A-module. Assume there exist

non-zerodivisors s1, . . . , sr ∈ A, p1, . . . , pr ∈ P and φ1, . . . , φr ∈ P ∗ such that (φi(pj))r×r = diagonal

(s1, . . . , sr) := N . Let M be the subgroup of GLr(A) consisting of all matrices of the form I + TN2

for T ∈Mr(A). Then the map

Φ :M→ AutA(P ); Φ(I + TN2) = idP + (p1, . . . , pr)T N (φ1, . . . , φr)t

is a group homomorphism.

The following result is from Lam’s book ([11], Proposition VI.1.14).
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Proposition 2.9 Let B be a ring and a, b ∈ B two comaximal elements. Then for any σ ∈ En(Bab)

with n ≥ 3, there exist α ∈ En(Bb) and β ∈ En(Ba) such that σ = (α)a(β)b.

We state Quillen-Suslin theorem [16, 20]. Note that any commutative ring is a filtered union of

Noetherian commutative rings. Hence following result will follow from Noetherian case.

Theorem 2.10 Let R be a ring and P a projective R[Y ]-module. Let f ∈ R[Y ] be a monic polynomial

such that Pf is free. Then P is free.

We state a result of Yengui [23] and Abedelfatah [1] respectively.

Theorem 2.11 Let A be a ring of dimension d, Y a variable over A and n ≥ d+ 2. Then

(i) En(A[Y ]) acts transitively on Umn(A[Y ]).

(ii) En(A[Y, Y −1]) acts transitively on Umn(A[Y, Y −1]).

3 Zero dimension case

In this section we prove our first result.

Proposition 3.1 Let Σ(n) be set of rings which is closed w.r.t. following properties:

(i) If R ∈ Σ(n) and 0 6= f ∈ R[Y ] is non-unit, then R[Y ]f(1+fR[Y ]) ∈ Σ(n).

(ii) If R ∈ Σ(n), then all projective modules over R[Y1, . . . , Yn] are free, where Y1, . . . , Yn are

variables over R.

Then, for R ∈ Σ(n), all projective modules over R[Y1, . . . , Yn, (f1 . . . fm)−1] are free, where m ≤ n
and fi ∈ R[Yi].

Proof Let P be a projective A = R[Y1, . . . , Yn, (f1 . . . fm)−1]-module of rank r. If m = 0, then P is

free by assumption (ii). Assumem > 0 and use induction onm. Write C = R[Y1, . . . , Yn, (f1 . . . fm−1)−1],

S = 1 + fmR[Ym] and B = R[Ym]fmS . Then A = Cfm , B ∈ Σ(n) by assumption (i) and S−1A =

B[Y1, . . . , Ym−1, Ym+1, . . . , Yn, (f1 . . . fm−1)−1]. By induction on m, S−1P is free. Since P is finitely

generated, we can find g ∈ S such that Pg is free. Note that fm and g are comaximal elements of

R[Ym]. Consider the fiber product diagram

C //

��

Cfm = A

��
Cg // Cfmg = Ag

.

Patching projective modules P over Cfm and (Cg)r over Cg, we get P
∼→ Qfm , where Q is a projective

C-module of rank r. By induction on m, projective modules over C are free. Hence Q is free and

therefore P is free. �
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Let Σ(n) be the set of rings of dimension 0. If R ∈ Σ(n) and 0 6= f ∈ R[Y ] is a non-unit, then

dimR[Y ] = 1 and dimR[Y ]f(1+fR[Y ]) = 0. Hence R[Y ]f(1+fR[Y ]) ∈ Σ(n). Using (2.3), projective

modules over polynomial ring R[Y1, . . . , Yn] are free. Hence Σ(n) satisfies hypothesis (i, ii) of (3.1).

Therefore, we get the following generalization of (2.3).

Proposition 3.2 Let R be a ring of dimension 0 and A = R[Y1, . . . , Yn, (f1 . . . fm)−1], where m ≤ n,

Y1, . . . , Yn are variables over R and fi ∈ R[Yi]. Then all projective A-modules are free.

Theorem 3.3 Let R be a ring of dimension 0 and A = R[Y1, . . . , Yn, (f1 . . . fm)−1], where m ≤ n,

Y1, . . . , Yn are variables over R and fi ∈ R[Yi]. Then Er(A) acts transitively on Umr(A) for r ≥ 3.

Proof The case m = 0 is due to Abedelfatah [2]. Assume m > 0 and use induction on m. Let

v ∈ Er(A). Write C = R[Y1, . . . , Yn, (f1 . . . fm−1)−1], S = 1 + fmR[Ym] and B = R[Ym]fmS . Then B

is 0 dimensional, A = Cfm and S−1A = B[Y1, . . . , Ym−1, Ym+1, . . . , Yn, (f1 . . . fm−1)−1]. By induction

on m, Er(S−1A) acts transitively on Umr(S−1A). Hence there exist σ ∈ Er(S−1A) such that σ(v) =

e1 = (1, 0, . . . , 0). We can find g ∈ S and σ̃ ∈ Er(Cfmg) such that σ̃(v) = e1. Note that fm and g are

comaximal elements of R[Ym]. Consider the fiber product diagram

C //

��

Cfm = A

��
Cg // Cfmg = Ag

By (2.9), σ̃ has a splitting σ̃ = (α)fm(β)g, where α ∈ Er(Cg) and β ∈ Er(Cfm). We have unimodular

elements β(v) ∈ Umr(Cfm) and α−1(e1) ∈ Umr(Cg) whose images in Cfmg are same. Hence patching

β(v) and α−1(e1), we get w ∈ Umr(C) such that its image in Cfm is β(v). By induction on m, Er(C)

acts transitively on Umr(C). Hence there exist φ ∈ Er(C) such that φ(w) = e1. If Φ1 ∈ Er(Cfm) is

the image of φ, then Φ1(α(v)) = e1. Write Φ = Φ1α ∈ Er(A), we are done. �

4 Main Theorem

The following result is proved in ([10], Lemma 3.3) with the assumption that ring is Noetherian. Using

(2.8), same proof works for non-Noetherian ring. Hence we omit the proof.

Lemma 4.1 Let A be a reduced ring and P a projective A-module of rank r. Assume there exist a

non-zerodivisor s ∈ A such that (2.6) holds. Assume Rr is cancellative, where R = A[X]/(X2−s2X).

Then any element of Um1(A⊕P, s2A) can be taken to (1, 0) by some element of Aut(A⊕P, sA).

An immediate consequence of (4.1) is the following result. Its proof is same as of ([10], Corollary

3.5) using (2.2).
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Corollary 4.2 Let A be a reduced ring of dimension d and P a projective A-module of rank d.

Assume there exist a non-zerodivisor s ∈ A such that (2.6) holds. Assume Rd is cancellative, where

R = A[X]/(X2 − s2X). Then P is cancellative.

Let R be a ring and I an ideal of R. For n ≥ 3, let En(I) be the subgroup of En(R) generated

by Eij(a) = I + aeij with a ∈ I and 1 ≤ i 6= j ≤ n. Let En(R, I) denote the normal closure of

En(I) in En(R). We have two characterisation of En(R, I) due to Suslin-Vaserstein [21] and Stein

[19] respectively.

Proposition 4.3 The kernel of the natural map En(R)→ En(R/I) is isomorphic to En(R, I).

Proposition 4.4 Consider the following fiber product diagram

R(I)
p1 //

p2

��

R

j1

��
R

j2
// R/I

Then En(R, I) is kernel of the natural surjection En(p1) : En(R(I))→→ En(R).

Using (4.3, 4.4, 2.7) and following the proof of ([7], Lemma 3.3), we get the following result. In

[7], it is proved for Noetherian ring.

Lemma 4.5 Let A be a reduced ring and P a projective A-module of rank r. Assume there exist a

non-zerodivisor s ∈ A such that (2.6) holds. Assume Er+1(B) acts transitively on Umr+1(B), where

B = A[X]/(X2 − s2X). Then any element of Um(A⊕P, s2A) can be taken to (1, 0) by some element

of E(A⊕P ).

The proof of the following result is same as of ([7], Theorem 3.4) using (4.5, 2.2).

Proposition 4.6 Let A be a reduced ring of dimension d and P a projective A-module of rank r ≥ d.

Assume there exist a non-zerodivisor s ∈ A such that (2.6) holds. Assume Er+1(B) acts transitively

on Umr+1(B), where B = A[X]/(X2 − s2X). Then E(A⊕P ) acts transitively on Um(A⊕P ).

Remark 4.7 By ([11], Exercise 2.34), any reduced ring R can be embedded in a reduced non-

Noetherian ring S such that S equals the total quotient ring Q(S) of S and R is a retract of S. In

particular, if P is a non-free projective R-module, then P⊗RS is a non-free projective S-module.

Hence, if R is a reduced non-Noetherian ring and P a projective R-module, then we can not say that

Ps is free, for some non-zerodivisor s ∈ R.

Definition 4.8 Let R ⊂ S be rings and P a projective S-module. We say that P satisfies property

Ω(R) if for any ideal I of R and P = P/IP , there exist a non-zerodivisor t ∈ R/I such that P t is

free. The property Ω(R) avoids situation (4.7).
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The following result generalises (2.11).

Theorem 4.9 Let R be a ring of dimension d and A is one of R[Y ] or R[Y, Y −1], where Y is a

variable over R. Let P be a projective A-module of rank r ≥ d+1 which satisfies property Ω(R). Then

E(A⊕P ) acts transitively on Um(A⊕P ).

Proof By (2.5), we may assume R is reduced. If d = 0, then P is free by (3.2) and we can use (2.11).

Hence assume d ≥ 1 and use induction on d. Since P satisfies property Ω(R), we can find a non-

zerodivisor s ∈ R such that Ps is free and (2.6) holds. If R′ = R[X]/(X2 − s2X), then dimR′ = d.

Write B = A[X]/(X2 − s2X). Then B is one of R′[Y ] or R′[Y, Y −1]. By (2.11), Er+1(B) acts

transitively on Umr+1(B). Applying (4.5), we get every element of Um(A⊕P, s2A) can be taken to

(1, 0) by some element of E(A⊕P ). Therefore it is enough to show that every element of Um(A⊕P )

can be taken to an element of Um(A⊕P, s2A) by some element of E(A⊕P ).

Let “bar” denote reduction modulo s2A. Then dimR/s2R < d. By assumption, P/s2P satisfies

property Ω(R/s2R). Hence by induction on d, E(A⊕P ) acts transitively on Um(A⊕P ). Using (2.4),

any element of Um(A⊕P ) can be taken to an element of Um(A⊕P, s2A) by E(A⊕P ). This completes

the proof. �

5 Some Auxiliary results

Lemma 5.1 Let R be a ring of dimension d such that dimension of the polynomial ring A =

R[Y1, . . . , Yn] is d+ n. Then every stably free A-module P of rank ≥ d+ 1 is free.

Proof The case n = 0 is due to Heitmann (2.2). Assume n > 0 and use induction on n. Let S be the

set of all monic polynomials in R[Yn]. Then dimR[Yn]S = d and dimR[Yn]S [Y1, . . . , Yn−1] = d+n−1.

Hence by induction on n, S−1P is free. By (2.10), P is free. �

Proposition 5.2 Let R be a ring of dimension d such that dimension of the polynomial ring R[Y1, . . . , Yn]

is d + n. Let A = R[Y1, . . . , Yn, (f1 . . . fm)−1] with m ≤ n and fi ∈ R[Yi] a monic polynomial for all

i. Then every stably free A-module P of rank r ≥ d+ 1 is free.

Proof The case m = 0 follows from (5.1). Assume m > 0 and use induction on m. Let C =

R[Y1, . . . , Yn, (f1 . . . fm−1)−1]. If S = 1 + fmR[Ym], then dimR[Ym]fmS = d (since dimR[Ym] = d+ 1)

and S−1A = R[Ym]fmS [Y1, . . . , Ym−1, Ym+1, . . . , Yn, (f1 . . . fm−1)−1]. By induction on m, S−1P is

free. Choose g ∈ S such that Pg is free. Patching projective modules P and Cr
g over Cfmg, we get a

projective C-module Q such that Qfm = P . Since P is stably free, (Q⊕Ct)fm is free for some t. By

(2.10), Q⊕Ct is free, i.e. Q is stably free. By induction on m, Q and hence P is free. �

It is natural to ask if all projective A-modules of rank ≥ d+ 1 in (5.2) are cancellative. We give a

partial answer.
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Theorem 5.3 Let R be an integral domain of dimension d such that dimR[Y ] = d + 1. Let A =

R[Y, f−1] with f ∈ R[Y ] and P a projective A-module of rank r ≥ max{2, d+ 1}. Then E(A⊕P ) acts

transitively on Um(A⊕P ).

Proof If d = 0, then P is free and we are done by (3.3). Assume d ≥ 1. Choose 0 6= s ∈ R such that

(2.6) holds. Write R′ = R[X]/(X2 − s2X) and B = R′[Y, f−1]. Assume Er+1(B) acts transitively on

Umr+1(B). By (4.5), any (a, p) ∈ Um(A⊕P, s2A) can be taken to (1, 0) by some element in E(A⊕P ).

Let “bar” denote reduction modulo s2A. Then dimA = d and rank P ≥ d + 1. Applying (2.2),

we get E(A⊕P ) acts transitively on Um(A⊕P ). Using (2.4), every V ∈ Um(A⊕P ) can be taken to

W ∈ Um(A⊕P, s2A) by some element of E(A⊕P ). Therefore, it is enough to show that Er+1(B) acts

transitively on Umr+1(B).

Let v ∈ Umr+1(B). If C = R′[Y ], then B = Cf . Since R′ is an integral extension of R, dimR[Y ] =

d + 1 = dimR′[Y ]. Hence dimCf(1+fR′[Y ]) = d. Applying (2.2), we get σ ∈ Er+1(Cf(1+fR′[Y ])) such

that σ(v) = (1, . . . , 0). We can find g ∈ 1 + fR′[Y ] and σ̃ ∈ Er+1(Cfg) such that σ̃(v) = (1, 0 . . . , 0).

By (2.9), σ̃ has a splitting σ̃ = (α)f (β)g, where α ∈ Er+1(Cg) and β ∈ Er+1(Cf ). We have two

unimodular elements β(v) ∈ Umr+1(Cf ) and α−1((1, 0, . . . , 0)) ∈ Umr+1(Cg) whose images in Cfg are

same. Hence, patching β(v) and α−1((1, 0, . . . , 0)), we get w ∈ Umr+1(C) whose image in Cf is β(v).

By Yengui (2.11), Er+1(C) acts transitively on Umr+1(C). Hence, we can find φ ∈ Er+1(C) such that

φ(w) = (1, 0, . . . , 0). If Φ1 is the image of φ in Cf , then Φ1(α(v)) = (1, 0, . . . , 0) and Φ1α ∈ Er+1(B).

This completes the proof. �

Remark 5.4 (1) By a result of Seidenberg ([18], Theorem 4), if R is a Prüfer domain, then

dimR[Y1, . . . , Yn] = dimR+ n. Hence (5.2, 5.3) holds for a Prüfer domain R and generalizes (4.9).

(2) Lequain-Simis have shown [12] that if R is a Prüfer domain, then projective modules over

R[Y1, . . . , Yn] are extended from R. In particular, if R is a valuation domain (local Prüfer do-

main), then projective R[Y1, . . . , Yn]-modules are free. It is natural to ask if projective modules

over R[Y1, . . . , Yn, (f1 . . . fm)−1] are free, where R is a valuation domain, m ≤ n and fi ∈ R[Yi]. If

each fi is a monic polynomial, then (5.2) gives a partial answer.

Proposition 5.5 Let R be a valuation domain of dimension d and A = R[X,Y1, . . . , Yn, f
−1] with

f ∈ R[X]. Then every stably free A-module P of rank ≥ d+ 1 is free.

Proof If d = 0, then P is free, by (3.2). Assume d ≥ 1. Let C = R[X,Y1, . . . , Yn] and S = 1+fR[X].

Since dimR[X] = d+ 1 by Seidenberg [18], dimR[X]fS = d and dimR[X]fS [Y1, . . . , Yn] = d+ n. By

(5.1), S−1P being stably free, is free. Choose g ∈ S such that Pg is free. Patching projective modules

P and (Cg)r over Cfg, we get a projective C-module Q such that P
∼→ Qf . By Lequain-Simis [12],

every projective C-module is free. Therefore Q and hence P is free. �
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