Projective modules over overrings of polynomial rings and a question of Quillen

Manoj K. Keshari and Swapnil A. Lokhande ${ }^{1}$

Abstract

Let (R, \mathfrak{m}, K) be a regular local ring containing a field k such that either char $k=0$ or char $k=p$ and $\operatorname{tr}-\operatorname{deg} K / \mathbb{F}_{p} \geq 1$. Let g_{1}, \ldots, g_{t} be regular parameters of R which are linearly independent modulo \mathfrak{m}^{2}. Let $A=R_{g_{1} \cdots g_{t}}\left[Y_{1}, \ldots, Y_{m}, f_{1}\left(l_{1}\right)^{-1}, \ldots, f_{n}\left(n_{n}\right)^{-1}\right]$, where $f_{i}(T) \in k[T]$ and $l_{i}=a_{i 1} Y_{1}+\ldots+a_{i m} Y_{m}$ with $\left(a_{i 1}, \ldots, a_{i m}\right) \in k^{m}-(0)$. Then every projective A-module of rank $\geq t$ is free. Laurent polynomial case $f_{i}\left(l_{i}\right)=Y_{i}$ of this result is due to Popescu.

1 Introduction

In this paper, we will assume that rings are commutative Noetherian, modules are finitely generated, projective modules are of constant rank and k will denote a field.

Let R be a ring and P a projective R-module. We say that P is cancellative if $P \oplus R^{m} \xrightarrow{\sim} Q \oplus R^{m}$ for some projective R-module Q implies $P \xrightarrow{\sim} Q$. For simplicity of notations, we begin with a definition.

Definition 1.1 A ring $A=R\left[Y_{1}, \ldots, Y_{m}, f_{1}\left(l_{1}\right)^{-1}, \ldots, f_{n}\left(l_{n}\right)^{-1}\right]$ is said to be of type $R[d, m, n]$ if R is a ring of dimension d, Y_{1}, \ldots, Y_{m} are variables over R, each $f_{i}(T) \in R[T]$ and either each $l_{i}=Y_{i_{j}}$ for some i_{j}, or R contains a field k and $l_{i}=\sum_{j=1}^{m} a_{i j} Y_{j}-b_{i}$ with $b_{i} \in R$ and $\left(a_{i 1}, \ldots, a_{i m}\right) \in k^{m}-(0)$.

Let A be a ring of the type $R[d, m, n]$. We say that A is of type $R[d, m, n]^{*}$ if $f_{i}(T) \in k[T]$ and $b_{i} \in k$ for all i.

Let $A=R\left[Y_{1}, \ldots, Y_{m}, f_{1}\left(Y_{1}\right)^{-1}, \ldots, f_{n}\left(Y_{n}\right)^{-1}\right]$ be a ring of type $R[d, m, n]$ with $n \leq m$ and $l_{i}=Y_{i}$. If P is a projective A-module of rank $\geq \max \{2, d+1\}$, then Dhorajia-Keshari ([5], Theorem 3.12), proved that $E(A \oplus P)$ acts transitively on $\operatorname{Um}(A \oplus P)$ and hence P is cancellative. This result was proved by Bass [2] in case $n=m=0$; Plumstead [12] in case $m=1, n=0$; Rao [16] in case $n=0$; Lindel [8] in case $f_{i}=Y_{i}$. Gabber [6] proved the following result: Let k be a field and A a ring of type $k[0, m, n]$. Then every projective A-module is free. We prove the following result (3.4) which generalizes ([5], Theorem 3.12) and is motivated by Gabber's result.

Theorem 1.2 Let $A=R\left[Y_{1}, \ldots, Y_{m}, f_{1}\left(l_{1}\right)^{-1}, \ldots, f_{n}\left(l_{n}\right)^{-1}\right]$ be a ring of type $R[d, m, n]$ and P a projective A-module of rank $\geq \max \{2, d+1\}$. Then $E(A \oplus P)$ acts transitively on $\operatorname{Um}(A \oplus P)$. In particular, P is cancellative.

[^0]The Bass-Quillen conjecture [3, 15] says: If R is a regular ring, then every projective module over $R\left[X_{1}, \ldots, X_{r}\right]$ is extended from R. In B-Q conjecture, we may assume that R is a regular local ring, due to Quillen's local-global principal [15]: For a ring B, projective module P over $B\left[X_{1}, \ldots, X_{r}\right]$ is extended from B if and only if $P_{\mathfrak{m}}$ is free for every maximal ideal \mathfrak{m} of B. We remark that Quillen's local global principal is also true for projective modules over positive graded rings ([19], Theorem 3.1), whereas it is not true for Laurent polynomial rings ([4], Example 2, p. 809).

Lindel [9] gave an affirmative answer to B-Q conjecture when R is a regular k-spot, i.e. $R=R_{\mathfrak{p}}^{\prime}$, where R^{\prime} is some affine k-algebra and \mathfrak{p} is a regular prime ideal of R^{\prime}. Using Lindel's result, Popescu [13] proved B-Q conjecture when R is any regular local ring containing a field k.

Quillen [15] had asked the following question whose affirmative answer would imply that B-Q conjecture is true: Assume (R, \mathfrak{m}) is a regular local ring and $f \in \mathfrak{m}-\mathfrak{m}^{2}$ a regular parameter of R. Is every projective R_{f}-module free?

Bhatwadekar-Rao [4] answered Quillen's question when R is a regular k-spot. More generally, they proved: Let (R, \mathfrak{m}) be a regular k-spot with infinite residue field and f a regular parameter of R. If B is one of $R, R(T)$ or R_{f}, then projective modules over $B\left[X_{1}, \ldots, X_{r}, Y_{1}^{ \pm 1}, \ldots, Y_{s}^{ \pm 1}\right]$ are free.

Rao [17] generalized above result as follows: Let (R, \mathfrak{m}) be a regular k-spot with infinite residue field. Let g_{1}, \ldots, g_{t} be regular parameters of R which are linearly independent modulo \mathfrak{m}^{2}. If $A=R_{g_{1} \ldots g_{t}}\left[X_{1}, \ldots, X_{r}, Y_{1}^{ \pm 1}, \ldots, Y_{s}^{ \pm 1}\right]$, then projective A-modules of rank $\geq \min \{t, d / 2\}$ are free.

Popescu [14] generalized Rao's result as follows: Let (R, \mathfrak{m}, K) be a regular local ring containing a field k such that either char $k=0$ or char $k=p$ and tr-deg $K / \mathbb{F}_{p} \geq 1$. Let g_{1}, \ldots, g_{t} be regular parameters of R which are linearly independent modulo \mathfrak{m}^{2}. If $A=R_{g_{1} \ldots g_{t}}\left[X_{1}, \ldots, X_{r}, Y_{1}^{ \pm 1}, \ldots, Y_{s}^{ \pm 1}\right]$, then projective A-modules of rank $\geq t$ are free.

We generalize Popescu's result as follows (5.8):

Theorem 1.3 Let (R, \mathfrak{m}, K) be a regular local ring containing a field k such that either char $k=0$ or char $k=p$ and tr-deg $K / \mathbb{F}_{p} \geq 1$. Let g_{1}, \ldots, g_{t} be regular parameters of R which are linearly independent modulo \mathfrak{m}^{2}. If $A=R_{g_{1} \ldots g_{t}}\left[Y_{1}, \ldots, Y_{m}, f_{1}\left(l_{1}\right)^{-1}, \ldots, f_{n}\left(l_{n}\right)^{-1}\right]$ is a ring of type $R_{g_{1} \ldots g_{t}}[d-1, m, n]^{*}$, then every projective A-module of rank $\geq t$ is free.

Note that we can not expect (1.3) for rings of type $R[d, m, n]$. For example, let R be either $\mathbb{R}[X, Y]_{(X, Y)}$ or $\mathbb{R}[[X, Y]]$ and $A=R\left[Z, f(Z)^{-1}\right]$ a ring of type $R[2,1,1]$, where $f(T)=T^{2}+X^{2}+$ Y^{2}. Then stably free A-module P of rank 2 given by the kernel of the surjection $(X, Y, Z): A^{3} \rightarrow A$ is not free. This will follow from the fact that P over the rings $\mathbb{R}[X, Y, Z]_{(X, Y, Z)}\left[f(Z)^{-1}\right]$ or $\mathbb{R}[[X, Y, Z]]\left[f(Z)^{-1}\right]$ is not free ([4], p. 808) and ([11], p. 366).

2 Preliminaries

Let A be a ring and M an A-module. We say $m \in M$ is unimodular if there exist $\phi \in M^{*}=$ $\operatorname{Hom}_{A}(M, A)$ such that $\phi(m)=1$. The set of all unimodular elements of M is denoted by $\operatorname{Um}(M)$. For an ideal $J \subset A$, we denote by $E^{1}(A \oplus M, J)$, the subgroup of $A u t_{A}(A \oplus M)$ generated by all the automorphisms

$$
\Delta_{a \varphi}=\left(\begin{array}{cc}
1 & a \varphi \\
0 & i d_{M}
\end{array}\right) \quad \text { and } \quad \Gamma_{m}=\left(\begin{array}{cc}
1 & 0 \\
m & i d_{M}
\end{array}\right)
$$

with $a \in J, \varphi \in M^{*}$ and $m \in M$. In particular, if $E_{r+1}(A)$ is the group generated by elementary matrices over A, then $E_{r+1}^{1}(A, J)$ denotes the subgroup of $E_{r+1}(A)$ generated by

$$
\Delta_{\mathbf{a}}=\left(\begin{array}{cc}
1 & \mathbf{a} \\
0 & i d_{F}
\end{array}\right) \quad \text { and } \quad \Gamma_{\mathbf{b}}=\left(\begin{array}{cc}
1 & 0 \\
\mathbf{b}^{t} & i d_{F}
\end{array}\right)
$$

where $F=A^{r}, \mathbf{a} \in J F$ and $\mathbf{b} \in F$. We write $E^{1}(A \oplus M)$ for $E^{1}(A \oplus M, A)$.
By $\operatorname{Um}^{1}(A \oplus M, J)$, we denote the set of all $(a, m) \in \operatorname{Um}(A \oplus M)$ with $a \in 1+J$, and $\operatorname{Um}(A \oplus M, J)$ denotes the set of all $(a, m) \in \operatorname{Um}^{1}(A \oplus M)$ with $m \in J M$. We write $\operatorname{Um}_{r}(A, J)$ for $\operatorname{Um}\left(A \oplus A^{r-1}, J\right)$ and $\operatorname{Um}_{r}^{1}(A, J)$ for $\operatorname{Um}^{1}\left(A \oplus A^{r-1}, J\right)$.

Let $p \in M$ and $\varphi \in M^{*}$ be such that $\varphi(p)=0$. Let $\varphi_{p} \in \operatorname{End}(M)$ be defined as $\varphi_{p}(q)=\varphi(q) p$. Then $1+\varphi_{p}$ is a (unipotent) automorphism of M. An automorphism of M of the form $1+\varphi_{p}$ is called a transvection of M if either $p \in \operatorname{Um}(M)$ or $\varphi \in \operatorname{Um}\left(M^{*}\right)$. We denote by $E(M)$, the subgroup of $\operatorname{Aut}(M)$ generated by all transvections of M.

The following result is due to Bak-Basu-Rao ([1], Theorem 3.10). In [5], we proved results for $E^{1}(A \oplus P)$. Due to this result, we can interchange $E(A \oplus P)$ and $E^{1}(A \oplus P)$.

Theorem 2.1 Let A be a ring and P a projective A-module of rank ≥ 2. Then $E^{1}(A \oplus P)=$ $E(A \oplus P)$.

The following result follows from the definition.
Lemma 2.2 Let $I \subset J$ be ideals of a ring A and P a projective A-module. Then the natural map $E^{1}(A \oplus P, J) \rightarrow E^{1}\left(\frac{A}{I} \oplus \frac{P}{I P}, \frac{J}{I}\right)$ is surjective.

Recall that a ring R is essentially of finite type over a ring B if R is localization of an affine B-algebra C at some multiplicative closed subset of C. We state two results due to Gabber ([6], Theorem 2.1) and Popescu ([13], Theorem 3.1) respectively.

Theorem 2.3 Let k be a field and $A=k\left[Y_{1}, \ldots, Y_{m}, f_{1}\left(l_{1}\right)^{-1}, \ldots, f_{n}\left(l_{n}\right)^{-1}\right]$ a ring of type $k[0, m, n]$. Then every projective A-module is free.

Theorem 2.4 Let R be a regular local ring containing a field. Then R is a filtered inductive limit of regular local rings essentially of finite type over \mathbb{Z}.

We state two results due to Wiemers ([20], Proposition 2.5) and Lindel ([8], Lemma 1.1) respectively.

Proposition 2.5 Let R be a ring of dimension d and $A=R\left[X_{1}, \ldots, X_{r}, Y_{1}^{ \pm 1}, \ldots, Y_{s}^{ \pm 1}\right]$. Let $c \in\left\{1, X_{r}, Y_{s}-1\right\}$. If $s \in R$ and $r \geq \max \{3, d+2\}$, then $E_{r}^{1}(A, s c A)$ acts transitively on $\operatorname{Um}_{r}^{1}(A, s c A)$.

Lemma 2.6 Let A be a ring and P a projective A-module of rank r. Then there exist $s \in A$, $p_{1}, \ldots, p_{r} \in P$ and $\phi_{1}, \ldots, \phi_{r} \in \operatorname{Hom}(P, A)$ such that following holds: P_{s} is free, $\left(\phi_{i}\left(p_{j}\right)\right)=$ diagonal $(s, \ldots, s), s P \subset p_{1} A+\ldots+p_{r} A$, the image of s in $A_{\text {red }}$ is a non-zerodivisor and (0 : $s A)=\left(0: s^{2} A\right)$.

Definition 2.7 Let $R \subset S$ be rings and $h \in R$ be a non-zerodivisor in R and S both. If the natural map $R / h R \rightarrow S / h S$ is an isomorphism, then we say $R \rightarrow S$ is an analytic isomorphism along h. In this case, we get the following fiber product diagram

In particular, if P is a projective S-module such that P_{h} is free, then P is extended from R. The following result is due to Nashier ([10], Theorem 2.8). See also ([4], Proposition, p. 803).

Proposition 2.8 Let (R, \mathfrak{m}) be a regular k-spot over a perfect field k. Let $g \in \mathfrak{m}$ and f be any regular parameter of R with (g, f) a regular sequence. Then there exist a field K / k and a regular K-spot R^{\prime} such that
(i) $R^{\prime}=K\left[Z_{1}, \ldots, Z_{d}\right]_{\left(\phi\left(Z_{1}\right), Z_{2}, \ldots, Z_{d}\right)}$, where $\phi\left(Z_{1}\right) \in K\left[Z_{1}\right]$ is an irreducible monic polynomial. Moreover, we may assume $Z_{d}=f$.
(ii) $R^{\prime} \subset R$ is an analytic isomorphism along h for some $h \in g R \cap R^{\prime}$.
(iii) If R / \mathfrak{m} is infinite, then K is also infinite.

We end this section by stating two results ([7], Lemma 3.3) and ([4], Proposition 3.7) respectively.

Lemma 2.9 Let A be a ring and P a projective A-module of rank r. Choose $s \in A$ satisfying the properties of (2.6). Assume that R^{r} is cancellative, where $R=A[X] /\left(X^{2}-s^{2} X\right)$. Then every element of $\operatorname{Um}^{1}\left(A \oplus P, s^{2} A\right)$ can be taken to $(1,0)$ by some element of $A u t(A \oplus P)$.

Proposition 2.10 Let B be a reduced ring of dimension d and R an overring of $B[X]$ contained in its total quotient ring. Let $A=R\left[X_{1}, \ldots, X_{n}, Y_{1}^{ \pm 1}, \ldots, Y_{m}^{ \pm 1}\right]$. Then A^{r} is cancellative for $r \geq d+1$.

3 Cancellation over overrings of polynomial rings

In this section, we prove our first result (3.4). We begin with the following:
Proposition 3.1 Let $A=R\left[Y_{1}, \ldots, Y_{m}, f_{1}\left(l_{1}\right)^{-1}, \ldots, f_{n}\left(l_{n}\right)^{-1}\right]$ be a ring of type $R[d, m, n]$. If $s \in R$ and $r \geq \max \{3, d+2\}$, then $E_{r}^{1}(A, s A)$ acts transitively on $\operatorname{Um}_{r}^{1}(A, s A)$.

Proof By ([5], Lemma 3.1), we may assume that R is reduced. The case $n=0$ follows from (2.5). Assume $n>0$ and use induction on n. The case each $l_{j}=Y_{i_{j}}$ is proved in ([5], Proposition $3.5)$. We will prove the other case.

Let $\left(a_{1}, \ldots, a_{r}\right) \in \operatorname{Um}_{r}^{1}(A, s A)$. Recall that $l_{n}=a_{n 1} Y_{1}+\ldots+a_{n m} Y_{m}-b_{n}$ with $\left(a_{n 1}, \ldots, a_{n m}\right) \in$ $k^{m}-(0)$ and $b_{n} \in R$. We can find $\theta \in E_{m}(k)$ such that $\theta\left(a_{n 1}, \ldots, a_{n m}\right)=(0, \ldots, 0,1)$. Replacing the variables $\left(Y_{1}, \ldots, Y_{m}\right)$ by $\theta\left(Y_{1}, \ldots, Y_{m}\right)$, we may assume that $l_{n}=Y_{m}-b_{n}$. Further replacing Y_{m} by $Y_{m}+b_{n}$, we may assume that $l_{n}=Y_{m}$.

Let $S=1+f_{n}\left(Y_{m}\right) R\left[Y_{m}\right]$. Then $A_{S}=B\left[Y_{1}, \ldots, Y_{m-1}, f_{1}\left(l_{1}\right)^{-1}, \ldots, f_{n-1}\left(l_{n-1}\right)^{-1}\right]$, where $B=R\left[Y_{m}\right]_{f_{n}\left(Y_{m}\right) S}$ is a ring of dimension $d, l_{i}=\sum_{j=1}^{m-1} a_{i j} Y_{j}+\widetilde{b}_{i}$ with $\widetilde{b}_{i}=a_{i m} Y_{m}-b_{i} \in B$. Hence A_{S} is of type $B[d, m-1, n-1]$. By induction on n, we can find $\sigma \in E_{r}^{1}\left(A_{S}, s A_{S}\right)$ such that $\sigma\left(a_{1}, \ldots, a_{r}\right)=(1,0, \ldots, 0)$. We can find $g=1+f_{n}\left(Y_{m}\right) h\left(Y_{m}\right) \in S$ and $\sigma^{\prime} \in E_{r}^{1}\left(A_{g}, s A_{g}\right)$ such that $\sigma^{\prime}\left(a_{1}, \ldots, a_{r}\right)=(1,0, \ldots, 0)$. Rest of the proof is similar to ([5], Proposition 3.5). Hence we only give a sketch.

Let $C=R\left[Y_{1}, \ldots, Y_{m}, f_{1}\left(l_{1}\right)^{-1}, \ldots, f_{n-1}\left(l_{n-1}\right)^{-1}\right]$ be a ring of type $R[d, m, n-1]$. Consider the fiber product diagram

By ([5], Lemma 3.2), there exist $\sigma_{1} \in E_{r}^{1}\left(C_{f_{n}}, s\right)$ and $\sigma_{2} \in \mathrm{SL}_{r}^{1}\left(C_{g}, s\right)$ such that σ^{\prime} has a splitting $\sigma^{\prime}=\left(\sigma_{2}\right)_{f_{n}} \circ\left(\sigma_{1}\right)_{g}$. Patching unimodular elements $\sigma_{1}\left(a_{1}, \ldots, a_{r}\right) \in \operatorname{Um}_{r}^{1}\left(C_{f_{n}}, s\right)$ and $\left(\sigma_{2}\right)^{-1}(1,0, \ldots, 0) \in \operatorname{Um}_{r}^{1}\left(C_{g}, s\right)$, we get $\left(c_{1}, \ldots, c_{r}\right) \in \operatorname{Um}_{r}^{1}(C, s)$. By induction on n, there exist $\phi \in E_{r}^{1}(C, s)$ such that $\phi\left(c_{1}, \ldots, c_{r}\right)=(1,0, \ldots, 0)$. Taking projection of ϕ in A, we get $\Phi \in E_{r}^{1}(A, s)$ such that $\Phi \sigma_{1}\left(a_{1}, \ldots, a_{r}\right)=(1,0, \ldots, 0)$. This completes the proof.

As a consequence of (3.1), we get the following:
Proposition 3.2 Let $A=R\left[Y_{1}, \ldots, Y_{m}, f_{1}\left(l_{1}\right)^{-1}, \ldots, f_{n}\left(l_{n}\right)^{-1}\right]$ be a ring of type $R[d, m, n]$. Then
(i) the canonical map $\Phi_{r}: \mathrm{GL}_{r}(A) / E_{r}(A) \rightarrow K_{1}(A)$ is surjective for $r \geq \max \{2, d+1\}$.
(ii) Further assume $f_{i}(T) \in R[T]$ is monic polynomial, $n \leq m$ and $l_{i} \in k\left[Y_{1}, \ldots, Y_{i}\right]$ with $a_{i i} \neq 0$ (see 1.1). Then for $r \geq \max \{3, d+2\}$, any stably elementary matrix in $\mathrm{GL}_{r}(A)$ is in $E_{r}(A)$. In particular, Φ_{d+2} is an isomorphism.

Proof The proof of (i) is same as ([5], Theorem 3.8). For $(i i)$, let $M \in \mathrm{GL}_{r}(A)$ be a stably elementary matrix. In case $n=0$ or each $l_{i}=Y_{i}$, the proof follows from ([5], Theorem 3.8). Assume $n>0$ and use induction on n. Recall that $l_{n}=a_{n 1} Y_{1}+\ldots+a_{n n} Y_{n}-b_{n}$ with $a_{n n} \neq 0$. Changing $Y_{n} \mapsto$ $a_{n n}^{-1}\left(Y_{n}-a_{n 1} Y_{1}-\ldots-a_{n-1, n-1} Y_{n-1}\right)+b_{n}$, we may assume that $l_{n}=Y_{n}$. Let $S=1+f_{n}\left(Y_{n}\right) R\left[Y_{n}\right]$ and $B=R\left[Y_{n}\right]_{f_{n} S}$. Then $A_{S}=B\left[Y_{1}, \ldots, Y_{n-1}, Y_{n+1}, \ldots, Y_{m}, f_{1}\left(l_{1}\right)^{-1}, \ldots, f_{n-1}\left(l_{n-1}\right)^{-1}\right]$ is a ring of type $B[d, m-1, n-1]$ with $l_{i} \in k\left[Y_{1}, \ldots, Y_{i}\right]$ and $a_{i i} \neq 0$. By induction on $n, M_{S} \in E_{r}\left(A_{S}\right)$. Hence we can choose $g \in S$ such that $M_{g} \in E_{r}\left(A_{g}\right)$. The remaining proof is same as ([5], Theorem 3.8), hence we omit it.

In the following result, (1) will follow from $(2.3,2.6)$ and (2) will follow from ([5], Lemma 3.10).
Lemma 3.3 Let $A=R\left[Y_{1}, \ldots, Y_{m}, f_{1}\left(l_{1}\right)^{-1}, \ldots, f_{n}\left(l_{n}\right)^{-1}\right]$ be a ring of the type $R[d, m, n]$ and P a projective A-module of rank r. Then there exist an $s \in R, p_{1}, \ldots, p_{r} \in P$ and $\phi_{1}, \ldots, \phi_{r} \in$ $\operatorname{hom}(P, A)$ such that
(1) P_{s} is free; $\left(\phi_{i}\left(p_{j}\right)\right)=$ diagonal $(s, \ldots, s) ; s P \subset p_{1} A+\ldots+p_{r} A$; the image of s in $R_{\text {red }}$ is a non-zerodivisor; and $(0: s R)=\left(0: s^{2} R\right)$.
(2) Let $(a, p) \in \operatorname{Um}(A \oplus P, s A)$ with $p=c_{1} p_{1}+\ldots+c_{r} p_{r}$, where $c_{i} \in s A$ for all i. Assume there exist $\phi \in E_{r+1}^{1}(A, s)$ such that $\phi\left(a, c_{1}, \ldots, c_{r}\right)=(1,0, \ldots, 0)$. Then there exist $\Phi \in E(A \oplus P)$ such that $\Phi(a, p)=(1,0)$.

Following is the main result of this section which generalizes ([5], Theorem 3.12).
Theorem 3.4 Let $A=R\left[Y_{1}, \ldots, Y_{m}, f_{1}\left(l_{1}\right)^{-1}, \ldots, f_{n}\left(l_{n}\right)^{-1}\right]$ be a ring of type $R[d, m, n]$ and P a projective A-module of rank $r \geq \max \{2, d+1\}$. Then $E(A \oplus P)$ acts transitively on $\operatorname{Um}(A \oplus P)$. In particular, P is cancellative.

Proof Using ([5], Lemma 3.1), we may assume that R is reduced. If $d=0$, then R is a direct product of fields. Hence P is free by (2.3) and the result follows from (3.1) with $s=1$. Assume $d>0$ and use induction on d.

By (3.3), there exist a non-zerodivisor $s \in R, p_{1}, \ldots, p_{r} \in P$ and $\phi_{1}, \ldots, \phi_{r} \in P^{*}$ satisfying the properties of (3.3(1)). We may assume that s is not a unit, otherwise P is free and we are done by (3.1). Rest of the proof is similar to ([5], Theorem 3.12) with $J=R$, we only give a sketch.

Let $(a, p) \in \operatorname{Um}(A \oplus P)$. Using (2.2) and induction on d, we may assume that $(a, p)=(1,0)$ modulo $s^{2} A$. By (3.3), $p=a_{1} p_{1}+\ldots+a_{r} p_{r}$ with $a_{i} \in s A$ and $\left(a, a_{1}, \ldots, a_{r}\right) \in \operatorname{Um}_{r+1}(A, s A)$. By (3.1), there exist $\phi \in E^{1}(A, s A)$ such that $\phi\left(a, a_{1}, \ldots, a_{r}\right)=(1,0, \ldots, 0)$. By (3.3(2)), we get $\Psi \in E(A \oplus P)$ such that $\Psi(a, p)=(1,0)$. This completes the proof.

Following result generalizes (2.10).
Proposition 3.5 Let B be a reduced ring of dimensiond containing a field k and R an overring of $B[X]$ contained in its total quotient ring. Let $A=R\left[Y_{1}, \ldots, Y_{m}, f_{1}\left(l_{1}\right)^{-1}, \ldots, f_{n}\left(l_{n}\right)^{-1}\right]$ be a ring of type $R[\operatorname{dim} R, m, n]^{*}$ with $n \leq m, l_{i} \in k\left[Y_{1}, \ldots Y_{i}\right]$ and $a_{i i} \neq 0$. Then every projective A-module of rank $r \geq d+1$ is cancellative.

Proof If $\operatorname{dim} R \leq d$ or $r \geq d+2$, then result follows from (3.4). Hence we assume $\operatorname{dim} R=d+1$ and $r=d+1$.

Step 1: We first prove that A^{d+1} is cancellative. When $n=0$, we are done by (2.10). Assume $n>0$ and use induction on n.

Recall that $l_{n}=a_{n 1} Y_{1}+\ldots+a_{n n} Y_{n}-b_{n}$ with $a_{n n} \neq 0$. Changing $Y_{n} \mapsto a_{n n}^{-1}\left(Y_{n}-a_{n 1} Y_{1}-\right.$ $\left.\ldots-a_{n, n-1} Y_{n-1}\right)+b_{n}$, we can assume that $l_{n}=Y_{n}$. Let P be a stably free A-module of rank $d+1$. If $S=1+f_{n}\left(Y_{n}\right) k\left[Y_{n}\right]$, then $\operatorname{dim} B\left[Y_{n}\right]_{f_{n}\left(Y_{n}\right) S}=d$. If $R^{\prime}=R\left[Y_{n}\right]_{f_{n} S}$, then $A_{S}=$ $R^{\prime}\left[Y_{1}, \ldots, Y_{n-1}, Y_{n+1}, \ldots, Y_{m}, f_{1}\left(l_{1}\right)^{-1}, \ldots, f_{n-1}\left(l_{n-1}\right)^{-1}\right]$ is a ring of type $R^{\prime}[d+1, m-1, n-1]^{*}$ with $l_{i} \in k\left[Y_{1}, \ldots Y_{i}\right]$ and $a_{i i} \neq 0$. By induction on n, P_{S} is free. Hence we can find $g \in k\left[Y_{n}\right]$ such that $P_{1+f_{n} g}$ is free. If $C^{\prime}=R\left[Y_{1}, \ldots, Y_{n-1}, Y_{n+1}, \ldots, Y_{m}, f_{1}\left(l_{1}\right)^{-1}, \ldots, f_{n-1}\left(l_{n-1}\right)^{-1}\right]$ and $C=C^{\prime}\left[Y_{n}\right]$, then we have following fiber product diagram

Since $P_{1+f_{n} g}$ is free, by (2.7), P is extended from C, say $P_{f_{n}}^{\prime}=P$ for some projective C-module P^{\prime}. Since $P \oplus A \xrightarrow{\sim} A^{d+2}$, we get $\left(P^{\prime} \oplus C\right)_{f_{n}} \xrightarrow{\sim} C_{f_{n}}{ }^{d+2}$. Since $f_{n} \in C^{\prime}\left[Y_{n}\right]$ is a monic polynomial, using Suslin's monic inversion theorem ([18], Theorem 1), we get $P^{\prime} \oplus C \xrightarrow{\sim} C^{d+2}$. But C is a ring of type $R[d+1, m, n-1]^{*}$ with $l_{i} \in k\left[Y_{1}, \ldots Y_{i}\right]$ and $a_{i i} \neq 0$. Hence by induction on n, C^{d+1} is cancellative. Therefore, P^{\prime} is free and so P is free. This proves that A^{r} is cancellative.

Step 2: We will prove the general case. Let P be a projective A-module of rank $d+1$. If $d=0$, then we may assume that B is a field. It is easy to see that $R=B\left[X, f(X)^{-1}\right]$ for some $f(X) \in B[X]$. Hence A is a ring of type $B[0, m+1, n+1]$, so P is free, by (2.3). Assume $d \geq 1$.

If S is the set of non-zerodivisors of B, then as above, projective modules over $S^{-1} A$ are free. Hence we can choose $s \in S$ such that P_{s} is free and (3.3(1)) holds. Note that if $B^{\prime}=B[T] /\left(T^{2}-\right.$ $\left.s^{2} T\right), R^{\prime}=R[T] /\left(T^{2}-s^{2} T\right)$ and $A^{\prime}=R^{\prime}\left[Y_{1}, \ldots, Y_{m}, f_{1}\left(l_{1}\right)^{-1}, \ldots, f_{n}\left(l_{n}\right)^{-1}\right]$, then $\left(A^{\prime}\right)^{d+1}$ is cancellative, by step 1 . By (2.9), every element of $\operatorname{Um}^{1}\left(A \oplus P, s^{2} A\right)$ can be taken to $(1,0)$ by some element of $\operatorname{Aut}(A \oplus P)$. To complete the proof, it is enough to show that if $(a, p) \in \operatorname{Um}(A \oplus P)$, then there exist $\sigma \in \operatorname{Aut}(A \oplus P)$ such that $\sigma(a, p) \in \operatorname{Um}^{1}\left(A \oplus P, s^{2} A\right)$.

Let "bar" denote reduction modulo $s^{2} A$. Then $\bar{A}=\bar{R}\left[Y_{1}, \ldots, Y_{m}, f_{1}\left(l_{1}\right)^{-1}, \ldots, f_{n}\left(l_{n}\right)^{-1}\right]$ and $\operatorname{dim} \bar{R} \leq d$. By (3.4), there exist $\bar{\sigma} \in E(\bar{A} \oplus \bar{P})$ such that $\bar{\sigma}(\bar{a}, \bar{p})=(1,0)$. Lifting $\bar{\sigma}$ to an element $\sigma \in E(A \oplus P)$, we get $\sigma(a, p) \in \operatorname{Um}^{1}\left(A \oplus P, s^{2} A\right)$. This completes the proof.

4 Quillen's question and Bhatwadekar-Rao's results

In this section we will generalize some results from [4] regarding Quillen's question mentioned in the introduction. We begin with the following:

Lemma 4.1 Let R be a UFD of dimension 1 and $A=R\left[Y_{1}, \ldots, Y_{m}, f_{1}\left(l_{1}\right)^{-1}, \ldots, f_{n}\left(l_{n}\right)^{-1}\right]$ a ring of type $R[1, m, n]$. Then every projective A-module is free.

Proof If $n=0$, we are done by ([4], Proposition 3.1). Assume $n>0$ and use induction on n. Let P be a projective A-module of rank r. Using same arguments as in the proof of (3.1), after changing variables $\left(Y_{1}, \ldots, Y_{m}\right)$ by $\theta\left(Y_{1}, \ldots, Y_{m}\right)$ for some $\theta \in E_{m}(k)$, we may assume that $l_{n}=Y_{m}$.

Let $S=1+f_{n}\left(Y_{m}\right) R\left[Y_{m}\right]$ and $R^{\prime}=R\left[Y_{m}\right]_{f_{n} S}$. Then R^{\prime} is a UFD of dimension 1 and $A_{S}=$ $R^{\prime}\left[Y_{1}, \ldots, Y_{m-1}, f_{1}\left(l_{1}\right)^{-1}, \ldots, f_{n-1}\left(l_{n-1}\right)^{-1}\right]$ is a ring of type $R^{\prime}[1, m-1, n-1]$, where $l_{i}=a_{i 1} Y_{1}+$ $\ldots+a_{i, m-1} Y_{m-1}-\widetilde{b}_{i}$ with $\widetilde{b}_{i}=b_{i}-a_{i m} Y_{m} \in R^{\prime}$ for $i=1, \ldots, n-1$. By induction on n, every projective A_{S}-module is free. In particular, P_{S} is free. Find $1+f_{n} g \in S$ such that $P_{1+f_{n} g}$ is free. The ring $C=R\left[Y_{1}, \ldots, Y_{m}, f_{1}\left(l_{1}\right)^{-1}, \ldots, f_{n-1}\left(l_{n-1}\right)^{-1}\right]$ is of type $R[1, m, n-1]$. Hence by induction on n, projective C-modules are free. Consider the following fiber product diagram

Since $P_{1+f_{n} g}$ is free, patching projective modules P and $\left(C_{1+f_{n} g}\right)^{r}$ over $C_{f_{n}\left(1+f_{n} g\right)}$, we get that P is extended from C and hence P is free.

4.1 Infinite residue-field case

The following result generalizes Bhatwadekar-Rao's Laurent polynomial case ([4], Theorem 3.2).
Proposition 4.2 Let R be a regular k-spot of dimension d with infinite residue field, f a regular parameter of R and $A=R\left[Y_{1}, \ldots, Y_{m}, f_{1}\left(l_{1}\right)^{-1}, \ldots, f_{n}\left(l_{n}\right)^{-1}\right]$ a ring of type $R[d, m, n]^{*}$. Then every projective A_{f}-module is free.

Proof Let P be a projective A_{f}-module. If $T=R-\{0\}$, then $T^{-1} P$ is free, by (2.3). Find $g \in T$ such that P_{g} is free. We may assume that (g, f) is a regular sequence in R. By (2.8), there exist an infinite field K / k, a regular K-spot $R^{\prime}=K\left[Z_{1}, \ldots, Z_{d}\right]_{\left(\phi\left(Z_{1}\right), Z_{2}, \ldots, Z_{d}\right)}$ such that $R^{\prime} \subset R$ is an analytic isomorphism along $h \in g R \cap R^{\prime}$ and $f=Z_{d}$. Therefore, $A^{\prime}=R^{\prime}\left[Y_{1}, \ldots, Y_{m}, f_{1}\left(l_{1}\right)^{-1}, \ldots, f_{n}\left(l_{n}\right)^{-1}\right]$ is a ring of type $R^{\prime}[d, m, n]^{*}$ and $A^{\prime} \subset A$ is an analytic isomorphism along h. Since P_{h} is free, by (2.7), P is extended from $A_{Z_{d}}^{\prime}$.

Enough to show that projective $A_{Z_{d}}^{\prime}$-modules are free. Replace R^{\prime} by R and A^{\prime} by A. If $d \leq 2$, then $R_{Z_{d}}$ is a UFD of dimension ≤ 1. Hence P is free, by (4.1, 2.3). Assume $d>2$ and use induction on d. The proof is similar to ([4], Theorem 3.2), hence we only give a sketch.

Let S be multiplicative set of all non-zero homogeneous polynomials in $C=k\left[Z_{2}, \ldots, Z_{d}\right]$. Then $R_{Z_{d} S}$ is a localization of $C_{S}\left[Z_{1}\right]$. We can find $h \in C_{S}\left[Z_{1}\right]$ such that P_{S} is defined over the
ring $D=C_{S}\left[Z_{1}, h\left(Z_{1}\right)^{-1}, Y_{1}, \ldots, Y_{m}, f_{1}\left(l_{1}\right)^{-1}, \ldots, f_{n}\left(l_{n}\right)^{-1}\right]$. Note that C_{S} is a UFD of dimension ≤ 1, by ([10], Proposition 1.11). Since D is of type $C_{S}[1, m+1, n+1]$, by (4.1), P_{S} is free. Choose $F \in S$ such that P_{F} is free. Since K is infinite, by linear change of variables, we can assume that F is homogeneous and monic polynomial in Z_{2} with coefficients in $k\left[Z_{3}, \ldots, Z_{d}\right]$.

If $\widetilde{R}=k\left[Z_{1}, Z_{3}, \ldots, Z_{d}\right]_{\left(\phi\left(Z_{1}\right), Z_{3}, \ldots, Z_{d}\right)}$, then $\widetilde{R}\left[Z_{2}\right] \subset R$ is an analytic isomorphism along F ([4], page 803). If $\widetilde{A}=\widetilde{R}\left[Z_{2}, Y_{1}, \ldots, Y_{m}, f_{1}\left(l_{1}\right)^{-1}, \ldots, f_{n}\left(l_{n}\right)^{-1}\right]$, then $\widetilde{A}_{Z_{d}} \subset A_{Z_{d}}$ is an analytic isomorphism along F. Since P_{F} is free, P is extended from $\widetilde{A}_{Z_{d}}$, by (2.7). Observe that $\widetilde{A}_{Z_{d}}$ is a ring of type $\widetilde{R}_{Z_{d}}[d-2, m+1, n]$. Hence by induction on d, projective $\widetilde{A}_{Z_{d}}$-modules are free. In particular, P is free.

Recall that $R(T)$ denote the ring $S^{-1} R[T]$, where S is the multiplicative set consisting of all monic polynomials of $R[T]$.

Corollary 4.3 Let (R, \mathfrak{m}) be a regular k-spot of dimension d with infinite residue field. If $A=$ $R\left[Y_{1}, \ldots, Y_{m}, f_{1}\left(l_{1}\right)^{-1}, \ldots, f_{n}\left(l_{n}\right)^{-1}\right]$ is a ring of type $R[d, m, n]^{*}$, then projective modules over A and $A \otimes_{R} R(T)$ are free.

Proof (i) Assume P is a projective $A \otimes_{R} R(T)$-module. By ([4], Corollary 3.5), $R(T)=R[X]_{(\mathfrak{m}, X)}[1 / X]$ with $X=T^{-1}$. Since $f=X \in R[X]_{(\mathfrak{m}, X)}$ is a regular parameter, we are done by (4.2).
(ii) Assume P is a projective A-module. Then, we are done by (i), using Suslin's monic inversion ([18], Theorem 1).

The laurent polynomial case of the following result is due to Popescu [14].
Theorem 4.4 Let (R, \mathfrak{m}, K) be a regular local ring of dimension d containing a field k such that either char $k=0$ or char $k=p$ and tr-deg $K / \mathbb{F}_{p} \geq 1$. Let f be a regular parameter of R and $A=R\left[Y_{1}, \ldots, Y_{m}, f_{1}\left(l_{1}\right)^{-1}, \ldots, f_{n}\left(l_{n}\right)^{-1}\right]$ a ring of type $R[d, m, n]^{*}$. Then projective modules over A, A_{f} and $A \otimes_{R} R(T)$ are free.

Proof (i) Assume P is a projective A_{f}-module. By (2.4), R is a filtered inductive limit of some regular spots $\left(R_{i}\right)_{i \in I}$ over \mathbb{Z}, in particular over the prime subfield of R. Further, we may assume that f is an extension of $f^{\prime} \in R_{j}$ for some j and that f^{\prime} is a regular parameter of R_{j} (see [14]).

Choosing possibly a bigger index $j \in I$, we may assume that P is extended from $A_{f^{\prime}}^{\prime}$, where $A^{\prime}=R_{j}\left[Y_{1}, \ldots, Y_{m}, f_{1}\left(l_{1}\right)^{-1}, \ldots, f_{n}\left(l_{n}\right)^{-1}\right]$ is a ring of type $R_{j}[d, m, n]^{*}$. Since $\operatorname{tr}-\operatorname{deg} K / k \geq 1$, we can assume that the residue field of R_{j} is infinite. By (4.2), P^{\prime} and hence P is free.
(ii) Following the proof of (4.3), projective modules over A and $A \otimes_{R} R(T)$ are free.

4.2 Finite residue-field case

The following result is an analogue of (4.2) in case residue field of R is finite and generalizes Bhatwadekar-Rao's ([4], Theorem 3.8).

Theorem 4.5 Let R be a regular \mathbb{F}_{q}-spot of dimension d, f a regular parameter of R and $A=$ $R\left[Y_{1}, \ldots, Y_{m}, f_{1}\left(l_{1}\right)^{-1}, \ldots, f_{n}\left(l_{n}\right)^{-1}\right]$ a ring of type $R[d, m, n]^{*}$. Then every projective A_{f}-module of rank $\geq d-1$ is free.

Proof As in (4.2), using (2.8), we can assume $R=K\left[Z_{1}, \ldots, Z_{d}\right]_{\left(\phi\left(Z_{1}\right), Z_{2}, \ldots, Z_{d}\right)}$ and $f=Z_{d}$, where $K \supseteq \mathbb{F}_{q}$ may be a finite field. Let P be a projective A_{f}-module of rank $r \geq d-1$. Note that projective A_{f}-modules are stably free and $\operatorname{dim} R_{f}=d-1$. Hence if $r \geq d$, then P is free by (2.3, 3.4). Therefore, we need to prove the result in case $r=d-1$. We use induction on d.

If $d \leq 2$, then R_{f} is a UFD of dimension 1 and we are done by (4.1). Assume $d>2$. If $\widetilde{R}=K\left[Z_{1}, \ldots, Z_{d-1}\right]_{\left(\phi\left(Z_{1}\right), Z_{2}, \ldots, Z_{d-1}\right)}$, then $\widetilde{R}_{Z_{d-1}}$ is of dimension $d-2$. Since $R_{Z_{d} Z_{d-1}}$ is a localization of $\widetilde{R}_{Z_{d-1}}\left[Z_{d}\right]$, we can find $h\left(Z_{d}\right) \in \widetilde{R}_{Z_{d-1}}\left[Z_{d}\right]$ such that $P_{Z_{d-1}}$ is defined over $C=$ $\widetilde{R}_{Z_{d-1}}\left[Z_{d}, h\left(Z_{d}\right)^{-1}, Y_{1}, \ldots, Y_{m}, f_{1}\left(l_{1}\right)^{-1}, \ldots, f_{n}\left(l_{n}\right)^{-1}\right]$. Since C is of type $\widetilde{R}_{Z_{d-1}}[d-2, m+1, n+1]$ by (3.4), $P_{Z_{d-1}}$ being stably free is free.

If $R^{\prime}=K\left[Z_{1}, \ldots, Z_{d-2}, Z_{d}\right]_{\left(\phi\left(Z_{1}\right), Z_{2}, \ldots, Z_{d-2}, Z_{d}\right)}$, then $R_{Z_{d}}^{\prime}\left[Z_{d-1}\right] \subset R_{Z_{d}}$ is an analytic isomorphism along Z_{d-1} (see [4], page 803). If $A^{\prime}=R_{Z_{d}}^{\prime}\left[Z_{d-1}, Y_{1}, \ldots, Y_{m}, f_{1}\left(l_{1}\right)^{-1}, \ldots, f_{n}\left(l_{n}\right)^{-1}\right]$ then $A_{Z_{d}}^{\prime} \subset A_{Z_{d}}$ is also an analytic isomorphism along Z_{d-1}. Using $P_{Z_{d-1}}$ is free, P is extended from $D=R_{Z_{d}}^{\prime}\left[Z_{d-1}, Y_{1}, \ldots, Y_{m}, f_{1}\left(l_{1}\right)^{-1}, \ldots, f_{n}\left(l_{n}\right)^{-1}\right]$. By induction on d, projective D-modules of rank $\geq d-1$ are free. Hence P is free.

The following result is an analogue of (4.3) in case residue field of R is finite and follows from (4.5) by following the proof of (4.3).

Corollary 4.6 Let R be a regular \mathbb{F}_{q}-spot of dimension d, and A a ring of type $R[d, m, n]^{*}$. Then projective modules of rank $\geq d$ over A and $A \otimes_{R} R(T)$ are free.

The proof of following result is exactly same as ([4], Proposition 4.1, Theorem 4.2) using (2.3). Hence we omit the proof.

Theorem 4.7 Let $R=\mathbb{F}_{p}\left[\left[Z_{1}, \ldots, Z_{d}\right]\right]$ and f be a regular parameter of R. If A is a ring of type $R[d, m, n]^{*}$, then projective modules over $A, A_{f}, A \otimes_{R} R(T)$ are free.

5 Generalization of Rao's results

In this section, we will generalize some results from [17]. We begin with the following result. It's proof is exactly same as ([17], Theorem 2.1) by using (3.4) instead of Swan's result, hence we omit it. The case $t \leq 1$ is (4.7).

Proposition 5.1 Let (R, \mathfrak{m}) be a formal (or convergent) power series ring of dimension d over a field k. Let $g_{1}, \ldots, g_{t}, 0 \leq t \leq d$ be regular parameters of R which are linearly independent modulo \mathfrak{m}^{2}. If A is a ring of type $R[d, m, n]^{*}$, then every projective $A_{g_{1} \ldots g_{t}}$-module of rank $\geq t-1$ is free.

Lemma 5.2 Let (R, \mathfrak{m}) be a regular k-spot of dimension d and S a multiplicative closed subset of R which contains a regular parameter of R. Let $A=R\left[Y_{1}, \ldots, Y_{m}, f_{1}\left(l_{1}\right)^{-1}, \ldots, f_{n}\left(l_{n}\right)^{-1}\right]$ be a ring of type $R[d, m, n]^{*}$. Then every projective $S^{-1} A$-module of rank $\geq d-1$ is free.

Proof Since $\operatorname{dim} S^{-1} R \leq d-1$, if rank $P>d-1$, then we are done by (3.4). Assume that rank $P=d-1$. We will follow the notation and proof of ([17], Proposition 2.3). If we show that every stably free module P of rank $d-1$ over $R_{Z_{1} s}^{\prime}\left[Y_{1}, \ldots, Y_{m}, f_{1}\left(l_{1}\right)^{-1}, \ldots, f_{n}\left(l_{n}\right)^{-1}\right]$ is free, then remaining proof is exactly same as in [17].

Recall that $R^{\prime}=K\left[Z_{1}, \ldots, Z_{d}\right]_{\left(Z_{1}, \ldots, Z_{d-1}, \phi\left(Z_{d}\right)\right)}$. If $\widetilde{R}=K\left[Z_{1}, \ldots, Z_{d-2}, Z_{d}\right]_{\left(Z_{1}, \ldots, Z_{d-2}, \phi\left(Z_{d}\right)\right)}$, then $R_{Z_{1} s}^{\prime}$ is a localization of $\widetilde{R}_{Z_{1} s}\left[Z_{d-1}\right]$. We can find $f\left(Z_{d-1}\right) \in \widetilde{R}_{Z_{1} s}\left[Z_{d-1}\right]$ such that P is defined over $C=\widetilde{R}_{s Z_{1}}\left[Z_{d-1}, f^{-1}, Y_{1}, \ldots, Y_{m}, f_{1}\left(l_{1}\right)^{-1}, \ldots, f_{n}\left(l_{n}\right)^{-1}\right]$. Since C is a ring of type $\widetilde{R}_{Z_{1}}[d-2, m+1, n+1]$ and P is stably free of rank $d-1$, by (3.4), P is free. This completes the proof.

The following result is immediate from (5.2).
Corollary 5.3 Let (R, \mathfrak{m}) be a regular k-spot of dimension 3 and f, g, h regular parameters of R which are linearly independent modulo \mathfrak{m}^{2}. Let A be a ring of type $R[3, m, n]^{*}$. Then projective modules over $A, A_{f}, A_{f g}$ and $A_{f g h}$ are free.

Lemma 5.4 Let k be an infinite field, $B=k\left[Z_{1}, \ldots, Z_{d}\right]$, $\mathfrak{m}=\left(Z_{1}, \ldots, Z_{d-1}, \phi\left(Z_{d}\right)\right)$ a maximal ideal and $R=B_{\mathfrak{m}}$. Let $A=R\left[Y_{1}, \ldots, Y_{m}, f_{1}\left(l_{1}\right)^{-1}, \ldots, f_{n}\left(l_{n}\right)^{-1}\right]$ be a ring of type $R[d, m, n]^{*}$ and $h \in k\left[Z_{1}, \ldots, Z_{t}\right]$. Then every projective A_{h}-module of rank $\geq t$ is free.

Proof Assume $t=d$. If $h \in \mathfrak{m}$, then $\operatorname{dim} R_{h}=d-1$ and the result follows from (3.4). If $h \notin \mathfrak{m}$, then $R_{h}=R$ and we are done by (4.3). The proof in case $t<d$ is similar to ([17], Proposition 2.7), hence we only give a sketch.

We can find $f \in B-\mathfrak{m}$ such that P is defined over $B\left[(f h)^{-1}, Y_{1}, \ldots, Y_{m}, f_{1}\left(l_{1}\right)^{-1}, \ldots, f_{n}\left(l_{n}\right)^{-1}\right]$. If $S=k\left[Z_{t+1}, \ldots, Z_{d}\right]-(0)$, then P_{S} is defined over $\widetilde{R}\left[Y_{1}, \ldots, Y_{m}, f_{1}\left(l_{1}\right)^{-1}, \ldots, f_{n}\left(l_{n}\right)^{-1}\right]$, where $\widetilde{R}=K\left[Z_{1}, \ldots, Z_{t}\right] \mathfrak{m}_{1}\left[(f h)^{-1}\right]$ with $K=k\left(Z_{t+1}, \ldots, Z_{d}\right)$ and $\mathfrak{m}_{1}=\left(Z_{1}, \ldots, Z_{t}\right)$. Since rank $P \geq t$ and $\operatorname{dim} \widetilde{R} \leq t, P_{S}$ is free ($t=d$ case).

Proceed as in [17], we get that if $B^{\prime}=k\left[Z_{1}, \ldots, Z_{d-1}\right]_{\left(Z_{1}, \ldots, Z_{d-1}\right)}$, then P is extended from C_{h}, where $C=B^{\prime}\left[Z_{d}, Y_{1}, \ldots, Y_{m}, f_{1}\left(l_{1}\right)^{-1}, \ldots, f_{n}\left(l_{n}\right)^{-1}\right]$. Since C_{h} is of type $B_{h}^{\prime}\left[d^{\prime}, m+1, n\right]^{*}$, where $d^{\prime} \leq d-1$, by induction on d, P is free.

Lemma 5.5 Let K be an infinite field and $R=K\left[Z_{1}, \ldots, Z_{d}\right] \mathfrak{m}$, where $\mathfrak{m}=\left(Z_{1}, \ldots, Z_{d-1}, \phi\left(Z_{d}\right)\right)$ is a maximal ideal. Fix $q>0$ an integer such that $d \geq 2 q-1$. Let $B=R_{h g_{1} \ldots g_{k}}$, where $h \in$ $K\left[Z_{1}, \ldots, Z_{p}\right]$ with $1 \leq p<q$ and g_{1}, \ldots, g_{k} are regular parameters of \mathfrak{m} with $Z_{1}, \ldots, Z_{p}, g_{1}, \ldots, g_{k}$ linearly independent modulo \mathfrak{m}^{2}. Let $A=B\left[Y_{1}, \ldots, Y_{m}, f_{1}\left(l_{1}\right)^{-1}, \ldots, f_{n}\left(l_{n}\right)^{-1}\right]$ be a ring of type $B[d-1, m, n]^{*}$ and P a projective A-module of rank $\geq d-q$. Then there exist $g \in k\left[Z_{1}, \ldots, Z_{p}\right]$ such that P_{g} is free.

Proof We follow the proof and notations of ([17], Proposition 2.8) and indicate the necessary changes. If $k=0$, then $B=R_{h}$ with $h \in K\left[Z_{1}, \ldots, Z_{p}\right]$. In this case, using (5.4), P itself is free. Assume $k>0$ and use induction on k. Proceed as in [17] using (5.2). Let $S=K\left[Z_{1}, \ldots, Z_{q}\right]-(0)$. We only need to show that $S^{-1} P$ is free. Remaining arguments are same as in [17].

Recall that $g_{1}=Z_{p+1}, \ldots, g_{q-p}=Z_{q}$. Write $\widetilde{R}=K\left(Z_{1}, \ldots, Z_{q}\right)\left[Z_{q+1}, \ldots, Z_{d}\right] \mathfrak{m}^{\prime}$, where $\mathfrak{m}^{\prime}=$ $\left(Z_{q+1}, \ldots, Z_{d-1}, \phi\left(Z_{d}\right)\right)$. Then $S^{-1} P$ is defined over $C=\widetilde{R}_{g_{q-p+1} \ldots g_{k}}\left[Y_{1}, \ldots, Y_{m}, f_{1}\left(l_{1}\right)^{-1}, \ldots, f_{n}\left(l_{n}\right)^{-1}\right]$.

Assume $k<q-p+1$. Then $C=\widetilde{R}\left[Y_{1}, \ldots, Y_{m}, f_{1}\left(l_{1}\right)^{-1}, \ldots, f_{n}\left(l_{n}\right)^{-1}\right]$ and $S^{-1} P$ is free, by (4.3). If $k \geq q-p+1$, use (5.2) to conclude that $S^{-1} P$ is free.

Theorem 5.6 Let (R, \mathfrak{m}) be a regular k-spot of dimension d with infinite residue field. Let $A=$ $R_{g_{1} \ldots g_{t}}\left[Y_{1}, \ldots, Y_{m}, f_{1}\left(l_{1}\right)^{-1}, \ldots, f_{n}\left(l_{n}\right)^{-1}\right]$ be a ring of type $R_{g_{1} \ldots g_{t}}[d-1, m, n]^{*}$, where $g_{1}, \ldots, g_{t} \in$ R are regular parameters which are linearly independent modulo \mathfrak{m}^{2}. Then every projective A module P of rank $r \geq \min \{t,[d / 2]\}$ is free.

Proof We will follow the proof and notations of ([17], Theorem 2.9). If we show that $S^{-1} P$ is free, then rest of the argument is same as in [17]. Note $R^{\prime}=k\left[Z_{1}, \ldots, Z_{d}\right]_{\left(Z_{1}, \ldots, Z_{d-1}, \phi\left(Z_{d}\right)\right)}$ and P is defined over $R_{Z_{1} \ldots Z_{t}}^{\prime}\left[Y_{1}, \ldots, Y_{m}, f_{1}\left(l_{1}\right)^{-1}, \ldots, f_{n}\left(l_{n}\right)^{-1}\right]$. Write $S=k\left[Z_{1}, \ldots, Z_{q}\right]-(0)$ and $\widetilde{R}=$ $K\left(Z_{1}, \ldots, Z_{q}\right)\left[Z_{q+1}, \ldots, Z_{d}\right]_{\left(Z_{q+1}, \ldots, Z_{d-1}, \phi\left(Z_{d}\right)\right)}$. Then R^{\prime} is a localization of \widetilde{R}. We can find $h_{1} \in$ $K\left[Z_{1}, \ldots, Z_{d}\right]$ such that $S^{-1} P$ is defined over $C=\widetilde{R}_{h_{1} Z_{q+1} \ldots Z_{t}}\left[Y_{1}, \ldots, Y_{m}, f_{1}\left(l_{1}\right)^{-1}, \ldots, f_{n}\left(l_{n}\right)^{-1}\right]$. Since $\operatorname{dim} \widetilde{R}=d-q$ which is q if d is even and $q+1$ when d is odd, $S^{-1} P$ is free, by (5.2).

The following result is an analog of (5.1) for regular k-spots in the geometric case. Recall that a local ring (R, \mathfrak{m}) is said to have a coefficient field if R contains a subfield K isomorphic to R / \mathfrak{m}. The proof is exactly same as of ([17], Theorem 2.12) using above results. Hence we omit the proof.

Theorem 5.7 Let (R, \mathfrak{m}) be a regular k-spot with infinite residue field. Let g_{1}, \ldots, g_{t} be regular parameters of R which are linearly independent modulo \mathfrak{m}^{2}. Assume that $R /\left(g_{1}\right)$ contains a coefficient field. If $A=R_{g_{1} \ldots g_{t}}\left[Y_{1}, \ldots, Y_{m}, f_{1}\left(l_{1}\right)^{-1}, \ldots, f_{n}\left(l_{n}\right)^{-1}\right]$ is of type $R_{g_{1} \ldots g_{t}}[d-1, m, n]^{*}$, then every projective A-module P of rank $\geq t-1$ is free.

The following result generalizes Popescu's result [14]. For $t \leq 1$, this follows from (4.4).
Theorem 5.8 Let (R, \mathfrak{m}, K) be a regular local ring of dimension d containing a field k such that either char $k=0$ or char $k=p$ and tr-deg $K / \mathbb{F}_{p} \geq 1$. Let g_{1}, \ldots, g_{t} be regular parameters of R which are linearly independent modulo \mathfrak{m}^{2}. Let $A=R_{g_{1} \ldots g_{t}}\left[Y_{1}, \ldots, Y_{m}, f_{1}\left(l_{1}\right)^{-1}, \ldots, f_{n}\left(l_{n}\right)^{-1}\right]$ be a ring of type $R_{g_{1} \ldots g_{t}}[d-1, m, n]^{*}$. Then every projective A-module of rank $\geq t$ is free.

Proof We follow the proof of (4.4) and use same notations. As in [14], if $g=g_{1} \ldots g_{t}$, then g is an extension of $g^{\prime} \in R_{j}$ for some j. Further, g^{\prime} is a product of regular parameters $g_{1}^{\prime}, \ldots, g_{t}^{\prime}$ of $\left(R_{j}, \mathfrak{m}_{j}\right)$ which are linearly independent modulo \mathfrak{m}_{j}^{2}. If P is a projective A_{f}-module, then by choosing possibly a bigger index $j \in I$, we may assume that P is an extension of a projective
module P^{\prime} over A^{\prime}, where $A^{\prime}=\left(R_{j}\right)_{g^{\prime}}\left[Y_{1}, \ldots, Y_{m}, f_{1}\left(l_{1}\right)^{-1}, \ldots, f_{n}\left(l_{n}\right)^{-1}\right]$. If $\operatorname{dim} R^{\prime}=d^{\prime}$, then A^{\prime} is a ring of type $\left(R_{j}\right)_{g^{\prime}}\left[d^{\prime}-1, m, n\right]^{*}$. Now R_{j} is a regular k-spot. Since tr-deg $K / k \geq 1$, we can assume that the residue field of R_{j} is infinite. By (5.6), P^{\prime} and hence P is free.

The following result is immediate from (5.8).
Corollary 5.9 Let (R, \mathfrak{m}, K) be a regular local ring of dimension d containing a field k such that either char $k=0$ or char $k=p$ and tr-deg $K / \mathbb{F}_{p} \geq 1$. Let f, g be regular parameters of R which are linearly independent modulo \mathfrak{m}^{2}. If A is a ring of type $R[d, m, n]^{*}$, then every projective module over A, A_{f} and $A_{f g}$ are free.

Acknowledgements: We would like to thank Professor D. Popescu for sending us a copy of [14] and Mrinal K. Das for bringing Gabber's result to our notice.

References

[1] A. Bak, R. Basu and R.A. Rao, Local-global principle for transvection groups, Proc. Amer. Math. Soc. 138 (2010) 1191-1204.
[2] H. Bass, K-theory and stable algebra, IHES 22 (1964) 5-60.
[3] H. Bass, Some problems in classical algebraic K-Theory II, Lect. Not. Math. 342, Springer Verlag (1972).
[4] S.M. Bhatwadekar and R.A. Rao, On a question of Quillen, Trans. Amer. Math. Soc. 279 (1983) 801-810.
[5] A.M. Dhorajiya and M.K. Keshari, Projective modules over overrings of polynomial rings, J. Algebra 323 (2010) 551-559.
[6] O. Gabber, On purity theorems for vector bundles, Int. Math. Res. Not. 15 (2002) 783-788
[7] M.K. Keshari, Cancellation problem for projective modules over affine algebras, J. K-Theory 3 (2009) 561-581.
[8] H. Lindel, Unimodular elements in projective modules, J. Algebra 172 (1995) 301-319.
[9] H. Lindel, On a question of Bass, Quillen and Suslin concerning projective modules over polynomial rings, Invent. Math. 65 (1981) 319-323.
[10] B.S. Nashier, Efficient generation of ideals in polynomial rings, J. Algebra 85 (1983) 287-302.
[11] B.S. Nashier, On the conormal bundle of ideals, J. Algebra 85 (1983) 361-367.
[12] B. Plumstead, The conjectures of Eisenbud and Evans, Amer. J. Math. 105 (1983) 1417-1433.
[13] D. Popescu, Polynomial rings and their projective modules, Nagoya Math J. 113 (1989) 121-128.
[14] D. Popescu, On a question of Quillen, Bull. Math. Soc. Sci. Math. Roumanie (N.S.) 45 (93) no. 3-4 (2002) 209212.
[15] D. Quillen, Projective modules over polynomial rings, Invent. Math. 36 (1976) 167-171.
[16] R.A. Rao, A question of H. Bass on the cancellative nature of large projective modules over polynomial rings, Amer. J. Math. 110 (1988) 641-657.
[17] R.A. Rao, On projective $R_{f_{1} \ldots f_{t}}$-modules, Amer. J. Math. 107 (1985) 387-406.
[18] A.A. Suslin, Projective modules over a polynomial ring are free, Soviet Math. Dokl. 17 (1976) 11601164.
[19] R.G. Swan, Gubeladze's proof of Anderson's conjecture, Azumaya algebras, actions and modules, Contemp. Math. 124 (1992) 215-250.
[20] A. Wiemers, Cancellation properties of projective modules over Laurent polynomial rings, J. Algebra, 156 (1993) 108-124.

[^0]: ${ }^{1}$ Department of Mathematics, IIT Bombay, Mumbai - 400076, India; (keshari,swapnil)@math.iitb.ac.in

