PROJECTIVE GENERATION OF IDEALS IN POLYNOMIAL EXTENSIONS

MANQO]J K. KESHARI AND MD. ALI ZINNA

ABSTRACT. Let R be an affine domain of dimension n > 3 over a field of characteristic
0. Let L be a projective R[T]-module of rank 1 and I C R[T] a local complete intersec-
tion ideal of height n. Assume that I/I? is a surjective image of L& R[T]"~*. This paper
examines under what conditions I is a surjective image of a projective R[T]-module P
of rank n with determinant L.

1. INTRODUCTION

Assumptions: In this paper, k will denote a field of characteristic 0, all rings are com-
mutative Noetherian containing Q and projective modules are finitely generated of constant
rank. For a ring R, Py (R) will denote the set consisting of isomophism classes of projective
R-modules of rank n.

Let R be a ring and M a finitely generated R-module. We write ur(M) for the
minimum number of generators of M as an R-module. Assume I is an ideal of R with
pr/r(1/1%) = n. If pr(I) = n, then I is called efficiently generated and if there exists
@ € P, (R) such that I is a surjective image of (), then I is called projectively generated.

Let R be a ring of dimension n and I C R[T] an ideal of height n with pp/;(1/1?) =
n. If I contains a monic polynomial, then Mandal [M] proved that I is efficiently gener-
ated. This result is not true if I does not contain a monic polynomial (for an example,
see [B-D], Introduction). However, if I C R[T] is a maximal ideal not containing a
monic polynomial, then Bhatwadekar [Bh 1] proved that I is projectively generated.
For a non-maximal ideal / which does not contain a monic polynomial, Bhatwadekar
and Das [B-D] proved the following result.

“Let R be an affine k-algebra of dimension n > 3. Let I C R[T] be a local complete
intersection ideal of height n such that pg,;(I/I?) = n and I(0) C R is an ideal
of height > n. Assume that there exists ) € P, (R) with trivial determinant and a
surjection Q[T] = I/(I? N (T)). Then I is projectively generated.”

In terms of Euler class group of R[T'], they proved the following result [B-D]. “Let
wr : (R[T]/I)™ — I/I? be a local orientation of I and w;(0) : (R/I(0))™ — I(0)/1(0)?
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be the induced local orientation of 7(0). Let (I, w;) and ((0),w;(0)) be elements of Eu-
ler class groups E(R[T]) and E(R) respectively. Assume that (1(0),w;(0)) is obtained
as the Euler class of a projective R-module. Then (I, wy) is also obtained as the Euler
class of a projective R[T]-module.”

Let R be an affine k-algebra of dimension n > 3 and L € P;(R[T]). Das [D 1] has
developed the theory of Euler class group E(R[T], R[T]) which is used in [B-D]. Das
and Zinna [D-Z 2] extended results of Das [D 1] to E(R[T], L). So it is natural to ask
the following generalization of results of [B-D].

Question 1.1. Let R be an affine k-algebra of dimension n > 3 and L € P1(R[T]). Let
I C R[T] be a local complete intersection ideal of height n such that ht(1(0)) > n. Let
Q € P, (R) with determinant L /T L.

(1) Let (I,wr) € E(R[T], L) be such that (1(0),wr()) = e(Q,X) € E(R, L/TL), where

X : L/TL = A™Y(Q) is an isomorphism. Does there exist P € P, (R[T]) with
determinant L and an isomorphism x : L = A"(P) such that e(P,x) = (I,w;)
in E(R[T),L)?

(2) Assume there is a surjection Q[T] —» I/(I> N (T)). Is I projectively generated?
In other words, does there exist P € P, (R[T]) with determinant L such that I is a

surjective image of P?
We answer question 1.1(2) in case L is extended from R (see 4.7).

Theorem 1.2. Let R be an affine k-algebra of dimension n > 3 and L € P1(R). Let I C R[T]
be a local complete intersection ideal of height n such that ht(1(0)) > n. Assume that there
exists Q € Pn(R) with determinant L and a surjection Q[T] —~ I/I> N (T). Then there
exists P € P, (R[T]) with determinant L[T| and a surjection P — I. In other words, I is
projectively generated.

We answer question 1.1(1) for reduced ring R (see 5.1).

Theorem 1.3. Let R be a reduced affine k-algebra of dimension n > 3 and L € P1(R[T). Let
I C RI[T) be an ideal of height n such that ht(1(0)) > n. Assume that (I,wr) € E(R[T], L)
when n > 4 and (I,wy) € E(R[T),L), the restricted Euler class group of R[T| when n = 3
(see (2.12)). Assume that there exists QQ € P, (R) with determinant L /T L and an isomorphism
X : L/TL = N'(Q) such that e(Q, x) = (1(0),wy()) in E(R, L/TL). Then there exists P €
Pn(R[T)) with determinant L and an isomorphism x1 : L = A"(P) such that e(P,x1) =
(I,wy) in E(R[T), L).

Steps of proof of (1.3): First we prove the result when L is extended from R. For
arbitrary L, there exists a finite subintegral extension S of R such that L ® S[T] is ex-
tended from S. Now we know the result in S[7] by extended case. Finally we descend
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from S[T] to R[T] by proving that for (I,w;) € E(R[T], L), if its image (IS[T],w}) in
E(S[T], L ® S[T1]) is obtained as the Euler class of a projective S[T]-module, then (1, wy)
is also obtained as the Euler class of a projective R[T]-module.

The following result (see 4.11) is an application. It improves [B-RS 2, Theorem 2.7]
and [B-D, Corollary 3.11], where it is proved for L = R[T].

Corollary 1.4. Let R be an affine k-algebra of dimension n > 2 with k an algebraically closed
field. Let L € P1(R) and I C R[T) an ideal of height n. Assume that I/I? is a surjective
image of L[T| @ R[T)"~L. Then there exists P € P,,(R[T)) with determinant L[T) such that
I is a surjective image of P.

2. PRELIMINARIES

In this section, we recall some results for later use.

Lemma 2.1. [B-RS 3, Lemma 5.4] Let R be a ring of dimension n > 2 and L € Pi(R).
Let J C R be an ideal of height n and wy : (L ® R"1)/J(L ® R ') —~ J/J? be a local
L-orientation of J. If u € R/J is a unit, then (J,w;) = (J,u%w,) in the Euler class group
E(R, L).

Let R be a ring of dimension n > 3 and L € P;(R). Let "bar” denote reduction
modulo N[T], where N is the nilradical of R. So R = R,cqand L = L/NL. Let I C R[T]
be an ideal of height n such that Spec(R[T]/I) is connected and I/I? is generated by
n elements. We have I = (I + N[T])/N|T]. Note that Spec(R[T]/I) is also connected.
Further, if we write £ = L® R" !, then any surjection wy : L[T]/IL[T] — I/I? induces
a surjection wy : L[T]/IL[T] — 1T

Let J C R[T] be an ideal of height n and w; be a local orientation of .J. Now .J
can be decomposed uniquely as J = J; N --- N Ji, where J;’s are pairwise comaximal
ideals of R[T] of height n such that Spec(R[T]/J;) is connected for each i. Clearly
J=J1N---NJgis a similar decomposition for J. Now w; induces a local orientation
w7 in a natural way. Therefore, we have a group homomorphism & : E(R[T], L[T]) —
E(R[T), L[T)) which takes (J,wy) to (J,w7).

Proposition 2.2. Let R be a ring of dimension n > 3 and L € P1(R). Then
(1) the group homomorphism & : E(R|T], L|T)) — E(R|T], L|T)) is an isomorphism.
(2) Let (I,wr) € E(R[T), L[T]). If &((I,wr)) is the Euler class of a projective module, then
so is (I,wr). More precisely, assume that &((I,wy)) = e(P’,X’), where P' € P, (R[T]) with
determinant L|T) and x' : L[T] = A"(P') an isomorphism. Then there exists P € P, (R[T))
with determinant L[T) and an isomorphism x : L[T] = A"(P) such that e(P, x) = (I,wy) in

E(R[T], L[T]).
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Proof. (1) is due to Das-Zinna [D-Z 2, Proposition 6.8].

For (2), follow the proof of [B-D, Proposition 2.15, Remark 2.16] where it is proved
for L = Rand use [D-Z 2, Corollary 4.14] which says that (I,w;) = e(P’, x’) in E(R[T, L[T))
implies that there is a surjection o : P’ — I such that (I, wy) is obtained from the pair
(., X')- O
Remark 2.3. Note that we do not know [D-Z 2, Corollary 4.14] for arbitrary L € P;(R[T)).
Hence, we do not have (2.2(2)) for arbitrary L. That is why we are taking reduced ring
in section 5 with arbitrary L. O

The following result is proved in [B-D, Lemma 3.2] when L = R.

Lemma 2.4. Let R be a ring of dimension n > 3 and L € Py(R). Let Q € P,(R) with
determinant L and an isomorphism x : L = A"(Q). Let (I,w;) € E(R[T), L[T]) with
ht(1(0)) = n. Consider (I1(0),wr)) € E(R, L), where wy () is the local orientation of 1(0)
induced by wy. Assume that there is a surjection o : QQ —— I(0) such that (o, x) induces
e(Q.x) = (1(0),wy(0)). Then there is a surjection 6 : Q[T — I/(I*T) such that 6(0) = cv.

Proof. As @) has determinant L and dim(R[T]/I) < 1, by Serre’s result [Se], we have
QIT)/IQ[T] ~ L[T)/IL[T] & (R[T]/I)""'. Choose an isomorphism & : Q[T]/IQ[T] =
L[T)/IL[T) @ (R[T]/I)" " such that A" () = (x ® R[T]/I)~'. The composite surjection
0: Q[T) — I/I? given by

o

QIT] = QIT)/IQ[T] = LIT/IL[T) & (R[T)/1)"~" =5 I/1?

is such that 0(0) ® R/1(0) = a® R/1(0). Applying [B-RS 1, Remark 3.9], we can lift §
to a surjection 0 : Q[T — I/(I?T) such that 6(0) = a. O

Lemma 2.5. Let R be a reduced ring of dimension n > 2 and R — S a finite subintegral
extension. Let Q € P,(S) be such that its determinant is extended from R, ie. N"(Q) —
L®S for some L € Pi(R). Then Q is extended from R, i.e. there exists P € Py (R) with
determinant L such that P® S ~ Q.

Proof. Since R — S is a finite subintegral extension, without loss of generality, we may
assume that S is an elementary subintegral extension of R. Let C be the conductor ideal
of R C S. Then ht(C) > 1and (R/C)reqd = (S/C)rea [D-Z 1, Lemma 3.7]. Consider the
conductor (fiber product) diagram

R S

L

R/C —= §/C.
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Since every projective (R/C)ycs-module comes from a projective 2/C-module, there
exists P € P,(R/C) with an isomorphism 0:P@(S/C)eqg ~ Q® (S/C)Ted Now
we can lift 0 to an isomorphism 6 : P®S /C ~ @Q/CQ. Patching @ and P over 0, we
get P € Pp(R) such that P® S ~ Q. Since rank(Q/CQ) = n > dim R/C, by Serre’s
result [Se], Q/CQ has a unimodular element. Hence, we can modify the patching
automorphism ¢ such that A" (P) ~ L. O

Lemma 2.6. Let R be a reduced ring of dimension n > 2 and R — S a finite subintegral
extension. Let Q € P, (S[T]) be such that its determinant is extended from R[T], i.e. \"(Q) ~
L® S[T] for some L € Pi(R[T]). Then Q is extended from R[T), i.e. there exists P €
P (R[T]) with determinant L such that P @ S[T] ~ Q.

Proof. Follow the proof of (2.5). By Plumstead’s result [P], Q/CQ has a unimodular
element, where C' is the conductor ideal of R «— S. O

Definition 2.7. We recall some definitions from [D-Z 1]. Let R be a ring of dimension
n > 2and R — S a subintegral extension. Let L € P;(R) and write L = L & R ! Let
J C Rbe anideal of height n and w; : £L/JL — J/.J? a surjection. By [D-Z 1, Remark
3.8], we have ht(JS) = n. Tensoring w; with S/JS over R/J, we obtain an induced
surjection
o L&®rS . J®rS .
JS(L @R S) JS(J ®@r S)
Define a local orientation w? of JS as the composition

. LorS & J®grS J»JS
T IS(LorS) IS wrS) | J2S

where f is induced by the natural surjection f : J ®z S —+ JS. Note that if w;
can be lifted to a surjection 6 : £ —=+ J, then w’ can be lifted to a surjection f o
0®S) : L&S — JS. Therefore, we have a well defined group homomorphism
®:E(R,L) — E(S,L®gS) defined by ®((J,wy)) = (JS,w}).
Similarly for L € P;(R[T]), we have a group homomorphism E(R[T], L) — E(S[T], L ® S[T)).
g

The following three results are due to Das and Zinna.

Theorem 2.8. [D-Z 1, Theorem 3.12] Let R be a ring of dimension n > 2 and R — S a
subintegral extension. If L € Pi(R), then the natural map ® : E(R,L) — E(S,L® rS) is
an isomorphism.

Theorem 2.9. [D-Z 1, Theorem 3.16] Let R be a ring of dimension n > 3 and R — S a
subintegral extension. Then E(R[T]) ~ E(S[T]).
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Theorem 2.10. [D-Z 3, Theorem 3.12] Let R be a ring of dimension n > 2and R — S a
subintegral extension. Then weak Euler class groups Eo(R) and Ey(S) are isomorphic.

Definition 2.11. Let R be a reduced ring of dimension n > 3. Let L € P;(R[T]) and
L = L® R[T|". We will define the restricted Euler class group E(RI[T), L), see [D-Z 2,
Section 7] when n = 3. Let R be the seminormalization of R and C the conductor ideal
of R C R. Let G be the free abelian group on pairs (I, w;), where I C R[T] is an ideal of
height n such that Spec(R[T']/I) is connected, I + C[T] = R[T] (this is the restriction)
and wy : L/IL — I/I? is an equivalence class of local L-orientation of I. Here two
local L-orientations w; and w; are equivalent if there exists § € SL(L/IL) such that
wr 00 = &y. Take H to be the subgroup of G generated by those (I, w;) € G such that
wr is a global L-orientation of I, i.e. w; can be lifted to a surjection £ —+ I. Define the
“restricted” Euler class group E(R[T),L) = G/H.

Let P € P,(R[T]) with determinant L and x : L — A"(P) an isomorphism. Since
dim(R/C) < n — 1, by [P, Corollary 2 of Section 3], P/CP has a unimodular element.
Applying ([B-RS 3, Lemma 2.13]), it is easy to see that there is an ideal I C R[T]
of height n such that I + C[T] = R[T] and a surjection a : P — I. Choose an
isomorphism % : £/1L = P/IP such that A"y = x ® R[T]/I. Let w; be the composite
surjection

wy : L)IL Y P/IP S5 1)1
We define the Euler class of the pair (P, x) obtained from the pair (o, x) as e(P, x) =
(I,wr) € E(R[T),L). Following [D-Z 2, Lemma 6.11], it is easy to prove that the Euler
class e(P, x) is well defined and it does not depend on the choice of o and 7. O

Remark 2.12. For n > 4, there is a natural map E(R[T],L) — E(RIT), L) which is an
isomorphism. This can be seen using moving lemma [D-Z 2, Lemma 2.11] and the fact
that ht(C) > 1.

The following result is from [D-Z 2, Corollary 7.3, Theorem 7.4].

Theorem 2.13. Let R be a reduced ring of dimension n > 3 and L € Py(R[T]). Let P €
Pn(R[T)) with determinant L and x : L = A"(P) an isomorphism.

(1) If (I,wy) = 0 in E(R[T), L), then w; is a global L-orientation of I.

(2) P has a unimodular element if and only if e(P, x) = 0 in E(R[T),L)

Remark 2.14. Let R be a ring of dimension n > 2 and L € P;(R[T]). Let (I,wr) €
E(R[T],L) when n # 3 and (I,w;) € E(R[T],L) when n = 3. Let f € R[T]/I be
a unit. Composing w; with an automorphism of (L @ R[T|""1)/I(LOR[T|" ') with
determinant f, we obtain another local orientation of I which we denote by fwr. On
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the other hand, let w; and w; be two local orientations of I. Then it follows from [Bh 2,
Lemma 2.2] that w; = f&; for some unit f € R[T]/I.

The next result follows from [B-RS 3, Lemmas 2.7, 2.8].

Lemma 2.15. Let R be a ring of dimension n > 2 and L € Py(R[T]). Let P € P,(R[T))
with determinant L and x : L = A"(P) an isomorphism. Let I C R[T) be an ideal of
height n and o : P —~ I a surjection. Let e(P,x) = (I,ws) be obtained from the pair
(v, x), where e(P,x) € E(R[T),L) when n # 3 and e(P,x) € E(R[T], L) when n = 3.
Let f € R[T)/I be a unit. Then there exists P, € P, (R[T]) with determinant L such that
P R[T] = P, @ R[T), an isomorphism x1 : L = A"(Py) and a surjection 3 : Py — I such
that e(Pr,x1) = (I, T 'wy) is obtained from the pair (3, x1)-

The following result extends [D 1, Lemma 5.2].

Lemma 2.16. Let R be a ring of dimension n > 3. Let L € P1(R) and L = L & R""!. Let
I C R[T) be an ideal of height n and wy : L[T)/IL[T] — I/I? a surjection. Let f € R[T|/I
be a unit and 6 an automorphism of L[T']/1L[T| with determinant 72. Assume that wy can be
lifted to a surjection o : L[T| — I. Then the surjection wy o 0 : L[T]/IL[T) — I1/I? can
also be lifted to a surjection 8 : L[T] — I.

Proof. Replacing 7' by T' — X for some A\ € Q, we may assume that ht(/(0)) > n. If
ht(1(0)) > n, then 1(0) = R. By [B-RS 1, Remark 3.9], we can lift w; o 6 to a surjection
B : L[T)] = I/(I*T). We now show that the same can be done if ht(7(0)) = n. Now
wr induces a surjection w;(0) : £/I(0)£ — I(0)/I(0)?, which can be lifted to (0) :
L — 1(0). Note that f(0) € R/I(0) is a unit and #(0) is an automorphism of £/1(0)£
with determinant WQ. Therefore, by [B-RS 3, Lemma 5.3], wr(0) 0 §(0) can be lifted to
a surjection ¢ : £ — I(0). Consequently, we can lift w; o 6 to a surjection f : L[T] —+
I/(I%T).

Now we move to the ring R(7") which is obtained from R[T’| by inverting all monic
polynomials in 7. Applying [B-RS 3, Lemma 5.3] to R(T'), we get

(wro®)@R(T): L& R(T)/IL® R(T) — IR(T)/I*R(T)

can be lifted to a surjection ¢ : L& R(T) — IR(T). By [D-Z 2, Theorem 4.1], we get
wr o 6 can be lifted to a surjection 3 : L[T] — 1. O

The following result extends [D 1, Lemma 5.3].

Lemma 2.17. Let R be a ring of dimension n > 3 and L € Pi(R). Let I C R[T] be an
ideal of height n and wy be a local L-orientation of I. Let f € R[T]/I be a unit. Then
(Lwr) = (I, F'wy) in E(R[T], L[TY).



8 MANOJ K. KESHARI AND MD. ALI ZINNA

Proof. If (I,wr) = 0in E(R[T], L[T]), then it follows from [D-Z 2, Theorem 4.10] and
(2.16) that (I,f2w1) = 0in E(R[T], L[T]). So assume that (I,ws) # 0in E(R[T], L[T)).
By [D 1, Lemma 2.12], w; can be lifted to a surjection o : L[T|®R[T]* ' — INT,
where I’ C R[T] is an ideal of height n with I + I’ = R[T]. By Chinese remainder
theorem, choose g € R[T] such that ¢ = f2 modulo I and g = 1 modulo I’. Applying
(2.16), there exists a surjection vy : L[T|&R[T|""! —» INI’' such thaty® R[T]/I = Fw;
and v ® R[T]/I' = a® R[T]/I'. From surjections « and ~, we get

(I,wr) + (I',wp) = 0 and (I, Fwr) + (I',wp) = 0 in E(R[T], L[TY)).
Therefore, (I,w;) = (I, fw;) in E(R[T], L[T)). O
The next lemma extends (2.17) to arbitrary L € P;(R[T]).

Lemma 2.18. Let R be a ring of dimension n > 4 and L € Py(R[T]). Let I C R[T] be
an ideal of height n and wy be a local L-orientation of I. Let f € R[T]/I be a unit. Then
(I,w;) = (I, f wy) in E(R[T), L).

~

Proof. By [D-Z 2, Proposition 6.8], there is a canonical isomorphism E(R[T],L) —
E(Ryed[T], L ® Ryeq[T]). Hence, we may assume that R is reduced. Then there exists
an extension R — S such that

(1) R — S — Q(R), where Q(R) is the total ring of fractions of R,

(2) Sis a finite R-module,

(38) R — S is subintegral and

(4) L ® pS[T)is extended from S.

Using (4) and (2.17), we get (IS[T],w*) = (IS[T], F w?) in E(S[T],L &
[D-Z 2, Theorem 6.16], the natural group homomorphism E(R[T],L) — E(S[T],L ®
S[T)) defined by (I, wy) + (IS[T],wy) is an isomorphism. Hence (I, w;) = (I,fw;) in
E(R[T), L). 0

Following the proof of (2.18), we get the following result.

Lemma 2.19. Let R be a ring of dimension n = 3 and L € Py(R[T]). Let (I,ws) €
E(R[T), L). Let f € R[T]/I be a unit. Then (I,wy) = (I, f-wy) in E(R[T], L).
3. SUBINTEGRAL EXTENSIONS AND PROJECTIVE GENERATION OF IDEALS

The following result is due to S. M. Bhatwadekar (personal communication).

Lemma 3.1. Let R be a ring of odd dimension n > 3 and L € P1(R). Let P € P, (R) with
determinant L and x : L = A"(P) an isomorphism. Then the Euler class e(P,x) € E(R, L)
is independent of the choice of x.
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Proof. Let o : P —+ J be a surjection, where J C R is an ideal of height n. Then
we get a surjection @ : P/JP — J/J? induced by . Write £ = L & R"1. Let
0 : £L/JL = P/JP be an isomorphism such that A"(f) = X. If w; = @ o 6, then
e(P,x) = (J,wy)in E(R, L).

Let X' : L = A"(P) be another isomorphism. Then x’ = uy for some unit u € R. Let
o € Aut(P)be given by o(p) = up. Then oo : P — J is a surjection. If w; = @oG o,
then e(P, x) = (J,ws) = (J,u"wy) = (J,uwy) in E(R, L), by (2.1) as n is odd.

Let A € Aut(L/JL) be the diagonal matrix A = diagonal(1,...,1,%). Since A"(A o
0) =uyx = x/, we gete(P,x') = (J,awy) = e(P, ). O

Lemma 3.2. Let R be a ring of odd dimension n > 3 and L € Py(R[T)]). Let P € P,(R[T))
with determinant L and x : L = A"(P) an isomorphism. Then the Euler class e(P, x) of the
pair (P, x), which takes values in the Euler class group E(R[T], L) when n > 4 and in the
restricted Euler class group E(R[T], L) when n = 3, is independent of the choice of x.

Proof. Follow the proof of (3.1) and use (2.18, 2.19) in place of (2.1). O

Theorem 3.3. Let R be a ring of dimension n > 2 and R — S a subintegral extension. Let
L € Pi(R) and (J,wy) € E(R,L). Let (JS,wY) be the image of (J,wy) in E(S,L®S).
Let Q € Pn(S) be such that its determinant is extended from R. Further assume that x' :
L®S = ANYQ) is an isomorphism such that (JS,w%) = e(Q,X') in E(S,L®S). Then
there exists P € P,(R) with determinant L and x : L = A"(P) an isomorphism such that
e(P,x) = (J,wy) in E(R, L). Further, there exists a surjection o : P — J such that (J,w)
is obtained from (v, x).

Proof. By [B-D, Proposition 2.15], we may assume that R is reduced. Further, we may
assume that R — S is finite. By (2.5), we can find P; € P,(R) with determinant L such
that P ® S ~ Q.

Case I: Assume n is odd. Let x : L = A™(Py) be an isomorphism. Consider the image
e(PL®S,x®5S) of e(Pr,x) in E(S,L®S). Since n is odd, by (3.1), e(PL ® S, x® S) =
e(Q,x®S) =e(Q,x'). Therefore, by (2.8), e(P1, x) = (J,wy). Take P = P;.

Case II: Assume n is even. Since e(Q,x') = (JS,w}) in E(S, L ® S), it follows that
the weak Euler class e(Q) = e(Pi®S) = (JS) in Ey(S,L® S). Therefore, by (2.10),
e(P1) = (J) in Ey(R, L). By [B-RS 3, Proposition 6.4], there exists P» € P,(R) such
that [P»] = [P] in Ko(R) and J is a surjective image of . Let 5 : P, — J be a
surjection and x» : L = A"(P,) be an isomorphism. Suppose that e( Pz, x2) = (J,ws) is
obtained by (3, x2). Then w; = Twsy for some unitw € (R/J)*. By [B-RS 3, Lemma 5.1],
there exists P € P,(R) with [P] = [P] in Ko(R) and an isomorphism yx : L = A"P
such that e(P, x) = (J,u" 'ws). Since n is even, by (2.1), (J,a" ‘wy) = (J,uws) and
hence e(P, x) = (J,uwz) = (J,wy). By [B-RS 3, Corollary 4.3], there exists a surjection
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a : P — J such that (J,wy) is obtained from the pair (¢, x). This completes the
proof. O

Proposition 3.4. [D 2, Proposition 6.3] Let R be a ring of even dimension n > 4 and
J C R[T] be an ideal of height n. Let P € P, (R[T) with trivial determinant. Assume that
the weak Euler class e(P) = (J) in Eo(R[T]). Then there exists Q € Py (R[T]) such that
[P] = [Q] in Ko(R[T)) and J is a surjective image of Q.

Theorem 3.5. Let R be a ring of dimension n > 3 and R — S a subintegral extension.
Let (I,wr) € E(R[T)) be such that its image (IS[T],w}) = e(Q,x’) in E(S[T]), where
Q € Pn(S[T)) with trivial determinant and ' : S[T] = A™(Q) an isomorphism. Then there
exists P € Py, (R[T]) with trivial determinant and x : R[T] = A"(P) an isomorphism such
that e(P,x) = (I,wr). Further, there exists a surjection o : P — I such that (I,wr) is
obtained from the pair (o, x).

Proof. Note that this is an extension of (3.3) from R < S case to R[T]| — S[T] case
when L = R. By (2.9), we already have E(R[T|) ~ E(S[T]). We need to show that if
the image of (I, wy) in E(S[T]) is the Euler class of a projective S[7']-module with trivial
determinant, then (I, wy) in E(R[T]) is also the Euler class of a projective R[T]-module
with trivial determinant.

By [B-D, Remark 2.16], we may assume that R is reduced. Further, we may assume
that R — S is finite. By (2.6), we can find P; € P,,(R[T]) with trivial determinant such
that P, ® S[T] ~ Q.

Case 1. Assume n is odd. Let x : R[T] = A"(P) be an isomorphism. Con-
sider the image e(P; @ S[T], x ® S[T]) of e(Py, x) in E(S[T]). Since n is odd, by (3.2),
e(PL@S[T],x®S[T]) = e(Q,x®S[T]) = e(Q,x'). Therefore, by (2.9), e(P1,x) =
(I,wr). Take P = P;.

Case 2. Assume n is even. We note that e(Q) = e(P1 ® S[T]) = (IS[T]) in Ep(S[T1]).
Therefore, by [D-Z 1, Remark 3.26], e(P;) = (I) in Eo(R[T]). Follow the proof of (3.3,
Case II) and use [D 2, Proposition 6.3], [D 1, Lemma 6.1, Corollary 4.10] to complete
the proof. O

4. PROJECTIVE GENERATION: EXTENDED CASE

Next result is proved in [B-D, Lemma 3.1] when L = R.

Lemma 4.1. Let R be a ring of dimension n > 2 and J C R be an ideal of height > n — 1.
Let Q € P.(R) with determinant L. Then there exists b € J? such that ht(b) = 1 and

-1
Qi ~ Ry @ Liqyp.
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Proof. As the determinant of () is L and dim(R/J?) < 1, by Serre’s result [Se], it follows
that Q/.J%Q is isomorphic to (R/J?)"~! & L/J?L. Consequently, Q> is isomorphis
to Ry, 2t Ly, s2. Therefore, there exists b € J? such that Q1. is isomorphis to
r—1

Ryt @ Liye.

If ht(b) = 0, then we can find ¢ € J? such that ht(b + bc + ¢) = 1. Since 1 + b +
bc + ¢ = (14 b)(1 + ¢), without loss of generality, we can assume that ht(b) = 1 and
Qb =~ Ri" 1 @ L. O

The following result is from [B-D, Lemma 3.4]. Its proof is contained in [Bh1,
Proposition 3.1, 3.2].

Lemma 4.2. Let B be a semilocal ring of dimension 1. Then Pic(B[T)) is a divisible group.
Let M be an invertible ideal of B|T) with dim(B[T]/M) = 0. Let b = M N Band (0) = bNa,
where a is an ideal of B with M + a[T] = B[T). Then given any positive integer d, there exists
an invertible ideal N of B|T) such that

(1) N + Ma[T] = B[T],
(2 NN M = (f) for some non-zerodivisor feB [T1],

(3) dim(B|T]/N) = 0.

Proposition 4.3. Let R be a ring of dimension n > 3 and L € P1(R). Let I C R[T] be an
ideal of height n such that I/1? is a surjective image of L|T|®R[T|"~ . Further assume that
I = M N---N My, where each M; is a maximal ideal of R[T| of height n. Let wy and wy be
any two local orientations of I. Then (I,w;1) = (I,w2) in E(R[T], L[T)).

Proof. Let (I,w;) = Z’f(MZ, wa,) in E(R[T], L[T)). Itis enough to show that (M;, way,) =
(M;,w),,) in E(R[T], L[T]) for any other local orientation w), of M;. Therefore, we may
assume that I is a maximal ideal of height n.

If R is local, then L = R and we are done by [D 3, Proposition 3.12], where it is
proved that if I is a maximal ideal of R[T"] of height n, then (/,w) = (I, w2) in E(R[T])
for any two local orientations wy,ws of 1.

Now we prove the result for general R. Rest of the proof is similar to [D 3]. First we
consider the case when I contains a monic polynomial. Applying [B-RS 4, Proposition
3.3], (I,w) = 0in E(R[T], L[T]) for any local orientation w of I. Hence we are done in
this case.

Now assume that / is a maximal ideal not containing a monic polynomial. Then
I+ (T) = R[T] and hence I(0) = R. Consider the element (I,w;) — (I,w2) in E(R[T]).
For any maximal ideal M of R, the image of (I,w1) — (I,w2) in E(R /[T, L p4[T1]) is
zero. Use local global principle for Euler class groups [D-Z 2, Theorem 4.17] which
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says that the following sequence of groups

0 — E(R,L) — E(R[T], L[T]) = [[ ERpq[T], L py[T])
M

is exact. Here the product is over all maximal ideals of R. Hence there exists (J,wy) €
E(R, L) such that

((J,wr)) = (I,wr) = (I, wa).
Here ® : E(R,L) — E(R[T],L[T]) and ¥ : E(R[T],L[T]) — E(R,L) are group
homomorphisms such that ¥ o & = Id [D-Z 2, Remark 4.9]. Since I(0) = R, V(I,w;) =
0 = ¥([,wy) in E(R,L). Use ¥ o ® = Id, we get (J,w) = 0in E(R,L). Hence
(I,wr) = (I,w2). O

Theorem 4.4. Let R be a ring of dimension n > 3. Let L € Py(R) and L = R[T|" '@ L[T).
Let J C R[T] be a local complete intersection ideal of height n such that dim(R[T|/J) = 0
and J = (f1,- , fo) +J% Let I = (f1,-- , fu1) + JO V' Letw: L/IL = /1 bea
surjection. Then there exists P € P, (R[T)) and an isomorphism x : L[T] = A"(P) such that

(1) [P] = [£] = —[R[T]/J] in Ko(R[TY),

(2) there is a surjection P — I and

(3) e(P,x) = ({,w) in E(R[T), L[T)).

Proof. Das-Mandal [D-M, Theorem 3.2] proved the following result for E(R, L). Let
J C Rbealocal complete intersection ideal of height n such that J = (fl, e fn) +J2.
Let I = (f1,-, fu_1) + J V. Write L = R" ' ¢ L. Let@ : L/IL — 1/12 be a
surjection. Then there exists P € P,(R) with determinant L and ¥ : L = A"(P) an
isomorphism such that

(1) [P] = [£] = —[R/J] in Ko(R),

(2) there isa sur]ect1on P —Tand

(3) e(P,X) = (1,&) in BE(R, L).

In our case, dim(R[T]/J) = 0. Since whole proof of [D-M, Theorem 3.1, 3.2] works

in our case, we are done. U

The proof of the next result closely follow that of [B-D, Proposition 3.3] where it is
proved for L = R.

Proposition 4.5. Let R — B be a flat extension of rings such that dim(R) = dim(B) =
n > 3. Let L € P1(R) and write L = L ® R*'. Let Q € P,(R) with determinant L
and P € P, (B[T)) with determinant L ® B[T)]. Further, assume that Q ® B = L ® B and
P/TP = L®B. Let x : L = AN(Q) and X' : L ® B[T] = A"(P) be isomorphisms. Let
I C R[T be an ideal of height n such that ht(1(0)) = n and both I B[T| and 1(0)B are proper
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ideals. Assume that there are surjections w : L[T)/IL[T) — I/I?, a : Q — I(0) and
B : P — IB[T] such that

(1) (e, x) induces e(Q, x) = (1(0),w(0)) in E(R, L), where w(0) is induced by w.

(2) (B,X') induces e(P,x") = (IB[T],w ® B[T)]) in E(B|T), L ® B[T]).
Then there exists an isomorphism v : P/TP = Q ® B and a surjection n : P — I B[T] such
that n(0) = (a® B) ot : P/TP — I1(0)B.

Proof. Write P/T P = P,. Let “tilde” denote reduction modulo I B[T] and “bar” denote
reduction modulo 7(0)B. We have two surjections

e~

B:P — IB[T|/I?B[T| and & : L[T|® B[T] — IB[T|/I*B|T]

induced from § and w ® B respectively. Since the pair (53, x’) induces the Euler class

e(P.x) = (IB[T),w ® B) in E(B[T], L ® B[T)), by definition of (P, ), if o : £[T] @ B[T] =

P is an isomorphism such that A" (o) = v/, then foo = &.

Let o : L& B = Ry be the isomorphism induced from o. Since Py = £ ® B,
choose an isomorphism 7 : £ ® B = P, such that A"(1) = x/(0). Now we have two
isomorphisms

7, 7: L B3Py, with A" (5) = A7) = x'(0).

Therefore, 7 = 7 o © for some © € SL(L® B). Since dim(B) = 0, FL(L® B) =
SL(L® B). Hence © € FL(L® B) can be lifted to an element § € EL(L ® B).
Therefore, we can lift & to an isomorphism oq : £L ® B = P.

On the other hand, the pair («, x) induces the Euler class e(Q, x) = ({(0),w(0)) in
E(R, L). Hence if we choose an isomorphism § : £ ® B = Q ® B such that A"(§) =
X ® B, then (a® B) 0 § = w(0) = w. Let us define

Yp=08000 Py > Q®B and p= (a®B) o1 : Py = I(0)B

Then 8 =woo ' = (a®B)odos ' =p. By [B-RS 1, Remark 3.9], there is a surjection
p: P — IB[T)/(I?T)B[T] such that § = pand 5 = .

Let B(T') be the ring obtained from B[T] by inverting all the monic polynomials in
T. Then p induces the surjection

p@B(T): PR B(T) — IB(T)/I*B(T)

and clearly 8 ® B(T) is lift of p® B(T'). Applying [D-Z 2, Theorem 4.11], we can find a
surjection 7 : P — IB[T] such that 7 is a lift of p. Note that n(0) = ¢ = (a® B) o ¥.
This completes the proof. O

The proof of the next result closely follows [B-D, Theorem 3.5] where it is proved for
L=R.
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Theorem 4.6. Let R be an affine k-algebra of dimension n > 2. Let L € Pi(R) and L =
L@ R Y Let (I,w;) € E(R[T],L|T)) and A € k be such that ht(I(\)) > n. When
ht(I(X)) > n, write Q = L. When ht(1(\)) = n, assume that there exists Q € Py (R) with
determinant L and x : L = N"(Q) an isomorphism such that e(Q,x) = (I(X),wy(y)) in
E(R, L), where wy(yy is induced from wy. Then there exists P € Py (R[T]) with determinant
L[T) and an isomorphism x1 : L[T| = A"(P) such that e(P, x1) = (I,wy) in E(R[T], L[T)).
Moreover, P/TP ~ Q.

Proof. When n = 2, any (/,wr) is Euler class of a rank 2 projective R[T]-module,
without the condition that (I(\),wr(y)) = e(P,x). To see this, note that projective
modules of rank 1 are always cancellative. It follows easily using a standard patching
argument that there exists P, € Pa(R[T]) with determinant L[T| and a surjection
¢ : P = I. Fix an isomorphism x’ : L[T] = A?(Py). Let e(P1,x') = (I,w) in
E(R[T],L[T]) be induced from ({,x’). Then w; = uw for some unit u € R[T]/I.
By (2.15), there exists P € Py(R[T]), an isomorphism x; : L[T] = A?(P) and a
surjection 5 : P — I such that e(P, x1) = (I, uw) is induced from (f3, x1). Therefore,
e(P,x1) = (I,wr).

Assume n > 3. Replacing T'by T'— )\, we assume A = 0. Using (2.2), we assume that
R is a reduced affine algebra. Since Q C R, we get R is a geometrically reduced affine
algebra.

Given a surjection wy : L[T]/IL[T] = I/I?. If ht(I(0)) > n, then I(0) = R[T] and
we can lift wy to a surjection w’ : L[T] —» I/(I?T). If ht(1(0)) = n, then it is given
that e(Q, x) = (1(0),wr(o)) in E(R, L). Hence by [B-RS 3, Corollary 4.3], there exists
a surjection a : @ — 1(0) such that (I(0),wr() is obtained from the pair (a, x). By
(2.4), there is a surjection 0 : Q[T] — I/(I°T) such that §(0) = a.

Step 1: If J = INR, then ht(J) > n—1. By (4.1), there exists a non-zerodivisor b € J 2
such that Q115 — L144. By [B-D, Lemma 2.5, Remark 2.6], the surjection 6 : Q[T —
I/(I?T) can be lifted to a surjection 7 : Q[T] — I" = I N I such that

1) I=1"+ (bT),
(2) I + (bT) = R[T), hence I + I, = R[T],
(3) ht(l;) = nand R[T]/I; is reduced.
It follows that e(Q[T], x ® R[T]) = ({,wr) + (I1,wr, ), where wy, is induced by the
pair (v, x ® R[T]).

Step 2: Let B = Rj;pr. We first note that if I B[T] = B[T], then the surjection
v® B[T] : Q® B[T) = IB[T] is a lift of # ® B[T']. By [D 1, Lemma 3.8], 6 can be lifted
to a surjection © : Q[T] — I. Further, from above, e(Q[T],x® R[T]) = ({,wr) in
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E(R[T], L[T]) and we are done in this case by taking P = Q[T']. Therefore, we assume
that ht(1; B[T]) = n.

Since bB is contained in the Jacobson radical of B, using (2, 3), we conclude that
I B[T] is a zero dimensional radical ideal. Hence I B[T] = NjM,;, where M,’s are
maximal ideals of B[T'] of height n and containing ;. If K = BN [} B[T], then K is a
reduced ideal of height n — 1. Further, K + bB is an ideal of B of height n. It is easy to
see that B[T| s, are regular fori = 1,...,r. By [B-H, Theorem 2.2.12], if p; = M; N B,
then By, is regular local.

Now B/K is a reduced ring of dimension 1 and the image of b belongs to the
Jacobson radical of B/K. Hence (B/K);, is a product of fields. Therefore, we can
find a1,--- ,ap—1 € K such that ht(ay,--- ,an,—1) = n —1, ht(ay, -+ ,an—1,b) = n and
Ky = (a1, ,an_1)p + K3°. Therefore, K, = (a1, -+ ,an—1), for all minimal prime
ideals p over K. Let (a1, -+ ,an—1) = K N K; be a reduced primary decomposition.

Step 3: Let B=RB J(ay, - an— 1) Since b belongs to the ]acobson radical of B, Bisa
semilocal rmg of dimension 1 and K NbK 1 =0in B. Moreover, I 1 is an invertible ideal
and I; + bK 1[ ] = B[T). Note that B is a subring of B/K&®B /bK; with the conductor
ideal K + bK 1.

Applying (4.2) to the invertible ideal I, with a = DK, we get an invertible ideal IV
of B[T] such that

(1) N + 116K, [T] = B[T],

(2) NN I~1§[ T| = (f) for some non-zerodivisor f € B[T],

(3) dim(B[T]/N) = 0.
Since K.K; = (0) in B and N + bK,[T] = B[T}, it follows that any maximal ideal of
BIT] containing N must contain K [T7.

Let I be the inverse image of N in B[T] and M be a maximal ideal of B[T"] contain-
ing I>. Then M N B = qis a prime ideal of B containing K and of height n — 1, since
M +bB[T] = B[T]. Hence q is a minimal prime over K. Therefore, B, is a regular local
ring and consequently BT 5, is also regular. This shows that the ideal /5 has finite
projective dimension and it is locally generated by a regular sequence of length n.

Since B is semilocal, L ® B = B. Therefore, we can write (2) of step 3 as a surjection
¢ : LIT)® B — NN I, B[T]. We get a surjection

¢: L& B[T] = IV N [ B[T)

such that ¢, @ pir) is a lift of ¢’ and #(BIT" Y = (a1,...,an_1). Since I1B[T] is
reduced, by (4.3), I B[T] is independent of the local orientations. Therefore, we have

(L B[T),wr, ® B[T]) + (I{”,w) = 0
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in E(B[T],L® B[T]), where w is induced by ¢. By (4.4), there exists P’ € P,(B[T])
with determinant L ® B[T] such that:
(1) There is a surjection 6 : P" — Iéd),
(2) [P] - [L® B[T]] = —[B[T]/I2] in Ko(B[T]) and
(3) an orientation ' : L® B[T] = A™(P’) can be defined such that e(P’,x’) =
(15",w) = ~(h BT}, wr,  BIT)).

Since Q ® B[T| = L ® B[T], we have
e(Q® B[T],x® B[T]) = (IB[T],w; ® B[T]) + (11 B[T],wy, ® B[T]) = 0

in E(B[T], L ® B[T]). Therefore, e(P’, x') = (IB[T],w; ® B[T]). By [D-Z 2, Corollary
4.14], there exists a surjection 5 : P’ — IB[T] such that (3, X’) induces e(P’,x') =
(IB[T),w; ® B|T]) in E(B[T], L ® B[T)).

Since I + (b) = B[T'] and b belongs to the Jacobson radical of B, we have I, + (T') =
BI[T]. In other words, I5(0) = B. Therefore,

[P'/TP| - [L&B] =0 in Ky(B)
i.e. P//TP' is a stably isomorphic to £® B. Since height of Jacobson radical of B is
>1,weget P//TP' ~ L® B.
As dim(B;) = 0, we have N; = B;. Hence (1), is a complete intersection ideal of
By[T]. So
[P3] — [£L @ By[T]] = =[By[T]/(I2)s] = 0 in Ko(By[T])
i.e. P/ is stably isomorphic to £ ® By[T] and as dim(By) < n—1, we get P} ~ L ® By[T).

~

Step 4: Applying (4.5) with P = P’, we obtain an isomorphism ¢ : P'/TP' - Q® B
and a surjection n : P’ — IBI[T] such that n(0) = (a«® B) o 1. Now consider the
following surjections.

¢ = a® Rya4ur)[T] : Qvaor) [T] = Iy1or) = Roa4or) [T

M2 Py = Iy ur) = Ryuyor)
Note that Qy144r)[T] = Lytor)[T] = Pj. Since dim(Ry14pr)) < n—1and Q C R, by
[Ra, Corollary 2.5], ker(®) and ker(n) are locally free. Therefore, by Quillen’s local-
global principle [Q], ker(®) and ker () are extended from Ry 44r). Further, reducing
modulo T, we observe that a5y © ¥ = 15(0). This implies that ker(®) = ker(n)
and there is an isomorphism ¥ : P} = Qy(144r)[T] such that ¥(0) = ¢;,. By a standard
patching argument, the result follows. O

In (4.6), we have essentially proved the following result.
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Theorem 4.7. Let R be an affine k-algebra of dimension n > 3 and L € Py (R). Let I C R[T]
be a local complete intersection ideal of height n such that ht(1(0)) > n. Assume that there
exists Q € P, (R) with determinant L and a surjection Q[T] —~ I/I*> N (T). Then there
exists P € P, (R[T]) with determinant L[T| and a surjection P — I. In other words, I is
projectively generated.

Proof. Write £ = L[T] ® R[T]""!. We have a surjection w; : L/IL — I/I* as the
composition of surjections £/IL = Q[T]/IQ[T] — I/I?, where the last map is in-
duced from a given surjection ¢, : Q[T] —+ I/1*> N (T). Take (I,w;) € E(R[T], L[T)).
Let § : Q[T] — I/(I*T) be the surjection induced from ;. Now follow the proof of
(4.6). O

For even dimensional ring, we have the following stronger result. In case L = R, it
is proved in [B-D, Corollary 3.7].

Corollary 4.8. Let R be an affine k-algebra of even dimension n > 2 and L € Pi(R). Let
I C R[T) be an ideal of height n. Write £L = L & R"! and assume that there is a surjection
L[T)/IL[T) — I/I?. Let A € k be such that ht(I(\)) > n. Assume that there exists
Q € Ppn(R) with determinant L and a surjection Q — I(\). Then there exists P € Py (R[T)
with determinant L[T) and a surjection P — I.

Proof. Changing T to 7' — )\, we assume A = 0. Let w : L[T] —» I/I? be a given
surjection and consider (I,w) € E(R[T], L[T]). If I(0) = R, then w can be lifted to a
surjection L[T] —+ I/(I°T). Now we are done by (4.7).

Assume ht(7(0)) = n and consider (/(0),w(0)) € E(R,L). Given a surjection « :
Q — I(0) with x : L = A™(Q). Let e(Q,x) = (1(0),0) in E(R, L) be induced from a.
By [B-RS 3, Remark 5.0], any two local orientations of I(0) differ by a unit. Hence there
exists a unit a € R/I(0) such that ac = w(0). By [B-RS 3, Lemma 5.1], there exists Q' €
Pn(R) stably isomorphic to Q and x’ : L = A™"(Q') such that e(Q’, X) = (1(0),a" o).
Since n is even, by [B-RS 3, Lemma 5.4], (1(0),a" o) = (1(0),a0) = (1(0),w(0)). By
[B-RS 3, Corollary 4.3], there is a surjection 5 : Q' — I(0) such that (3, x’) induces
e(Q',x'). By (2.4), there is a surjection Q'[T] —~ I/(I*T). Now we are doneby (4.7). O

The following result is proved in [D 2, Proposition 5.1, Corollary 5.2] when L = R.

Proposition 4.9. Let R be an affine k-algebra of dimension n > 3 over a C, field k. Let
L€ Pi(R)and L = L&OR" L. Let I C R be an ideal of height n. Assume that I is a surjective
image of L. Then

(1) any surjection ¢ : L/IL — I/I? can be lifted to a surjection 1 : L — 1.

(2) E(R,L) ~ Eo(R, L).

(3) E(R,L) ~ E(R).
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Proof. (1). Let § : £ — I be a given surjection and write P = L&R" 3. Let w be the
trivial orientation of I induced from 6. By [B-RS 3, Remark 5.0], we have uw = ¢ for
some unitu € R/I.

Write 0 = (61,a1,a2) : P ® R* —» I. Without loss of generality, we may assume
that height of §(P) = J is n — 2. Let "bar” denote reduction modulo J. Since R
is an affine k-algebra of dimension 2 with k£ a C;-field of charateristic 0, by Suslin’s
cancellation result, the unimodular row (%, @y, @2) is completable to a matrix in SL3(R).
By [RS, Lemma 2.3], there exists & € GLa(R) with det(7) = u~! and 7 (a1, @2) = (b1, ba).
Consider the surjection ¢ = (61,b1,b2) : P ® R? — I. Since A"(¢) = A"(¢ ® R/I),
there exists § € SL(L/IL) such that ¢ = (¢» ® R/I) o 4. Since dim R/I = 0, we have
SL(L/IL) = EL(L/IL). Let A € EL(L) be alift of 6. Then the surjection poA : L —» I
is a lift of ¢. This completes the proof of (1).

(2). It follows from (1).

(3). We have E(R) ~ Ey(R), by [D2, Corollary 5.2] and Ey(R,L) ~ Ey(R), by
[B-RS 3, Theorem 6.8]. Now (3) follows from (2). O

The next result extends (4.8) when k is a C'1-field. In case L = R, it is proved in [B-D,
Corollary 3.10].

Corollary 4.10. Let R be an affine k-algebra of dimension n > 2 over a C, field k. Let
L € Py(R) and write L = L[T|®R[T)"~L. Let I C R[T) be an ideal of height n and assume
that there is a surjection L[T] — I/I%. Let A\ € k be such that ht(I()\)) > n. Assume that
there exists Q € P, (R) with determinant L and a surjection Q — I(X\). Then there exists
P € P, (R[T)) with determinant L[T| and a surjection P — I.

Proof. We may assume A = 0. Let wy : £L[T] — I/I? be a given surjection and (I, wy) €
E(R[T), L[T)). If I(0) = R, then w; can be lifted to a surjection L[T] — I/(I*T) and we
are done by (4.7). Assume ht(1(0)) = n. Then (I(0),w;()) € E(R, L). By assumption,
there is a surjection  : Q — I(0). Let x : L = A"(Q) be an isomorphism. Since
weak Euler class e(Q) = 1(0) in Eg(R) and by (4.9), E(R, L) = Ey(R, L), it follows that
the Euler class of @ induced by (o, x) is e(Q, x) = (1(0), wy(o))- By (2.4), there exists a
surjection 0 : Q[T] —~ I/(I?T) with 6(0) = «. Applying (4.7), we are done. O

The following result extends [B-RS 2, Theorem 2.7] and [B-D, Corollary 3.11].

Corollary 4.11. Let R be an affine k-algebra of dimension n > 2 over an algebraically closed
field k and L € Pi(R). Let I C R[T] be an ideal of height n and there is a surjection
L[T)®R[T|"" —» I/I%. Then there exists P € P,(R[T)) with determinant L[T] and a
surjection P — 1.
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Proof. Replacing T' by T — X for some A € k, we may assume that ht(Z(0)) > n. Write
I(0) = J and L&R"! = L. By hypothesis, we have a surjection o : £ —+ J/J?. By
[B-RS 3, Lemma 2.11], there exists e € J such that (a(£),e) = J with e(1 — ¢e) € a(L).
If we write f = 1 — ¢, then oy : Ly —= Jy is a surjection. Define 7 : Ly piis —
Jit ks = Riysrpp to be the projection onto the last factor. We have two unimodular
elements o ¢(y4 pis) and 7y in L4 gy Note that Ry fp(4)) is an affine algebra of
dimension n — 1 over a Cy-field k(f). By [Bh 3, Theorem 4.1], projective Ry si(y))-
modules of rank n are cancellative. Hence there exists an automorphism o of L1 )
such that a1 sx(f)) © 0 = 7y. By standard patching argument there exists Q € Py, (R)
with determinant L and a surjection Q — J. Now the result follows from (4.10). [

Let R be a ring of dimension n > 3 and L € P;(R). Consider the following sets

H ={e(Q,x) € E(R,L)|Q € Pu(R), x : L = N"(Q)}
K = {e(P,x) € E(R[T),L[T]) | P € Pu(R[T)), x : L[T] = A™(P)}

It is a natural question whether H and K are subgroups of E(R, L) and E(R[T], L[T])
respectively?
The following result extends [B-D, Proposition 3.14] where it is proved for L = R.

Corollary 4.12. Let R be an affine k-algebra of dimension n > 3 and L € Pi(R). Then H is
a subgroup of E(R, L) if and only if K is a subgroup of E(R[T), L[T)).

Proof. If K is a subgroup of E(R[T], L[T]), then it is easy to see that H is also a sub-
group of E(R, L).

Now suppose that H is a subgroup of E(R,L). Let (Ji,wy,), (J2,wy,) € K. By
moving lemma [D-Z 2, Lemma 2.11], there exists an ideal J3 C R[T] of height n and a
local orientation w, such that (J2,wy,) + (J3,wz,) = 0in E(R[T], L[T]) and (J1 N J2) +
Js = R[T]. Let J4 = J; N J3. Then we have

(J4JWJ4) - (J17WJ1) + (‘]37ng) - (J17WJ1) - (JQJWJQ)

where w, is the local orientation of .J; induced by w, and w ,. Now there is group ho-
momorphism V¥ : E(R[T}], L[T]) — E(R, L) which takes (J,w,) to (J(0),w()), where
w s(0) is the local orientation of J(0) induced by w; (if J(0) = R, then ¥((J,w,)) = 0)
(see [D-Z 2, Remark 4.9]). Therefore, we have

(J4(0),w,0)) = (J1(0),w(0)) — (J2(0), wr0))-

Since (J1(0),wy,(0)) and (J2(0),wy,(0)) are in H and H is a subgroup of E(R, L), we
get (J4(0),wyz,(0)) € H. Therefore, there exists Q € P, (R) with determinant L and an
isomorphism x : L = A™(Q) such that e(Q, x) = (J4(0),wy,(0))- By (4.6), there exists
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P € P,(R[T]) with determinant L[T] and an isomorphism x; : L[T] = A"(P) such
that e(P, x1) = (J4,wy,). This completes the proof.
U

5. PROJECTIVE GENERATION: GENERAL CASE

The following result extends (4.6) where it is proved when L is extended from R.

Theorem 5.1. Let R be a reduced affine k-algebra of dimension n > 2 and L € P(R[T]).
Let (I,wy) be an element of E(R[T),L) when n # 3 and E(R[T),L) when n = 3. Let
A € k be such that ht(I(\)) > n. Assume that there exists QQ € P,(R) and an isomorphism
X : L/TL = NY(Q) such that e(Q, x) = (I(X),wy(x)) in E(R, L/TL). Then there exists P €
Pn(R[T)) and an isomorphism x1 : L = A"(P) such that e(P, x1) = (I,wr) in E(R[T], L).

Proof. The case n = 2 is same as (4.6). Consider n > 4. We may assume A = 0. Since R
is reduced, there exists an extension R < S such that

1) R—= 5= Q(R),

(2) Sis a finite R-module,

(3) R — S is subintegral and

(4) L® rS[T]is extended from S.

Note that L ® S[T] is extended from S and (1(0).S, W;(o)) =e(Q® 9, x®S)inE(S,L/TL®S),
where (1(0)S, wi(o)) is the image of (I(0),wy)). Applying (4.6), there exists P’ €
P,(S[T]) with determinant L ® S[T] and an isomorphism x’ : L ® S[T] = A"(P’) such
that e(P’, x') = (IS[T),w}) in E(S[T], L® S[TY).

Since R — S is a finite subintegral extension and rank(P’) = n = dim(R), by (2.6),
there exists P € P, (R[T]) with determinant L such that P® S[T] ~ P’. Choose an
isomorphism x; : L = A"(P)

Case I: Assume n is odd. By (3.2), e(P’, x') = e(P’, x1 ® S[T]) = e(P® S[T], x1 ® S[T)).
By [D-Z 2, Theorem 6.16], we have E(R[T], L) = E(S[T], L ® S[T)). Therefore, (P, x1) =
(I,wy).

Case II: Assume n is even. We may assume that R — S'is an elementary subintegral
extension. If C' denotes the conductor ideal of R C S, then ht(C) > 1. Write £ =
LOR[T|" L 1f J = I N C, then ht(J) > 1. We can choose b € J such that ht(b) = 1.
The surjection w; : £/I—+1/1? induces a surjection w; : L/IL —» 7/T2, where bar
denotes reduction modulo the ideal (b).

Since dim(R/bR) < dim(R), by [D-Z 2, Proposition 2.13], w; can be lifted to a
surjection ' : £ — 1. If n : L — I is a lift of 1’ and hence a lift of w; as b € I?,
then (n(£),b) = I. Applying [B-RS 3, Corollary 2.13] to the element (7, b) of L* & R[T],
there exists ¥ € L* such that ht(K;) > n, where K = (n + b¥)(L). As the ideal
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(n(£),b) = I has height n, we further get that ht(K) = n. Replacing n by n + b¥, we
assume 1(£) = K has height n.

Applying [B-RS 3, Lemma 2.11] to (K,b) = [ and b € I?, we get an ideal I; C R[T]
such that

(1) (L) =INL;

(2) n® R[T)/I = wy;

(3) ht(11) > n;

(4) I + bR[T] = R[T] and hence I, + C[T] = R[T].

If ht(I;) > n, then I; = R[T]. Hence (I,w;) = 0 in E(R[T], L) and we are done.
Assume ht(I;) = n. From (1), we have (I,w;) + (I1,wr,) = 0in E(R[T], L), where wr,
induced by 7. Proceeding as above with (/1,wy, ), we get an ideal Iy C R[T] of height n
with I» + CR[T] = R|T] and an local orientation wy, of I such that

(I,wr) = —(I,wr,) = (I2,wr,) in E(R[T],L).

Recall that we have e(P', ') = (IS[T],w}) = (I2S[T],wj,) in E(S[T], L ® S[T7). Since
L ® S[T] is extended from S, by [D-Z 2, Corollary 4.14], there exists a surjection 3 :
P’ =~ IS[T] such that (I2S[T],w7,) is obtained from (8, x').

Since I + C[T| = R[T], we have the following:

(1) L® (R/C)[T] = (R/C)[T].
(2) L® (S/O)[T] =~ (S/C)[T].
(3) R[T]/I> ~ S[T)/L>S[T).

Therefore, 81 := 8 ® (S/C)[T)] is a unimodular element of (P’ @ (S/C)[T])*. So /1 ®
(S/C)req|T) is a unimodular element of (P’ ® (S/C).eq|T])*. Since (R/C)rea = (S/C)red
and P ® S[T] ~ P’, itis easy to see that we have a lift of 81 ® (5/C)yeq[T] to a surjection
v: P®(R/C)[T] = (R/C)[T). Itis clear that y® (S/C)[T] = 1 modulo the nil radical
of ((S/C)[T]). So, two unimodular elements 5, and v ® (S/C)[T] of (P ® (S/C)[T])*
are same modulo the nil radical of ((S/C)[T]). By [D-Z 2, Proposition 2.8], there exists
a transvection 7 of P ® (S/C')[T] such that 3 o 7 = v ® (S/C)[T]. By [B-R, Proposition
4.1], 7 can be lifted to an automorphism 6 of P ® S[T|(~ P’).
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Consider the following Milnor square

P P®S[T](= P
\ Bob
I l I, ® S[T| ~ I,S[T]
P® (R/C)[T] P®(S/0)[T)
x \
(R/CO)[T] (5/0)[T]

As 8 o § and y agree over S/C[T], they will patch to yield a surjection o : P —= I5.

Let e(P,x1) = (I2,w},) be obtained from the pair (a,x1). By (2.14), (I2,wr,) =
(I3, fwy,) for some unit f € R[T]/I>. By (2.15), there exists P» € P,(R[T]) which is
stably isomorphic to P, an isomorphism x» : L = A"(P%) and a surjection v : Py —+ Iy
such that e(P,, x2) = (I2, fn_lw’b) is obtained from (v, x2). Since n is even, by (2.18),
(Io, [""'a}) = (I, ), ). Therefore, e( Py, x2) = (I, fo;)) = (I, wr,). Since (I, wr,) =
(I,wr), we get e(P, x2) = ({,wr). This completes the proof in the case n > 4.

For n = 3 case, we follow the steps of case I and use [D-Z 2, Theorem 7.2] which says
that the natural group homomorphism E(R[T], L) — E(S[T], L® S[T)) is injective. [

The proof of the following theorem is essentially contained in (5.1).

Theorem 5.2. Let R be a reduced affine k-algebra of dimension n > 2 and L € P1(R[T]).
Let (I,w;) € E(R[T],L). Let X € k be such that ht(I(\)) > n and there exists Q € P, (R)
and an isomorphism x : L/TL = A"(Q) such that e(Q, x) = (I(\),wy(y)) in E(R,L/TL).
Then there exists P € P, (R[T)) with determinant L, an isomorphism x1 : L = A"(P) and
a surjection o : P — I such that e(P,x1) = (I,wy) in E(R[T),L). In particular, I is
projectively generated.

The following result generalizes (5.2) in case n is even.

Corollary 5.3. Let R be a reduced affine k-algebra of even dimension n > 2 and L €
PL(R[T]). Let (I,w;) € E(R[T],L). Let A\ € k be such that ht(I(\)) > n and there
exists Q € Pp(R) with determinant L/TL and a surjection Q — I(\). Then there exists
P € P,(R[T)) with determinant L, an isomorphism x : L = A"™(P) and a surjection
a : P — I such that e(P,x) = (I,w;) in E(R[T), L) is obtained from the pair ().

In particular, I is projectively generated.
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Proof. Since n is even and there is a surjection  — I(\), by [B-RS 3, Lemma 5.1],
there exists Q € P,(R) with an isomorphism Y : L/TL = A™(Q) such that e(Q, ) =
(I(N),wr(y)) in E(R, L/TL). By (5.2), there exists Py € P,(R[T]), an isomorphism x; :
L 5 A™(Py) and a surjection oy : P, — I such that e(Py, x1) = (I,w;) in E(R[T], L).
Note that (I, wr) may not be obtained from the pair (a1, x1). Let e(Py, x1) = (I, @r) be
obtained from the pair (a1, x1). Then there is a unit f € R[T]/I such that w; = fo;.
Since n is even, by (2.15), there exists P € P, (R[T]) with P & R[T] = P @ R[T], an
isomorphism y : L = A"(P) and a surjection a : P — I such that e(P, x) = (I,wy) is
obtained from the pair (o, x). O

The following result extends (5.2).

Corollary 5.4. Let R be a reduced affine k-algebra of dimension n > 3 over a C field k
and L € Py(R[T)). Let (I,w;) € E(R[T],L). Let A € k be such that ht(I(\)) > n and
there exists () € Pp(R) with determinant L/TL and a surjection () — I(X\). Then there
exists P € Py, (R[T)) with determinant L, an isomorphism x : L = A"(P) and a surjection
a : P = I such that e(P,x) = (I,w;) in E(R[T],L). In particular, I is projectively
generated.

Proof. Let § : Q — I()\) be a surjection and x; : L/TL = A™(Q) be an isomorphism.
Let e(Q,x1) = (I(A\),w) € E(R,L/TL) be obtained from the pair (0, x1). By (4.9),
(I(\),w) = (I(\),wren)) in R(R, L/TL). Using (5.2), we are done. O

Corollary 5.5. Let R be a reduced affine k-algebra of dimension n. > 3 over an algebraically
closed field k. Let L € Py(R[T)) and (I,w;) € E(R[T), L). Then there exists P € P, (R[T])
with determinant L, an isomorphism x : L = A"(P) and a surjection o : P — I such that
e(P,x) = (I,wy) in E(R[T], L).

Proof. We can find A € k such that ht(I()\)) > n. Following the proof of (4.11), we get
a projective R-module () of rank n with determinant L and a surjection Q@ — I(\).
Finally using (5.4), we are done. O

The following result is immediate from (5.5).

Corollary 5.6. Let R be a reduced affine k-algebra of dimension n > 3 over an algebraically
closed field k. Let (I,w;) be an element of E(R[T), L) when n = 3 and and E(R[T), L)
when n > 3. Then (I,wr;) = e(P,x) for some P € P,(R[T]) with determinant L and
X : L = A"(P) an isomorphism.
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