
PROJECTIVE GENERATION OF IDEALS IN POLYNOMIAL EXTENSIONS
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ABSTRACT. Let R be an affine domain of dimension n ≥ 3 over a field of characteristic
0. Let L be a projective R[T ]-module of rank 1 and I ⊂ R[T ] a local complete intersec-
tion ideal of height n. Assume that I/I2 is a surjective image of L⊕R[T ]n−1. This paper
examines under what conditions I is a surjective image of a projective R[T ]-module P

of rank n with determinant L.

1. INTRODUCTION

Assumptions: In this paper, k will denote a field of characteristic 0, all rings are com-
mutative Noetherian containing Q and projective modules are finitely generated of constant
rank. For a ring R, Pn(R) will denote the set consisting of isomophism classes of projective
R-modules of rank n.

Let R be a ring and M a finitely generated R-module. We write µR(M) for the
minimum number of generators of M as an R-module. Assume I is an ideal of R with
µR/I(I/I

2) = n. If µR(I) = n, then I is called efficiently generated and if there exists
Q ∈ Pn(R) such that I is a surjective image ofQ, then I is called projectively generated.

Let R be a ring of dimension n and I ⊂ R[T ] an ideal of height n with µR/I(I/I2) =

n. If I contains a monic polynomial, then Mandal [M] proved that I is efficiently gener-
ated. This result is not true if I does not contain a monic polynomial (for an example,
see [B-D], Introduction). However, if I ⊂ R[T ] is a maximal ideal not containing a
monic polynomial, then Bhatwadekar [Bh 1] proved that I is projectively generated.
For a non-maximal ideal I which does not contain a monic polynomial, Bhatwadekar
and Das [B-D] proved the following result.

“Let R be an affine k-algebra of dimension n ≥ 3. Let I ⊂ R[T ] be a local complete
intersection ideal of height n such that µR/I(I/I2) = n and I(0) ⊂ R is an ideal
of height ≥ n. Assume that there exists Q ∈ Pn(R) with trivial determinant and a
surjection Q[T ]→→ I/(I2 ∩ (T )). Then I is projectively generated.”

In terms of Euler class group of R[T ], they proved the following result [B-D]. “Let
ωI : (R[T ]/I)n →→ I/I2 be a local orientation of I and ωI(0) : (R/I(0))n →→ I(0)/I(0)2
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be the induced local orientation of I(0). Let (I, ωI) and (I(0), ωI(0)) be elements of Eu-
ler class groups E(R[T ]) and E(R) respectively. Assume that (I(0), ωI(0)) is obtained
as the Euler class of a projective R-module. Then (I, ωI) is also obtained as the Euler
class of a projective R[T ]-module.”

Let R be an affine k-algebra of dimension n ≥ 3 and L ∈ P1(R[T ]). Das [D 1] has
developed the theory of Euler class group E(R[T ], R[T ]) which is used in [B-D]. Das
and Zinna [D-Z 2] extended results of Das [D 1] to E(R[T ], L). So it is natural to ask
the following generalization of results of [B-D].

Question 1.1. Let R be an affine k-algebra of dimension n ≥ 3 and L ∈ P1(R[T ]). Let
I ⊂ R[T ] be a local complete intersection ideal of height n such that ht(I(0)) ≥ n. Let
Q ∈ Pn(R) with determinant L/TL.

(1) Let (I, ωI) ∈ E(R[T ], L) be such that (I(0), ωI(0)) = e(Q, χ̃) ∈ E(R,L/TL), where
χ̃ : L/TL

∼→ ∧n(Q) is an isomorphism. Does there exist P ∈ Pn(R[T ]) with
determinant L and an isomorphism χ : L

∼→ ∧n(P ) such that e(P, χ) = (I, ωI)

in E(R[T ], L)?
(2) Assume there is a surjection Q[T ] →→ I/(I2 ∩ (T )). Is I projectively generated?

In other words, does there exist P ∈ Pn(R[T ]) with determinant L such that I is a
surjective image of P?

We answer question 1.1(2) in case L is extended from R (see 4.7).

Theorem 1.2. Let R be an affine k-algebra of dimension n ≥ 3 and L ∈ P1(R). Let I ⊂ R[T ]

be a local complete intersection ideal of height n such that ht(I(0)) ≥ n. Assume that there
exists Q ∈ Pn(R) with determinant L and a surjection Q[T ] →→ I/I2 ∩ (T ). Then there
exists P ∈ Pn(R[T ]) with determinant L[T ] and a surjection P →→ I . In other words, I is
projectively generated.

We answer question 1.1(1) for reduced ring R (see 5.1).

Theorem 1.3. Let R be a reduced affine k-algebra of dimension n ≥ 3 and L ∈ P1(R[T ]). Let
I ⊂ R[T ] be an ideal of height n such that ht(I(0)) ≥ n. Assume that (I, ωI) ∈ E(R[T ], L)

when n ≥ 4 and (I, ωI) ∈ Ẽ(R[T ], L), the restricted Euler class group of R[T ] when n = 3

(see (2.12)). Assume that there existsQ ∈ Pn(R) with determinantL/TL and an isomorphism
χ : L/TL

∼→ ∧n(Q) such that e(Q,χ) = (I(0), ωI(0)) in E(R,L/TL). Then there exists P ∈
Pn(R[T ]) with determinant L and an isomorphism χ1 : L

∼→ ∧n(P ) such that e(P, χ1) =

(I, ωI) in E(R[T ], L).

Steps of proof of (1.3): First we prove the result when L is extended from R. For
arbitrary L, there exists a finite subintegral extension S of R such that L⊗S[T ] is ex-
tended from S. Now we know the result in S[T ] by extended case. Finally we descend
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from S[T ] to R[T ] by proving that for (I, ωI) ∈ E(R[T ], L), if its image (IS[T ], ω∗I ) in
E(S[T ], L⊗S[T ]) is obtained as the Euler class of a projective S[T ]-module, then (I, ωI)

is also obtained as the Euler class of a projective R[T ]-module.

The following result (see 4.11) is an application. It improves [B-RS 2, Theorem 2.7]
and [B-D, Corollary 3.11], where it is proved for L = R[T ].

Corollary 1.4. Let R be an affine k-algebra of dimension n ≥ 2 with k an algebraically closed
field. Let L ∈ P1(R) and I ⊂ R[T ] an ideal of height n. Assume that I/I2 is a surjective
image of L[T ] ⊕ R[T ]n−1. Then there exists P ∈ Pn(R[T ]) with determinant L[T ] such that
I is a surjective image of P .

2. PRELIMINARIES

In this section, we recall some results for later use.

Lemma 2.1. [B-RS 3, Lemma 5.4] Let R be a ring of dimension n ≥ 2 and L ∈ P1(R).
Let J ⊂ R be an ideal of height n and ωJ : (L ⊕ Rn−1)/J(L ⊕ Rn−1) →→ J/J2 be a local
L-orientation of J . If u ∈ R/J is a unit, then (J, ωJ) = (J, u2ωJ) in the Euler class group
E(R,L).

Let R be a ring of dimension n ≥ 3 and L ∈ P1(R). Let ”bar” denote reduction
moduloN [T ], whereN is the nilradical ofR. SoR = Rred and L = L/NL. Let I ⊂ R[T ]

be an ideal of height n such that Spec(R[T ]/I) is connected and I/I2 is generated by
n elements. We have I = (I + N [T ])/N [T ]. Note that Spec(R[T ]/I) is also connected.
Further, if we writeL = L⊕Rn−1, then any surjection ωI : L[T ]/IL[T ]→→ I/I2 induces
a surjection ωI : L[T ]/IL[T ]→→ I/I

2.
Let J ⊂ R[T ] be an ideal of height n and ωJ be a local orientation of J . Now J

can be decomposed uniquely as J = J1 ∩ · · · ∩ Jk, where Ji’s are pairwise comaximal
ideals of R[T ] of height n such that Spec(R[T ]/Ji) is connected for each i. Clearly
J = J1 ∩ · · · ∩ Jk is a similar decomposition for J . Now ωJ induces a local orientation
ωJ in a natural way. Therefore, we have a group homomorphism Φ : E(R[T ], L[T ]) −→
E(R[T ], L[T ]) which takes (J, ωJ) to (J, ωJ).

Proposition 2.2. Let R be a ring of dimension n ≥ 3 and L ∈ P1(R). Then
(1) the group homomorphism Φ : E(R[T ], L[T ]) −→ E(R[T ], L[T ]) is an isomorphism.
(2) Let (I, ωI) ∈ E(R[T ], L[T ]). If Φ((I, ωI)) is the Euler class of a projective module, then

so is (I, ωI). More precisely, assume that Φ((I, ωI)) = e(P ′, χ′), where P ′ ∈ Pn(R[T ]) with
determinant L[T ] and χ′ : L[T ]

∼→ ∧n(P ′) an isomorphism. Then there exists P ∈ Pn(R[T ])

with determinant L[T ] and an isomorphism χ : L[T ]
∼→ ∧n(P ) such that e(P, χ) = (I, ωI) in

E(R[T ], L[T ]).
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Proof. (1) is due to Das-Zinna [D-Z 2, Proposition 6.8].
For (2), follow the proof of [B-D, Proposition 2.15, Remark 2.16] where it is proved

forL = R and use [D-Z 2, Corollary 4.14] which says that (I, ωI) = e(P ′, χ′) inE(R[T ], L[T ])

implies that there is a surjection α : P ′ →→ I such that (I, ωI) is obtained from the pair
(α, χ′). �

Remark 2.3. Note that we do not know [D-Z 2, Corollary 4.14] for arbitraryL ∈ P1(R[T ]).
Hence, we do not have (2.2(2)) for arbitrary L. That is why we are taking reduced ring
in section 5 with arbitrary L. �

The following result is proved in [B-D, Lemma 3.2] when L = R.

Lemma 2.4. Let R be a ring of dimension n ≥ 3 and L ∈ P1(R). Let Q ∈ Pn(R) with
determinant L and an isomorphism χ : L

∼→ ∧n(Q). Let (I, ωI) ∈ E(R[T ], L[T ]) with
ht(I(0)) = n. Consider (I(0), ωI(0)) ∈ E(R,L), where ωI(0) is the local orientation of I(0)

induced by ωI . Assume that there is a surjection α : Q →→ I(0) such that (α, χ) induces
e(Q,χ) = (I(0), ωI(0)). Then there is a surjection θ : Q[T ]→→ I/(I2T ) such that θ(0) = α.

Proof. As Q has determinant L and dim(R[T ]/I) ≤ 1, by Serre’s result [Se], we have
Q[T ]/IQ[T ] ' L[T ]/IL[T ] ⊕ (R[T ]/I)n−1. Choose an isomorphism σ : Q[T ]/IQ[T ]

∼→
L[T ]/IL[T ]⊕ (R[T ]/I)n−1 such that ∧n(σ) = (χ⊗R[T ]/I)−1. The composite surjection
θ : Q[T ]→→ I/I2 given by

Q[T ]→→ Q[T ]/IQ[T ]
σ
∼→ L[T ]/IL[T ]⊕ (R[T ]/I)n−1

ωI→→ I/I2

is such that θ(0)⊗R/I(0) = α⊗R/I(0). Applying [B-RS 1, Remark 3.9], we can lift θ
to a surjection θ : Q[T ]→→ I/(I2T ) such that θ(0) = α. �

Lemma 2.5. Let R be a reduced ring of dimension n ≥ 2 and R ↪→ S a finite subintegral
extension. Let Q ∈ Pn(S) be such that its determinant is extended from R, i.e. ∧n(Q)

∼→
L⊗S for some L ∈ P1(R). Then Q is extended from R, i.e. there exists P ∈ Pn(R) with
determinant L such that P ⊗S ' Q.

Proof. Since R ↪→ S is a finite subintegral extension, without loss of generality, we may
assume that S is an elementary subintegral extension ofR. LetC be the conductor ideal
of R ⊂ S. Then ht(C) ≥ 1 and (R/C)red = (S/C)red [D-Z 1, Lemma 3.7]. Consider the
conductor (fiber product) diagram

R //

��

S

��
R/C // S/C .
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Since every projective (R/C)red-module comes from a projective R/C-module, there
exists P̃ ∈ Pn(R/C) with an isomorphism θ̃ : P̃ ⊗ (S/C)red ' Q⊗ (S/C)red. Now
we can lift θ̃ to an isomorphism θ : P̃ ⊗ S/C ' Q/CQ. Patching Q and P̃ over θ, we
get P ∈ Pn(R) such that P ⊗S ' Q. Since rank(Q/CQ) = n > dimR/C, by Serre’s
result [Se], Q/CQ has a unimodular element. Hence, we can modify the patching
automorphism θ such that ∧n(P ) ' L. �

Lemma 2.6. Let R be a reduced ring of dimension n ≥ 2 and R ↪→ S a finite subintegral
extension. LetQ ∈ Pn(S[T ]) be such that its determinant is extended fromR[T ], i.e. ∧n(Q) '
L⊗S[T ] for some L ∈ P1(R[T ]). Then Q is extended from R[T ], i.e. there exists P ∈
Pn(R[T ]) with determinant L such that P ⊗S[T ] ' Q.

Proof. Follow the proof of (2.5). By Plumstead’s result [P], Q/CQ has a unimodular
element, where C is the conductor ideal of R ↪→ S. �

Definition 2.7. We recall some definitions from [D-Z 1]. Let R be a ring of dimension
n ≥ 2 and R ↪→ S a subintegral extension. Let L ∈ P1(R) and write L = L⊕Rn−1. Let
J ⊂ R be an ideal of height n and ωJ : L/JL →→ J/J2 a surjection. By [D-Z 1, Remark
3.8], we have ht(JS) = n. Tensoring wJ with S/JS over R/J , we obtain an induced
surjection

ω̃J :
L ⊗R S

JS(L ⊗R S)
→→ J ⊗R S

JS(J ⊗R S)
.

Define a local orientation ω∗J of JS as the composition

ω∗J :
L ⊗R S

JS(L ⊗R S)

ω̃J→→ J ⊗R S
JS(J ⊗R S)

f̃→→ JS

J2S
,

where f̃ is induced by the natural surjection f : J ⊗R S →→ JS. Note that if ωJ
can be lifted to a surjection θ : L →→ J , then ω∗J can be lifted to a surjection f ◦
(θ⊗S) : L⊗S →→ JS. Therefore, we have a well defined group homomorphism
Φ : E(R,L) −→ E(S,L⊗R S) defined by Φ((J, ωJ)) = (JS, ω∗J).

Similarly forL ∈ P1(R[T ]), we have a group homomorphismE(R[T ], L)→ E(S[T ], L⊗S[T ]).
�

The following three results are due to Das and Zinna.

Theorem 2.8. [D-Z 1, Theorem 3.12] Let R be a ring of dimension n ≥ 2 and R ↪→ S a
subintegral extension. If L ∈ P1(R), then the natural map Φ : E(R,L) −→ E(S,L⊗RS) is
an isomorphism.

Theorem 2.9. [D-Z 1, Theorem 3.16] Let R be a ring of dimension n ≥ 3 and R ↪→ S a
subintegral extension. Then E(R[T ]) ' E(S[T ]).
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Theorem 2.10. [D-Z 3, Theorem 3.12] Let R be a ring of dimension n ≥ 2 and R ↪→ S a
subintegral extension. Then weak Euler class groups E0(R) and E0(S) are isomorphic.

Definition 2.11. Let R be a reduced ring of dimension n ≥ 3. Let L ∈ P1(R[T ]) and
L = L⊕R[T ]n−1. We will define the restricted Euler class group Ẽ(R[T ], L), see [D-Z 2,
Section 7] when n = 3. Let R̃ be the seminormalization of R and C the conductor ideal
ofR ⊂ R̃. Let G̃ be the free abelian group on pairs (I, ωI), where I ⊂ R[T ] is an ideal of
height n such that Spec(R[T ]/I) is connected, I + C[T ] = R[T ] (this is the restriction)
and ωI : L/IL →→ I/I2 is an equivalence class of local L-orientation of I . Here two
local L-orientations ωI and ω̃I are equivalent if there exists θ ∈ SL(L/IL) such that
ωI ◦ θ = ω̃I . Take H̃ to be the subgroup of G̃ generated by those (I, ωI) ∈ G̃ such that
wI is a global L-orientation of I , i.e. wI can be lifted to a surjection L →→ I . Define the
“restricted” Euler class group Ẽ(R[T ], L) = G̃/H̃ .

Let P ∈ Pn(R[T ]) with determinant L and χ : L
∼→ ∧n(P ) an isomorphism. Since

dim(R/C) ≤ n − 1, by [P, Corollary 2 of Section 3], P/CP has a unimodular element.
Applying ([B-RS 3, Lemma 2.13]), it is easy to see that there is an ideal I ⊂ R[T ]

of height n such that I + C[T ] = R[T ] and a surjection α : P →→ I . Choose an
isomorphism γ : L/IL ∼→ P/IP such that ∧nγ = χ ⊗ R[T ]/I . Let ωI be the composite
surjection

wI : L/IL
γ
∼→ P/IP

α→→ I/I2.

We define the Euler class of the pair (P, χ) obtained from the pair (α, χ) as e(P, χ) =

(I, ωI) ∈ Ẽ(R[T ], L). Following [D-Z 2, Lemma 6.11], it is easy to prove that the Euler
class e(P, χ) is well defined and it does not depend on the choice of α and γ. �

Remark 2.12. For n ≥ 4, there is a natural map Ẽ(R[T ], L) → E(R[T ], L) which is an
isomorphism. This can be seen using moving lemma [D-Z 2, Lemma 2.11] and the fact
that ht(C) ≥ 1.

The following result is from [D-Z 2, Corollary 7.3, Theorem 7.4].

Theorem 2.13. Let R be a reduced ring of dimension n ≥ 3 and L ∈ P1(R[T ]). Let P ∈
Pn(R[T ]) with determinant L and χ : L

∼→ ∧n(P ) an isomorphism.

(1) If (I, ωI) = 0 in Ẽ(R[T ], L), then ωI is a global L-orientation of I .
(2) P has a unimodular element if and only if e(P, χ) = 0 in Ẽ(R[T ], L)

Remark 2.14. Let R be a ring of dimension n ≥ 2 and L ∈ P1(R[T ]). Let (I, ωI) ∈
E(R[T ], L) when n 6= 3 and (I, ωI) ∈ Ẽ(R[T ], L) when n = 3. Let f ∈ R[T ]/I be
a unit. Composing ωI with an automorphism of (L ⊕ R[T ]n−1)/I(L⊕R[T ]n−1) with
determinant f , we obtain another local orientation of I which we denote by fωI . On
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the other hand, let ωI and ω̃I be two local orientations of I . Then it follows from [Bh 2,
Lemma 2.2] that ωI = fω̃I for some unit f ∈ R[T ]/I .

The next result follows from [B-RS 3, Lemmas 2.7, 2.8].

Lemma 2.15. Let R be a ring of dimension n ≥ 2 and L ∈ P1(R[T ]). Let P ∈ Pn(R[T ])

with determinant L and χ : L
∼→ ∧n(P ) an isomorphism. Let I ⊂ R[T ] be an ideal of

height n and α : P →→ I a surjection. Let e(P, χ) = (I, ωI) be obtained from the pair
(α, χ), where e(P, χ) ∈ E(R[T ], L) when n 6= 3 and e(P, χ) ∈ Ẽ(R[T ], L) when n = 3.
Let f ∈ R[T ]/I be a unit. Then there exists P1 ∈ Pn(R[T ]) with determinant L such that
P ⊕R[T ]

∼→ P1⊕R[T ], an isomorphism χ1 : L
∼→ ∧n(P1) and a surjection β : P1 →→ I such

that e(P1, χ1) = (I, f
n−1

ωI) is obtained from the pair (β, χ1).

The following result extends [D 1, Lemma 5.2].

Lemma 2.16. Let R be a ring of dimension n ≥ 3. Let L ∈ P1(R) and L = L ⊕ Rn−1. Let
I ⊂ R[T ] be an ideal of height n and ωI : L[T ]/IL[T ]→→ I/I2 a surjection. Let f ∈ R[T ]/I

be a unit and θ an automorphism of L[T ]/IL[T ] with determinant f2. Assume that ωI can be
lifted to a surjection α : L[T ] →→ I . Then the surjection ωI ◦ θ : L[T ]/IL[T ] →→ I/I2 can
also be lifted to a surjection β : L[T ]→→ I .

Proof. Replacing T by T − λ for some λ ∈ Q, we may assume that ht(I(0)) ≥ n. If
ht(I(0)) > n, then I(0) = R. By [B-RS 1, Remark 3.9], we can lift ωI ◦ θ to a surjection
β̃ : L[T ] →→ I/(I2T ). We now show that the same can be done if ht(I(0)) = n. Now
ωI induces a surjection ωI(0) : L/I(0)L →→ I(0)/I(0)2, which can be lifted to α(0) :

L →→ I(0). Note that f(0) ∈ R/I(0) is a unit and θ(0) is an automorphism of L/I(0)L
with determinant f(0)

2
. Therefore, by [B-RS 3, Lemma 5.3], ωI(0) ◦ θ(0) can be lifted to

a surjection φ : L →→ I(0). Consequently, we can lift ωI ◦ θ to a surjection β̃ : L[T ]→→
I/(I2T ).

Now we move to the ring R(T ) which is obtained from R[T ] by inverting all monic
polynomials in T . Applying [B-RS 3, Lemma 5.3] to R(T ), we get

(ωI ◦ θ)⊗R(T ) : L⊗R(T )/IL⊗R(T )→→ IR(T )/I2R(T )

can be lifted to a surjection ψ : L⊗R(T ) →→ IR(T ). By [D-Z 2, Theorem 4.1], we get
ωI ◦ θ can be lifted to a surjection β : L[T ]→→ I . �

The following result extends [D 1, Lemma 5.3].

Lemma 2.17. Let R be a ring of dimension n ≥ 3 and L ∈ P1(R). Let I ⊂ R[T ] be an
ideal of height n and ωI be a local L-orientation of I . Let f ∈ R[T ]/I be a unit. Then
(I, ωI) = (I, f

2
ωI) in E(R[T ], L[T ]).
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Proof. If (I, ωI) = 0 in E(R[T ], L[T ]), then it follows from [D-Z 2, Theorem 4.10] and
(2.16) that (I, f

2
ωI) = 0 in E(R[T ], L[T ]). So assume that (I, ωI) 6= 0 in E(R[T ], L[T ]).

By [D 1, Lemma 2.12], ωI can be lifted to a surjection α : L[T ]⊕R[T ]n−1 →→ I ∩ I ′,
where I ′ ⊂ R[T ] is an ideal of height n with I + I ′ = R[T ]. By Chinese remainder
theorem, choose g ∈ R[T ] such that g = f2 modulo I and g = 1 modulo I ′. Applying
(2.16), there exists a surjection γ : L[T ]⊕R[T ]n−1 →→ I ∩I ′ such that γ⊗R[T ]/I = f

2
ωI

and γ⊗R[T ]/I ′ = α⊗R[T ]/I ′. From surjections α and γ, we get

(I, ωI) + (I ′, ωI′) = 0 and (I, f
2
ωI) + (I ′, ωI′) = 0 in E(R[T ], L[T ]).

Therefore, (I, ωI) = (I, f
2
ωI) in E(R[T ], L[T ]). �

The next lemma extends (2.17) to arbitrary L ∈ P1(R[T ]).

Lemma 2.18. Let R be a ring of dimension n ≥ 4 and L ∈ P1(R[T ]). Let I ⊂ R[T ] be
an ideal of height n and ωI be a local L-orientation of I . Let f ∈ R[T ]/I be a unit. Then
(I, ωI) = (I, f

2
ωI) in E(R[T ], L).

Proof. By [D-Z 2, Proposition 6.8], there is a canonical isomorphism E(R[T ], L)
∼→

E(Rred[T ], L ⊗ Rred[T ]). Hence, we may assume that R is reduced. Then there exists
an extension R ↪→ S such that

(1) R ↪→ S ↪→ Q(R), where Q(R) is the total ring of fractions of R,
(2) S is a finite R-module,
(3) R ↪→ S is subintegral and
(4) L⊗RS[T ] is extended from S.

Using (4) and (2.17), we get (IS[T ], ω∗I ) = (IS[T ], f
2
ω∗I ) in E(S[T ], L ⊗ S[T ]). By

[D-Z 2, Theorem 6.16], the natural group homomorphism E(R[T ], L) → E(S[T ], L ⊗
S[T ]) defined by (I, ωI) 7→ (IS[T ], ω∗I ) is an isomorphism. Hence (I, ωI) = (I, f

2
ωI) in

E(R[T ], L). �

Following the proof of (2.18), we get the following result.

Lemma 2.19. Let R be a ring of dimension n = 3 and L ∈ P1(R[T ]). Let (I, ωI) ∈
Ẽ(R[T ], L). Let f ∈ R[T ]/I be a unit. Then (I, ωI) = (I, f

2
ωI) in Ẽ(R[T ], L).

3. SUBINTEGRAL EXTENSIONS AND PROJECTIVE GENERATION OF IDEALS

The following result is due to S. M. Bhatwadekar (personal communication).

Lemma 3.1. Let R be a ring of odd dimension n ≥ 3 and L ∈ P1(R). Let P ∈ Pn(R) with
determinant L and χ : L

∼→ ∧n(P ) an isomorphism. Then the Euler class e(P, χ) ∈ E(R,L)

is independent of the choice of χ.
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Proof. Let α : P →→ J be a surjection, where J ⊂ R is an ideal of height n. Then
we get a surjection α : P/JP →→ J/J2 induced by α. Write L = L ⊕ Rn−1. Let
θ : L/JL ∼→ P/JP be an isomorphism such that ∧n(θ) = χ. If ωJ = α ◦ θ, then
e(P, χ) = (J, ωJ) in E(R,L).

Let χ′ : L ∼→ ∧n(P ) be another isomorphism. Then χ′ = uχ for some unit u ∈ R. Let
σ ∈ Aut(P ) be given by σ(p) = up. Then α◦σ : P →→ J is a surjection. If ω̃J = α◦σ ◦θ,
then e(P, χ) = (J, ω̃J) = (J, unωJ) = (J, uωJ) in E(R,L), by (2.1) as n is odd.

Let ∆ ∈ Aut(L/JL) be the diagonal matrix ∆ = diagonal(1, . . . , 1, u). Since ∧n(∆ ◦
θ) = uχ = χ′, we get e(P, χ′) = (J, uωJ) = e(P, χ). �

Lemma 3.2. Let R be a ring of odd dimension n ≥ 3 and L ∈ P1(R[T ]). Let P ∈ Pn(R[T ])

with determinant L and χ : L
∼→ ∧n(P ) an isomorphism. Then the Euler class e(P, χ) of the

pair (P, χ), which takes values in the Euler class group E(R[T ], L) when n ≥ 4 and in the
restricted Euler class group Ẽ(R[T ], L) when n = 3, is independent of the choice of χ.

Proof. Follow the proof of (3.1) and use (2.18, 2.19) in place of (2.1). �

Theorem 3.3. Let R be a ring of dimension n ≥ 2 and R ↪→ S a subintegral extension. Let
L ∈ P1(R) and (J, ωJ) ∈ E(R,L). Let (JS, ω∗J) be the image of (J,wJ) in E(S,L⊗S).
Let Q ∈ Pn(S) be such that its determinant is extended from R. Further assume that χ′ :

L⊗S ∼→ ∧n(Q) is an isomorphism such that (JS, ω∗J) = e(Q,χ′) in E(S,L⊗S). Then
there exists P ∈ Pn(R) with determinant L and χ : L

∼→ ∧n(P ) an isomorphism such that
e(P, χ) = (J, ωJ) in E(R,L). Further, there exists a surjection α : P →→ J such that (J, ωJ)

is obtained from (α, χ).

Proof. By [B-D, Proposition 2.15], we may assume that R is reduced. Further, we may
assume that R ↪→ S is finite. By (2.5), we can find P1 ∈ Pn(R) with determinant L such
that P1⊗S ' Q.

Case I: Assume n is odd. Let χ : L
∼→ ∧n(P1) be an isomorphism. Consider the image

e(P1⊗S, χ⊗S) of e(P1, χ) in E(S,L⊗S). Since n is odd, by (3.1), e(P1⊗S, χ⊗S) =

e(Q,χ⊗S) = e(Q,χ′). Therefore, by (2.8), e(P1, χ) = (J, ωJ). Take P = P1.
Case II: Assume n is even. Since e(Q,χ′) = (JS, ω∗J) in E(S,L⊗S), it follows that

the weak Euler class e(Q) = e(P1⊗S) = (JS) in E0(S,L⊗S). Therefore, by (2.10),
e(P1) = (J) in E0(R,L). By [B-RS 3, Proposition 6.4], there exists P2 ∈ Pn(R) such
that [P2] = [P1] in K0(R) and J is a surjective image of P2. Let β : P2 →→ J be a
surjection and χ2 : L

∼→ ∧n(P2) be an isomorphism. Suppose that e(P2, χ2) = (J, ω2) is
obtained by (β, χ2). Then ωJ = uω2 for some unit u ∈ (R/J)∗. By [B-RS 3, Lemma 5.1],
there exists P ∈ Pn(R) with [P ] = [P2] in K0(R) and an isomorphism χ : L

∼→ ∧nP
such that e(P, χ) = (J, un−1ω2). Since n is even, by (2.1), (J, un−1ω2) = (J, uω2) and
hence e(P, χ) = (J, uω2) = (J, ωJ). By [B-RS 3, Corollary 4.3], there exists a surjection
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α : P →→ J such that (J, ωJ) is obtained from the pair (α, χ). This completes the
proof. �

Proposition 3.4. [D 2, Proposition 6.3] Let R be a ring of even dimension n ≥ 4 and
J ⊂ R[T ] be an ideal of height n. Let P ∈ Pn(R[T ]) with trivial determinant. Assume that
the weak Euler class e(P ) = (J) in E0(R[T ]). Then there exists Q ∈ Pn(R[T ]) such that
[P ] = [Q] in K0(R[T ]) and J is a surjective image of Q.

Theorem 3.5. Let R be a ring of dimension n ≥ 3 and R ↪→ S a subintegral extension.
Let (I, ωI) ∈ E(R[T ]) be such that its image (IS[T ], ω∗I ) = e(Q,χ′) in E(S[T ]), where
Q ∈ Pn(S[T ]) with trivial determinant and χ′ : S[T ]

∼→ ∧n(Q) an isomorphism. Then there
exists P ∈ Pn(R[T ]) with trivial determinant and χ : R[T ]

∼→ ∧n(P ) an isomorphism such
that e(P, χ) = (I, ωI). Further, there exists a surjection α : P →→ I such that (I, ωI) is
obtained from the pair (α, χ).

Proof. Note that this is an extension of (3.3) from R ↪→ S case to R[T ] ↪→ S[T ] case
when L = R. By (2.9), we already have E(R[T ]) ' E(S[T ]). We need to show that if
the image of (I, ωI) inE(S[T ]) is the Euler class of a projective S[T ]-module with trivial
determinant, then (I, ωI) in E(R[T ]) is also the Euler class of a projective R[T ]-module
with trivial determinant.

By [B-D, Remark 2.16], we may assume that R is reduced. Further, we may assume
that R ↪→ S is finite. By (2.6), we can find P1 ∈ Pn(R[T ]) with trivial determinant such
that P1⊗S[T ] ' Q.

Case 1. Assume n is odd. Let χ : R[T ]
∼→ ∧n(P1) be an isomorphism. Con-

sider the image e(P1⊗S[T ], χ⊗S[T ]) of e(P1, χ) in E(S[T ]). Since n is odd, by (3.2),
e(P1⊗S[T ], χ⊗S[T ]) = e(Q,χ⊗S[T ]) = e(Q,χ′). Therefore, by (2.9), e(P1, χ) =

(I, ωI). Take P = P1.
Case 2. Assume n is even. We note that e(Q) = e(P1⊗S[T ]) = (IS[T ]) in E0(S[T ]).

Therefore, by [D-Z 1, Remark 3.26], e(P1) = (I) in E0(R[T ]). Follow the proof of (3.3,
Case II) and use [D 2, Proposition 6.3], [D 1, Lemma 6.1, Corollary 4.10] to complete
the proof. �

4. PROJECTIVE GENERATION: EXTENDED CASE

Next result is proved in [B-D, Lemma 3.1] when L = R.

Lemma 4.1. Let R be a ring of dimension n ≥ 2 and J ⊂ R be an ideal of height ≥ n − 1.
Let Q ∈ Pr(R) with determinant L. Then there exists b ∈ J2 such that ht(b) = 1 and
Q1+b ' R1+b

r−1 ⊕ L1+b.
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Proof. As the determinant ofQ isL and dim(R/J2) ≤ 1, by Serre’s result [Se], it follows
that Q/J2Q is isomorphic to (R/J2)r−1 ⊕ L/J2L. Consequently, Q1+J2 is isomorphis
to R1+J2

r−1 ⊕ L1+J2 . Therefore, there exists b ∈ J2 such that Q1+b is isomorphis to
R1+b

r−1 ⊕ L1+b.
If ht(b) = 0, then we can find c ∈ J2 such that ht(b + bc + c) = 1. Since 1 + b +

bc + c = (1 + b)(1 + c), without loss of generality, we can assume that ht(b) = 1 and
Q1+b ' R1+b

r−1 ⊕ L1+b. �

The following result is from [B-D, Lemma 3.4]. Its proof is contained in [Bh 1,
Proposition 3.1, 3.2].

Lemma 4.2. Let B̃ be a semilocal ring of dimension 1. Then Pic(B̃[T ]) is a divisible group.
Let M be an invertible ideal of B̃[T ] with dim(B̃[T ]/M) = 0. Let b = M ∩ B̃ and (0) = b∩a,
where a is an ideal of B̃ with M + a[T ] = B̃[T ]. Then given any positive integer d, there exists
an invertible ideal N of B̃[T ] such that

(1) N +Ma[T ] = B̃[T ],
(2) Nd ∩M = (f̃) for some non-zerodivisor f̃ ∈ B̃[T ],
(3) dim(B̃[T ]/N) = 0.

Proposition 4.3. Let R be a ring of dimension n ≥ 3 and L ∈ P1(R). Let I ⊂ R[T ] be an
ideal of height n such that I/I2 is a surjective image of L[T ]⊕R[T ]n−1. Further assume that
I = M1 ∩ · · · ∩Mk, where each Mi is a maximal ideal of R[T ] of height n. Let ω1 and ω2 be
any two local orientations of I . Then (I, ω1) = (I, ω2) in E(R[T ], L[T ]).

Proof. Let (I, ω1) =
∑k

1(Mi, ωMi) inE(R[T ], L[T ]). It is enough to show that (Mi, ωMi) =

(Mi, ω
′
Mi

) inE(R[T ], L[T ]) for any other local orientation ω′Mi
ofMi. Therefore, we may

assume that I is a maximal ideal of height n.
If R is local, then L

∼→ R and we are done by [D 3, Proposition 3.12], where it is
proved that if I is a maximal ideal of R[T ] of height n, then (I, ω1) = (I, ω2) in E(R[T ])

for any two local orientations ω1, ω2 of I .
Now we prove the result for general R. Rest of the proof is similar to [D 3]. First we

consider the case when I contains a monic polynomial. Applying [B-RS 4, Proposition
3.3], (I, ω) = 0 in E(R[T ], L[T ]) for any local orientation ω of I . Hence we are done in
this case.

Now assume that I is a maximal ideal not containing a monic polynomial. Then
I + (T ) = R[T ] and hence I(0) = R. Consider the element (I, ω1)− (I, ω2) in E(R[T ]).
For any maximal idealM of R, the image of (I, ω1) − (I, ω2) in E(RM[T ], LM[T ]) is
zero. Use local global principle for Euler class groups [D-Z 2, Theorem 4.17] which
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says that the following sequence of groups

0→ E(R,L)→ E(R[T ], L[T ])→
∏
M

E(RM[T ], LM[T ])

is exact. Here the product is over all maximal ideals of R. Hence there exists (J, ωJ) ∈
E(R,L) such that

Φ((J, ωJ)) = (I, ω1)− (I, ω2).

Here Φ : E(R,L) → E(R[T ], L[T ]) and Ψ : E(R[T ], L[T ]) → E(R,L) are group
homomorphisms such that Ψ ◦Φ = Id [D-Z 2, Remark 4.9]. Since I(0) = R, Ψ(I, ω1) =

0 = Ψ(I, ω2) in E(R,L). Use Ψ ◦ Φ = Id, we get (J, ω) = 0 in E(R,L). Hence
(I, ω1) = (I, ω2). �

Theorem 4.4. Let R be a ring of dimension n ≥ 3. Let L ∈ P1(R) and L = R[T ]n−1⊕L[T ].
Let J ⊂ R[T ] be a local complete intersection ideal of height n such that dim(R[T ]/J) = 0

and J = (f1, · · · , fn) + J2. Let I = (f1, · · · , fn−1) + J (n−1)!. Let ω : L/IL →→ I/I2 be a
surjection. Then there exists P ∈ Pn(R[T ]) and an isomorphism χ : L[T ]

∼→ ∧n(P ) such that

(1) [P ]− [L] = −[R[T ]/J ] in K0(R[T ]),
(2) there is a surjection P →→ I and
(3) e(P, χ) = (I, ω) in E(R[T ], L[T ]).

Proof. Das-Mandal [D-M, Theorem 3.2] proved the following result for E(R,L). Let
J̃ ⊂ R be a local complete intersection ideal of height n such that J̃ = (f̃1, · · · , f̃n)+ J̃2.
Let Ĩ = (f̃1, · · · , f̃n−1) + J̃ (n−1)!. Write L̃ = Rn−1 ⊕ L. Let ω̃ : L̃/ĨL̃ →→ Ĩ/Ĩ2 be a
surjection. Then there exists P̃ ∈ Pn(R) with determinant L and χ̃ : L

∼→ ∧n(P̃ ) an
isomorphism such that

(1) [P̃ ]− [L̃] = −[R/J̃ ] in K0(R),
(2) there is a surjection P̃ →→ Ĩ and
(3) e(P̃ , χ̃) = (Ĩ , ω̃) in E(R,L).

In our case, dim(R[T ]/J) = 0. Since whole proof of [D-M, Theorem 3.1, 3.2] works
in our case, we are done. �

The proof of the next result closely follow that of [B-D, Proposition 3.3] where it is
proved for L = R.

Proposition 4.5. Let R ↪→ B be a flat extension of rings such that dim(R) = dim(B) =

n ≥ 3. Let L ∈ P1(R) and write L = L ⊕ Rn−1. Let Q ∈ Pn(R) with determinant L
and P ∈ Pn(B[T ]) with determinant L⊗B[T ]. Further, assume that Q ⊗ B ∼→ L⊗B and
P/TP

∼→ L⊗B. Let χ : L
∼→ ∧n(Q) and χ′ : L⊗B[T ]

∼→ ∧n(P ) be isomorphisms. Let
I ⊂ R[T ] be an ideal of height n such that ht(I(0)) = n and both IB[T ] and I(0)B are proper
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ideals. Assume that there are surjections ω : L[T ]/IL[T ] →→ I/I2, α : Q →→ I(0) and
β : P →→ IB[T ] such that

(1) (α, χ) induces e(Q,χ) = (I(0), ω(0)) in E(R,L), where ω(0) is induced by ω.
(2) (β, χ′) induces e(P, χ′) = (IB[T ], ω⊗B[T ]) in E(B[T ], L⊗B[T ]).

Then there exists an isomorphism ψ : P/TP
∼→ Q⊗B and a surjection η : P →→ IB[T ] such

that η(0) = (α⊗B) ◦ ψ : P/TP →→ I(0)B.

Proof. Write P/TP = P0. Let “tilde” denote reduction modulo IB[T ] and “bar” denote
reduction modulo I(0)B. We have two surjections

β̃ : P̃ →→ IB[T ]/I2B[T ] and ω̃ : ˜L[T ]⊗B[T ]→→ IB[T ]/I2B[T ]

induced from β and ω ⊗ B respectively. Since the pair (β, χ′) induces the Euler class

e(P, χ′) = (IB[T ], ω⊗B) inE(B[T ], L⊗B[T ]), by definition of e(P, χ′), if σ : ˜L[T ]⊗B[T ]
∼→

P̃ is an isomorphism such that ∧n(σ) = χ̃′, then β̃ ◦ σ = ω̃.
Let σ : L ⊗B ∼→ P0 be the isomorphism induced from σ. Since P0

∼→ L ⊗ B,
choose an isomorphism τ : L ⊗ B ∼→ P0 such that ∧n(τ) = χ′(0). Now we have two
isomorphisms

σ, τ : L ⊗B ∼→ P0 with ∧n (σ) = ∧n(τ) = χ̃′(0).

Therefore, τ = σ ◦ Θ for some Θ ∈ SL(L ⊗B). Since dim(B) = 0, EL(L ⊗B) =

SL(L ⊗B). Hence Θ ∈ EL(L ⊗B) can be lifted to an element θ ∈ EL(L ⊗ B).
Therefore, we can lift σ to an isomorphism σ0 : L ⊗B ∼→ P0.

On the other hand, the pair (α, χ) induces the Euler class e(Q,χ) = (I(0), ω(0)) in
E(R,L). Hence if we choose an isomorphism δ : L ⊗ B ∼→ Q⊗B such that ∧n(δ) =

χ⊗B, then (α⊗B) ◦ δ = ω(0) = ω. Let us define

ψ = δ ◦ σ0−1 : P0
∼→ Q⊗B and ϕ = (α⊗B) ◦ ψ : P0 →→ I(0)B

Then β = ω ◦σ−1 = (α⊗B) ◦ δ ◦σ−1 = ϕ. By [B-RS 1, Remark 3.9], there is a surjection
ρ : P →→ IB[T ]/(I2T )B[T ] such that β̃ = ρ̃ and ρ = ϕ.

Let B(T ) be the ring obtained from B[T ] by inverting all the monic polynomials in
T . Then ρ induces the surjection

ρ⊗B(T ) : P ⊗B(T )→→ IB(T )/I2B(T )

and clearly β⊗B(T ) is lift of ρ⊗B(T ). Applying [D-Z 2, Theorem 4.11], we can find a
surjection η : P →→ IB[T ] such that η is a lift of ρ. Note that η(0) = ϕ = (α⊗B) ◦ ψ.
This completes the proof. �

The proof of the next result closely follows [B-D, Theorem 3.5] where it is proved for
L = R.
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Theorem 4.6. Let R be an affine k-algebra of dimension n ≥ 2. Let L ∈ P1(R) and L =

L ⊕ Rn−1. Let (I, ωI) ∈ E(R[T ], L[T ]) and λ ∈ k be such that ht(I(λ)) ≥ n. When
ht(I(λ)) > n, write Q = L. When ht(I(λ)) = n, assume that there exists Q ∈ Pn(R) with
determinant L and χ : L

∼→ ∧n(Q) an isomorphism such that e(Q,χ) = (I(λ), ωI(λ)) in
E(R,L), where ωI(λ) is induced from ωI . Then there exists P ∈ Pn(R[T ]) with determinant
L[T ] and an isomorphism χ1 : L[T ]

∼→ ∧n(P ) such that e(P, χ1) = (I, ωI) in E(R[T ], L[T ]).
Moreover, P/TP ' Q.

Proof. When n = 2, any (I, ωI) is Euler class of a rank 2 projective R[T ]-module,
without the condition that (I(λ), ωI(λ)) = e(P, χ). To see this, note that projective
modules of rank 1 are always cancellative. It follows easily using a standard patching
argument that there exists P1 ∈ P2(R[T ]) with determinant L[T ] and a surjection
ζ : P1 →→ I . Fix an isomorphism χ′ : L[T ]

∼→ ∧2(P1). Let e(P1, χ
′) = (I, ω) in

E(R[T ], L[T ]) be induced from (ζ, χ′). Then ωI = uω for some unit u ∈ R[T ]/I .
By (2.15), there exists P ∈ P2(R[T ]), an isomorphism χ1 : L[T ]

∼→ ∧2(P ) and a
surjection β : P →→ I such that e(P, χ1) = (I, uω) is induced from (β, χ1). Therefore,
e(P, χ1) = (I, ωI).

Assume n ≥ 3. Replacing T by T −λ, we assume λ = 0. Using (2.2), we assume that
R is a reduced affine algebra. Since Q ⊂ R, we get R is a geometrically reduced affine
algebra.

Given a surjection ωI : L[T ]/IL[T ] →→ I/I2. If ht(I(0)) > n, then I(0) = R[T ] and
we can lift ωI to a surjection ω′ : L[T ] →→ I/(I2T ). If ht(I(0)) = n, then it is given
that e(Q,χ) = (I(0), ωI(0)) in E(R,L). Hence by [B-RS 3, Corollary 4.3], there exists
a surjection α : Q →→ I(0) such that (I(0), ωI(0)) is obtained from the pair (α, χ). By
(2.4), there is a surjection θ : Q[T ]→→ I/(I2T ) such that θ(0) = α.

Step 1: If J = I∩R, then ht(J) ≥ n−1. By (4.1), there exists a non-zerodivisor b ∈ J2

such that Q1+b
∼→ L1+b. By [B-D, Lemma 2.5, Remark 2.6], the surjection θ : Q[T ] →→

I/(I2T ) can be lifted to a surjection γ : Q[T ]→→ I ′′ = I ∩ I1 such that

(1) I = I ′′ + (bT ),
(2) I1 + (bT ) = R[T ], hence I + I1 = R[T ],
(3) ht(I1) = n and R[T ]/I1 is reduced.

It follows that e(Q[T ], χ⊗R[T ]) = (I, ωI) + (I1, ωI1), where ωI1 is induced by the
pair (γ, χ⊗R[T ]).

Step 2: Let B = R1+bR. We first note that if I1B[T ] = B[T ], then the surjection
γ⊗B[T ] : Q⊗B[T ]→→ IB[T ] is a lift of θ⊗B[T ]. By [D 1, Lemma 3.8], θ can be lifted
to a surjection Θ : Q[T ] →→ I . Further, from above, e(Q[T ], χ⊗R[T ]) = (I, ωI) in
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E(R[T ], L[T ]) and we are done in this case by taking P = Q[T ]. Therefore, we assume
that ht(I1B[T ]) = n.

Since bB is contained in the Jacobson radical of B, using (2, 3), we conclude that
I1B[T ] is a zero dimensional radical ideal. Hence I1B[T ] = ∩r1Mi, where Mi’s are
maximal ideals of B[T ] of height n and containing I1. If K = B ∩ I1B[T ], then K is a
reduced ideal of height n− 1. Further, K + bB is an ideal of B of height n. It is easy to
see that B[T ]Mi are regular for i = 1, . . . , r. By [B-H, Theorem 2.2.12], if pi =Mi ∩ B,
then Bpi is regular local.

Now B/K is a reduced ring of dimension 1 and the image of b belongs to the
Jacobson radical of B/K. Hence (B/K)b is a product of fields. Therefore, we can
find a1, · · · , an−1 ∈ K such that ht(a1, · · · , an−1) = n − 1, ht(a1, · · · , an−1, b) = n and
Kb = (a1, · · · , an−1)b + Kb

2. Therefore, Kp = (a1, · · · , an−1)p for all minimal prime
ideals p over K. Let (a1, · · · , an−1) = K ∩K1 be a reduced primary decomposition.

Step 3: Let B̃ = B/(a1, · · · , an−1). Since b belongs to the Jacobson radical ofB, B̃ is a
semilocal ring of dimension 1 and K̃ ∩ b̃K̃1 = 0 in B̃. Moreover, Ĩ1 is an invertible ideal
and Ĩ1 + b̃K̃1[T ] = B̃[T ]. Note that B̃ is a subring of B̃/K̃⊕B̃/b̃K̃1 with the conductor
ideal K̃ + b̃K̃1.

Applying (4.2) to the invertible ideal Ĩ1 with a = b̃K̃1, we get an invertible ideal N
of B̃[T ] such that

(1) N + Ĩ1b̃K̃1[T ] = B̃[T ],
(2) Nd ∩ Ĩ1B̃[T ] = (f̃) for some non-zerodivisor f̃ ∈ B̃[T ],
(3) dim(B̃[T ]/N) = 0.

Since K̃.K̃1 = (0̃) in B̃ and N + b̃K̃1[T ] = B̃[T ], it follows that any maximal ideal of
B̃[T ] containing N must contain K̃[T ].

Let I2 be the inverse image of N in B[T ] andM be a maximal ideal of B[T ] contain-
ing I2. ThenM∩ B = q is a prime ideal of B containing K and of height n − 1, since
M + bB[T ] = B[T ]. Hence q is a minimal prime over K. Therefore, Bq is a regular local
ring and consequently B[T ]M is also regular. This shows that the ideal I2 has finite
projective dimension and it is locally generated by a regular sequence of length n.

Since B̃ is semilocal, L⊗ B̃ ∼→ B̃. Therefore, we can write (2) of step 3 as a surjection
φ′ : L[T ]⊗ B̃ →→ Nd ∩ Ĩ1B̃[T ]. We get a surjection

φ : L⊗B[T ]→→ I
(d)
2 ∩ I1B[T ]

such that φ|L⊗B[T ] is a lift of φ′ and φ(B[T ]n−1) = (a1, . . . , an−1). Since I1B[T ] is
reduced, by (4.3), I1B[T ] is independent of the local orientations. Therefore, we have

(I1B[T ], ωI1 ⊗B[T ]) + (I
(d)
2 , ω) = 0
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in E(B[T ], L⊗B[T ]), where ω is induced by φ. By (4.4), there exists P ′ ∈ Pn(B[T ])

with determinant L⊗B[T ] such that:

(1) There is a surjection δ : P ′ →→ I
(d)
2 ,

(2) [P ′]− [L⊗B[T ]] = −[B[T ]/I2] in K0(B[T ]) and
(3) an orientation χ′ : L⊗B[T ]

∼→ ∧n(P ′) can be defined such that e(P ′, χ′) =

(I
(d)
2 , ω) = −(I1B[T ], ωI1 ⊗B[T ]).

Since Q⊗B[T ]
∼→ L⊗B[T ], we have

e(Q⊗B[T ], χ⊗B[T ]) = (IB[T ], ωI ⊗B[T ]) + (I1B[T ], ωI1 ⊗B[T ]) = 0

in E(B[T ], L⊗B[T ]). Therefore, e(P ′, χ′) = (IB[T ], ωI ⊗B[T ]). By [D-Z 2, Corollary
4.14], there exists a surjection β : P ′ →→ IB[T ] such that (β, χ′) induces e(P ′, χ′) =

(IB[T ], ωI ⊗B[T ]) in E(B[T ], L⊗B[T ]).
Since I2 + (b) = B[T ] and b belongs to the Jacobson radical of B, we have I2 + (T ) =

B[T ]. In other words, I2(0) = B. Therefore,

[P ′/TP ′]− [L⊗B] = 0 in K0(B)

i.e. P ′/TP ′ is a stably isomorphic to L⊗B. Since height of Jacobson radical of B is
≥ 1, we get P ′/TP ′ ' L⊗B.

As dim(B̃
b̃
) = 0, we have N

b̃

∼→ B̃
b̃
. Hence (I2)b is a complete intersection ideal of

Bb[T ]. So

[P ′b]− [L⊗Bb[T ]] = −[Bb[T ]/(I2)b] = 0 in K0(Bb[T ])

i.e. P ′b is stably isomorphic to L⊗Bb[T ] and as dim(Bb) ≤ n−1, we get P ′b ' L⊗Bb[T ].

Step 4: Applying (4.5) with P = P ′, we obtain an isomorphism ψ : P ′/TP ′
∼→ Q⊗B

and a surjection η : P ′ →→ IB[T ] such that η(0) = (α⊗B) ◦ ψ. Now consider the
following surjections.

Φ = α⊗Rb(1+bR)[T ] : Qb(1+bR)[T ]→→ Ib(1+bR) = Rb(1+bR)[T ]

ηb : P ′b →→ Ib(1+bR) = Rb(1+bR)

Note that Qb(1+bR)[T ]
∼→ Lb(1+bR)[T ]

∼→ P ′b. Since dim(Rb(1+bR)) ≤ n− 1 and Q ⊂ R, by
[Ra, Corollary 2.5], ker(Φ) and ker(ηb) are locally free. Therefore, by Quillen’s local-
global principle [Q], ker(Φ) and ker(ηb) are extended from Rb(1+bR). Further, reducing
modulo T , we observe that αb(1+bR) ◦ ψb = ηb(0). This implies that ker(Φ)

∼→ ker(ηb)

and there is an isomorphism Ψ : P ′b
∼→ Qb(1+bR)[T ] such that Ψ(0) = ψb. By a standard

patching argument, the result follows. �

In (4.6), we have essentially proved the following result.
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Theorem 4.7. Let R be an affine k-algebra of dimension n ≥ 3 and L ∈ P1(R). Let I ⊂ R[T ]

be a local complete intersection ideal of height n such that ht(I(0)) ≥ n. Assume that there
exists Q ∈ Pn(R) with determinant L and a surjection Q[T ] →→ I/I2 ∩ (T ). Then there
exists P ∈ Pn(R[T ]) with determinant L[T ] and a surjection P →→ I . In other words, I is
projectively generated.

Proof. Write L = L[T ] ⊕ R[T ]n−1. We have a surjection wI : L/IL →→ I/I2 as the
composition of surjections L/IL ∼→ Q[T ]/IQ[T ] →→ I/I2, where the last map is in-
duced from a given surjection θ1 : Q[T ] →→ I/I2 ∩ (T ). Take (I, ωI) ∈ E(R[T ], L[T ]).
Let θ : Q[T ] →→ I/(I2T ) be the surjection induced from θ1. Now follow the proof of
(4.6). �

For even dimensional ring, we have the following stronger result. In case L = R, it
is proved in [B-D, Corollary 3.7].

Corollary 4.8. Let R be an affine k-algebra of even dimension n ≥ 2 and L ∈ P1(R). Let
I ⊂ R[T ] be an ideal of height n. Write L = L ⊕ Rn−1 and assume that there is a surjection
L[T ]/IL[T ] →→ I/I2. Let λ ∈ k be such that ht(I(λ)) ≥ n. Assume that there exists
Q ∈ Pn(R) with determinantL and a surjectionQ→→ I(λ). Then there exists P ∈ Pn(R[T ])

with determinant L[T ] and a surjection P →→ I .

Proof. Changing T to T − λ, we assume λ = 0. Let ω : L[T ] →→ I/I2 be a given
surjection and consider (I, ω) ∈ E(R[T ], L[T ]). If I(0) = R, then ω can be lifted to a
surjection L[T ]→→ I/(I2T ). Now we are done by (4.7).

Assume ht(I(0)) = n and consider (I(0), ω(0)) ∈ E(R,L). Given a surjection α :

Q →→ I(0) with χ : L
∼→ ∧n(Q). Let e(Q,χ) = (I(0), σ) in E(R,L) be induced from α.

By [B-RS 3, Remark 5.0], any two local orientations of I(0) differ by a unit. Hence there
exists a unit a ∈ R/I(0) such that aσ = ω(0). By [B-RS 3, Lemma 5.1], there exists Q′ ∈
Pn(R) stably isomorphic to Q and χ′ : L

∼→ ∧n(Q′) such that e(Q′, χ′) = (I(0), an−1σ).
Since n is even, by [B-RS 3, Lemma 5.4], (I(0), an−1σ) = (I(0), aσ) = (I(0), ω(0)). By
[B-RS 3, Corollary 4.3], there is a surjection β : Q′ →→ I(0) such that (β, χ′) induces
e(Q′, χ′). By (2.4), there is a surjectionQ′[T ]→→ I/(I2T ). Now we are done by (4.7). �

The following result is proved in [D 2, Proposition 5.1, Corollary 5.2] when L = R.

Proposition 4.9. Let R be an affine k-algebra of dimension n ≥ 3 over a C1 field k. Let
L ∈ P1(R) and L = L⊕Rn−1. Let I ⊂ R be an ideal of height n. Assume that I is a surjective
image of L. Then

(1) any surjection φ : L/IL →→ I/I2 can be lifted to a surjection ψ : L →→ I .
(2) E(R,L) ' E0(R,L).
(3) E(R,L) ' E(R).



18 MANOJ K. KESHARI AND MD. ALI ZINNA

Proof. (1). Let θ : L →→ I be a given surjection and write P = L⊕Rn−3. Let ω be the
trivial orientation of I induced from θ. By [B-RS 3, Remark 5.0], we have ũ ω = φ for
some unit ũ ∈ R/I .

Write θ = (θ1, a1, a2) : P ⊕ R2 →→ I . Without loss of generality, we may assume
that height of θ(P ) = J is n − 2. Let ”bar” denote reduction modulo J . Since R
is an affine k-algebra of dimension 2 with k a C1-field of charateristic 0, by Suslin’s
cancellation result, the unimodular row (u, a1, a2) is completable to a matrix in SL3(R).
By [RS, Lemma 2.3], there exists σ ∈ GL2(R) with det(σ) = u−1 and σ(a1, a2) = (b1, b2).
Consider the surjection ψ = (θ1, b1, b2) : P ⊕ R2 →→ I . Since ∧n(φ) = ∧n(ψ ⊗ R/I),
there exists δ ∈ SL(L/IL) such that φ = (ψ ⊗ R/I) ◦ δ. Since dimR/I = 0, we have
SL(L/IL) = EL(L/IL). Let ∆ ∈ EL(L) be a lift of δ. Then the surjection ψ◦∆ : L →→ I

is a lift of φ. This completes the proof of (1).
(2). It follows from (1).
(3). We have E(R) ' E0(R), by [D 2, Corollary 5.2] and E0(R,L) ' E0(R), by

[B-RS 3, Theorem 6.8]. Now (3) follows from (2). �

The next result extends (4.8) when k is a C1-field. In case L = R, it is proved in [B-D,
Corollary 3.10].

Corollary 4.10. Let R be an affine k-algebra of dimension n ≥ 2 over a C1 field k. Let
L ∈ P1(R) and write L = L[T ]⊕R[T ]n−1. Let I ⊂ R[T ] be an ideal of height n and assume
that there is a surjection L[T ] →→ I/I2. Let λ ∈ k be such that ht(I(λ)) ≥ n. Assume that
there exists Q ∈ Pn(R) with determinant L and a surjection Q →→ I(λ). Then there exists
P ∈ Pn(R[T ]) with determinant L[T ] and a surjection P →→ I .

Proof. We may assume λ = 0. Let ωI : L[T ]→→ I/I2 be a given surjection and (I, ωI) ∈
E(R[T ], L[T ]). If I(0) = R, then ωI can be lifted to a surjectionL[T ]→→ I/(I2T ) and we
are done by (4.7). Assume ht(I(0)) = n. Then (I(0), ωI(0)) ∈ E(R,L). By assumption,
there is a surjection α : Q →→ I(0). Let χ : L

∼→ ∧n(Q) be an isomorphism. Since
weak Euler class e(Q) = I(0) inE0(R) and by (4.9), E(R,L)

∼→ E0(R,L), it follows that
the Euler class of Q induced by (α, χ) is e(Q,χ) = (I(0), wI(0)). By (2.4), there exists a
surjection θ : Q[T ]→→ I/(I2T ) with θ(0) = α. Applying (4.7), we are done. �

The following result extends [B-RS 2, Theorem 2.7] and [B-D, Corollary 3.11].

Corollary 4.11. Let R be an affine k-algebra of dimension n ≥ 2 over an algebraically closed
field k and L ∈ P1(R). Let I ⊂ R[T ] be an ideal of height n and there is a surjection
L[T ]⊕R[T ]n−1 →→ I/I2. Then there exists P ∈ Pn(R[T ]) with determinant L[T ] and a
surjection P →→ I .
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Proof. Replacing T by T − λ for some λ ∈ k, we may assume that ht(I(0)) ≥ n. Write
I(0) = J and L⊕Rn−1 = L. By hypothesis, we have a surjection α : L →→ J/J2. By
[B-RS 3, Lemma 2.11], there exists e ∈ J such that (α(L), e) = J with e(1 − e) ∈ α(L).
If we write f = 1 − e, then αf : Lf →→ Jf is a surjection. Define π : L1+fk[f ] →→
J1+fk[f ] = R1+fk[f ] to be the projection onto the last factor. We have two unimodular
elements αf(1+fk[f ]) and πf in Lf(1+fk[f ])∗. Note that Rf(1+fk[f ]) is an affine algebra of
dimension n − 1 over a C1-field k(f). By [Bh 3, Theorem 4.1], projective Rf(1+fk[f ])-
modules of rank n are cancellative. Hence there exists an automorphism σ of Lf(1+fR)

such that αf(1+fk[f ]) ◦ σ = πf . By standard patching argument there exists Q ∈ Pn(R)

with determinant L and a surjection Q→→ J . Now the result follows from (4.10). �

Let R be a ring of dimension n ≥ 3 and L ∈ P1(R). Consider the following sets

H = {e(Q,χ) ∈ E(R,L) |Q ∈ Pn(R), χ : L
∼→ ∧n(Q)}

K = {e(P, χ) ∈ E(R[T ], L[T ]) |P ∈ Pn(R[T ]), χ : L[T ]
∼→ ∧n(P )}

It is a natural question whether H and K are subgroups of E(R,L) and E(R[T ], L[T ])

respectively?
The following result extends [B-D, Proposition 3.14] where it is proved for L = R.

Corollary 4.12. Let R be an affine k-algebra of dimension n ≥ 3 and L ∈ P1(R). Then H is
a subgroup of E(R,L) if and only if K is a subgroup of E(R[T ], L[T ]).

Proof. If K is a subgroup of E(R[T ], L[T ]), then it is easy to see that H is also a sub-
group of E(R,L).

Now suppose that H is a subgroup of E(R,L). Let (J1, ωJ1), (J2, ωJ2) ∈ K. By
moving lemma [D-Z 2, Lemma 2.11], there exists an ideal J3 ⊂ R[T ] of height n and a
local orientation ωJ3 such that (J2, ωJ2) + (J3, ωJ3) = 0 in E(R[T ], L[T ]) and (J1 ∩ J2) +

J3 = R[T ]. Let J4 = J1 ∩ J3. Then we have

(J4, ωJ4) = (J1, ωJ1) + (J3, ωJ3) = (J1, ωJ1)− (J2, ωJ2)

where ωJ4 is the local orientation of J4 induced by ωJ1 and ωJ3 . Now there is group ho-
momorphism Ψ : E(R[T ], L[T ]) −→ E(R,L) which takes (J, ωJ) to (J(0), ωJ(0)), where
ωJ(0) is the local orientation of J(0) induced by ωJ (if J(0) = R, then Ψ((J, ωJ)) = 0)
(see [D-Z 2, Remark 4.9]). Therefore, we have

(J4(0), ωJ4(0)) = (J1(0), ωJ1(0))− (J2(0), ωJ2(0)).

Since (J1(0), ωJ1(0)) and (J2(0), ωJ2(0)) are in H and H is a subgroup of E(R,L), we
get (J4(0), ωJ4(0)) ∈ H . Therefore, there exists Q ∈ Pn(R) with determinant L and an
isomorphism χ : L

∼→ ∧n(Q) such that e(Q,χ) = (J4(0), ωJ4(0)). By (4.6), there exists
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P ∈ Pn(R[T ]) with determinant L[T ] and an isomorphism χ1 : L[T ]
∼→ ∧n(P ) such

that e(P, χ1) = (J4, ωJ4). This completes the proof.
�

5. PROJECTIVE GENERATION: GENERAL CASE

The following result extends (4.6) where it is proved when L is extended from R.

Theorem 5.1. Let R be a reduced affine k-algebra of dimension n ≥ 2 and L ∈ P1(R[T ]).
Let (I, ωI) be an element of E(R[T ], L) when n 6= 3 and Ẽ(R[T ], L) when n = 3. Let
λ ∈ k be such that ht(I(λ)) ≥ n. Assume that there exists Q ∈ Pn(R) and an isomorphism
χ : L/TL

∼→ ∧n(Q) such that e(Q,χ) = (I(λ), ωI(λ)) inE(R,L/TL). Then there exists P ∈
Pn(R[T ]) and an isomorphism χ1 : L

∼→ ∧n(P ) such that e(P, χ1) = (I, ωI) in E(R[T ], L).

Proof. The case n = 2 is same as (4.6). Consider n ≥ 4. We may assume λ = 0. Since R
is reduced, there exists an extension R ↪→ S such that

(1) R ↪→ S ↪→ Q(R),
(2) S is a finite R-module,
(3) R ↪→ S is subintegral and
(4) L⊗RS[T ] is extended from S.

Note thatL⊗S[T ] is extended from S and (I(0)S, ω∗I(0)) = e(Q⊗S, χ⊗S) inE(S,L/TL⊗S),
where (I(0)S, ω∗I(0)) is the image of (I(0), ωI(0)). Applying (4.6), there exists P ′ ∈
Pn(S[T ]) with determinant L⊗S[T ] and an isomorphism χ′ : L⊗S[T ]

∼→ ∧n(P ′) such
that e(P ′, χ′) = (IS[T ], ω∗I ) in E(S[T ], L⊗S[T ]).

Since R ↪→ S is a finite subintegral extension and rank(P ′) = n = dim(R), by (2.6),
there exists P ∈ Pn(R[T ]) with determinant L such that P ⊗S[T ] ' P ′. Choose an
isomorphism χ1 : L

∼→ ∧n(P )

Case I: Assume n is odd. By (3.2), e(P ′, χ′) = e(P ′, χ1⊗S[T ]) = e(P ⊗S[T ], χ1⊗S[T ]).
By [D-Z 2, Theorem 6.16], we haveE(R[T ], L)

∼→ E(S[T ], L⊗S[T ]). Therefore, e(P, χ1) =

(I, ωI).
Case II: Assume n is even. We may assume thatR ↪→ S is an elementary subintegral

extension. If C denotes the conductor ideal of R ⊂ S, then ht(C) ≥ 1. Write L =

L⊕R[T ]n−1. If J = I2 ∩ C, then ht(J) ≥ 1. We can choose b ∈ J such that ht(b) = 1.
The surjection ωI : L/I→→I/I2 induces a surjection ωI : L/IL →→ I/I

2, where bar
denotes reduction modulo the ideal (b).

Since dim(R/bR) < dim(R), by [D-Z 2, Proposition 2.13], ωI can be lifted to a
surjection η′ : L →→ I . If η : L −→ I is a lift of η′ and hence a lift of ωI as b ∈ I2,
then (η(L), b) = I . Applying [B-RS 3, Corollary 2.13] to the element (η, b) of L∗ ⊕R[T ],
there exists Ψ ∈ L∗ such that ht(Kb) ≥ n, where K = (η + bΨ)(L). As the ideal
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(η(L), b) = I has height n, we further get that ht(K) = n. Replacing η by η + bΨ , we
assume η(L) = K has height n.

Applying [B-RS 3, Lemma 2.11] to (K, b) = I and b ∈ I2, we get an ideal I1 ⊂ R[T ]

such that

(1) η(L) = I ∩ I1;
(2) η ⊗R[T ]/I = ωI ;
(3) ht(I1) ≥ n;
(4) I1 + bR[T ] = R[T ] and hence I1 + C[T ] = R[T ].

If ht(I1) > n, then I1 = R[T ]. Hence (I, wI) = 0 in E(R[T ], L) and we are done.
Assume ht(I1) = n. From (1), we have (I, ωI) + (I1, ωI1) = 0 in E(R[T ], L), where ωI1
induced by η. Proceeding as above with (I1, ωI1), we get an ideal I2 ⊂ R[T ] of height n
with I2 + CR[T ] = R[T ] and an local orientation ωI2 of I2 such that

(I, ωI) = −(I1, ωI1) = (I2, ωI2) in E(R[T ], L).

Recall that we have e(P ′, χ′) = (IS[T ], ω∗I ) = (I2S[T ], ω∗I2) in E(S[T ], L⊗S[T ]). Since
L⊗S[T ] is extended from S, by [D-Z 2, Corollary 4.14], there exists a surjection β :

P ′ →→ I2S[T ] such that (I2S[T ], ω∗I2) is obtained from (β, χ′).
Since I2 + C[T ] = R[T ], we have the following:

(1) I2 ⊗ (R/C)[T ] ' (R/C)[T ].
(2) I2 ⊗ (S/C)[T ] ' (S/C)[T ].
(3) R[T ]/I2 ' S[T ]/I2S[T ].

Therefore, β1 := β ⊗ (S/C)[T ] is a unimodular element of (P ′ ⊗ (S/C)[T ])∗. So β1 ⊗
(S/C)red[T ] is a unimodular element of (P ′⊗(S/C)red[T ])∗. Since (R/C)red = (S/C)red

and P ⊗S[T ] ' P ′, it is easy to see that we have a lift of β1⊗ (S/C)red[T ] to a surjection
γ : P ⊗ (R/C)[T ]→→ (R/C)[T ]. It is clear that γ⊗ (S/C)[T ] = β1 modulo the nil radical
of ((S/C)[T ]). So, two unimodular elements β1 and γ⊗ (S/C)[T ] of (P ⊗ (S/C)[T ])∗

are same modulo the nil radical of ((S/C)[T ]). By [D-Z 2, Proposition 2.8], there exists
a transvection τ of P ⊗ (S/C)[T ] such that β1 ◦ τ = γ⊗ (S/C)[T ]. By [B-R, Proposition
4.1], τ can be lifted to an automorphism θ of P ⊗S[T ](' P ′).
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Consider the following Milnor square

P //

��

α

'' ''OOOOOOOOOOOOOOOO P ⊗S[T ](' P ′)

��

β◦θ

)) ))SSSSSSSSSSSSSS

I2 //

j1

��

I2⊗S[T ] ' I2S[T ]

��

P ⊗ (R/C)[T ] //

γ

'' ''OOOOOOOOOOO
P ⊗ (S/C)[T ]

)) ))SSSSSSSSSSSSSS

(R/C)[T ] // (S/C)[T ]

As β ◦ θ and γ agree over S/C[T ], they will patch to yield a surjection α : P →→ I2.
Let e(P, χ1) = (I2, ω

′
I2

) be obtained from the pair (α, χ1). By (2.14), (I2, ωI2) =

(I2, fω
′
I2

) for some unit f ∈ R[T ]/I2. By (2.15), there exists P2 ∈ Pn(R[T ]) which is
stably isomorphic to P , an isomorphism χ2 : L

∼→ ∧n(P2) and a surjection υ : P2 →→ I2

such that e(P2, χ2) = (I2, f
n−1

ω′I2) is obtained from (υ, χ2). Since n is even, by (2.18),

(I2, f
n−1

ω′I2) = (I2, fω
′
I2

). Therefore, e(P2, χ2) = (I2, fω
′
I2

) = (I2, ωI2). Since (I2, ωI2) =

(I, ωI), we get e(P2, χ2) = (I, ωI). This completes the proof in the case n ≥ 4.
For n = 3 case, we follow the steps of case I and use [D-Z 2, Theorem 7.2] which says

that the natural group homomorphism Ẽ(R[T ], L)→ Ẽ(S[T ], L⊗S[T ]) is injective. �

The proof of the following theorem is essentially contained in (5.1).

Theorem 5.2. Let R be a reduced affine k-algebra of dimension n ≥ 2 and L ∈ P1(R[T ]).
Let (I, ωI) ∈ Ẽ(R[T ], L). Let λ ∈ k be such that ht(I(λ)) ≥ n and there exists Q ∈ Pn(R)

and an isomorphism χ : L/TL
∼→ ∧n(Q) such that e(Q,χ) = (I(λ), ωI(λ)) in E(R,L/TL).

Then there exists P ∈ Pn(R[T ]) with determinant L, an isomorphism χ1 : L
∼→ ∧n(P ) and

a surjection α : P →→ I such that e(P, χ1) = (I, ωI) in Ẽ(R[T ], L). In particular, I is
projectively generated.

The following result generalizes (5.2) in case n is even.

Corollary 5.3. Let R be a reduced affine k-algebra of even dimension n ≥ 2 and L ∈
P1(R[T ]). Let (I, ωI) ∈ Ẽ(R[T ], L). Let λ ∈ k be such that ht(I(λ)) ≥ n and there
exists Q ∈ Pn(R) with determinant L/TL and a surjection Q →→ I(λ). Then there exists
P ∈ Pn(R[T ]) with determinant L, an isomorphism χ : L

∼→ ∧n(P ) and a surjection
α : P →→ I such that e(P, χ) = (I, ωI) in Ẽ(R[T ], L) is obtained from the pair (α, χ).
In particular, I is projectively generated.
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Proof. Since n is even and there is a surjection Q →→ I(λ), by [B-RS 3, Lemma 5.1],
there exists Q̃ ∈ Pn(R) with an isomorphism χ̃ : L/TL

∼→ ∧n(Q̃) such that e(Q̃, χ̃) =

(I(λ), wI(λ)) in E(R,L/TL). By (5.2), there exists P1 ∈ Pn(R[T ]), an isomorphism χ1 :

L
∼→ ∧n(P1) and a surjection α1 : P1 →→ I such that e(P1, χ1) = (I, ωI) in Ẽ(R[T ], L).

Note that (I, ωI) may not be obtained from the pair (α1, χ1). Let e(P1, χ1) = (I, ω̃I) be
obtained from the pair (α1, χ1). Then there is a unit f ∈ R[T ]/I such that ωI = fω̃I .
Since n is even, by (2.15), there exists P ∈ Pn(R[T ]) with P ⊕ R[T ]

∼→ P1 ⊕ R[T ], an
isomorphism χ : L

∼→ ∧n(P ) and a surjection α : P →→ I such that e(P, χ) = (I, ωI) is
obtained from the pair (α, χ). �

The following result extends (5.2).

Corollary 5.4. Let R be a reduced affine k-algebra of dimension n ≥ 3 over a C1 field k

and L ∈ P1(R[T ]). Let (I, ωI) ∈ Ẽ(R[T ], L). Let λ ∈ k be such that ht(I(λ)) ≥ n and
there exists Q ∈ Pn(R) with determinant L/TL and a surjection Q →→ I(λ). Then there
exists P ∈ Pn(R[T ]) with determinant L, an isomorphism χ : L

∼→ ∧n(P ) and a surjection
α : P →→ I such that e(P, χ) = (I, ωI) in Ẽ(R[T ], L). In particular, I is projectively
generated.

Proof. Let θ : Q →→ I(λ) be a surjection and χ1 : L/TL
∼→ ∧n(Q) be an isomorphism.

Let e(Q,χ1) = (I(λ), ω) ∈ E(R,L/TL) be obtained from the pair (θ, χ1). By (4.9),
(I(λ), ω) = (I(λ), ωI(λ)) in R(R,L/TL). Using (5.2), we are done. �

Corollary 5.5. Let R be a reduced affine k-algebra of dimension n ≥ 3 over an algebraically
closed field k. Let L ∈ P1(R[T ]) and (I, ωI) ∈ Ẽ(R[T ], L). Then there exists P ∈ Pn(R[T ])

with determinant L, an isomorphism χ : L
∼→ ∧n(P ) and a surjection α : P →→ I such that

e(P, χ) = (I, ωI) in Ẽ(R[T ], L).

Proof. We can find λ ∈ k such that ht(I(λ)) ≥ n. Following the proof of (4.11), we get
a projective R-module Q of rank n with determinant L and a surjection Q →→ I(λ).
Finally using (5.4), we are done. �

The following result is immediate from (5.5).

Corollary 5.6. Let R be a reduced affine k-algebra of dimension n ≥ 3 over an algebraically
closed field k. Let (I, ωI) be an element of Ẽ(R[T ], L) when n = 3 and and E(R[T ], L)

when n > 3. Then (I, ωI) = e(P, χ) for some P ∈ Pn(R[T ]) with determinant L and
χ : L

∼→ ∧n(P ) an isomorphism.
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