PROJECTIVE GENERATION OF IDEALS IN POLYNOMIAL EXTENSIONS

MANOJ K. KESHARI AND MD. ALI ZINNA

ABSTRACT. Let *R* be an affine domain of dimension $n \ge 3$ over a field of characteristic 0. Let *L* be a projective R[T]-module of rank 1 and $I \subset R[T]$ a local complete intersection ideal of height *n*. Assume that I/I^2 is a surjective image of $L \oplus R[T]^{n-1}$. This paper examines under what conditions *I* is a surjective image of a projective R[T]-module *P* of rank *n* with determinant *L*.

1. INTRODUCTION

Assumptions: In this paper, k will denote a field of characteristic 0, all rings are commutative Noetherian containing \mathbb{Q} and projective modules are finitely generated of constant rank. For a ring R, $\mathcal{P}_n(R)$ will denote the set consisting of isomophism classes of projective *R*-modules of rank *n*.

Let *R* be a ring and *M* a finitely generated *R*-module. We write $\mu_R(M)$ for the minimum number of generators of *M* as an *R*-module. Assume *I* is an ideal of *R* with $\mu_{R/I}(I/I^2) = n$. If $\mu_R(I) = n$, then *I* is called efficiently generated and if there exists $Q \in \mathcal{P}_n(R)$ such that *I* is a surjective image of *Q*, then *I* is called projectively generated.

Let *R* be a ring of dimension *n* and $I \,\subset R[T]$ an ideal of height *n* with $\mu_{R/I}(I/I^2) = n$. If *I* contains a monic polynomial, then Mandal [M] proved that *I* is efficiently generated. This result is not true if *I* does not contain a monic polynomial (for an example, see [B-D], Introduction). However, if $I \subset R[T]$ is a maximal ideal not containing a monic polynomial, then Bhatwadekar [Bh 1] proved that *I* is projectively generated. For a non-maximal ideal *I* which does not contain a monic polynomial, Bhatwadekar and Das [B-D] proved the following result.

"Let *R* be an affine *k*-algebra of dimension $n \ge 3$. Let $I \subset R[T]$ be a local complete intersection ideal of height *n* such that $\mu_{R/I}(I/I^2) = n$ and $I(0) \subset R$ is an ideal of height $\ge n$. Assume that there exists $Q \in \mathcal{P}_n(R)$ with trivial determinant and a surjection $Q[T] \longrightarrow I/(I^2 \cap (T))$. Then *I* is projectively generated."

In terms of Euler class group of R[T], they proved the following result [B-D]. "Let $\omega_I : (R[T]/I)^n \to I/I^2$ be a local orientation of I and $\omega_I(0) : (R/I(0))^n \to I(0)/I(0)^2$

Date: September 5, 2017.

²⁰⁰⁰ Mathematics Subject Classification. 13C10, 13B25.

Key words and phrases. Projective modules, Euler class groups.

be the induced local orientation of I(0). Let (I, ω_I) and $(I(0), \omega_I(0))$ be elements of Euler class groups E(R[T]) and E(R) respectively. Assume that $(I(0), \omega_I(0))$ is obtained as the Euler class of a projective *R*-module. Then (I, ω_I) is also obtained as the Euler class of a projective R[T]-module."

Let *R* be an affine *k*-algebra of dimension $n \ge 3$ and $L \in \mathcal{P}_1(R[T])$. Das [D 1] has developed the theory of Euler class group E(R[T], R[T]) which is used in [B-D]. Das and Zinna [D-Z 2] extended results of Das [D 1] to E(R[T], L). So it is natural to ask the following generalization of results of [B-D].

Question 1.1. Let R be an affine k-algebra of dimension $n \ge 3$ and $L \in \mathcal{P}_1(R[T])$. Let $I \subset R[T]$ be a local complete intersection ideal of height n such that $ht(I(0)) \ge n$. Let $Q \in \mathcal{P}_n(R)$ with determinant L/TL.

- (1) Let $(I, \omega_I) \in E(R[T], L)$ be such that $(I(0), \omega_{I(0)}) = e(Q, \tilde{\chi}) \in E(R, L/TL)$, where $\tilde{\chi} : L/TL \xrightarrow{\sim} \wedge^n(Q)$ is an isomorphism. Does there exist $P \in \mathcal{P}_n(R[T])$ with determinant L and an isomorphism $\chi : L \xrightarrow{\sim} \wedge^n(P)$ such that $e(P, \chi) = (I, \omega_I)$ in E(R[T], L)?
- (2) Assume there is a surjection $Q[T] \rightarrow I/(I^2 \cap (T))$. Is I projectively generated? In other words, does there exist $P \in \mathcal{P}_n(R[T])$ with determinant L such that I is a surjective image of P?

We answer question 1.1(2) in case *L* is extended from R (see 4.7).

Theorem 1.2. Let R be an affine k-algebra of dimension $n \ge 3$ and $L \in \mathcal{P}_1(R)$. Let $I \subset R[T]$ be a local complete intersection ideal of height n such that $ht(I(0)) \ge n$. Assume that there exists $Q \in \mathcal{P}_n(R)$ with determinant L and a surjection $Q[T] \longrightarrow I/I^2 \cap (T)$. Then there exists $P \in \mathcal{P}_n(R[T])$ with determinant L[T] and a surjection $P \longrightarrow I$. In other words, I is projectively generated.

We answer question 1.1(1) for reduced ring *R* (see 5.1).

Theorem 1.3. Let R be a reduced affine k-algebra of dimension $n \ge 3$ and $L \in \mathcal{P}_1(R[T])$. Let $I \subset R[T]$ be an ideal of height n such that $ht(I(0)) \ge n$. Assume that $(I, \omega_I) \in E(R[T], L)$ when $n \ge 4$ and $(I, \omega_I) \in \widetilde{E}(R[T], L)$, the restricted Euler class group of R[T] when n = 3 (see (2.12)). Assume that there exists $Q \in \mathcal{P}_n(R)$ with determinant L/TL and an isomorphism $\chi : L/TL \xrightarrow{\sim} \wedge^n(Q)$ such that $e(Q, \chi) = (I(0), \omega_{I(0)})$ in E(R, L/TL). Then there exists $P \in \mathcal{P}_n(R[T])$ with determinant L and an isomorphism $\chi_1 : L \xrightarrow{\sim} \wedge^n(P)$ such that $e(P, \chi_1) = (I, \omega_I)$ in E(R[T], L).

Steps of proof of (1.3): First we prove the result when *L* is extended from *R*. For arbitrary *L*, there exists a finite subintegral extension *S* of *R* such that $L \otimes S[T]$ is extended from *S*. Now we know the result in *S*[*T*] by extended case. Finally we descend

from S[T] to R[T] by proving that for $(I, \omega_I) \in E(R[T], L)$, if its image $(IS[T], \omega_I^*)$ in $E(S[T], L \otimes S[T])$ is obtained as the Euler class of a projective S[T]-module, then (I, ω_I) is also obtained as the Euler class of a projective R[T]-module.

The following result (see 4.11) is an application. It improves [B-RS 2, Theorem 2.7] and [B-D, Corollary 3.11], where it is proved for L = R[T].

Corollary 1.4. Let R be an affine k-algebra of dimension $n \ge 2$ with k an algebraically closed field. Let $L \in \mathcal{P}_1(R)$ and $I \subset R[T]$ an ideal of height n. Assume that I/I^2 is a surjective image of $L[T] \oplus R[T]^{n-1}$. Then there exists $P \in \mathcal{P}_n(R[T])$ with determinant L[T] such that I is a surjective image of P.

2. PRELIMINARIES

In this section, we recall some results for later use.

Lemma 2.1. [B-RS 3, Lemma 5.4] Let R be a ring of dimension $n \ge 2$ and $L \in \mathcal{P}_1(R)$. Let $J \subset R$ be an ideal of height n and $\omega_J : (L \oplus R^{n-1})/J(L \oplus R^{n-1}) \longrightarrow J/J^2$ be a local L-orientation of J. If $\overline{u} \in R/J$ is a unit, then $(J, \omega_J) = (J, \overline{u}^2 \omega_J)$ in the Euler class group E(R, L).

Let R be a ring of dimension $n \geq 3$ and $L \in \mathcal{P}_1(R)$. Let "bar" denote reduction modulo N[T], where N is the nilradical of R. So $\overline{R} = R_{red}$ and $\overline{L} = L/NL$. Let $I \subset R[T]$ be an ideal of height n such that Spec(R[T]/I) is connected and I/I^2 is generated by n elements. We have $\overline{I} = (I + N[T])/N[T]$. Note that $Spec(\overline{R}[T]/\overline{I})$ is also connected. Further, if we write $\mathcal{L} = L \oplus R^{n-1}$, then any surjection $\omega_I : \mathcal{L}[T]/I\mathcal{L}[T] \longrightarrow I/I^2$ induces a surjection $\omega_{\overline{I}} : \overline{\mathcal{L}}[T]/\overline{I\mathcal{L}}[T] \longrightarrow \overline{I}/\overline{I}^2$.

Let $J \subset R[T]$ be an ideal of height n and ω_J be a local orientation of J. Now J can be decomposed uniquely as $J = J_1 \cap \cdots \cap J_k$, where J_i 's are pairwise comaximal ideals of R[T] of height n such that $Spec(R[T]/J_i)$ is connected for each i. Clearly $\overline{J} = \overline{J}_1 \cap \cdots \cap \overline{J}_k$ is a similar decomposition for \overline{J} . Now ω_J induces a local orientation $\omega_{\overline{J}}$ in a natural way. Therefore, we have a group homomorphism $\Phi : E(R[T], L[T]) \longrightarrow E(\overline{R}[T], \overline{L}[T])$ which takes (J, ω_J) to $(\overline{J}, \omega_{\overline{J}})$.

Proposition 2.2. Let R be a ring of dimension $n \ge 3$ and $L \in \mathcal{P}_1(R)$. Then

(1) the group homomorphism $\Phi: E(R[T], L[T]) \longrightarrow E(\overline{R}[T], \overline{L}[T])$ is an isomorphism.

(2) Let $(I, \omega_I) \in E(R[T], L[T])$. If $\Phi((I, \omega_I))$ is the Euler class of a projective module, then so is (I, ω_I) . More precisely, assume that $\Phi((I, \omega_I)) = e(P', \chi')$, where $P' \in \mathcal{P}_n(\overline{R}[T])$ with determinant $\overline{L}[T]$ and $\chi' : \overline{L}[T] \xrightarrow{\sim} \wedge^n(P')$ an isomorphism. Then there exists $P \in \mathcal{P}_n(R[T])$ with determinant L[T] and an isomorphism $\chi : L[T] \xrightarrow{\sim} \wedge^n(P)$ such that $e(P, \chi) = (I, \omega_I)$ in E(R[T], L[T]). Proof. (1) is due to Das-Zinna [D-Z 2, Proposition 6.8].

For (2), follow the proof of [B-D, Proposition 2.15, Remark 2.16] where it is proved for L = R and use [D-Z 2, Corollary 4.14] which says that $(\overline{I}, \omega_{\overline{I}}) = e(P', \chi')$ in $E(\overline{R}[T], \overline{L}[T])$ implies that there is a surjection $\alpha : P' \longrightarrow \overline{I}$ such that $(\overline{I}, \omega_{\overline{I}})$ is obtained from the pair (α, χ') .

Remark 2.3. Note that we do not know [D-Z 2, Corollary 4.14] for arbitrary $L \in \mathcal{P}_1(R[T])$. Hence, we do not have (2.2(2)) for arbitrary L. That is why we are taking reduced ring in section 5 with arbitrary L.

The following result is proved in [B-D, Lemma 3.2] when L = R.

Lemma 2.4. Let R be a ring of dimension $n \ge 3$ and $L \in \mathcal{P}_1(R)$. Let $Q \in \mathcal{P}_n(R)$ with determinant L and an isomorphism $\chi : L \xrightarrow{\sim} \wedge^n(Q)$. Let $(I, \omega_I) \in E(R[T], L[T])$ with ht(I(0)) = n. Consider $(I(0), \omega_{I(0)}) \in E(R, L)$, where $\omega_{I(0)}$ is the local orientation of I(0)induced by ω_I . Assume that there is a surjection $\alpha : Q \longrightarrow I(0)$ such that (α, χ) induces $e(Q, \chi) = (I(0), \omega_{I(0)})$. Then there is a surjection $\theta : Q[T] \longrightarrow I/(I^2T)$ such that $\theta(0) = \alpha$.

Proof. As Q has determinant L and $\dim(R[T]/I) \leq 1$, by Serre's result [Se], we have $Q[T]/IQ[T] \simeq L[T]/IL[T] \oplus (R[T]/I)^{n-1}$. Choose an isomorphism $\sigma : Q[T]/IQ[T] \xrightarrow{\sim} L[T]/IL[T] \oplus (R[T]/I)^{n-1}$ such that $\wedge^n(\sigma) = (\chi \otimes R[T]/I)^{-1}$. The composite surjection $\overline{\theta} : Q[T] \rightarrow I/I^2$ given by

$$Q[T] \to Q[T]/IQ[T] \xrightarrow{o} L[T]/IL[T] \oplus (R[T]/I)^{n-1} \xrightarrow{\omega_I} I/I^2$$

is such that $\overline{\theta}(0) \otimes R/I(0) = \alpha \otimes R/I(0)$. Applying [B-RS 1, Remark 3.9], we can lift $\overline{\theta}$ to a surjection $\theta : Q[T] \longrightarrow I/(I^2T)$ such that $\theta(0) = \alpha$.

Lemma 2.5. Let R be a reduced ring of dimension $n \ge 2$ and $R \hookrightarrow S$ a finite subintegral extension. Let $Q \in \mathcal{P}_n(S)$ be such that its determinant is extended from R, i.e. $\wedge^n(Q) \xrightarrow{\sim} L \otimes S$ for some $L \in \mathcal{P}_1(R)$. Then Q is extended from R, i.e. there exists $P \in \mathcal{P}_n(R)$ with determinant L such that $P \otimes S \simeq Q$.

Proof. Since $R \hookrightarrow S$ is a finite subintegral extension, without loss of generality, we may assume that *S* is an elementary subintegral extension of *R*. Let *C* be the conductor ideal of $R \subset S$. Then $ht(C) \ge 1$ and $(R/C)_{red} = (S/C)_{red}$ [D-Z 1, Lemma 3.7]. Consider the conductor (fiber product) diagram

$$\begin{array}{c} R \longrightarrow S \\ \downarrow & \downarrow \\ R/C \longrightarrow S/C \end{array}$$

Since every projective $(R/C)_{red}$ -module comes from a projective R/C-module, there exists $\tilde{P} \in \mathcal{P}_n(R/C)$ with an isomorphism $\tilde{\theta} : \tilde{P} \otimes (S/C)_{red} \simeq Q \otimes (S/C)_{red}$. Now we can lift $\tilde{\theta}$ to an isomorphism $\theta : \tilde{P} \otimes S/C \simeq Q/CQ$. Patching Q and \tilde{P} over θ , we get $P \in \mathcal{P}_n(R)$ such that $P \otimes S \simeq Q$. Since $\operatorname{rank}(Q/CQ) = n > \dim R/C$, by Serre's result [Se], Q/CQ has a unimodular element. Hence, we can modify the patching automorphism θ such that $\wedge^n(P) \simeq L$.

Lemma 2.6. Let R be a reduced ring of dimension $n \ge 2$ and $R \hookrightarrow S$ a finite subintegral extension. Let $Q \in \mathcal{P}_n(S[T])$ be such that its determinant is extended from R[T], i.e. $\wedge^n(Q) \simeq L \otimes S[T]$ for some $L \in \mathcal{P}_1(R[T])$. Then Q is extended from R[T], i.e. there exists $P \in \mathcal{P}_n(R[T])$ with determinant L such that $P \otimes S[T] \simeq Q$.

Proof. Follow the proof of (2.5). By Plumstead's result [P], Q/CQ has a unimodular element, where *C* is the conductor ideal of $R \hookrightarrow S$.

Definition 2.7. We recall some definitions from [D-Z 1]. Let *R* be a ring of dimension $n \ge 2$ and $R \hookrightarrow S$ a subintegral extension. Let $L \in \mathcal{P}_1(R)$ and write $\mathcal{L} = L \oplus R^{n-1}$. Let $J \subset R$ be an ideal of height *n* and $\omega_J : \mathcal{L}/J\mathcal{L} \longrightarrow J/J^2$ a surjection. By [D-Z 1, Remark 3.8], we have ht(JS) = *n*. Tensoring w_J with S/JS over R/J, we obtain an induced surjection

$$\widetilde{\omega_J}: \frac{\mathcal{L}\otimes_R S}{JS(\mathcal{L}\otimes_R S)} \longrightarrow \frac{J\otimes_R S}{JS(J\otimes_R S)}.$$

Define a local orientation ω_J^* of *JS* as the composition

$$\omega_J^*: \frac{\mathcal{L} \otimes_R S}{JS(\mathcal{L} \otimes_R S)} \xrightarrow{\widetilde{\omega_J}} \frac{J \otimes_R S}{JS(J \otimes_R S)} \xrightarrow{\widetilde{f}} \frac{JS}{J^2S},$$

where \tilde{f} is induced by the natural surjection $f : J \otimes_R S \to JS$. Note that if ω_J can be lifted to a surjection $\theta : \mathcal{L} \to J$, then ω_J^* can be lifted to a surjection $f \circ (\theta \otimes S) : \mathcal{L} \otimes S \to JS$. Therefore, we have a well defined group homomorphism $\Phi : E(R, L) \to E(S, L \otimes_R S)$ defined by $\Phi((J, \omega_J)) = (JS, \omega_J^*)$.

Similarly for $L \in \mathcal{P}_1(R[T])$, we have a group homomorphism $E(R[T], L) \to E(S[T], L \otimes S[T])$.

The following three results are due to Das and Zinna.

Theorem 2.8. [D-Z 1, Theorem 3.12] Let R be a ring of dimension $n \ge 2$ and $R \hookrightarrow S$ a subintegral extension. If $L \in \mathcal{P}_1(R)$, then the natural map $\Phi : E(R, L) \longrightarrow E(S, L \otimes_R S)$ is an isomorphism.

Theorem 2.9. [D-Z 1, Theorem 3.16] Let R be a ring of dimension $n \ge 3$ and $R \hookrightarrow S$ a subintegral extension. Then $E(R[T]) \simeq E(S[T])$.

Theorem 2.10. [D-Z 3, Theorem 3.12] Let R be a ring of dimension $n \ge 2$ and $R \hookrightarrow S$ a subintegral extension. Then weak Euler class groups $E_0(R)$ and $E_0(S)$ are isomorphic.

Definition 2.11. Let R be a reduced ring of dimension $n \ge 3$. Let $L \in \mathcal{P}_1(R[T])$ and $\mathcal{L} = L \oplus R[T]^{n-1}$. We will define the restricted Euler class group $\widetilde{E}(R[T], L)$, see [D-Z 2, Section 7] when n = 3. Let \widetilde{R} be the seminormalization of R and C the conductor ideal of $R \subset \widetilde{R}$. Let \widetilde{G} be the free abelian group on pairs (I, ω_I) , where $I \subset R[T]$ is an ideal of height n such that $\operatorname{Spec}(R[T]/I)$ is connected, I + C[T] = R[T] (this is the restriction) and $\omega_I : \mathcal{L}/I\mathcal{L} \longrightarrow I/I^2$ is an equivalence class of local L-orientation of I. Here two local L-orientations ω_I and $\widetilde{\omega}_I$ are equivalent if there exists $\theta \in SL(\mathcal{L}/I\mathcal{L})$ such that $\omega_I \circ \theta = \widetilde{\omega}_I$. Take \widetilde{H} to be the subgroup of \widetilde{G} generated by those $(I, \omega_I) \in \widetilde{G}$ such that w_I is a global L-orientation of I, i.e. w_I can be lifted to a surjection $\mathcal{L} \longrightarrow I$. Define the "restricted" Euler class group $\widetilde{E}(R[T], L) = \widetilde{G}/\widetilde{H}$.

Let $P \in \mathcal{P}_n(R[T])$ with determinant L and $\chi : L \xrightarrow{\sim} \wedge^n(P)$ an isomorphism. Since dim $(R/C) \leq n - 1$, by [P, Corollary 2 of Section 3], P/CP has a unimodular element. Applying ([B-RS 3, Lemma 2.13]), it is easy to see that there is an ideal $I \subset R[T]$ of height n such that I + C[T] = R[T] and a surjection $\alpha : P \rightarrow I$. Choose an isomorphism $\overline{\gamma} : \mathcal{L}/I\mathcal{L} \xrightarrow{\sim} P/IP$ such that $\wedge^n \overline{\gamma} = \chi \otimes R[T]/I$. Let ω_I be the composite surjection

$$w_I: \mathcal{L}/I\mathcal{L} \xrightarrow{\overline{\gamma}} P/IP \xrightarrow{\overline{\alpha}} I/I^2.$$

We define the Euler class of the pair (P, χ) obtained from the pair (α, χ) as $e(P, \chi) = (I, \omega_I) \in \widetilde{E}(R[T], L)$. Following [D-Z 2, Lemma 6.11], it is easy to prove that the Euler class $e(P, \chi)$ is well defined and it does not depend on the choice of α and $\overline{\gamma}$.

Remark 2.12. For $n \ge 4$, there is a natural map $\widetilde{E}(R[T], L) \rightarrow E(R[T], L)$ which is an isomorphism. This can be seen using moving lemma [D-Z 2, Lemma 2.11] and the fact that $ht(C) \ge 1$.

The following result is from [D-Z 2, Corollary 7.3, Theorem 7.4].

Theorem 2.13. Let R be a reduced ring of dimension $n \ge 3$ and $L \in \mathcal{P}_1(R[T])$. Let $P \in \mathcal{P}_n(R[T])$ with determinant L and $\chi : L \xrightarrow{\sim} \wedge^n(P)$ an isomorphism.

(1) If $(I, \omega_I) = 0$ in $\widetilde{E}(R[T], L)$, then ω_I is a global L-orientation of I.

(2) *P* has a unimodular element if and only if $e(P, \chi) = 0$ in $\widetilde{E}(R[T], L)$

Remark 2.14. Let R be a ring of dimension $n \ge 2$ and $L \in \mathcal{P}_1(R[T])$. Let $(I, \omega_I) \in E(R[T], L)$ when $n \ne 3$ and $(I, \omega_I) \in \widetilde{E}(R[T], L)$ when n = 3. Let $\overline{f} \in R[T]/I$ be a unit. Composing ω_I with an automorphism of $(L \oplus R[T]^{n-1})/I(L \oplus R[T]^{n-1})$ with determinant \overline{f} , we obtain another local orientation of I which we denote by $\overline{f}\omega_I$. On

the other hand, let ω_I and $\widetilde{\omega}_I$ be two local orientations of *I*. Then it follows from [Bh 2, Lemma 2.2] that $\omega_I = \overline{f}\widetilde{\omega}_I$ for some unit $\overline{f} \in R[T]/I$.

The next result follows from [B-RS 3, Lemmas 2.7, 2.8].

Lemma 2.15. Let R be a ring of dimension $n \ge 2$ and $L \in \mathcal{P}_1(R[T])$. Let $P \in \mathcal{P}_n(R[T])$ with determinant L and $\chi : L \xrightarrow{\sim} \wedge^n(P)$ an isomorphism. Let $I \subset R[T]$ be an ideal of height n and $\alpha : P \longrightarrow I$ a surjection. Let $e(P,\chi) = (I,\omega_I)$ be obtained from the pair (α,χ) , where $e(P,\chi) \in E(R[T],L)$ when $n \ne 3$ and $e(P,\chi) \in \tilde{E}(R[T],L)$ when n = 3. Let $\overline{f} \in R[T]/I$ be a unit. Then there exists $P_1 \in \mathcal{P}_n(R[T])$ with determinant L such that $P \oplus R[T] \xrightarrow{\sim} P_1 \oplus R[T]$, an isomorphism $\chi_1 : L \xrightarrow{\sim} \wedge^n(P_1)$ and a surjection $\beta : P_1 \longrightarrow I$ such that $e(P_1,\chi_1) = (I,\overline{f}^{n-1}\omega_I)$ is obtained from the pair (β,χ_1) .

The following result extends [D 1, Lemma 5.2].

Lemma 2.16. Let R be a ring of dimension $n \ge 3$. Let $L \in \mathcal{P}_1(R)$ and $\mathcal{L} = L \oplus R^{n-1}$. Let $I \subset R[T]$ be an ideal of height n and $\omega_I : \mathcal{L}[T]/I\mathcal{L}[T] \longrightarrow I/I^2$ a surjection. Let $\overline{f} \in R[T]/I$ be a unit and θ an automorphism of $\mathcal{L}[T]/I\mathcal{L}[T]$ with determinant \overline{f}^2 . Assume that ω_I can be lifted to a surjection $\alpha : \mathcal{L}[T] \longrightarrow I$. Then the surjection $\omega_I \circ \theta : \mathcal{L}[T]/I\mathcal{L}[T] \longrightarrow I/I^2$ can also be lifted to a surjection $\beta : \mathcal{L}[T] \longrightarrow I$.

Proof. Replacing T by $T - \lambda$ for some $\lambda \in \mathbb{Q}$, we may assume that $ht(I(0)) \ge n$. If ht(I(0)) > n, then I(0) = R. By [B-RS 1, Remark 3.9], we can lift $\omega_I \circ \theta$ to a surjection $\tilde{\beta} : \mathcal{L}[T] \rightarrow I/(I^2T)$. We now show that the same can be done if ht(I(0)) = n. Now ω_I induces a surjection $\omega_I(0) : \mathcal{L}/I(0)\mathcal{L} \rightarrow I(0)/I(0)^2$, which can be lifted to $\alpha(0) : \mathcal{L} \rightarrow I(0)$. Note that $\overline{f(0)} \in R/I(0)$ is a unit and $\theta(0)$ is an automorphism of $\mathcal{L}/I(0)\mathcal{L}$ with determinant $\overline{f(0)}^2$. Therefore, by [B-RS 3, Lemma 5.3], $\omega_I(0) \circ \theta(0)$ can be lifted to a surjection $\phi : \mathcal{L} \rightarrow I(0)$. Consequently, we can lift $\omega_I \circ \theta$ to a surjection $\tilde{\beta} : \mathcal{L}[T] \rightarrow I/(I^2T)$.

Now we move to the ring R(T) which is obtained from R[T] by inverting all monic polynomials in *T*. Applying [B-RS 3, Lemma 5.3] to R(T), we get

$$(\omega_I \circ \theta) \otimes R(T) : \mathcal{L} \otimes R(T) / I\mathcal{L} \otimes R(T) \longrightarrow IR(T) / I^2 R(T)$$

can be lifted to a surjection $\psi : \mathcal{L} \otimes R(T) \longrightarrow IR(T)$. By [D-Z 2, Theorem 4.1], we get $\omega_I \circ \theta$ can be lifted to a surjection $\beta : \mathcal{L}[T] \longrightarrow I$.

The following result extends [D 1, Lemma 5.3].

Lemma 2.17. Let R be a ring of dimension $n \ge 3$ and $L \in \mathcal{P}_1(R)$. Let $I \subset R[T]$ be an ideal of height n and ω_I be a local L-orientation of I. Let $\overline{f} \in R[T]/I$ be a unit. Then $(I, \omega_I) = (I, \overline{f}^2 \omega_I)$ in E(R[T], L[T]).

Proof. If $(I, \omega_I) = 0$ in E(R[T], L[T]), then it follows from [D-Z 2, Theorem 4.10] and (2.16) that $(I, \overline{f}^2 \omega_I) = 0$ in E(R[T], L[T]). So assume that $(I, \omega_I) \neq 0$ in E(R[T], L[T]). By [D 1, Lemma 2.12], ω_I can be lifted to a surjection $\alpha : L[T] \oplus R[T]^{n-1} \rightarrow I \cap I'$, where $I' \subset R[T]$ is an ideal of height n with I + I' = R[T]. By Chinese remainder theorem, choose $g \in R[T]$ such that $g = f^2$ modulo I and g = 1 modulo I'. Applying (2.16), there exists a surjection $\gamma : L[T] \oplus R[T]^{n-1} \rightarrow I \cap I'$ such that $\gamma \otimes R[T]/I = \overline{f}^2 \omega_I$ and $\gamma \otimes R[T]/I' = \alpha \otimes R[T]/I'$. From surjections α and γ , we get

$$(I, \omega_I) + (I', \omega_{I'}) = 0$$
 and $(I, \overline{f}^2 \omega_I) + (I', \omega_{I'}) = 0$ in $E(R[T], L[T])$.

Therefore, $(I, \omega_I) = (I, \overline{f}^2 \omega_I)$ in E(R[T], L[T]).

The next lemma extends (2.17) to arbitrary $L \in \mathcal{P}_1(R[T])$.

Lemma 2.18. Let R be a ring of dimension $n \ge 4$ and $L \in \mathcal{P}_1(R[T])$. Let $I \subset R[T]$ be an ideal of height n and ω_I be a local L-orientation of I. Let $\overline{f} \in R[T]/I$ be a unit. Then $(I, \omega_I) = (I, \overline{f}^2 \omega_I)$ in E(R[T], L).

Proof. By [D-Z 2, Proposition 6.8], there is a canonical isomorphism $E(R[T], L) \xrightarrow{\sim} E(R_{red}[T], L \otimes R_{red}[T])$. Hence, we may assume that R is reduced. Then there exists an extension $R \hookrightarrow S$ such that

- (1) $R \hookrightarrow S \hookrightarrow Q(R)$, where Q(R) is the total ring of fractions of R,
- (2) *S* is a finite *R*-module,
- (3) $R \hookrightarrow S$ is subintegral and
- (4) $L \otimes_R S[T]$ is extended from *S*.

Using (4) and (2.17), we get $(IS[T], \omega_I^*) = (IS[T], \overline{f}^2 \omega_I^*)$ in $E(S[T], L \otimes S[T])$. By [D-Z 2, Theorem 6.16], the natural group homomorphism $E(R[T], L) \rightarrow E(S[T], L \otimes S[T])$ defined by $(I, \omega_I) \mapsto (IS[T], \omega_I^*)$ is an isomorphism. Hence $(I, \omega_I) = (I, \overline{f}^2 \omega_I)$ in E(R[T], L).

Following the proof of (2.18), we get the following result.

Lemma 2.19. Let R be a ring of dimension n = 3 and $L \in \mathcal{P}_1(R[T])$. Let $(I, \omega_I) \in \widetilde{E}(R[T], L)$. Let $\overline{f} \in R[T]/I$ be a unit. Then $(I, \omega_I) = (I, \overline{f}^2 \omega_I)$ in $\widetilde{E}(R[T], L)$.

3. SUBINTEGRAL EXTENSIONS AND PROJECTIVE GENERATION OF IDEALS

The following result is due to S. M. Bhatwadekar (personal communication).

Lemma 3.1. Let R be a ring of odd dimension $n \ge 3$ and $L \in \mathcal{P}_1(R)$. Let $P \in \mathcal{P}_n(R)$ with determinant L and $\chi : L \xrightarrow{\sim} \wedge^n(P)$ an isomorphism. Then the Euler class $e(P, \chi) \in E(R, L)$ is independent of the choice of χ .

Proof. Let $\alpha : P \to J$ be a surjection, where $J \subset R$ is an ideal of height *n*. Then we get a surjection $\overline{\alpha} : P/JP \to J/J^2$ induced by α . Write $\mathcal{L} = L \oplus R^{n-1}$. Let $\theta : \mathcal{L}/J\mathcal{L} \xrightarrow{\sim} P/JP$ be an isomorphism such that $\wedge^n(\theta) = \overline{\chi}$. If $\omega_J = \overline{\alpha} \circ \theta$, then $e(P,\chi) = (J,\omega_J)$ in E(R,L).

Let $\chi': L \xrightarrow{\sim} \wedge^n(P)$ be another isomorphism. Then $\chi' = u\chi$ for some unit $u \in R$. Let $\sigma \in Aut(P)$ be given by $\sigma(p) = up$. Then $\alpha \circ \sigma : P \longrightarrow J$ is a surjection. If $\widetilde{\omega}_J = \overline{\alpha} \circ \overline{\sigma} \circ \theta$, then $e(P, \chi) = (J, \widetilde{\omega}_J) = (J, \overline{u}^n \omega_J) = (J, \overline{u}\omega_J)$ in E(R, L), by (2.1) as n is odd.

Let $\Delta \in Aut(\mathcal{L}/J\mathcal{L})$ be the diagonal matrix $\Delta = diagonal(1, ..., 1, \overline{u})$. Since $\wedge^n(\Delta \circ \theta) = \overline{u\chi} = \overline{\chi'}$, we get $e(P, \chi') = (J, \overline{u}\omega_J) = e(P, \chi)$.

Lemma 3.2. Let R be a ring of **odd** dimension $n \ge 3$ and $L \in \mathcal{P}_1(R[T])$. Let $P \in \mathcal{P}_n(R[T])$ with determinant L and $\chi : L \xrightarrow{\sim} \wedge^n(P)$ an isomorphism. Then the Euler class $e(P, \chi)$ of the pair (P, χ) , which takes values in the Euler class group E(R[T], L) when $n \ge 4$ and in the restricted Euler class group $\widetilde{E}(R[T], L)$ when n = 3, is independent of the choice of χ .

Proof. Follow the proof of (3.1) and use (2.18, 2.19) in place of (2.1). \Box

Theorem 3.3. Let R be a ring of dimension $n \ge 2$ and $R \to S$ a subintegral extension. Let $L \in \mathcal{P}_1(R)$ and $(J, \omega_J) \in E(R, L)$. Let (JS, ω_J^*) be the image of (J, ω_J) in $E(S, L \otimes S)$. Let $Q \in \mathcal{P}_n(S)$ be such that its determinant is extended from R. Further assume that $\chi' : L \otimes S \xrightarrow{\sim} \wedge^n(Q)$ is an isomorphism such that $(JS, \omega_J^*) = e(Q, \chi')$ in $E(S, L \otimes S)$. Then there exists $P \in \mathcal{P}_n(R)$ with determinant L and $\chi : L \xrightarrow{\sim} \wedge^n(P)$ an isomorphism such that $e(P, \chi) = (J, \omega_J)$ in E(R, L). Further, there exists a surjection $\alpha : P \to J$ such that (J, ω_J) is obtained from (α, χ) .

Proof. By [B-D, Proposition 2.15], we may assume that R is reduced. Further, we may assume that $R \hookrightarrow S$ is finite. By (2.5), we can find $P_1 \in \mathcal{P}_n(R)$ with determinant L such that $P_1 \otimes S \simeq Q$.

Case I: Assume *n* is odd. Let $\chi : L \xrightarrow{\sim} \wedge^n(P_1)$ be an isomorphism. Consider the image $e(P_1 \otimes S, \chi \otimes S)$ of $e(P_1, \chi)$ in $E(S, L \otimes S)$. Since *n* is odd, by (3.1), $e(P_1 \otimes S, \chi \otimes S) = e(Q, \chi \otimes S) = e(Q, \chi')$. Therefore, by (2.8), $e(P_1, \chi) = (J, \omega_J)$. Take $P = P_1$.

Case II: Assume *n* is even. Since $e(Q, \chi') = (JS, \omega_J^*)$ in $E(S, L \otimes S)$, it follows that the weak Euler class $e(Q) = e(P_1 \otimes S) = (JS)$ in $E_0(S, L \otimes S)$. Therefore, by (2.10), $e(P_1) = (J)$ in $E_0(R, L)$. By [B-RS 3, Proposition 6.4], there exists $P_2 \in \mathcal{P}_n(R)$ such that $[P_2] = [P_1]$ in $K_0(R)$ and *J* is a surjective image of P_2 . Let $\beta : P_2 \rightarrow J$ be a surjection and $\chi_2 : L \xrightarrow{\sim} \wedge^n(P_2)$ be an isomorphism. Suppose that $e(P_2, \chi_2) = (J, \omega_2)$ is obtained by (β, χ_2) . Then $\omega_J = \overline{u}\omega_2$ for some unit $\overline{u} \in (R/J)^*$. By [B-RS 3, Lemma 5.1], there exists $P \in \mathcal{P}_n(R)$ with $[P] = [P_2]$ in $K_0(R)$ and an isomorphism $\chi : L \xrightarrow{\sim} \wedge^n P$ such that $e(P, \chi) = (J, \overline{u}^{n-1}\omega_2)$. Since *n* is even, by (2.1), $(J, \overline{u}^{n-1}\omega_2) = (J, \overline{u}\omega_2)$ and hence $e(P, \chi) = (J, \overline{u}\omega_2) = (J, \omega_J)$. By [B-RS 3, Corollary 4.3], there exists a surjection $\alpha : P \rightarrow J$ such that (J, ω_J) is obtained from the pair (α, χ) . This completes the proof.

Proposition 3.4. [D 2, Proposition 6.3] Let R be a ring of even dimension $n \ge 4$ and $J \subset R[T]$ be an ideal of height n. Let $P \in \mathcal{P}_n(R[T])$ with trivial determinant. Assume that the weak Euler class e(P) = (J) in $E_0(R[T])$. Then there exists $Q \in \mathcal{P}_n(R[T])$ such that [P] = [Q] in $K_0(R[T])$ and J is a surjective image of Q.

Theorem 3.5. Let R be a ring of dimension $n \ge 3$ and $R \leftrightarrow S$ a subintegral extension. Let $(I, \omega_I) \in E(R[T])$ be such that its image $(IS[T], \omega_I^*) = e(Q, \chi')$ in E(S[T]), where $Q \in \mathcal{P}_n(S[T])$ with trivial determinant and $\chi' : S[T] \xrightarrow{\sim} \wedge^n(Q)$ an isomorphism. Then there exists $P \in \mathcal{P}_n(R[T])$ with trivial determinant and $\chi : R[T] \xrightarrow{\sim} \wedge^n(P)$ an isomorphism such that $e(P, \chi) = (I, \omega_I)$. Further, there exists a surjection $\alpha : P \rightarrow I$ such that (I, ω_I) is obtained from the pair (α, χ) .

Proof. Note that this is an extension of (3.3) from $R \hookrightarrow S$ case to $R[T] \hookrightarrow S[T]$ case when L = R. By (2.9), we already have $E(R[T]) \simeq E(S[T])$. We need to show that if the image of (I, ω_I) in E(S[T]) is the Euler class of a projective S[T]-module with trivial determinant, then (I, ω_I) in E(R[T]) is also the Euler class of a projective R[T]-module with trivial determinant.

By [B-D, Remark 2.16], we may assume that R is reduced. Further, we may assume that $R \hookrightarrow S$ is finite. By (2.6), we can find $P_1 \in \mathcal{P}_n(R[T])$ with trivial determinant such that $P_1 \otimes S[T] \simeq Q$.

Case 1. Assume *n* is odd. Let $\chi : R[T] \xrightarrow{\sim} \wedge^n(P_1)$ be an isomorphism. Consider the image $e(P_1 \otimes S[T], \chi \otimes S[T])$ of $e(P_1, \chi)$ in E(S[T]). Since *n* is odd, by (3.2), $e(P_1 \otimes S[T], \chi \otimes S[T]) = e(Q, \chi \otimes S[T]) = e(Q, \chi')$. Therefore, by (2.9), $e(P_1, \chi) = (I, \omega_I)$. Take $P = P_1$.

Case 2. Assume *n* is even. We note that $e(Q) = e(P_1 \otimes S[T]) = (IS[T])$ in $E_0(S[T])$. Therefore, by [D-Z 1, Remark 3.26], $e(P_1) = (I)$ in $E_0(R[T])$. Follow the proof of (3.3, Case II) and use [D 2, Proposition 6.3], [D 1, Lemma 6.1, Corollary 4.10] to complete the proof.

4. PROJECTIVE GENERATION: EXTENDED CASE

Next result is proved in [B-D, Lemma 3.1] when L = R.

Lemma 4.1. Let R be a ring of dimension $n \ge 2$ and $J \subset R$ be an ideal of height $\ge n - 1$. Let $Q \in \mathcal{P}_r(R)$ with determinant L. Then there exists $b \in J^2$ such that ht(b) = 1 and $Q_{1+b} \simeq R_{1+b}^{r-1} \oplus L_{1+b}$. Proof. As the determinant of Q is L and $\dim(R/J^2) \le 1$, by Serre's result [Se], it follows that Q/J^2Q is isomorphic to $(R/J^2)^{r-1} \oplus L/J^2L$. Consequently, Q_{1+J^2} is isomorphis to $R_{1+J^2}^{r-1} \oplus L_{1+J^2}$. Therefore, there exists $b \in J^2$ such that Q_{1+b} is isomorphis to $R_{1+b}^{r-1} \oplus L_{1+b}$.

If ht(b) = 0, then we can find $c \in J^2$ such that ht(b + bc + c) = 1. Since 1 + b + bc + c = (1 + b)(1 + c), without loss of generality, we can assume that ht(b) = 1 and $Q_{1+b} \simeq R_{1+b}^{r-1} \oplus L_{1+b}$.

The following result is from [B-D, Lemma 3.4]. Its proof is contained in [Bh 1, Proposition 3.1, 3.2].

Lemma 4.2. Let \widetilde{B} be a semilocal ring of dimension 1. Then $Pic(\widetilde{B}[T])$ is a divisible group. Let M be an invertible ideal of $\widetilde{B}[T]$ with $dim(\widetilde{B}[T]/M) = 0$. Let $\mathfrak{b} = M \cap \widetilde{B}$ and $(0) = \mathfrak{b} \cap \mathfrak{a}$, where \mathfrak{a} is an ideal of \widetilde{B} with $M + \mathfrak{a}[T] = \widetilde{B}[T]$. Then given any positive integer d, there exists an invertible ideal N of $\widetilde{B}[T]$ such that

- (1) $N + M\mathfrak{a}[T] = \widetilde{B}[T],$
- (2) $N^d \cap M = (\tilde{f})$ for some non-zerodivisor $\tilde{f} \in \tilde{B}[T]$,
- (3) $dim(\tilde{B}[T]/N) = 0.$

Proposition 4.3. Let R be a ring of dimension $n \ge 3$ and $L \in \mathcal{P}_1(R)$. Let $I \subset R[T]$ be an ideal of height n such that I/I^2 is a surjective image of $L[T] \oplus R[T]^{n-1}$. Further assume that $I = M_1 \cap \cdots \cap M_k$, where each M_i is a maximal ideal of R[T] of height n. Let ω_1 and ω_2 be any two local orientations of I. Then $(I, \omega_1) = (I, \omega_2)$ in E(R[T], L[T]).

Proof. Let $(I, \omega_1) = \sum_{i=1}^{k} (M_i, \omega_{M_i})$ in E(R[T], L[T]). It is enough to show that $(M_i, \omega_{M_i}) = (M_i, \omega'_{M_i})$ in E(R[T], L[T]) for any other local orientation ω'_{M_i} of M_i . Therefore, we may assume that I is a maximal ideal of height n.

If *R* is local, then $L \xrightarrow{\sim} R$ and we are done by [D 3, Proposition 3.12], where it is proved that if *I* is a maximal ideal of *R*[*T*] of height *n*, then $(I, \omega_1) = (I, \omega_2)$ in E(R[T]) for any two local orientations ω_1, ω_2 of *I*.

Now we prove the result for general *R*. Rest of the proof is similar to [D 3]. First we consider the case when *I* contains a monic polynomial. Applying [B-RS 4, Proposition 3.3], $(I, \omega) = 0$ in E(R[T], L[T]) for any local orientation ω of *I*. Hence we are done in this case.

Now assume that *I* is a maximal ideal not containing a monic polynomial. Then I + (T) = R[T] and hence I(0) = R. Consider the element $(I, \omega_1) - (I, \omega_2)$ in E(R[T]). For any maximal ideal \mathcal{M} of *R*, the image of $(I, \omega_1) - (I, \omega_2)$ in $E(R_{\mathcal{M}}[T], L_{\mathcal{M}}[T])$ is zero. Use local global principle for Euler class groups [D-Z 2, Theorem 4.17] which says that the following sequence of groups

$$0 \to E(R,L) \to E(R[T],L[T]) \to \prod_{\mathcal{M}} E(R_{\mathcal{M}}[T],L_{\mathcal{M}}[T])$$

is exact. Here the product is over all maximal ideals of *R*. Hence there exists $(J, \omega_J) \in E(R, L)$ such that

$$\Phi((J,\omega_J)) = (I,\omega_1) - (I,\omega_2).$$

Here $\Phi : E(R,L) \to E(R[T], L[T])$ and $\Psi : E(R[T], L[T]) \to E(R,L)$ are group homomorphisms such that $\Psi \circ \Phi = Id$ [D-Z 2, Remark 4.9]. Since $I(0) = R, \Psi(I, \omega_1) =$ $0 = \Psi(I, \omega_2)$ in E(R, L). Use $\Psi \circ \Phi = Id$, we get $(J, \omega) = 0$ in E(R, L). Hence $(I, \omega_1) = (I, \omega_2)$.

Theorem 4.4. Let R be a ring of dimension $n \ge 3$. Let $L \in \mathcal{P}_1(R)$ and $\mathcal{L} = R[T]^{n-1} \oplus L[T]$. Let $J \subset R[T]$ be a local complete intersection ideal of height n such that $\dim(R[T]/J) = 0$ and $J = (f_1, \dots, f_n) + J^2$. Let $I = (f_1, \dots, f_{n-1}) + J^{(n-1)!}$. Let $\omega : \mathcal{L}/I\mathcal{L} \to I/I^2$ be a surjection. Then there exists $P \in \mathcal{P}_n(R[T])$ and an isomorphism $\chi : L[T] \xrightarrow{\sim} \wedge^n(P)$ such that

- (1) $[P] [\mathcal{L}] = -[R[T]/J]$ in $K_0(R[T])$,
- (2) there is a surjection $P \rightarrow I$ and
- (3) $e(P, \chi) = (I, \omega)$ in E(R[T], L[T]).

Proof. Das-Mandal [D-M, Theorem 3.2] proved the following result for E(R, L). Let $\widetilde{J} \subset R$ be a local complete intersection ideal of height n such that $\widetilde{J} = (\widetilde{f}_1, \dots, \widetilde{f}_n) + \widetilde{J}^2$. Let $\widetilde{I} = (\widetilde{f}_1, \dots, \widetilde{f}_{n-1}) + \widetilde{J}^{(n-1)!}$. Write $\widetilde{\mathcal{L}} = R^{n-1} \oplus L$. Let $\widetilde{\omega} : \widetilde{\mathcal{L}}/\widetilde{I}\widetilde{\mathcal{L}} \longrightarrow \widetilde{I}/\widetilde{I}^2$ be a surjection. Then there exists $\widetilde{P} \in \mathcal{P}_n(R)$ with determinant L and $\widetilde{\chi} : L \xrightarrow{\sim} \wedge^n(\widetilde{P})$ an isomorphism such that

- (1) $[\widetilde{P}] [\widetilde{\mathcal{L}}] = -[R/\widetilde{J}]$ in $K_0(R)$,
- (2) there is a surjection $\widetilde{P} \rightarrow \widetilde{I}$ and
- (3) $e(\widetilde{P}, \widetilde{\chi}) = (\widetilde{I}, \widetilde{\omega})$ in E(R, L).

In our case, $\dim(R[T]/J) = 0$. Since whole proof of [D-M, Theorem 3.1, 3.2] works in our case, we are done.

The proof of the next result closely follow that of [B-D, Proposition 3.3] where it is proved for L = R.

Proposition 4.5. Let $R \hookrightarrow B$ be a flat extension of rings such that $dim(R) = dim(B) = n \ge 3$. Let $L \in \mathcal{P}_1(R)$ and write $\mathcal{L} = L \oplus R^{n-1}$. Let $Q \in \mathcal{P}_n(R)$ with determinant L and $P \in \mathcal{P}_n(B[T])$ with determinant $L \otimes B[T]$. Further, assume that $Q \otimes B \xrightarrow{\sim} \mathcal{L} \otimes B$ and $P/TP \xrightarrow{\sim} \mathcal{L} \otimes B$. Let $\chi : L \xrightarrow{\sim} \wedge^n(Q)$ and $\chi' : L \otimes B[T] \xrightarrow{\sim} \wedge^n(P)$ be isomorphisms. Let $I \subset R[T]$ be an ideal of height n such that ht(I(0)) = n and both IB[T] and I(0)B are proper

ideals. Assume that there are surjections $\omega : \mathcal{L}[T]/I\mathcal{L}[T] \rightarrow I/I^2$, $\alpha : Q \rightarrow I(0)$ and $\beta : P \rightarrow IB[T]$ such that

- (1) (α, χ) induces $e(Q, \chi) = (I(0), \omega(0))$ in E(R, L), where $\omega(0)$ is induced by ω .
- (2) (β, χ') induces $e(P, \chi') = (IB[T], \omega \otimes B[T])$ in $E(B[T], L \otimes B[T])$.

Then there exists an isomorphism $\psi : P/TP \xrightarrow{\sim} Q \otimes B$ and a surjection $\eta : P \longrightarrow IB[T]$ such that $\eta(0) = (\alpha \otimes B) \circ \psi : P/TP \longrightarrow I(0)B$.

Proof. Write $P/TP = P_0$. Let "tilde" denote reduction modulo IB[T] and "bar" denote reduction modulo I(0)B. We have two surjections

$$\widetilde{\beta}: \widetilde{P} \to IB[T]/I^2B[T] \text{ and } \widetilde{\omega}: \mathcal{L}[T] \otimes B[T] \to IB[T]/I^2B[T]$$

induced from β and $\omega \otimes B$ respectively. Since the pair (β, χ') induces the Euler class $e(P, \chi') = (IB[T], \omega \otimes B)$ in $E(B[T], L \otimes B[T])$, by definition of $e(P, \chi')$, if $\sigma : \mathcal{L}[T] \otimes B[T] \xrightarrow{\sim} \widetilde{P}$ is an isomorphism such that $\wedge^n(\sigma) = \widetilde{\chi'}$, then $\widetilde{\beta} \circ \sigma = \widetilde{\omega}$.

Let $\overline{\sigma} : \overline{\mathcal{L} \otimes B} \xrightarrow{\sim} \overline{P_0}$ be the isomorphism induced from σ . Since $P_0 \xrightarrow{\sim} \mathcal{L} \otimes B$, choose an isomorphism $\tau : \mathcal{L} \otimes B \xrightarrow{\sim} P_0$ such that $\wedge^n(\tau) = \chi'(0)$. Now we have two isomorphisms

$$\overline{\sigma}, \, \overline{\tau}: \overline{\mathcal{L} \otimes B} \xrightarrow{\sim} \overline{P_0} \text{ with } \wedge^n(\overline{\sigma}) = \wedge^n(\overline{\tau}) = \widetilde{\chi'}(0).$$

Therefore, $\overline{\tau} = \overline{\sigma} \circ \Theta$ for some $\Theta \in SL(\overline{\mathcal{L} \otimes B})$. Since dim $(\overline{B}) = 0$, $EL(\overline{\mathcal{L} \otimes B}) = SL(\overline{\mathcal{L} \otimes B})$. Hence $\Theta \in EL(\overline{\mathcal{L} \otimes B})$ can be lifted to an element $\theta \in EL(\mathcal{L} \otimes B)$. Therefore, we can lift $\overline{\sigma}$ to an isomorphism $\sigma_0 : \mathcal{L} \otimes B \xrightarrow{\sim} P_0$.

On the other hand, the pair (α, χ) induces the Euler class $e(Q, \chi) = (I(0), \omega(0))$ in E(R, L). Hence if we choose an isomorphism $\delta : \mathcal{L} \otimes B \xrightarrow{\sim} Q \otimes B$ such that $\wedge^n(\delta) = \chi \otimes B$, then $\overline{(\alpha \otimes B)} \circ \overline{\delta} = \omega(0) = \overline{\omega}$. Let us define

$$\psi = \delta \circ \sigma_0^{-1} : P_0 \xrightarrow{\sim} Q \otimes B \text{ and } \varphi = (\alpha \otimes B) \circ \psi : P_0 \longrightarrow I(0)B$$

Then $\overline{\beta} = \overline{\omega} \circ \overline{\sigma}^{-1} = \overline{(\alpha \otimes B)} \circ \overline{\delta} \circ \overline{\sigma}^{-1} = \overline{\varphi}$. By [B-RS 1, Remark 3.9], there is a surjection $\rho: P \longrightarrow IB[T]/(I^2T)B[T]$ such that $\widetilde{\beta} = \widetilde{\rho}$ and $\overline{\rho} = \varphi$.

Let B(T) be the ring obtained from B[T] by inverting all the monic polynomials in T. Then ρ induces the surjection

$$\rho \otimes B(T) : P \otimes B(T) \longrightarrow IB(T)/I^2B(T)$$

and clearly $\beta \otimes B(T)$ is lift of $\rho \otimes B(T)$. Applying [D-Z 2, Theorem 4.11], we can find a surjection $\eta : P \longrightarrow IB[T]$ such that η is a lift of ρ . Note that $\eta(0) = \varphi = (\alpha \otimes B) \circ \psi$. This completes the proof.

The proof of the next result closely follows [B-D, Theorem 3.5] where it is proved for L = R.

Theorem 4.6. Let R be an affine k-algebra of dimension $n \ge 2$. Let $L \in \mathcal{P}_1(R)$ and $\mathcal{L} = L \oplus R^{n-1}$. Let $(I, \omega_I) \in E(R[T], L[T])$ and $\lambda \in k$ be such that $ht(I(\lambda)) \ge n$. When $ht(I(\lambda)) > n$, write $Q = \mathcal{L}$. When $ht(I(\lambda)) = n$, assume that there exists $Q \in \mathcal{P}_n(R)$ with determinant L and $\chi : L \xrightarrow{\sim} \wedge^n(Q)$ an isomorphism such that $e(Q, \chi) = (I(\lambda), \omega_{I(\lambda)})$ in E(R, L), where $\omega_{I(\lambda)}$ is induced from ω_I . Then there exists $P \in \mathcal{P}_n(R[T])$ with determinant L[T] and an isomorphism $\chi_1 : L[T] \xrightarrow{\sim} \wedge^n(P)$ such that $e(P, \chi_1) = (I, \omega_I)$ in E(R[T], L[T]). Moreover, $P/TP \simeq Q$.

Proof. When n = 2, any (I, ω_I) is Euler class of a rank 2 projective R[T]-module, without the condition that $(I(\lambda), \omega_{I(\lambda)}) = e(P, \chi)$. To see this, note that projective modules of rank 1 are always cancellative. It follows easily using a standard patching argument that there exists $P_1 \in \mathcal{P}_2(R[T])$ with determinant L[T] and a surjection $\zeta : P_1 \rightarrow I$. Fix an isomorphism $\chi' : L[T] \xrightarrow{\sim} \wedge^2(P_1)$. Let $e(P_1, \chi') = (I, \omega)$ in E(R[T], L[T]) be induced from (ζ, χ') . Then $\omega_I = \overline{u}\omega$ for some unit $\overline{u} \in R[T]/I$. By (2.15), there exists $P \in \mathcal{P}_2(R[T])$, an isomorphism $\chi_1 : L[T] \xrightarrow{\sim} \wedge^2(P)$ and a surjection $\beta : P \rightarrow I$ such that $e(P, \chi_1) = (I, \overline{u}\omega)$ is induced from (β, χ_1) . Therefore, $e(P, \chi_1) = (I, \omega_I)$.

Assume $n \ge 3$. Replacing *T* by $T - \lambda$, we assume $\lambda = 0$. Using (2.2), we assume that *R* is a reduced affine algebra. Since $\mathbb{Q} \subset R$, we get *R* is a geometrically reduced affine algebra.

Given a surjection $\omega_I : \mathcal{L}[T]/I\mathcal{L}[T] \to I/I^2$. If ht(I(0)) > n, then I(0) = R[T] and we can lift ω_I to a surjection $\omega' : \mathcal{L}[T] \to I/(I^2T)$. If ht(I(0)) = n, then it is given that $e(Q, \chi) = (I(0), \omega_{I(0)})$ in E(R, L). Hence by [B-RS 3, Corollary 4.3], there exists a surjection $\alpha : Q \to I(0)$ such that $(I(0), \omega_{I(0)})$ is obtained from the pair (α, χ) . By (2.4), there is a surjection $\theta : Q[T] \to I/(I^2T)$ such that $\theta(0) = \alpha$.

Step 1: If $J = I \cap R$, then $ht(J) \ge n-1$. By (4.1), there exists a non-zerodivisor $b \in J^2$ such that $Q_{1+b} \xrightarrow{\sim} \mathcal{L}_{1+b}$. By [B-D, Lemma 2.5, Remark 2.6], the surjection $\theta : Q[T] \rightarrow I/(I^2T)$ can be lifted to a surjection $\gamma : Q[T] \rightarrow I'' = I \cap I_1$ such that

- (1) I = I'' + (bT),
- (2) $I_1 + (bT) = R[T]$, hence $I + I_1 = R[T]$,
- (3) $ht(I_1) = n$ and $R[T]/I_1$ is reduced.

It follows that $e(Q[T], \chi \otimes R[T]) = (I, \omega_I) + (I_1, \omega_{I_1})$, where ω_{I_1} is induced by the pair $(\gamma, \chi \otimes R[T])$.

Step 2: Let $B = R_{1+bR}$. We first note that if $I_1B[T] = B[T]$, then the surjection $\gamma \otimes B[T] : Q \otimes B[T] \rightarrow IB[T]$ is a lift of $\theta \otimes B[T]$. By [D 1, Lemma 3.8], θ can be lifted to a surjection $\Theta : Q[T] \rightarrow I$. Further, from above, $e(Q[T], \chi \otimes R[T]) = (I, \omega_I)$ in

E(R[T], L[T]) and we are done in this case by taking P = Q[T]. Therefore, we assume that $ht(I_1B[T]) = n$.

Since bB is contained in the Jacobson radical of B, using (2,3), we conclude that $I_1B[T]$ is a zero dimensional radical ideal. Hence $I_1B[T] = \bigcap_1^r \mathcal{M}_i$, where \mathcal{M}_i 's are maximal ideals of B[T] of height n and containing I_1 . If $K = B \cap I_1B[T]$, then K is a reduced ideal of height n - 1. Further, K + bB is an ideal of B of height n. It is easy to see that $B[T]_{\mathcal{M}_i}$ are regular for $i = 1, \ldots, r$. By [B-H, Theorem 2.2.12], if $\mathfrak{p}_i = \mathcal{M}_i \cap B$, then $B_{\mathfrak{p}_i}$ is regular local.

Now B/K is a reduced ring of dimension 1 and the image of *b* belongs to the Jacobson radical of B/K. Hence $(B/K)_b$ is a product of fields. Therefore, we can find $a_1, \dots, a_{n-1} \in K$ such that $ht(a_1, \dots, a_{n-1}) = n - 1$, $ht(a_1, \dots, a_{n-1}, b) = n$ and $K_b = (a_1, \dots, a_{n-1})_b + K_b^2$. Therefore, $K_p = (a_1, \dots, a_{n-1})_p$ for all minimal prime ideals \mathfrak{p} over *K*. Let $(a_1, \dots, a_{n-1}) = K \cap K_1$ be a reduced primary decomposition.

Step 3: Let $\widetilde{B} = B/(a_1, \dots, a_{n-1})$. Since *b* belongs to the Jacobson radical of B, \widetilde{B} is a semilocal ring of dimension 1 and $\widetilde{K} \cap \widetilde{b}\widetilde{K}_1 = 0$ in \widetilde{B} . Moreover, \widetilde{I}_1 is an invertible ideal and $\widetilde{I}_1 + \widetilde{b}\widetilde{K}_1[T] = \widetilde{B}[T]$. Note that \widetilde{B} is a subring of $\widetilde{B}/\widetilde{K} \oplus \widetilde{B}/\widetilde{b}\widetilde{K}_1$ with the conductor ideal $\widetilde{K} + \widetilde{b}\widetilde{K}_1$.

Applying (4.2) to the invertible ideal \tilde{I}_1 with $\mathfrak{a} = \tilde{b}\tilde{K}_1$, we get an invertible ideal N of $\tilde{B}[T]$ such that

- (1) $N + \widetilde{I}_1 \widetilde{b} \widetilde{K}_1[T] = \widetilde{B}[T],$
- (2) $N^d \cap \widetilde{I}_1 \widetilde{B}[T] = (\widetilde{f})$ for some non-zerodivisor $\widetilde{f} \in \widetilde{B}[T]$,
- (3) $\dim(\tilde{B}[T]/N) = 0.$

Since $\widetilde{K}.\widetilde{K}_1 = (\widetilde{0})$ in \widetilde{B} and $N + \widetilde{b}\widetilde{K}_1[T] = \widetilde{B}[T]$, it follows that any maximal ideal of $\widetilde{B}[T]$ containing N must contain $\widetilde{K}[T]$.

Let I_2 be the inverse image of N in B[T] and \mathcal{M} be a maximal ideal of B[T] containing I_2 . Then $\mathcal{M} \cap B = \mathfrak{q}$ is a prime ideal of B containing K and of height n - 1, since M + bB[T] = B[T]. Hence \mathfrak{q} is a minimal prime over K. Therefore, $B_{\mathfrak{q}}$ is a regular local ring and consequently $B[T]_{\mathcal{M}}$ is also regular. This shows that the ideal I_2 has finite projective dimension and it is locally generated by a regular sequence of length n.

Since \widetilde{B} is semilocal, $L \otimes \widetilde{B} \xrightarrow{\sim} \widetilde{B}$. Therefore, we can write (2) of step 3 as a surjection $\phi' : L[T] \otimes \widetilde{B} \longrightarrow N^d \cap \widetilde{I}_1 \widetilde{B}[T]$. We get a surjection

$$\phi: \mathcal{L} \otimes B[T] \longrightarrow I_2^{(d)} \cap I_1 B[T]$$

such that $\phi|_{L \otimes B[T]}$ is a lift of ϕ' and $\phi(B[T]^{n-1}) = (a_1, \ldots, a_{n-1})$. Since $I_1B[T]$ is reduced, by (4.3), $I_1B[T]$ is independent of the local orientations. Therefore, we have

$$(I_1B[T], \omega_{I_1} \otimes B[T]) + (I_2^{(d)}, \omega) = 0$$

in $E(B[T], L \otimes B[T])$, where ω is induced by ϕ . By (4.4), there exists $P' \in \mathcal{P}_n(B[T])$ with determinant $L \otimes B[T]$ such that:

- (1) There is a surjection $\delta : P' \to I_2^{(d)}$,
- (2) $[P'] [\mathcal{L} \otimes B[T]] = -[B[T]/I_2]$ in $K_0(B[T])$ and
- (3) an orientation $\chi' : L \otimes B[T] \xrightarrow{\sim} \wedge^n(P')$ can be defined such that $e(P', \chi') = (I_2^{(d)}, \omega) = -(I_1B[T], \omega_{I_1} \otimes B[T]).$

Since $Q \otimes B[T] \xrightarrow{\sim} \mathcal{L} \otimes B[T]$, we have

$$e(Q \otimes B[T], \chi \otimes B[T]) = (IB[T], \omega_I \otimes B[T]) + (I_1B[T], \omega_{I_1} \otimes B[T]) = 0$$

in $E(B[T], L \otimes B[T])$. Therefore, $e(P', \chi') = (IB[T], \omega_I \otimes B[T])$. By [D-Z 2, Corollary 4.14], there exists a surjection $\beta : P' \rightarrow IB[T]$ such that (β, χ') induces $e(P', \chi') = (IB[T], \omega_I \otimes B[T])$ in $E(B[T], L \otimes B[T])$.

Since $I_2 + (b) = B[T]$ and *b* belongs to the Jacobson radical of *B*, we have $I_2 + (T) = B[T]$. In other words, $I_2(0) = B$. Therefore,

$$[P'/TP'] - [\mathcal{L} \otimes B] = 0$$
 in $K_0(B)$

i.e. P'/TP' is a stably isomorphic to $\mathcal{L} \otimes B$. Since height of Jacobson radical of *B* is ≥ 1 , we get $P'/TP' \simeq \mathcal{L} \otimes B$.

As dim $(\widetilde{B}_{\widetilde{b}}) = 0$, we have $N_{\widetilde{b}} \xrightarrow{\sim} \widetilde{B}_{\widetilde{b}}$. Hence $(I_2)_b$ is a complete intersection ideal of $B_b[T]$. So

$$[P'_b] - [\mathcal{L} \otimes B_b[T]] = -[B_b[T]/(I_2)_b] = 0 \text{ in } K_0(B_b[T])$$

i.e. P'_b is stably isomorphic to $\mathcal{L} \otimes B_b[T]$ and as dim $(B_b) \leq n-1$, we get $P'_b \simeq \mathcal{L} \otimes B_b[T]$.

Step 4: Applying (4.5) with P = P', we obtain an isomorphism $\psi : P'/TP' \xrightarrow{\sim} Q \otimes B$ and a surjection $\eta : P' \longrightarrow IB[T]$ such that $\eta(0) = (\alpha \otimes B) \circ \psi$. Now consider the following surjections.

$$\Phi = \alpha \otimes R_{b(1+bR)}[T] : Q_{b(1+bR)}[T] \longrightarrow I_{b(1+bR)} = R_{b(1+bR)}[T]$$
$$\eta_b : P'_b \longrightarrow I_{b(1+bR)} = R_{b(1+bR)}$$

Note that $Q_{b(1+bR)}[T] \xrightarrow{\sim} \mathcal{L}_{b(1+bR)}[T] \xrightarrow{\sim} P'_b$. Since $\dim(R_{b(1+bR)}) \leq n-1$ and $\mathbb{Q} \subset R$, by [Ra, Corollary 2.5], $ker(\Phi)$ and $ker(\eta_b)$ are locally free. Therefore, by Quillen's local-global principle [Q], $ker(\Phi)$ and $ker(\eta_b)$ are extended from $R_{b(1+bR)}$. Further, reducing modulo T, we observe that $\alpha_{b(1+bR)} \circ \psi_b = \eta_b(0)$. This implies that $ker(\Phi) \xrightarrow{\sim} ker(\eta_b)$ and there is an isomorphism $\Psi : P'_b \xrightarrow{\sim} Q_{b(1+bR)}[T]$ such that $\Psi(0) = \psi_b$. By a standard patching argument, the result follows.

In (4.6), we have essentially proved the following result.

Theorem 4.7. Let R be an affine k-algebra of dimension $n \ge 3$ and $L \in \mathcal{P}_1(R)$. Let $I \subset R[T]$ be a local complete intersection ideal of height n such that $ht(I(0)) \ge n$. Assume that there exists $Q \in \mathcal{P}_n(R)$ with determinant L and a surjection $Q[T] \longrightarrow I/I^2 \cap (T)$. Then there exists $P \in \mathcal{P}_n(R[T])$ with determinant L[T] and a surjection $P \longrightarrow I$. In other words, I is projectively generated.

Proof. Write $\mathcal{L} = L[T] \oplus R[T]^{n-1}$. We have a surjection $w_I : \mathcal{L}/I\mathcal{L} \to I/I^2$ as the composition of surjections $\mathcal{L}/I\mathcal{L} \xrightarrow{\sim} Q[T]/IQ[T] \to I/I^2$, where the last map is induced from a given surjection $\theta_1 : Q[T] \to I/I^2 \cap (T)$. Take $(I, \omega_I) \in E(R[T], L[T])$. Let $\theta : Q[T] \to I/(I^2T)$ be the surjection induced from θ_1 . Now follow the proof of (4.6).

For even dimensional ring, we have the following stronger result. In case L = R, it is proved in [B-D, Corollary 3.7].

Corollary 4.8. Let R be an affine k-algebra of **even** dimension $n \ge 2$ and $L \in \mathcal{P}_1(R)$. Let $I \subset R[T]$ be an ideal of height n. Write $\mathcal{L} = L \oplus R^{n-1}$ and assume that there is a surjection $\mathcal{L}[T]/I\mathcal{L}[T] \longrightarrow I/I^2$. Let $\lambda \in k$ be such that $ht(I(\lambda)) \ge n$. Assume that there exists $Q \in \mathcal{P}_n(R)$ with determinant L and a surjection $Q \longrightarrow I(\lambda)$. Then there exists $P \in \mathcal{P}_n(R[T])$ with determinant L[T] and a surjection $P \longrightarrow I$.

Proof. Changing *T* to $T - \lambda$, we assume $\lambda = 0$. Let $\omega : \mathcal{L}[T] \rightarrow I/I^2$ be a given surjection and consider $(I, \omega) \in E(R[T], L[T])$. If I(0) = R, then ω can be lifted to a surjection $\mathcal{L}[T] \rightarrow I/(I^2T)$. Now we are done by (4.7).

Assume $\operatorname{ht}(I(0)) = n$ and consider $(I(0), \omega(0)) \in E(R, L)$. Given a surjection $\alpha : Q \to I(0)$ with $\chi : L \to \wedge^n(Q)$. Let $e(Q, \chi) = (I(0), \sigma)$ in E(R, L) be induced from α . By [B-RS 3, Remark 5.0], any two local orientations of I(0) differ by a unit. Hence there exists a unit $a \in R/I(0)$ such that $a\sigma = \omega(0)$. By [B-RS 3, Lemma 5.1], there exists $Q' \in \mathcal{P}_n(R)$ stably isomorphic to Q and $\chi' : L \to \wedge^n(Q')$ such that $e(Q', \chi') = (I(0), a^{n-1}\sigma)$. Since n is even, by [B-RS 3, Lemma 5.4], $(I(0), a^{n-1}\sigma) = (I(0), a\sigma) = (I(0), \omega(0))$. By [B-RS 3, Corollary 4.3], there is a surjection $\beta : Q' \to I(0)$ such that (β, χ') induces $e(Q', \chi')$. By (2.4), there is a surjection $Q'[T] \to I/(I^2T)$. Now we are done by (4.7). \Box

The following result is proved in [D 2, Proposition 5.1, Corollary 5.2] when L = R.

Proposition 4.9. Let R be an affine k-algebra of dimension $n \ge 3$ over a C_1 field k. Let $L \in \mathcal{P}_1(R)$ and $\mathcal{L} = L \oplus R^{n-1}$. Let $I \subset R$ be an ideal of height n. Assume that I is a surjective image of \mathcal{L} . Then

- (1) any surjection $\phi : \mathcal{L}/I\mathcal{L} \to I/I^2$ can be lifted to a surjection $\psi : \mathcal{L} \to I$.
- (2) $E(R, L) \simeq E_0(R, L)$.
- (3) $E(R, L) \simeq E(R)$.

Proof. (1). Let $\theta : \mathcal{L} \to I$ be a given surjection and write $P = L \oplus R^{n-3}$. Let ω be the trivial orientation of I induced from θ . By [B-RS 3, Remark 5.0], we have $\tilde{u} \omega = \phi$ for some unit $\tilde{u} \in R/I$.

Write $\theta = (\theta_1, a_1, a_2) : P \oplus R^2 \longrightarrow I$. Without loss of generality, we may assume that height of $\theta(P) = J$ is n - 2. Let "bar" denote reduction modulo J. Since \overline{R} is an affine k-algebra of dimension 2 with k a C_1 -field of charateristic 0, by Suslin's cancellation result, the unimodular row $(\overline{u}, \overline{a}_1, \overline{a}_2)$ is completable to a matrix in $SL_3(\overline{R})$. By [RS, Lemma 2.3], there exists $\overline{\sigma} \in GL_2(\overline{R})$ with $\det(\overline{\sigma}) = \overline{u}^{-1}$ and $\overline{\sigma}(\overline{a}_1, \overline{a}_2) = (\overline{b}_1, \overline{b}_2)$. Consider the surjection $\psi = (\theta_1, b_1, b_2) : P \oplus R^2 \longrightarrow I$. Since $\wedge^n(\phi) = \wedge^n(\psi \otimes R/I)$, there exists $\delta \in SL(\mathcal{L}/I\mathcal{L})$ such that $\phi = (\psi \otimes R/I) \circ \delta$. Since $\dim R/I = 0$, we have $SL(\mathcal{L}/I\mathcal{L}) = EL(\mathcal{L}/I\mathcal{L})$. Let $\Delta \in EL(\mathcal{L})$ be a lift of δ . Then the surjection $\psi \circ \Delta : \mathcal{L} \longrightarrow I$ is a lift of ϕ . This completes the proof of (1).

(2). It follows from (1).

(3). We have $E(R) \simeq E_0(R)$, by [D 2, Corollary 5.2] and $E_0(R, L) \simeq E_0(R)$, by [B-RS 3, Theorem 6.8]. Now (3) follows from (2).

The next result extends (4.8) when k is a C_1 -field. In case L = R, it is proved in [B-D, Corollary 3.10].

Corollary 4.10. Let R be an affine k-algebra of dimension $n \ge 2$ over a C_1 field k. Let $L \in \mathcal{P}_1(R)$ and write $\mathcal{L} = L[T] \oplus R[T]^{n-1}$. Let $I \subset R[T]$ be an ideal of height n and assume that there is a surjection $\mathcal{L}[T] \to I/I^2$. Let $\lambda \in k$ be such that $ht(I(\lambda)) \ge n$. Assume that there exists $Q \in \mathcal{P}_n(R)$ with determinant L and a surjection $Q \to I(\lambda)$. Then there exists $P \in \mathcal{P}_n(R[T])$ with determinant L[T] and a surjection $P \to I$.

Proof. We may assume $\lambda = 0$. Let $\omega_I : \mathcal{L}[T] \to I/I^2$ be a given surjection and $(I, \omega_I) \in E(R[T], L[T])$. If I(0) = R, then ω_I can be lifted to a surjection $\mathcal{L}[T] \to I/(I^2T)$ and we are done by (4.7). Assume $\operatorname{ht}(I(0)) = n$. Then $(I(0), \omega_{I(0)}) \in E(R, L)$. By assumption, there is a surjection $\alpha : Q \to I(0)$. Let $\chi : L \to \wedge^n(Q)$ be an isomorphism. Since weak Euler class e(Q) = I(0) in $E_0(R)$ and by (4.9), $E(R, L) \to E_0(R, L)$, it follows that the Euler class of Q induced by (α, χ) is $e(Q, \chi) = (I(0), w_{I(0)})$. By (2.4), there exists a surjection $\theta : Q[T] \to I/(I^2T)$ with $\theta(0) = \alpha$. Applying (4.7), we are done.

The following result extends [B-RS 2, Theorem 2.7] and [B-D, Corollary 3.11].

Corollary 4.11. Let R be an affine k-algebra of dimension $n \ge 2$ over an algebraically closed field k and $L \in \mathcal{P}_1(R)$. Let $I \subset R[T]$ be an ideal of height n and there is a surjection $L[T] \oplus R[T]^{n-1} \longrightarrow I/I^2$. Then there exists $P \in \mathcal{P}_n(R[T])$ with determinant L[T] and a surjection $P \longrightarrow I$. Proof. Replacing T by $T - \lambda$ for some $\lambda \in k$, we may assume that $ht(I(0)) \ge n$. Write I(0) = J and $L \oplus R^{n-1} = \mathcal{L}$. By hypothesis, we have a surjection $\alpha : \mathcal{L} \to J/J^2$. By [B-RS 3, Lemma 2.11], there exists $e \in J$ such that $(\alpha(\mathcal{L}), e) = J$ with $e(1 - e) \in \alpha(\mathcal{L})$. If we write f = 1 - e, then $\alpha_f : \mathcal{L}_f \to J_f$ is a surjection. Define $\pi : \mathcal{L}_{1+fk[f]} \to J_{1+fk[f]} = R_{1+fk[f]}$ to be the projection onto the last factor. We have two unimodular elements $\alpha_{f(1+fk[f])}$ and π_f in $\mathcal{L}_{f(1+fk[f])}^*$. Note that $R_{f(1+fk[f])}$ is an affine algebra of dimension n - 1 over a C_1 -field k(f). By [Bh 3, Theorem 4.1], projective $R_{f(1+fk[f])}$ -modules of rank n are cancellative. Hence there exists an automorphism σ of $\mathcal{L}_{f(1+fk[f])}$ such that $\alpha_{f(1+fk[f])} \circ \sigma = \pi_f$. By standard patching argument there exists $Q \in \mathcal{P}_n(R)$ with determinant L and a surjection $Q \to J$. Now the result follows from (4.10).

Let *R* be a ring of dimension $n \ge 3$ and $L \in \mathcal{P}_1(R)$. Consider the following sets

$$H = \{ e(Q, \chi) \in E(R, L) \mid Q \in \mathcal{P}_n(R), \ \chi : L \xrightarrow{\sim} \wedge^n(Q) \}$$
$$K = \{ e(P, \chi) \in E(R[T], L[T]) \mid P \in \mathcal{P}_n(R[T]), \ \chi : L[T] \xrightarrow{\sim} \wedge^n(P) \}$$

It is a natural question whether *H* and *K* are subgroups of E(R, L) and E(R[T], L[T]) respectively?

The following result extends [B-D, Proposition 3.14] where it is proved for L = R.

Corollary 4.12. Let R be an affine k-algebra of dimension $n \ge 3$ and $L \in \mathcal{P}_1(R)$. Then H is a subgroup of E(R, L) if and only if K is a subgroup of E(R[T], L[T]).

Proof. If *K* is a subgroup of E(R[T], L[T]), then it is easy to see that *H* is also a subgroup of E(R, L).

Now suppose that *H* is a subgroup of E(R, L). Let (J_1, ω_{J_1}) , $(J_2, \omega_{J_2}) \in K$. By moving lemma [D-Z 2, Lemma 2.11], there exists an ideal $J_3 \subset R[T]$ of height *n* and a local orientation ω_{J_3} such that $(J_2, \omega_{J_2}) + (J_3, \omega_{J_3}) = 0$ in E(R[T], L[T]) and $(J_1 \cap J_2) + J_3 = R[T]$. Let $J_4 = J_1 \cap J_3$. Then we have

$$(J_4, \omega_{J_4}) = (J_1, \omega_{J_1}) + (J_3, \omega_{J_3}) = (J_1, \omega_{J_1}) - (J_2, \omega_{J_2})$$

where ω_{J_4} is the local orientation of J_4 induced by ω_{J_1} and ω_{J_3} . Now there is group homomorphism $\Psi : E(R[T], L[T]) \longrightarrow E(R, L)$ which takes (J, ω_J) to $(J(0), \omega_{J(0)})$, where $\omega_{J(0)}$ is the local orientation of J(0) induced by ω_J (if J(0) = R, then $\Psi((J, \omega_J)) = 0$) (see [D-Z 2, Remark 4.9]). Therefore, we have

$$(J_4(0), \omega_{J_4(0)}) = (J_1(0), \omega_{J_1(0)}) - (J_2(0), \omega_{J_2(0)}).$$

Since $(J_1(0), \omega_{J_1(0)})$ and $(J_2(0), \omega_{J_2(0)})$ are in H and H is a subgroup of E(R, L), we get $(J_4(0), \omega_{J_4(0)}) \in H$. Therefore, there exists $Q \in \mathcal{P}_n(R)$ with determinant L and an isomorphism $\chi : L \xrightarrow{\sim} \wedge^n(Q)$ such that $e(Q, \chi) = (J_4(0), \omega_{J_4(0)})$. By (4.6), there exists

 $P \in \mathcal{P}_n(R[T])$ with determinant L[T] and an isomorphism $\chi_1 : L[T] \xrightarrow{\sim} \wedge^n(P)$ such that $e(P,\chi_1) = (J_4, \omega_{J_4})$. This completes the proof.

5. PROJECTIVE GENERATION: GENERAL CASE

The following result extends (4.6) where it is proved when L is extended from R.

Theorem 5.1. Let R be a reduced affine k-algebra of dimension $n \ge 2$ and $L \in \mathcal{P}_1(R[T])$. Let (I, ω_I) be an element of E(R[T], L) when $n \ne 3$ and $\widetilde{E}(R[T], L)$ when n = 3. Let $\lambda \in k$ be such that $ht(I(\lambda)) \ge n$. Assume that there exists $Q \in \mathcal{P}_n(R)$ and an isomorphism $\chi : L/TL \xrightarrow{\sim} \wedge^n(Q)$ such that $e(Q, \chi) = (I(\lambda), \omega_{I(\lambda)})$ in E(R, L/TL). Then there exists $P \in \mathcal{P}_n(R[T])$ and an isomorphism $\chi_1 : L \xrightarrow{\sim} \wedge^n(P)$ such that $e(P, \chi_1) = (I, \omega_I)$ in E(R[T], L).

Proof. The case n = 2 is same as (4.6). Consider $n \ge 4$. We may assume $\lambda = 0$. Since R is reduced, there exists an extension $R \hookrightarrow S$ such that

- (1) $R \hookrightarrow S \hookrightarrow Q(R)$,
- (2) S is a finite R-module,
- (3) $R \hookrightarrow S$ is subintegral and
- (4) $L \otimes_R S[T]$ is extended from *S*.

Note that $L \otimes S[T]$ is extended from S and $(I(0)S, \omega_{I(0)}^*) = e(Q \otimes S, \chi \otimes S)$ in $E(S, L/TL \otimes S)$, where $(I(0)S, \omega_{I(0)}^*)$ is the image of $(I(0), \omega_{I(0)})$. Applying (4.6), there exists $P' \in \mathcal{P}_n(S[T])$ with determinant $L \otimes S[T]$ and an isomorphism $\chi' : L \otimes S[T] \xrightarrow{\sim} \wedge^n(P')$ such that $e(P', \chi') = (IS[T], \omega_I^*)$ in $E(S[T], L \otimes S[T])$.

Since $R \hookrightarrow S$ is a finite subintegral extension and $\operatorname{rank}(P') = n = \dim(R)$, by (2.6), there exists $P \in \mathcal{P}_n(R[T])$ with determinant L such that $P \otimes S[T] \simeq P'$. Choose an isomorphism $\chi_1 : L \xrightarrow{\sim} \wedge^n(P)$

Case I: Assume *n* is odd. By (3.2), $e(P', \chi') = e(P', \chi_1 \otimes S[T]) = e(P \otimes S[T], \chi_1 \otimes S[T])$. By [D-Z 2, Theorem 6.16], we have $E(R[T], L) \xrightarrow{\sim} E(S[T], L \otimes S[T])$. Therefore, $e(P, \chi_1) = (I, \omega_I)$.

Case II: Assume *n* is even. We may assume that $R \hookrightarrow S$ is an elementary subintegral extension. If *C* denotes the conductor ideal of $R \subset S$, then $ht(C) \ge 1$. Write $\mathcal{L} = L \oplus R[T]^{n-1}$. If $J = I^2 \cap C$, then $ht(J) \ge 1$. We can choose $b \in J$ such that ht(b) = 1. The surjection $\omega_I : \mathcal{L}/I \longrightarrow I/I^2$ induces a surjection $\overline{\omega}_I : \overline{\mathcal{L}}/\overline{I\mathcal{L}} \longrightarrow \overline{I}/\overline{I}^2$, where bar denotes reduction modulo the ideal (*b*).

Since dim(R/bR) < dim(R), by [D-Z 2, Proposition 2.13], $\overline{\omega}_I$ can be lifted to a surjection $\eta' : \overline{\mathcal{L}} \longrightarrow \overline{I}$. If $\eta : \mathcal{L} \longrightarrow I$ is a lift of η' and hence a lift of ω_I as $b \in I^2$, then $(\eta(\mathcal{L}), b) = I$. Applying [B-RS 3, Corollary 2.13] to the element (η, b) of $\mathcal{L}^* \oplus R[T]$, there exists $\Psi \in \mathcal{L}^*$ such that $\operatorname{ht}(K_b) \geq n$, where $K = (\eta + b\Psi)(\mathcal{L})$. As the ideal

 $(\eta(\mathfrak{L}), b) = I$ has height n, we further get that ht(K) = n. Replacing η by $\eta + b\Psi$, we assume $\eta(\mathcal{L}) = K$ has height n.

Applying [B-RS 3, Lemma 2.11] to (K, b) = I and $b \in I^2$, we get an ideal $I_1 \subset R[T]$ such that

(1) $\eta(\mathcal{L}) = I \cap I_1;$ (2) $\eta \otimes R[T]/I = \omega_I;$ (3) $\operatorname{ht}(I_1) \ge n;$ (4) $I_1 + bR[T] = R[T]$ and hence $I_1 + C[T] = R[T].$

If $ht(I_1) > n$, then $I_1 = R[T]$. Hence $(I, w_I) = 0$ in E(R[T], L) and we are done. Assume $ht(I_1) = n$. From (1), we have $(I, \omega_I) + (I_1, \omega_{I_1}) = 0$ in E(R[T], L), where ω_{I_1} induced by η . Proceeding as above with (I_1, ω_{I_1}) , we get an ideal $I_2 \subset R[T]$ of height n with $I_2 + CR[T] = R[T]$ and an local orientation ω_{I_2} of I_2 such that

$$(I, \omega_I) = -(I_1, \omega_{I_1}) = (I_2, \omega_{I_2})$$
 in $E(R[T], L)$.

Recall that we have $e(P', \chi') = (IS[T], \omega_I^*) = (I_2S[T], \omega_{I_2}^*)$ in $E(S[T], L \otimes S[T])$. Since $L \otimes S[T]$ is extended from S, by [D-Z 2, Corollary 4.14], there exists a surjection β : $P' \rightarrow I_2S[T]$ such that $(I_2S[T], \omega_{I_2}^*)$ is obtained from (β, χ') . Since $I_2 + C[T] = R[T]$, we have the following:

(1) $I_2 \otimes (R/C)[T] \simeq (R/C)[T]$. (2) $I_2 \otimes (S/C)[T] \simeq (S/C)[T]$. (3) $R[T]/I_2 \simeq S[T]/I_2S[T]$.

Therefore, $\beta_1 := \beta \otimes (S/C)[T]$ is a unimodular element of $(P' \otimes (S/C)[T])^*$. So $\beta_1 \otimes (S/C)_{red}[T]$ is a unimodular element of $(P' \otimes (S/C)_{red}[T])^*$. Since $(R/C)_{red} = (S/C)_{red}$ and $P \otimes S[T] \simeq P'$, it is easy to see that we have a lift of $\beta_1 \otimes (S/C)_{red}[T]$ to a surjection $\gamma : P \otimes (R/C)[T] \rightarrow (R/C)[T]$. It is clear that $\gamma \otimes (S/C)[T] = \beta_1$ modulo the nil radical of ((S/C)[T]). So, two unimodular elements β_1 and $\gamma \otimes (S/C)[T]$ of $(P \otimes (S/C)[T])^*$ are same modulo the nil radical of ((S/C)[T]). By [D-Z 2, Proposition 2.8], there exists a transvection τ of $P \otimes (S/C)[T]$ such that $\beta_1 \circ \tau = \gamma \otimes (S/C)[T]$. By [B-R, Proposition 4.1], τ can be lifted to an automorphism θ of $P \otimes S[T] (\simeq P')$.

Consider the following Milnor square

As $\beta \circ \theta$ and γ agree over S/C[T], they will patch to yield a surjection $\alpha : P \longrightarrow I_2$.

Let $e(P, \chi_1) = (I_2, \omega'_{I_2})$ be obtained from the pair (α, χ_1) . By (2.14), $(I_2, \omega_{I_2}) = (I_2, \overline{f}\omega'_{I_2})$ for some unit $\overline{f} \in R[T]/I_2$. By (2.15), there exists $P_2 \in \mathcal{P}_n(R[T])$ which is stably isomorphic to P, an isomorphism $\chi_2 : L \xrightarrow{\sim} \wedge^n(P_2)$ and a surjection $v : P_2 \rightarrow I_2$ such that $e(P_2, \chi_2) = (I_2, \overline{f}^{n-1}\omega'_{I_2})$ is obtained from (v, χ_2) . Since n is even, by (2.18), $(I_2, \overline{f}^{n-1}\omega'_{I_2}) = (I_2, \overline{f}\omega'_{I_2})$. Therefore, $e(P_2, \chi_2) = (I_2, \overline{f}\omega'_{I_2}) = (I_2, \omega_{I_2})$. Since $(I_2, \omega_{I_2}) = (I, \omega_I)$, we get $e(P_2, \chi_2) = (I, \omega_I)$. This completes the proof in the case $n \ge 4$.

For n = 3 case, we follow the steps of case I and use [D-Z 2, Theorem 7.2] which says that the natural group homomorphism $\widetilde{E}(R[T], L) \to \widetilde{E}(S[T], L \otimes S[T])$ is injective. \Box

The proof of the following theorem is essentially contained in (5.1).

Theorem 5.2. Let R be a reduced affine k-algebra of dimension $n \ge 2$ and $L \in \mathcal{P}_1(R[T])$. Let $(I, \omega_I) \in \widetilde{E}(R[T], L)$. Let $\lambda \in k$ be such that $ht(I(\lambda)) \ge n$ and there exists $Q \in \mathcal{P}_n(R)$ and an isomorphism $\chi : L/TL \xrightarrow{\sim} \wedge^n(Q)$ such that $e(Q, \chi) = (I(\lambda), \omega_{I(\lambda)})$ in E(R, L/TL). Then there exists $P \in \mathcal{P}_n(R[T])$ with determinant L, an isomorphism $\chi_1 : L \xrightarrow{\sim} \wedge^n(P)$ and a surjection $\alpha : P \longrightarrow I$ such that $e(P, \chi_1) = (I, \omega_I)$ in $\widetilde{E}(R[T], L)$. In particular, I is projectively generated.

The following result generalizes (5.2) in case n is even.

Corollary 5.3. Let R be a reduced affine k-algebra of even dimension $n \ge 2$ and $L \in \mathcal{P}_1(R[T])$. Let $(I, \omega_I) \in \widetilde{E}(R[T], L)$. Let $\lambda \in k$ be such that $ht(I(\lambda)) \ge n$ and there exists $Q \in \mathcal{P}_n(R)$ with determinant L/TL and a surjection $Q \rightarrow I(\lambda)$. Then there exists $P \in \mathcal{P}_n(R[T])$ with determinant L, an isomorphism $\chi : L \xrightarrow{\sim} \wedge^n(P)$ and a surjection $\alpha : P \rightarrow I$ such that $e(P, \chi) = (I, \omega_I)$ in $\widetilde{E}(R[T], L)$ is obtained from the pair (α, χ) . In particular, I is projectively generated.

Proof. Since *n* is even and there is a surjection $Q \to I(\lambda)$, by [B-RS 3, Lemma 5.1], there exists $\widetilde{Q} \in \mathcal{P}_n(R)$ with an isomorphism $\widetilde{\chi} : L/TL \xrightarrow{\sim} \wedge^n(\widetilde{Q})$ such that $e(\widetilde{Q}, \widetilde{\chi}) = (I(\lambda), w_{I(\lambda)})$ in E(R, L/TL). By (5.2), there exists $P_1 \in \mathcal{P}_n(R[T])$, an isomorphism $\chi_1 : L \xrightarrow{\sim} \wedge^n(P_1)$ and a surjection $\alpha_1 : P_1 \to I$ such that $e(P_1, \chi_1) = (I, \omega_I)$ in $\widetilde{E}(R[T], L)$. Note that (I, ω_I) may not be obtained from the pair (α_1, χ_1) . Let $e(P_1, \chi_1) = (I, \widetilde{\omega}_I)$ be obtained from the pair (α_1, χ_1) . Then there is a unit $\overline{f} \in R[T]/I$ such that $\omega_I = \overline{f}\widetilde{\omega}_I$. Since *n* is even, by (2.15), there exists $P \in \mathcal{P}_n(R[T])$ with $P \oplus R[T] \xrightarrow{\sim} P_1 \oplus R[T]$, an isomorphism $\chi : L \xrightarrow{\sim} \wedge^n(P)$ and a surjection $\alpha : P \to I$ such that $e(P, \chi) = (I, \omega_I)$ is obtained from the pair (α, χ) .

The following result extends (5.2).

Corollary 5.4. Let R be a reduced affine k-algebra of dimension $n \ge 3$ over a C_1 field kand $L \in \mathcal{P}_1(R[T])$. Let $(I, \omega_I) \in \widetilde{E}(R[T], L)$. Let $\lambda \in k$ be such that $ht(I(\lambda)) \ge n$ and there exists $Q \in \mathcal{P}_n(R)$ with determinant L/TL and a surjection $Q \longrightarrow I(\lambda)$. Then there exists $P \in \mathcal{P}_n(R[T])$ with determinant L, an isomorphism $\chi : L \xrightarrow{\sim} \wedge^n(P)$ and a surjection $\alpha : P \longrightarrow I$ such that $e(P, \chi) = (I, \omega_I)$ in $\widetilde{E}(R[T], L)$. In particular, I is projectively generated.

Proof. Let $\theta : Q \to I(\lambda)$ be a surjection and $\chi_1 : L/TL \to \wedge^n(Q)$ be an isomorphism. Let $e(Q, \chi_1) = (I(\lambda), \omega) \in E(R, L/TL)$ be obtained from the pair (θ, χ_1) . By (4.9), $(I(\lambda), \omega) = (I(\lambda), \omega_{I(\lambda)})$ in R(R, L/TL). Using (5.2), we are done.

Corollary 5.5. Let R be a reduced affine k-algebra of dimension $n \ge 3$ over an algebraically closed field k. Let $L \in \mathcal{P}_1(R[T])$ and $(I, \omega_I) \in \widetilde{E}(R[T], L)$. Then there exists $P \in \mathcal{P}_n(R[T])$ with determinant L, an isomorphism $\chi : L \xrightarrow{\sim} \wedge^n(P)$ and a surjection $\alpha : P \longrightarrow I$ such that $e(P, \chi) = (I, \omega_I)$ in $\widetilde{E}(R[T], L)$.

Proof. We can find $\lambda \in k$ such that $ht(I(\lambda)) \ge n$. Following the proof of (4.11), we get a projective *R*-module *Q* of rank *n* with determinant *L* and a surjection $Q \rightarrow I(\lambda)$. Finally using (5.4), we are done.

The following result is immediate from (5.5).

Corollary 5.6. Let R be a reduced affine k-algebra of dimension $n \ge 3$ over an algebraically closed field k. Let (I, ω_I) be an element of $\widetilde{E}(R[T], L)$ when n = 3 and and E(R[T], L) when n > 3. Then $(I, \omega_I) = e(P, \chi)$ for some $P \in \mathcal{P}_n(R[T])$ with determinant L and $\chi : L \xrightarrow{\sim} \wedge^n(P)$ an isomorphism.

Acknowledgement : We sincerely thank the referee for going through the manuscript with great care and suggesting improvements.

References

- [Bh 1] S. M. Bhatwadekar, Projective generation of maximal ideals in polynomial rings, *Journal of Algebra* **91** (1984), 75-81.
- [Bh 2] S. M. Bhatwadekar, Cancellation theorems for projective modules over a two dimensional ring and its polynomial extensions, *Compositio Math.* **128** (2001), 339-359.
- [Bh 3] S. M. Bhatwadekar, A cancellation theorem for projective modules over a affine algebras over *C*₁-fields, *J.Pure and Applied Algebra* **183** (2003), 17-26.
- [B-D] S. M. Bhatwadekar and M. K. Das, Projective generation of curves (III), IMRN Vol. 2015, No. 4 (2015), 960-980.
- [B-R] S. M. Bhatwadekar and Amit Roy, Some theorems about projective modules over polynomial rings, J. Algebra 86 (1984), 150-158.
- [B-RS 1] S. M. Bhatwadekar and Raja Sridharan, Projective generation of curves in polynomial extensions of an affine domain and a question of Nori, *Invent. Math.* 133 (1998), 161-192.
- [B-RS 2] S. M. Bhatwadekar and Raja Sridharan, Projective generation of curves in polynomial extensions of an affine domain (II), *K-Theory* 15 (1998), 293-300.
- [B-RS 3] S. M. Bhatwadekar and Raja Sridharan, Euler class group of a Noetherian ring, *Compositio Math.* 122 (2000), 183-222.
- [B-RS 4] S. M. Bhatwadekar and Raja Sridharan, On a question of Roitman, J. Ramanujan Math.Soc. 16 (2001), 45-61.
- [B-H] W. Bruns and J. Herzog, Cohen Macaulay rings, Cambridge university press, 1993.
- [D 1] M. K. Das, The Euler class group of a polynomial algebra, J. Algebra 264 (2003), 582-612.
- [D 2] M. K. Das, The Euler class group of a polynomial algebra II, J. Algebra 299 (2006), 94-114.
- [D 3] M. K. Das, Revisiting Nori's question and homotopy invariance of Euler class groups. *Journal of K-Theory* 8 (2011), 451-480.
- [D-M] M. K. Das and Satya Mandal, Euler class construction, J. Pure Appl. Algebra 198 (2005), 93-104.
- [D-Z 1] M. K. Das and Md. Ali Zinna, On invariance of the Euler class group under a subintegral base change, J. Algebra 398 (2014), 131-155.
- [D-Z 2] M. K. Das and Md. Ali Zinna, The Euler class group of a polynomial algebra with coefficients in a line bundle, *Math. Z.* 276 (2014) 257-283.
- [D-Z 3] M. K. Das and Md. Ali Zinna, "Strong" Euler class of a stably free module of odd rank, J. Algebra 432 (2015), 185-204.
- [M] Satya Mandal, On efficient generation of ideals, Invent. Math. 75 (1984), 59-67.
- [Q] D. Quillen, Projective modules over polynomial rings, *Inventiones Mathematicae* 36 (1976), 167-171.
- [P] B. R. Plumstead, The conjectures of Eisenbud and Evans, Am. J. Math. 105(6) (1983), 1417-1433.
- [Ra] Ravi A. Rao, The Bass-Quillen conjecture in dimension three but characteristic $\neq 2, 3$ via a question of A. Suslin, *Inventiones Mathematicae* **93** (1988), 609-618.
- [RS] Raja Sridharan, Projective modules and complete intersections, K-Theory 13 (1998), 269-278.
- [Se] Serre, J-P, Sur les modules projectifs, Semin. Dubreil-Pisot 14 (1960-61).

Department of Mathematics, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.

E-mail address: keshari@math.iitb.ac.in

School of Mathematical Sciences, National Institute of Science Education and Research Bhubaneswar, Odisha 752050, India.

E-mail address: zinna@niser.ac.in, zinna2012@gmail.com