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Abstract: Let k be a field of characteristic 6= 2 and let Qn,m(x1, . . . , xn, y1, . . . , ym) = x2
1 + . . . + x2

n −
(y2

1 + . . . + y2
m) be a quadratic form over k. Let R(Qn,m) = Rn,m = k[x1, . . . , xn, y1, . . . , ym]/(Qn,m − 1).

In this note we will calculate K̃0(Rn,m) for every n,m ≥ 0. We will also calculate CH0(Rn,m) and the

Euler class group of Rn,m when k = R.

1 Introduction

In this paper, k will denote a field of characteristic 6= 2. Let An,k = k[x1, . . . , xn]/(
∑n

1 x
2
i −1).

It is well known (see [1]) that K̃0(An,R) is periodic of period 8. More precisely, K̃0(An,R) is Z,Z/2Z
or 0 depending on whether n is {1, 5}, {2, 3} or {0, 4, 6, 7}modulo 8. Similarly, K̃0(An,C) is periodic

of period 2. More precisely, K̃0(An,C) is Z or 0 depending on whether n is odd or even.

It will be interesting to know if K̃0(An,k) is also periodic for arbitrary field k. Further, if

Ãn,k = k[x1, . . . , xn]/(
∑n

1 x
2
i + 1), then we would like to know if K̃0(Ãn,k) is periodic. In this

paper we answer these questions in affirmative.

Some experts may consider these results as easy computations. However, there is no written

reference to these results. These results are derived by application of the celebrated results of

Swan [8]. We are confident that this article will serve as valuable resource for the researchers and

graduate students in this area.

For Rn,m = k[x1, . . . , xn, y1, . . . , ym]/(
∑n

1 x
2
i −

∑m
1 y2j − 1), we will prove following results.

Theorem 1.1 Assume that x2+y2+z2 = 0 has only trivial zero in k3 (equivalently the quaternion

algebra (−1,−1)
k is a division algebra over k). Then K̃0(Rn,0) and K̃0(R0,m) are periodic of period

8. More precisely,

(1) K̃0(Rn,0) is Z,Z/2Z or 0 depending on whether n is {1, 5}, {2, 3} or {0, 4, 6, 7} modulo 8.

(2) K̃0(R0,m) is Z,Z/2Z or 0 depending on whether m is {3, 7}, {5, 6} or {0, 1, 2, 4} modulo 8.

(3) K̃0(Rn,m) = K̃0(Rn−m,0) if n ≥ m and K̃0(Rn,m) = K̃0(R0,m−n) if n < m.

Theorem 1.2 Assume
√
−1 ∈ k. Then K̃0(Rn,m) is Z or 0 depending on whether n + m is odd

or even.

Theorem 1.3 Assume that
√
−1 /∈ k and −1 is a sum of two squares in k (equivalently, the

quaternion algebra (−1,−1k ) is not a division algebra over k). Then K̃0(R0,n) and K̃0(Rn,0) are

periodic of period 4. More precisely,
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(i) K̃0(R0,n) = Z,Z/2Z or 0 depending on whether n is {3}, {2} or {0, 1} modulo 4.

(ii) K̃0(Rn,0) = Z,Z/2Z or 0 depending on whether n is {1}, {2} or {0, 3} modulo 4.

(iii) K̃0(Rn,m) = K̃0(Rn−m,0) if n ≥ m and K̃0(Rn,m) = K̃0(R0,m−n) if n < m.

2 Preliminaries

We will recall some results from [7] for later use. If q(x1, . . . , xn) is a non-degenerate quadratic

form over k, then R(q) will denote the k-algebra k[x1, . . . , xn]/(q(x1, . . . , xn) − 1) and C(q) will

denote the Clifford algebra of q.

If q = a1x
2
1 + · · · + anx

2
n with ai ∈ k, then C(q) is generated by e1, . . . , en with relations

eiej + ejei = 0 for i 6= j and e2i = ai. The elements ei1 · · · eir with 1 ≤ i1 < . . . < ir ≤ n form a

k-base for C(q). Further, define det q := a1 . . . an and ds q := (−1)n(n−1)/2det q.

A binary quadratic form is called hyperbolic if it has the form h(x, y) = x2 − y2. By a linear

change of variables this is equivalent to h′(x, y) = xy.

Lemma 2.1 ([7], 8.1 and 8.2) If b is a binary quadratic form, then C(b ⊥ q) ∼→ C(b)⊗C((ds b)q).

In particular, if h is hyperbolic, then C(q ⊥ h)
∼→ C(q)⊗C(h).

Lemma 2.2 ([7], 8.3) (a) If q has even rank, then C(q) is central simple over k and is a tensor

product of quaternion algebras.

(b) If q has odd rank, then (i) if
√
ds q ∈ k, then C(q) = A×A, where A is central simple over

k and is a tensor product of quaternion algebras, (ii) otherwise C(q) is simple with center k(
√
ds q)

and is a tensor product of its center with quaternion algebras over k.

It follows from (2.2) that all simple C(q)-modules have the same dimension over k. We denote

this dimension by d(q).

Lemma 2.3 ([7], Lemma 8.4) (a) d(q ⊥ 1) is either d(q) or 2d(q).

(b) If C(q) = A×A, then d(q ⊥ 1) = 2d(q).

See [7] for the definition of ABS(q).

Proposition 2.4 ([7], Proposition 8.5) (a) If C(q) = A× A, i.e rank of q is odd and
√
ds q ∈ k,

then ABS(q) = Z generated by either of the simple C(q)-modules.

(b) If C(q) is simple, then (i) ABS(q) = 0 if d(q ⊥ 1) = d(q) and (ii) ABS(q) = Z/2Z if

d(q ⊥ 1) = 2d(q).

We state the following result of Swan ([8], Corollary 10.8)

Theorem 2.5 Assume that R is regular, 1/2 ∈ R and q ⊥< −1 > is a non-singular quadratic

form. Then ABS(q)
∼→ K0(R(q))/K0(R).

In particular, if R is a field, then ABS(q)
∼→ K̃0(R(q)).
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Using (2.4 and 2.5), we get the following result which will be used later.

Theorem 2.6 If q(x1, . . . , xn) ⊥< −1 > is a non-singular quadratic form over k, then

(i) If C(q) = A×A (i.e. rank of q is odd and
√
ds q ∈ k), then K̃0(R(q)) = Z.

(ii) If C(q) is simple, then (a) K̃0(R(q)) = 0 if d(q ⊥ 1) = d(q) and (b) K̃0(R(q)) = Z/2Z if

d(q ⊥ 1) = 2d(q).

3 Main Theorem

In this section, we fix quadratic forms qn = −(x21 + · · · + x2n) and q′n = x21 + · · · + x2n over k. We

write Cn and C ′n for the Clifford algebras C(qn) and C(q′n). Then we have the following result. In

([1], Proposition 4.2), it is proved for k = R, but the same proof works over any field k.

Proposition 3.1 There exist isomorphisms Cn⊗kC
′
2
∼→ C ′n+2 and C ′n⊗kC2

∼→ Cn+2.

3.1 −1 is not a sum of two squares in k

We begin with the following well known result (see [6], p. 15). For a, b ∈ k, the quaternion algebra
(a,b)
k , which is a k-algebra defined by i and j with relations i2 = a, j2 = b and ij + ji = 0, is a

division algebra if and only if x2 = ay2 + bz2 has only trivial zero.

In this section we will assume that x2 + y2 + z2 = 0 has only trivial zero in k3 which is same

as the quaternion algebra (−1,−1)
k is a division algebra over k (e.g. any real field). We denote

the division algebra (−1,−1)
k by H. Let C be the subalgebra of H generated by i over k. Then

C = k[x]/(x2 + 1) is a field.

The following is a well known result. We will give proof for completeness. Recall that F (n)

denote the algebra of n× n matrices over F .

Lemma 3.2 If F denote one of k, C or H, then we have the following identities (i) F (n)
∼→

k(n)⊗kF , (ii) k(n)⊗kk(m)
∼→ k(nm), (iii) C⊗kC

∼→ C⊕C, (iv) H⊗kC
∼→ C(2), (v) H⊗kH

∼→ k(4).

In particular, when k = R the field of real numbers, then C = C and H = H.

Proof (i) and (ii) are straightforward.

(iii) The map C⊕C → C⊗kC defined by (1, 0) 7→ 1/2(1⊗1 + i⊗i) and (0, 1) 7→ 1/2(1⊗1− i⊗i)
is an isomorphism.

(iv) Since H is a C vector space under left multiplication, the map π : C × H → HomC(H,H)

defined by πy,z(x) = yxz is k-bilinear, where y ∈ C, x, z ∈ H and z = a1 − bi − cj − dij is the

conjugate of z = a1 + bi + cj + dij with a, b, c, d ∈ k. Hence, we get a k-linear map π : C⊗kH →
HomC(H,H). Since πy,z ◦ πy′,z′ = πyy′,zz′ , the map π is an k-algebra homomorphism. Further, it

is easy to see that π is injective. Since HomC(H,H)
∼→ C(2), we get dimk C⊗kH = 8 = dimk C(2)

(note that dimC C(2) = 4). Hence π is an isomorphism.

(v) Define a map π : H × H → Homk(H,H) by πy,z(x) = yxz, where y, x, z ∈ H. Then π

is k-bilinear. Hence it induces a k-linear map π : H⊗kH → Homk(H,H), which is an algebra
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homomorphism (πy,z ◦ πy′,z′ = πyy′,zz′). Further, π is injective. Since both sides are vector spaces

of dimension 16 over k, π is an isomorphism. Note that Homk(H,H)
∼→ k(4). This proves the

result. �

Let us begin the proof of our first result. It is easy to see that C1 = C, C2 = H, C ′1 = k⊕k and

C ′2 = k(2). Using (3.1), we get that

n Cn C ′n d(qn) d(q′n)

1 C k⊕k 2 1

2 H k(2) 4 2

3 H⊕H C(2) 4 4

4 H(2) H(2) 8 8

5 C(4) H(2)⊕H(2) 8 8

6 k(8) H(4) 8 16

7 k(8)⊕k(8) C(8) 8 16

8 k(16) k(16) 16 16

Note that C4
∼→ C ′4, Cn+4

∼→ Cn⊗kC4, Cn+8
∼→ Cn⊗C8. Further C8

∼→ k(16). Hence, if

Cn = F (m), then Cn+8
∼→ F (16m). Similarly, if C ′n = F (m), then C ′n+8 = F (16m).

If h = x2 − y2, then C(h)
∼→ k(2). From (2.1), if hr = h ⊥ . . . ⊥ h (r times), then C(hr) =

k(2)⊗ . . .⊗k(2)
∼→ k(2r). Now, if C(q) = F (m), then C(q ⊥ hr) = F (m)⊗k(2r)

∼→ F (2rm).

Since qk ⊥ 1 = qk−1 ⊥ h, C(qk ⊥ 1) = C(qk−1)⊗k(2). Write qk ⊥ 1 as q̃k. Further q′k ⊥ 1 =

q′k+1. Hence C(q′k ⊥ 1) = C(q′k+1) and d(q′k ⊥ 1) = d(q′k+1).

Write s = 16r. Then we have the following table.

n C8r+n C ′8r+n C(q̃8r+n) d(q8r+n) d(q′8r+n) d(q̃8r+n)

1 C(s) k(s)2 k(2s) 2s s 2s

2 H(s) k(2s) C(2s) 4s 2s 4s

3 H(s)2 C(2s) H(2s) 4s 4s 8s

4 H(2s) H(2s) H(2s)2 8s 8s 8s

5 C(4s) H(2s)2 H(4s) 8s 8s 16s

6 k(8s) H(4s) C(8s) 8s 16s 16s

7 k(8s)2 C(8s) k(16s) 8s 16s 16s

8 k(16s) k(16s) k(16s)2 16s 16s 16s

Using (2.6), we get the following result.

Theorem 3.3 Assume x2 + y2 + z2 = 0 has only trivial zero in k3. Note R0,n = R(qn) and

Rn,0 = R(q′n). Then

(1) K̃0(Rn,0) is Z,Z/2Z or 0 depending on whether n is {1, 5}, {2, 3} or {0, 4, 6, 7} modulo 8.

(2) K̃0(R0,m) is Z,Z/2Z or 0 depending on whether m is {3, 7}, {5, 6} or {0, 1, 2, 4} modulo 8.

For n,m be positive integers, consider Qn,m(x1, . . . , xn, y1, . . . , ym) =
∑n

1 x
2
i −

∑m
1 y2i .
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Assume n ≥ m. Then Qn,m
∼→ q′n−m ⊥ hm and C(Qn,m)

∼→ C ′n−m⊗k(2m). Hence d(Qn,m) =

d(q′n−m)2m. Further, Qn,m ⊥ 1
∼→ q′n−m+1 ⊥ hm and d(Qn,m ⊥ 1) = d(q′n−m+1)2m. Hence

d(Qn,m ⊥ 1)/d(Qn,m) = d(q′n−m)/d(q′n−m+1).

Assume n < m. Then Qn,m
∼→ qm−n ⊥ hn and Qn,m ⊥ 1

∼→ qm−n−1 ⊥ hn+1. Further

C(Qn,m)
∼→ C(qm−n)⊗k(2n) and C(Qn,m ⊥ 1) = C(qm−n−1)⊗k(2n+1). Hence, d(Qn,m) =

d(qm−n)2n and d(Qn,m ⊥ 1) = d(qm−n−1)2n+1. The quotient d(Qn,m ⊥ 1)/d(Qn,m) is equal

to 2d(qm−n−1)/d(qm−n). Using (2.6), we get

Theorem 3.4 Assume x2 + y2 + z2 = 0 has only trivial zero in k3. Then K̃0(R(Qn,m)) is same

as K̃0(R(q′n−m)) when n ≥ m and K̃0(R(qm−n)) when n < m.

Remark 3.5 We note that the following classical result generalizes (3.4) (see [7], 10.1). Let

f ∈ k[x1, . . . , xn] be non-zero. Let A = k[x1, . . . , xn]/(f) and B = k[x1, . . . , xn, u, v]/(f + uv).

Then G̃0(A)
∼→ G̃0(B). However, for a regular ring R, it is well known that G̃0(R)

∼→ K̃0(R). In

this paper, we have computed K̃0(R(qn)) explicitly.

3.2
√
−1 ∈ k, i.e. −1 is a square in k

In this case Cn
∼→ C ′n. Further, using (3.1), we get Cn+2

∼→ Cn⊗C2. Since C1 = k⊕k and

C2 = k(2), we get C2n = k(2n) and C2n+1 = k(2n)⊕k(2n). Therefore, by (2.6), we get the

following result.

Theorem 3.6 If
√
−1 ∈ k, then K̃0(R(q2n)) = 0 and K̃0(R(q2n+1)) = Z.

3.3 −1 is a sum of two squares and
√
−1 /∈ k

Assume
√
−1 /∈ k but x2+y2+z2 = 0 has a non-trivial zero in k3. We denote the field k[x]/(x2+1)

by C. Recall that a quaternion algebra (a,b
k ) is isomorphic to M2(k) if and only if it is not a division

algebra.

It is easy to see that C1 = C, C ′1 = k⊕k, C2 = k(2) = C ′2. Further, C3 = C ′1⊗C2 = k(2)⊕k(2),

C ′3 = C1⊗C ′2 = C(2) and C4 = C ′2⊗C2 = k(4) = C ′4.

For n = 4r + i, where i ∈ {1, 2, 3, 4}, we have Cn = C ′n−2⊗C2 = Cn−4⊗C ′2⊗C2 = Cn−4⊗C4 =

Cn−4⊗k(4) = . . . = Ci⊗k(4r). Similarly, C ′n = C ′i⊗k(4r).

Write s = 4r. Then we have the following table.

n C4r+n C ′4r+n C(q4r+n ⊥ 1) d(q4r+n) d(q′4r+n) d(q4r+n ⊥ 1)

1 C(s) k(s)2 k(2s) 2s s 2s

2 k(2s) k(2s) C(2s) 2s 2s 4s

3 k(2s)2 C(2s) k(4s) 2s 4s 4s

4 k(4s) k(4s) k(4s)2 4s 4s 4s

By (2.6), we get the following result.
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Theorem 3.7 Assume
√
−1 /∈ k and −1 is a sum of two squares in k. Let Rn,m = k[x1, . . . , xn, y1, . . . , ym]/(

∑n
1 x

2
i−∑m

1 y2j − 1). Then

(i) K̃0(R0,n) = Z,Z/2Z or 0 depending on whether n is {3}, {2} or {0, 1} modulo 4.

(ii) K̃0(Rn,0) = Z,Z/2Z or 0 depending on whether n is {1}, {2} or {0, 3} modulo 4.

(iii) K̃0(Rn,m) = K̃0(Rn−m,0) if n ≥ m and K̃0(Rn,m) = K̃0(R0,m−n) if n < m.

4 Some Auxiliary Results

1. Let A = R[x0, . . . , xn]/(a0x
2
0 + . . .+ anx

2
n− b) with ai, b ∈ R and let E(A) be the Euler class

group of A with respect to A (see [3] for definition). Let EC(A) be the subgroup of E(A)

generated by all the complex maximal ideals of A. By ([4], Lemma 4.2), all the complex

maximal ideals of A are generated by n elements, hence EC(A) = 0. Using ([5], Theorem

2.3), we get the following results.

(i) E(A)
∼→ E(R(X)), where X = Spec (A) and R(X) is the localization AS of A with S as

the set of all elements of A which do not have any real zero.

(ii) CH0(A)
∼→ CH0(R(X)).

Further, there is a natural surjection E(A)→→ CH0(A).

2. Assume that A = R[x0, . . . , xn]/(x20 + . . .+ x2n + 1). Then A has no real maximal ideal and

hence E(A) = EC(A) = 0 and hence CH0(A) = 0.

For A = R[x0, . . . , xn]/(x20 + . . .+ x2n − 1), it is known that E(A) = Z and CH0(A) = Z/2Z.

3. Assume A = R[x0, . . . , xn]/(
∑m

0 x2i −
∑n

m+1 x
2
i − 1) with m < n and X = Spec (A). Then

X(R) has no compact connected component. Hence, by ([2], Theorem 4.21), E(R(X)) = 0.

From above, we get E(A) = 0 and CH0(A) = 0.

4. In general, let A = R[x, y, z1, . . . , zn]/(xy+ f(z1, . . . , zn)) and let X = Spec (A). Then X(R)

has no compact connected component. All the connected components of X(R) is unbounded.

For this, note that if (a, b, c1, . . . , cn) ∈ X(R), then f(c1, . . . , cn) = −ab and if (x0, y0) is any

point on the hyperbola xy = ab, then (x0, y0, c1, . . . , cn) ∈ X(R).

By ([2], Theorem 4.21), E(R(X)) = 0 and hence E(A) = EC(A). Using ([5], Theorem 2.3),

we get E(A)
∼→ CH0(A). Further, it is known (see [3], Theorem 5.5) that for a smooth

affine domain A of dimension ≥ 2 over R, CH0(A)
∼→ E0(A), the weal Euler class group of

A. Hence E(A)
∼→ E0(A)

∼→ CH0(A) and E(A) is generated by complex maximal ideals of

A. In particular, if all the complex maximal ideals of A are generated by n elements, then

E(A) = 0 as is the case in (2) above.
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