PROJECTIVE GENERATION OF IDEALS IN POLYNOMIAL EXTENSIONS

MANOJ K. KESHARI AND MD. ALI ZINNA

Abstract

Let R be an affine domain of dimension $n \geq 3$ over a field of characteristic 0 . Let L be a projective $R[T]$-module of rank 1 and $I \subset R[T]$ a local complete intersection ideal of height n. Assume that I / I^{2} is a surjective image of $L \oplus R[T]^{n-1}$. This paper examines under what conditions I is a surjective image of a projective $R[T]$-module P of rank n with determinant L.

1. Introduction

Assumptions: In this paper, k will denote a field of characteristic 0 , all rings are commutative Noetherian containing \mathbb{Q} and projective modules are finitely generated of constant rank. For a ring $R, \mathcal{P}_{n}(R)$ will denote the set consisting of isomophism classes of projective R-modules of rank n.

Let R be a ring and M a finitely generated R-module. We write $\mu_{R}(M)$ for the minimum number of generators of M as an R-module. Assume I is an ideal of R with $\mu_{R / I}\left(I / I^{2}\right)=n$. If $\mu_{R}(I)=n$, then I is called efficiently generated and if there exists $Q \in \mathcal{P}_{n}(R)$ such that I is a surjective image of Q, then I is called projectively generated.

Let R be a ring of dimension n and $I \subset R[T]$ an ideal of height n with $\mu_{R / I}\left(I / I^{2}\right)=$ n. If I contains a monic polynomial, then Mandal [M] proved that I is efficiently generated. This result is not true if I does not contain a monic polynomial (for an example, see [B-D], Introduction). However, if $I \subset R[T]$ is a maximal ideal not containing a monic polynomial, then Bhatwadekar [Bh 1] proved that I is projectively generated. For a non-maximal ideal I which does not contain a monic polynomial, Bhatwadekar and Das [B-D] proved the following result.
"Let R be an affine k-algebra of dimension $n \geq 3$. Let $I \subset R[T]$ be a local complete intersection ideal of height n such that $\mu_{R / I}\left(I / I^{2}\right)=n$ and $I(0) \subset R$ is an ideal of height $\geq n$. Assume that there exists $Q \in \mathcal{P}_{n}(R)$ with trivial determinant and a surjection $Q[T] \rightarrow I /\left(I^{2} \cap(T)\right)$. Then I is projectively generated."

In terms of Euler class group of $R[T]$, they proved the following result [B-D]. "Let $\omega_{I}:(R[T] / I)^{n} \rightarrow I / I^{2}$ be a local orientation of I and $\omega_{I}(0):(R / I(0))^{n} \rightarrow I(0) / I(0)^{2}$

[^0]be the induced local orientation of $I(0)$. Let $\left(I, \omega_{I}\right)$ and $\left(I(0), \omega_{I}(0)\right)$ be elements of Euler class groups $E(R[T])$ and $E(R)$ respectively. Assume that $\left(I(0), \omega_{I}(0)\right)$ is obtained as the Euler class of a projective R-module. Then $\left(I, \omega_{I}\right)$ is also obtained as the Euler class of a projective $R[T]$-module."

Let R be an affine k-algebra of dimension $n \geq 3$ and $L \in \mathcal{P}_{1}(R[T])$. Das [D 1] has developed the theory of Euler class group $E(R[T], R[T])$ which is used in [B-D]. Das and Zinna [D-Z 2] extended results of Das [D 1] to $E(R[T], L)$. So it is natural to ask the following generalization of results of [B-D].

Question 1.1. Let R be an affine k-algebra of dimension $n \geq 3$ and $L \in \mathcal{P}_{1}(R[T])$. Let $I \subset R[T]$ be a local complete intersection ideal of height n such that $h t(I(0)) \geq n$. Let $Q \in \mathcal{P}_{n}(R)$ with determinant L/TL.
(1) Let $\left(I, \omega_{I}\right) \in E(R[T], L)$ be such that $\left(I(0), \omega_{I(0)}\right)=e(Q, \widetilde{\chi}) \in E(R, L / T L)$, where $\tilde{\chi}: L / T L \xrightarrow{\sim} \wedge^{n}(Q)$ is an isomorphism. Does there exist $P \in \mathcal{P}_{n}(R[T])$ with determinant L and an isomorphism $\chi: L \xrightarrow{\sim} \wedge^{n}(P)$ such that $e(P, \chi)=\left(I, \omega_{I}\right)$ in $E(R[T], L)$?
(2) Assume there is a surjection $Q[T] \rightarrow I /\left(I^{2} \cap(T)\right)$. Is I projectively generated? In other words, does there exist $P \in \mathcal{P}_{n}(R[T])$ with determinant L such that I is a surjective image of P ?

We answer question 1.1(2) in case L is extended from R (see 4.7).
Theorem 1.2. Let R be an affine k-algebra of dimension $n \geq 3$ and $L \in \mathcal{P}_{1}(R)$. Let $I \subset R[T]$ be a local complete intersection ideal of height n such that $h t(I(0)) \geq n$. Assume that there exists $Q \in \mathcal{P}_{n}(R)$ with determinant L and a surjection $Q[T] \rightarrow I / I^{2} \cap(T)$. Then there exists $P \in \mathcal{P}_{n}(R[T])$ with determinant $L[T]$ and a surjection $P \rightarrow I$. In other words, I is projectively generated.

We answer question 1.1(1) for reduced ring R (see 5.1).
Theorem 1.3. Let R be a reduced affine k-algebra of dimension $n \geq 3$ and $L \in \mathcal{P}_{1}(R[T])$. Let $I \subset R[T]$ be an ideal of height n such that $h t(I(0)) \geq n$. Assume that $\left(I, \omega_{I}\right) \in E(R[T], L)$ when $n \geq 4$ and $\left(I, \omega_{I}\right) \in \widetilde{E}(R[T], L)$, the restricted Euler class group of $R[T]$ when $n=3$ (see (2.12)). Assume that there exists $Q \in \mathcal{P}_{n}(R)$ with determinant $L / T L$ and an isomorphism $\chi: L / T L \xrightarrow{\sim} \wedge^{n}(Q)$ such that $e(Q, \chi)=\left(I(0), \omega_{I(0)}\right)$ in $E(R, L / T L)$. Then there exists $P \in$ $\mathcal{P}_{n}(R[T])$ with determinant L and an isomorphism $\chi_{1}: L \xrightarrow{\sim} \wedge^{n}(P)$ such that $e\left(P, \chi_{1}\right)=$ $\left(I, \omega_{I}\right)$ in $E(R[T], L)$.

Steps of proof of (1.3): First we prove the result when L is extended from R. For arbitrary L, there exists a finite subintegral extension S of R such that $L \otimes S[T]$ is extended from S. Now we know the result in $S[T]$ by extended case. Finally we descend
from $S[T]$ to $R[T]$ by proving that for $\left(I, \omega_{I}\right) \in E(R[T], L)$, if its image $\left(I S[T], \omega_{I}^{*}\right)$ in $E(S[T], L \otimes S[T])$ is obtained as the Euler class of a projective $S[T]$-module, then $\left(I, \omega_{I}\right)$ is also obtained as the Euler class of a projective $R[T]$-module.

The following result (see 4.11) is an application. It improves [B-RS 2, Theorem 2.7] and [B-D, Corollary 3.11], where it is proved for $L=R[T]$.

Corollary 1.4. Let R be an affine k-algebra of dimension $n \geq 2$ with k an algebraically closed field. Let $L \in \mathcal{P}_{1}(R)$ and $I \subset R[T]$ an ideal of height n. Assume that I / I^{2} is a surjective image of $L[T] \oplus R[T]^{n-1}$. Then there exists $P \in \mathcal{P}_{n}(R[T])$ with determinant $L[T]$ such that I is a surjective image of P.

2. Preliminaries

In this section, we recall some results for later use.
Lemma 2.1. [B-RS 3, Lemma 5.4] Let R be a ring of dimension $n \geq 2$ and $L \in \mathcal{P}_{1}(R)$. Let $J \subset R$ be an ideal of height n and $\omega_{J}:\left(L \oplus R^{n-1}\right) / J\left(L \oplus R^{n-1}\right) \rightarrow J / J^{2}$ be a local L-orientation of J. If $\bar{u} \in R / J$ is a unit, then $\left(J, \omega_{J}\right)=\left(J, \bar{u}^{2} \omega_{J}\right)$ in the Euler class group $E(R, L)$.

Let R be a ring of dimension $n \geq 3$ and $L \in \mathcal{P}_{1}(R)$. Let "bar" denote reduction modulo $N[T]$, where N is the nilradical of R. So $\bar{R}=R_{\text {red }}$ and $\bar{L}=L / N L$. Let $I \subset R[T]$ be an ideal of height n such that $\operatorname{Spec}(R[T] / I)$ is connected and I / I^{2} is generated by n elements. We have $\bar{I}=(I+N[T]) / N[T]$. Note that $\operatorname{Spec}(\bar{R}[T] / \bar{I})$ is also connected. Further, if we write $\mathcal{L}=L \oplus R^{n-1}$, then any surjection $\omega_{I}: \mathcal{L}[T] / I \mathcal{L}[T] \rightarrow I / I^{2}$ induces a surjection $\omega_{\bar{I}}: \overline{\mathcal{L}}[T] / \overline{I \mathcal{L}}[T] \rightarrow \bar{I} / \bar{I}^{2}$.

Let $J \subset R[T]$ be an ideal of height n and ω_{J} be a local orientation of J. Now J can be decomposed uniquely as $J=J_{1} \cap \cdots \cap J_{k}$, where J_{i} 's are pairwise comaximal ideals of $R[T]$ of height n such that $\operatorname{Spec}\left(R[T] / J_{i}\right)$ is connected for each i. Clearly $\bar{J}=\bar{J}_{1} \cap \cdots \cap \bar{J}_{k}$ is a similar decomposition for \bar{J}. Now ω_{J} induces a local orientation $\omega_{\bar{J}}$ in a natural way. Therefore, we have a group homomorphism $\Phi: E(R[T], L[T]) \longrightarrow$ $E(\bar{R}[T], \bar{L}[T])$ which takes $\left(J, \omega_{J}\right)$ to $\left(\bar{J}, \omega_{\bar{J}}\right)$.

Proposition 2.2. Let R be a ring of dimension $n \geq 3$ and $L \in \mathcal{P}_{1}(R)$. Then
(1) the group homomorphism $\Phi: E(R[T], L[T]) \longrightarrow E(\bar{R}[T], \bar{L}[T])$ is an isomorphism.
(2) Let $\left(I, \omega_{I}\right) \in E(R[T], L[T])$. If $\Phi\left(\left(I, \omega_{I}\right)\right)$ is the Euler class of a projective module, then so is $\left(I, \omega_{I}\right)$. More precisely, assume that $\Phi\left(\left(I, \omega_{I}\right)\right)=e\left(P^{\prime}, \chi^{\prime}\right)$, where $P^{\prime} \in \mathcal{P}_{n}(\bar{R}[T])$ with determinant $\bar{L}[T]$ and $\chi^{\prime}: \bar{L}[T] \xrightarrow{\sim} \wedge^{n}\left(P^{\prime}\right)$ an isomorphism. Then there exists $P \in \mathcal{P}_{n}(R[T])$ with determinant $L[T]$ and an isomorphism $\chi: L[T] \xrightarrow{\sim} \wedge^{n}(P)$ such that $e(P, \chi)=\left(I, \omega_{I}\right)$ in $E(R[T], L[T])$.

Proof. (1) is due to Das-Zinna [D-Z 2, Proposition 6.8].
For (2), follow the proof of [B-D, Proposition 2.15, Remark 2.16] where it is proved for $L=R$ and use [D-Z 2, Corollary 4.14] which says that $\left(\bar{I}, \omega_{\bar{I}}\right)=e\left(P^{\prime}, \chi^{\prime}\right)$ in $E(\bar{R}[T], \bar{L}[T])$ implies that there is a surjection $\alpha: P^{\prime} \rightarrow \bar{I}$ such that $\left(\bar{I}, \omega_{\bar{I}}\right)$ is obtained from the pair $\left(\alpha, \chi^{\prime}\right)$.
Remark 2.3. Note that we do not know [D-Z 2, Corollary 4.14] for arbitrary $L \in \mathcal{P}_{1}(R[T])$. Hence, we do not have (2.2(2)) for arbitrary L. That is why we are taking reduced ring in section 5 with arbitrary L.

The following result is proved in [B-D, Lemma 3.2] when $L=R$.
Lemma 2.4. Let R be a ring of dimension $n \geq 3$ and $L \in \mathcal{P}_{1}(R)$. Let $Q \in \mathcal{P}_{n}(R)$ with determinant L and an isomorphism $\chi: L \xrightarrow{\sim} \wedge^{n}(Q)$. Let $\left(I, \omega_{I}\right) \in E(R[T], L[T])$ with $h t(I(0))=n$. Consider $\left(I(0), \omega_{I(0)}\right) \in E(R, L)$, where $\omega_{I(0)}$ is the local orientation of $I(0)$ induced by ω_{I}. Assume that there is a surjection $\alpha: Q \rightarrow I(0)$ such that (α, χ) induces $e(Q, \chi)=\left(I(0), \omega_{I(0)}\right)$. Then there is a surjection $\theta: Q[T] \rightarrow I /\left(I^{2} T\right)$ such that $\theta(0)=\alpha$.

Proof. As Q has determinant L and $\operatorname{dim}(R[T] / I) \leq 1$, by Serre's result [Se], we have $Q[T] / I Q[T] \simeq L[T] / I L[T] \oplus(R[T] / I)^{n-1}$. Choose an isomorphism $\sigma: Q[T] / I Q[T] \xrightarrow{\sim}$ $L[T] / I L[T] \oplus(R[T] / I)^{n-1}$ such that $\wedge^{n}(\sigma)=(\chi \otimes R[T] / I)^{-1}$. The composite surjection $\bar{\theta}: Q[T] \rightarrow I / I^{2}$ given by

$$
Q[T] \rightarrow Q[T] / I Q[T] \stackrel{\sigma}{\rightarrow} L[T] / I L[T] \oplus(R[T] / I)^{n-1} \xrightarrow{\omega_{I}} I / I^{2}
$$

is such that $\bar{\theta}(0) \otimes R / I(0)=\alpha \otimes R / I(0)$. Applying [B-RS 1, Remark 3.9], we can lift $\bar{\theta}$ to a surjection $\theta: Q[T] \rightarrow I /\left(I^{2} T\right)$ such that $\theta(0)=\alpha$.

Lemma 2.5. Let R be a reduced ring of dimension $n \geq 2$ and $R \hookrightarrow S$ a finite subintegral extension. Let $Q \in \mathcal{P}_{n}(S)$ be such that its determinant is extended from R, i.e. $\wedge^{n}(Q) \xrightarrow{\sim}$ $L \otimes S$ for some $L \in \mathcal{P}_{1}(R)$. Then Q is extended from R, i.e. there exists $P \in \mathcal{P}_{n}(R)$ with determinant L such that $P \otimes S \simeq Q$.

Proof. Since $R \hookrightarrow S$ is a finite subintegral extension, without loss of generality, we may assume that S is an elementary subintegral extension of R. Let C be the conductor ideal of $R \subset S$. Then $\mathrm{ht}(C) \geq 1$ and $(R / C)_{\text {red }}=(S / C)_{\text {red }}$ [D-Z 1, Lemma 3.7]. Consider the conductor (fiber product) diagram

Since every projective $(R / C)_{\text {red }}$-module comes from a projective R / C-module, there exists $\widetilde{P} \in \mathcal{P}_{n}(R / C)$ with an isomorphism $\widetilde{\theta}: \widetilde{P} \otimes(S / C)_{\text {red }} \simeq Q \otimes(S / C)_{\text {red }}$. Now we can lift $\widetilde{\theta}$ to an isomorphism $\theta: \widetilde{P} \otimes S / C \simeq Q / C Q$. Patching Q and \widetilde{P} over θ, we get $P \in \mathcal{P}_{n}(R)$ such that $P \otimes S \simeq Q$. Since $\operatorname{rank}(Q / C Q)=n>\operatorname{dim} R / C$, by Serre's result [Se], $Q / C Q$ has a unimodular element. Hence, we can modify the patching automorphism θ such that $\wedge^{n}(P) \simeq L$.

Lemma 2.6. Let R be a reduced ring of dimension $n \geq 2$ and $R \hookrightarrow S$ a finite subintegral extension. Let $Q \in \mathcal{P}_{n}(S[T])$ be such that its determinant is extended from $R[T]$, i.e. $\wedge^{n}(Q) \simeq$ $L \otimes S[T]$ for some $L \in \mathcal{P}_{1}(R[T])$. Then Q is extended from $R[T]$, i.e. there exists $P \in$ $\mathcal{P}_{n}(R[T])$ with determinant L such that $P \otimes S[T] \simeq Q$.

Proof. Follow the proof of (2.5). By Plumstead's result [P], $Q / C Q$ has a unimodular element, where C is the conductor ideal of $R \hookrightarrow S$.
Definition 2.7. We recall some definitions from [D-Z 1]. Let R be a ring of dimension $n \geq 2$ and $R \hookrightarrow S$ a subintegral extension. Let $L \in \mathcal{P}_{1}(R)$ and write $\mathcal{L}=L \oplus R^{n-1}$. Let $J \subset R$ be an ideal of height n and $\omega_{J}: \mathcal{L} / J \mathcal{L} \rightarrow J / J^{2}$ a surjection. By [D-Z 1, Remark 3.8], we have ht $(J S)=n$. Tensoring w_{J} with $S / J S$ over R / J, we obtain an induced surjection

$$
\widetilde{\omega_{J}}: \frac{\mathcal{L} \otimes_{R} S}{J S\left(\mathcal{L} \otimes_{R} S\right)} \rightarrow \frac{J \otimes_{R} S}{J S\left(J \otimes_{R} S\right)}
$$

Define a local orientation ω_{J}^{*} of $J S$ as the composition

$$
\omega_{J}^{*}: \frac{\mathcal{L} \otimes_{R} S}{J S\left(\mathcal{L} \otimes_{R} S\right)} \xrightarrow{\widetilde{\omega_{J}}} \frac{J \otimes_{R} S}{J S\left(J \otimes_{R} S\right)} \xrightarrow{\tilde{f}} \frac{J S}{J^{2} S},
$$

where \tilde{f} is induced by the natural surjection $f: J \otimes_{R} S \rightarrow J S$. Note that if ω_{J} can be lifted to a surjection $\theta: \mathcal{L} \longrightarrow J$, then ω_{J}^{*} can be lifted to a surjection $f \circ$ $(\theta \otimes S): \mathcal{L} \otimes S \rightarrow J S$. Therefore, we have a well defined group homomorphism $\Phi: E(R, L) \longrightarrow E\left(S, L \otimes_{R} S\right)$ defined by $\Phi\left(\left(J, \omega_{J}\right)\right)=\left(J S, \omega_{J}^{*}\right)$.

Similarly for $L \in \mathcal{P}_{1}(R[T])$, we have a group homomorphism $E(R[T], L) \rightarrow E(S[T], L \otimes S[T])$.

The following three results are due to Das and Zinna.
Theorem 2.8. [D-Z 1, Theorem 3.12] Let R be a ring of dimension $n \geq 2$ and $R \hookrightarrow S$ a subintegral extension. If $L \in \mathcal{P}_{1}(R)$, then the natural map $\Phi: E(R, L) \longrightarrow E\left(S, L \otimes{ }_{R} S\right)$ is an isomorphism.

Theorem 2.9. [D-Z 1, Theorem 3.16] Let R be a ring of dimension $n \geq 3$ and $R \hookrightarrow S$ a subintegral extension. Then $E(R[T]) \simeq E(S[T])$.

Theorem 2.10. [D-Z 3, Theorem 3.12] Let R be a ring of dimension $n \geq 2$ and $R \hookrightarrow S$ a subintegral extension. Then weak Euler class groups $E_{0}(R)$ and $E_{0}(S)$ are isomorphic.

Definition 2.11. Let R be a reduced ring of dimension $n \geq 3$. Let $L \in \mathcal{P}_{1}(R[T])$ and $\mathcal{L}=L \oplus R[T]^{n-1}$. We will define the restricted Euler class group $\widetilde{E}(R[T], L)$, see [D-Z 2, Section 7] when $n=3$. Let \widetilde{R} be the seminormalization of R and C the conductor ideal of $R \subset \widetilde{R}$. Let \widetilde{G} be the free abelian group on pairs $\left(I, \omega_{I}\right)$, where $I \subset R[T]$ is an ideal of height n such that $\operatorname{Spec}(R[T] / I)$ is connected, $I+C[T]=R[T]$ (this is the restriction) and $\omega_{I}: \mathcal{L} / I \mathcal{L} \rightarrow I / I^{2}$ is an equivalence class of local L-orientation of I. Here two local L-orientations ω_{I} and $\widetilde{\omega}_{I}$ are equivalent if there exists $\theta \in S L(\mathcal{L} / I \mathcal{L})$ such that $\omega_{I} \circ \theta=\widetilde{\omega}_{I}$. Take \widetilde{H} to be the subgroup of \widetilde{G} generated by those $\left(I, \omega_{I}\right) \in \widetilde{G}$ such that w_{I} is a global L-orientation of I, i.e. w_{I} can be lifted to a surjection $\mathcal{L} \rightarrow I$. Define the "restricted" Euler class group $\widetilde{E}(R[T], L)=\widetilde{G} / \widetilde{H}$.

Let $P \in \mathcal{P}_{n}(R[T])$ with determinant L and $\chi: L \xrightarrow{\sim} \wedge^{n}(P)$ an isomorphism. Since $\operatorname{dim}(R / C) \leq n-1$, by [P, Corollary 2 of Section 3], $P / C P$ has a unimodular element. Applying ([B-RS 3, Lemma 2.13]), it is easy to see that there is an ideal $I \subset R[T]$ of height n such that $I+C[T]=R[T]$ and a surjection $\alpha: P \rightarrow I$. Choose an isomorphism $\bar{\gamma}: \mathcal{L} / I \mathcal{L} \xrightarrow{\sim} P / I P$ such that $\wedge^{n} \bar{\gamma}=\chi \otimes R[T] / I$. Let ω_{I} be the composite surjection

$$
w_{I}: \mathcal{L} / I \mathcal{L} \xrightarrow{\stackrel{\bar{\gamma}}{\rightarrow}} P / I P \xrightarrow{\bar{\alpha}} I / I^{2} .
$$

We define the Euler class of the pair (P, χ) obtained from the pair (α, χ) as $e(P, \chi)=$ $\left(I, \omega_{I}\right) \in \widetilde{E}(R[T], L)$. Following [D-Z 2, Lemma 6.11], it is easy to prove that the Euler class $e(P, \chi)$ is well defined and it does not depend on the choice of α and $\bar{\gamma}$.
Remark 2.12. For $n \geq 4$, there is a natural map $\widetilde{E}(R[T], L) \rightarrow E(R[T], L)$ which is an isomorphism. This can be seen using moving lemma [D-Z 2, Lemma 2.11] and the fact that $\operatorname{ht}(C) \geq 1$.

The following result is from [D-Z 2, Corollary 7.3, Theorem 7.4].
Theorem 2.13. Let R be a reduced ring of dimension $n \geq 3$ and $L \in \mathcal{P}_{1}(R[T])$. Let $P \in$ $\mathcal{P}_{n}(R[T])$ with determinant L and $\chi: L \xrightarrow{\sim} \wedge^{n}(P)$ an isomorphism.
(1) If $\left(I, \omega_{I}\right)=0$ in $\widetilde{E}(R[T], L)$, then ω_{I} is a global L-orientation of I.
(2) P has a unimodular element if and only if e $(P, \chi)=0$ in $\widetilde{E}(R[T], L)$

Remark 2.14. Let R be a ring of dimension $n \geq 2$ and $L \in \mathcal{P}_{1}(R[T])$. Let $\left(I, \omega_{I}\right) \in$ $E(R[T], L)$ when $n \neq 3$ and $\left(I, \omega_{I}\right) \in \widetilde{E}(R[T], L)$ when $n=3$. Let $\bar{f} \in R[T] / I$ be a unit. Composing ω_{I} with an automorphism of $\left(L \oplus R[T]^{n-1}\right) / I\left(L \oplus R[T]^{n-1}\right)$ with determinant \bar{f}, we obtain another local orientation of I which we denote by $\bar{f} \omega_{I}$. On
the other hand, let ω_{I} and $\widetilde{\omega}_{I}$ be two local orientations of I. Then it follows from [Bh 2, Lemma 2.2] that $\omega_{I}=\bar{f} \widetilde{\omega}_{I}$ for some unit $\bar{f} \in R[T] / I$.

The next result follows from [B-RS 3, Lemmas 2.7, 2.8].
Lemma 2.15. Let R be a ring of dimension $n \geq 2$ and $L \in \mathcal{P}_{1}(R[T])$. Let $P \in \mathcal{P}_{n}(R[T])$ with determinant L and $\chi: L \xrightarrow{\sim} \wedge^{n}(P)$ an isomorphism. Let $I \subset R[T]$ be an ideal of height n and $\alpha: P \rightarrow I$ a surjection. Let $e(P, \chi)=\left(I, \omega_{I}\right)$ be obtained from the pair (α, χ), where $e(P, \chi) \in E(R[T], L)$ when $n \neq 3$ and $e(P, \chi) \in \widetilde{E}(R[T], L)$ when $n=3$. Let $\bar{f} \in R[T] / I$ be a unit. Then there exists $P_{1} \in \mathcal{P}_{n}(R[T])$ with determinant L such that $P \oplus R[T] \xrightarrow{\sim} P_{1} \oplus R[T]$, an isomorphism $\chi_{1}: L \xrightarrow{\sim} \wedge^{n}\left(P_{1}\right)$ and a surjection $\beta: P_{1} \rightarrow I$ such that $e\left(P_{1}, \chi_{1}\right)=\left(I, \bar{f}^{n-1} \omega_{I}\right)$ is obtained from the pair $\left(\beta, \chi_{1}\right)$.

The following result extends [D 1, Lemma 5.2].
Lemma 2.16. Let R be a ring of dimension $n \geq 3$. Let $L \in \mathcal{P}_{1}(R)$ and $\mathcal{L}=L \oplus R^{n-1}$. Let $I \subset R[T]$ be an ideal of height n and $\omega_{I}: \mathcal{L}[T] / I \mathcal{L}[T] \rightarrow I / I^{2}$ a surjection. Let $\bar{f} \in R[T] / I$ be a unit and θ an automorphism of $\mathcal{L}[T] / I \mathcal{L}[T]$ with determinant \bar{f}^{2}. Assume that ω_{I} can be lifted to a surjection $\alpha: \mathcal{L}[T] \rightarrow I$. Then the surjection $\omega_{I} \circ \theta: \mathcal{L}[T] / I \mathcal{L}[T] \rightarrow I / I^{2}$ can also be lifted to a surjection $\beta: \mathcal{L}[T] \rightarrow I$.

Proof. Replacing T by $T-\lambda$ for some $\lambda \in \mathbb{Q}$, we may assume that $h t(I(0)) \geq n$. If $\operatorname{ht}(I(0))>n$, then $I(0)=R$. By [B-RS 1, Remark 3.9], we can lift $\omega_{I} \circ \theta$ to a surjection $\widetilde{\beta}: \mathcal{L}[T] \rightarrow I /\left(I^{2} T\right)$. We now show that the same can be done if $h t(I(0))=n$. Now ω_{I} induces a surjection $\omega_{I}(0): \mathcal{L} / I(0) \mathcal{L} \rightarrow I(0) / I(0)^{2}$, which can be lifted to $\alpha(0):$ $\mathcal{L} \rightarrow I(0)$. Note that $\overline{f(0)} \in R / I(0)$ is a unit and $\theta(0)$ is an automorphism of $\mathcal{L} / I(0) \mathcal{L}$ with determinant $\overline{f(0)}^{2}$. Therefore, by [B-RS 3, Lemma 5.3], $\omega_{I}(0) \circ \theta(0)$ can be lifted to a surjection $\phi: \mathcal{L} \rightarrow I(0)$. Consequently, we can lift $\omega_{I} \circ \theta$ to a surjection $\widetilde{\beta}: \mathcal{L}[T] \rightarrow$ $I /\left(I^{2} T\right)$.

Now we move to the ring $R(T)$ which is obtained from $R[T]$ by inverting all monic polynomials in T. Applying [B-RS 3, Lemma 5.3] to $R(T)$, we get

$$
\left(\omega_{I} \circ \theta\right) \otimes R(T): \mathcal{L} \otimes R(T) / I \mathcal{L} \otimes R(T) \rightarrow I R(T) / I^{2} R(T)
$$

can be lifted to a surjection $\psi: \mathcal{L} \otimes R(T) \rightarrow I R(T)$. By [D-Z 2, Theorem 4.1], we get $\omega_{I} \circ \theta$ can be lifted to a surjection $\beta: \mathcal{L}[T] \rightarrow I$.

The following result extends [D 1, Lemma 5.3].
Lemma 2.17. Let R be a ring of dimension $n \geq 3$ and $L \in \mathcal{P}_{1}(R)$. Let $I \subset R[T]$ be an ideal of height n and ω_{I} be a local L-orientation of I. Let $\bar{f} \in R[T] / I$ be a unit. Then $\left(I, \omega_{I}\right)=\left(I, \bar{f}^{2} \omega_{I}\right)$ in $E(R[T], L[T])$.

Proof. If $\left(I, \omega_{I}\right)=0$ in $E(R[T], L[T])$, then it follows from [D-Z 2, Theorem 4.10] and (2.16) that $\left(I, \bar{f}^{2} \omega_{I}\right)=0$ in $E(R[T], L[T])$. So assume that $\left(I, \omega_{I}\right) \neq 0$ in $E(R[T], L[T])$. By [D 1, Lemma 2.12], ω_{I} can be lifted to a surjection $\alpha: L[T] \oplus R[T]^{n-1} \rightarrow I \cap I^{\prime}$, where $I^{\prime} \subset R[T]$ is an ideal of height n with $I+I^{\prime}=R[T]$. By Chinese remainder theorem, choose $g \in R[T]$ such that $g=f^{2}$ modulo I and $g=1$ modulo I^{\prime}. Applying (2.16), there exists a surjection $\gamma: L[T] \oplus R[T]^{n-1} \rightarrow I \cap I^{\prime}$ such that $\gamma \otimes R[T] / I=\bar{f}^{2} \omega_{I}$ and $\gamma \otimes R[T] / I^{\prime}=\alpha \otimes R[T] / I^{\prime}$. From surjections α and γ, we get

$$
\left(I, \omega_{I}\right)+\left(I^{\prime}, \omega_{I^{\prime}}\right)=0 \text { and }\left(I, \bar{f}^{2} \omega_{I}\right)+\left(I^{\prime}, \omega_{I^{\prime}}\right)=0 \text { in } E(R[T], L[T]) .
$$

Therefore, $\left(I, \omega_{I}\right)=\left(I, \bar{f}^{2} \omega_{I}\right)$ in $E(R[T], L[T])$.
The next lemma extends (2.17) to arbitrary $L \in \mathcal{P}_{1}(R[T])$.
Lemma 2.18. Let R be a ring of dimension $n \geq 4$ and $L \in \mathcal{P}_{1}(R[T])$. Let $I \subset R[T]$ be an ideal of height n and ω_{I} be a local L-orientation of I. Let $\bar{f} \in R[T] / I$ be a unit. Then $\left(I, \omega_{I}\right)=\left(I, \bar{f}^{2} \omega_{I}\right)$ in $E(R[T], L)$.

Proof. By [D-Z 2, Proposition 6.8], there is a canonical isomorphism $E(R[T], L) \xrightarrow{\sim}$ $E\left(R_{r e d}[T], L \otimes R_{r e d}[T]\right)$. Hence, we may assume that R is reduced. Then there exists an extension $R \hookrightarrow S$ such that
(1) $R \hookrightarrow S \hookrightarrow Q(R)$, where $Q(R)$ is the total ring of fractions of R,
(2) S is a finite R-module,
(3) $R \hookrightarrow S$ is subintegral and
(4) $L \otimes{ }_{R} S[T]$ is extended from S.

Using (4) and (2.17), we get $\left(I S[T], \omega_{I}^{*}\right)=\left(I S[T], \bar{f}^{2} \omega_{I}^{*}\right)$ in $E(S[T], L \otimes S[T])$. By [D-Z 2, Theorem 6.16], the natural group homomorphism $E(R[T], L) \rightarrow E(S[T], L \otimes$ $S[T])$ defined by $\left(I, \omega_{I}\right) \mapsto\left(I S[T], \omega_{I}^{*}\right)$ is an isomorphism. Hence $\left(I, \omega_{I}\right)=\left(I, \bar{f}^{2} \omega_{I}\right)$ in $E(R[T], L)$.

Following the proof of (2.18), we get the following result.
Lemma 2.19. Let R be a ring of dimension $n=3$ and $L \in \mathcal{P}_{1}(R[T])$. Let $\left(I, \omega_{I}\right) \in$ $\widetilde{E}(R[T], L)$. Let $\bar{f} \in R[T] / I$ be a unit. Then $\left(I, \omega_{I}\right)=\left(I, \bar{f}^{2} \omega_{I}\right)$ in $\widetilde{E}(R[T], L)$.

3. Subintegral extensions and projective generation of ideals

The following result is due to S. M. Bhatwadekar (personal communication).
Lemma 3.1. Let R be a ring of odd dimension $n \geq 3$ and $L \in \mathcal{P}_{1}(R)$. Let $P \in \mathcal{P}_{n}(R)$ with determinant L and $\chi: L \xrightarrow{\sim} \wedge^{n}(P)$ an isomorphism. Then the Euler class $e(P, \chi) \in E(R, L)$ is independent of the choice of χ.

Proof. Let $\alpha: P \rightarrow J$ be a surjection, where $J \subset R$ is an ideal of height n. Then we get a surjection $\bar{\alpha}: P / J P \rightarrow J / J^{2}$ induced by α. Write $\mathcal{L}=L \oplus R^{n-1}$. Let $\theta: \mathcal{L} / J \mathcal{L} \xrightarrow{\sim} P / J P$ be an isomorphism such that $\wedge^{n}(\theta)=\bar{\chi}$. If $\omega_{J}=\bar{\alpha} \circ \theta$, then $e(P, \chi)=\left(J, \omega_{J}\right)$ in $E(R, L)$.

Let $\chi^{\prime}: L \xrightarrow{\sim} \wedge^{n}(P)$ be another isomorphism. Then $\chi^{\prime}=u \chi$ for some unit $u \in R$. Let $\sigma \in \operatorname{Aut}(P)$ be given by $\sigma(p)=u p$. Then $\alpha \circ \sigma: P \rightarrow J$ is a surjection. If $\widetilde{\omega}_{J}=\bar{\alpha} \circ \bar{\sigma} \circ \theta$, then $e(P, \chi)=\left(J, \widetilde{\omega}_{J}\right)=\left(J, \bar{u}^{n} \omega_{J}\right)=\left(J, \bar{u} \omega_{J}\right)$ in $E(R, L)$, by (2.1) as n is odd.

Let $\Delta \in \operatorname{Aut}(\mathcal{L} / J \mathcal{L})$ be the diagonal matrix $\Delta=\operatorname{diagonal}(1, \ldots, 1, \bar{u})$. Since $\wedge^{n}(\Delta \circ$ $\theta)=\overline{u \chi}=\overline{\chi^{\prime}}$, we get $e\left(P, \chi^{\prime}\right)=\left(J, \bar{u} \omega_{J}\right)=e(P, \chi)$.

Lemma 3.2. Let R be a ring of odd dimension $n \geq 3$ and $L \in \mathcal{P}_{1}(R[T])$. Let $P \in \mathcal{P}_{n}(R[T])$ with determinant L and $\chi: L \xrightarrow{\sim} \wedge^{n}(P)$ an isomorphism. Then the Euler class $e(P, \chi)$ of the pair (P, χ), which takes values in the Euler class group $E(R[T], L)$ when $n \geq 4$ and in the restricted Euler class group $\widetilde{E}(R[T], L)$ when $n=3$, is independent of the choice of χ.

Proof. Follow the proof of (3.1) and use $(2.18,2.19)$ in place of (2.1).
Theorem 3.3. Let R be a ring of dimension $n \geq 2$ and $R \hookrightarrow S$ a subintegral extension. Let $L \in \mathcal{P}_{1}(R)$ and $\left(J, \omega_{J}\right) \in E(R, L)$. Let $\left(J S, \omega_{J}^{*}\right)$ be the image of $\left(J, w_{J}\right)$ in $E(S, L \otimes S)$. Let $Q \in \mathcal{P}_{n}(S)$ be such that its determinant is extended from R. Further assume that χ^{\prime} : $L \otimes S \xrightarrow[\rightarrow]{\sim} \wedge^{n}(Q)$ is an isomorphism such that $\left(J S, \omega_{J}^{*}\right)=e\left(Q, \chi^{\prime}\right)$ in $E(S, L \otimes S)$. Then there exists $P \in \mathcal{P}_{n}(R)$ with determinant L and $\chi: L \xrightarrow{\sim} \wedge^{n}(P)$ an isomorphism such that $e(P, \chi)=\left(J, \omega_{J}\right)$ in $E(R, L)$. Further, there exists a surjection $\alpha: P \rightarrow J$ such that $\left(J, \omega_{J}\right)$ is obtained from (α, χ).

Proof. By [B-D, Proposition 2.15], we may assume that R is reduced. Further, we may assume that $R \hookrightarrow S$ is finite. By (2.5), we can find $P_{1} \in \mathcal{P}_{n}(R)$ with determinant L such that $P_{1} \otimes S \simeq Q$.

Case I: Assume n is odd. Let $\chi: L \xrightarrow{\sim} \wedge^{n}\left(P_{1}\right)$ be an isomorphism. Consider the image $e\left(P_{1} \otimes S, \chi \otimes S\right)$ of $e\left(P_{1}, \chi\right)$ in $E(S, L \otimes S)$. Since n is odd, by (3.1), $e\left(P_{1} \otimes S, \chi \otimes S\right)=$ $e(Q, \chi \otimes S)=e\left(Q, \chi^{\prime}\right)$. Therefore, by $(2.8), e\left(P_{1}, \chi\right)=\left(J, \omega_{J}\right)$. Take $P=P_{1}$.

Case II: Assume n is even. Since $e\left(Q, \chi^{\prime}\right)=\left(J S, \omega_{J}^{*}\right)$ in $E(S, L \otimes S)$, it follows that the weak Euler class $e(Q)=e\left(P_{1} \otimes S\right)=(J S)$ in $E_{0}(S, L \otimes S)$. Therefore, by (2.10), $e\left(P_{1}\right)=(J)$ in $E_{0}(R, L)$. By [B-RS 3, Proposition 6.4], there exists $P_{2} \in \mathcal{P}_{n}(R)$ such that $\left[P_{2}\right]=\left[P_{1}\right]$ in $K_{0}(R)$ and J is a surjective image of P_{2}. Let $\beta: P_{2} \rightarrow J$ be a surjection and $\chi_{2}: L \xrightarrow{\sim} \wedge^{n}\left(P_{2}\right)$ be an isomorphism. Suppose that $e\left(P_{2}, \chi_{2}\right)=\left(J, \omega_{2}\right)$ is obtained by $\left(\beta, \chi_{2}\right)$. Then $\omega_{J}=\bar{u} \omega_{2}$ for some unit $\bar{u} \in(R / J)^{*}$. By [B-RS 3, Lemma 5.1], there exists $P \in \mathcal{P}_{n}(R)$ with $[P]=\left[P_{2}\right]$ in $K_{0}(R)$ and an isomorphism $\chi: L \xrightarrow{\sim} \wedge^{n} P$ such that $e(P, \chi)=\left(J, \bar{u}^{n-1} \omega_{2}\right)$. Since n is even, by (2.1), $\left(J, \bar{u}^{n-1} \omega_{2}\right)=\left(J, \bar{u} \omega_{2}\right)$ and hence $e(P, \chi)=\left(J, \bar{u} \omega_{2}\right)=\left(J, \omega_{J}\right)$. By [B-RS 3, Corollary 4.3], there exists a surjection
$\alpha: P \rightarrow J$ such that $\left(J, \omega_{J}\right)$ is obtained from the pair (α, χ). This completes the proof.

Proposition 3.4. [D 2, Proposition 6.3] Let R be a ring of even dimension $n \geq 4$ and $J \subset R[T]$ be an ideal of height n. Let $P \in \mathcal{P}_{n}(R[T])$ with trivial determinant. Assume that the weak Euler class $e(P)=(J)$ in $E_{0}(R[T])$. Then there exists $Q \in \mathcal{P}_{n}(R[T])$ such that $[P]=[Q]$ in $K_{0}(R[T])$ and J is a surjective image of Q.

Theorem 3.5. Let R be a ring of dimension $n \geq 3$ and $R \hookrightarrow S$ a subintegral extension. Let $\left(I, \omega_{I}\right) \in E(R[T])$ be such that its image $\left(I S[T], \omega_{I}^{*}\right)=e\left(Q, \chi^{\prime}\right)$ in $E(S[T])$, where $Q \in \mathcal{P}_{n}(S[T])$ with trivial determinant and $\chi^{\prime}: S[T] \xrightarrow{\sim} \wedge^{n}(Q)$ an isomorphism. Then there exists $P \in \mathcal{P}_{n}(R[T])$ with trivial determinant and $\chi: R[T] \xrightarrow{\sim} \wedge^{n}(P)$ an isomorphism such that $e(P, \chi)=\left(I, \omega_{I}\right)$. Further, there exists a surjection $\alpha: P \rightarrow I$ such that $\left(I, \omega_{I}\right)$ is obtained from the pair (α, χ).

Proof. Note that this is an extension of (3.3) from $R \hookrightarrow S$ case to $R[T] \hookrightarrow S[T]$ case when $L=R$. By (2.9), we already have $E(R[T]) \simeq E(S[T])$. We need to show that if the image of $\left(I, \omega_{I}\right)$ in $E(S[T])$ is the Euler class of a projective $S[T]$-module with trivial determinant, then $\left(I, \omega_{I}\right)$ in $E(R[T])$ is also the Euler class of a projective $R[T]$-module with trivial determinant.

By [B-D, Remark 2.16], we may assume that R is reduced. Further, we may assume that $R \hookrightarrow S$ is finite. By (2.6), we can find $P_{1} \in \mathcal{P}_{n}(R[T])$ with trivial determinant such that $P_{1} \otimes S[T] \simeq Q$.

Case 1. Assume n is odd. Let $\chi: R[T] \xrightarrow{\sim} \wedge^{n}\left(P_{1}\right)$ be an isomorphism. Consider the image $e\left(P_{1} \otimes S[T], \chi \otimes S[T]\right)$ of $e\left(P_{1}, \chi\right)$ in $E(S[T])$. Since n is odd, by (3.2), $e\left(P_{1} \otimes S[T], \chi \otimes S[T]\right)=e(Q, \chi \otimes S[T])=e\left(Q, \chi^{\prime}\right)$. Therefore, by (2.9), $e\left(P_{1}, \chi\right)=$ $\left(I, \omega_{I}\right)$. Take $P=P_{1}$.

Case 2. Assume n is even. We note that $e(Q)=e\left(P_{1} \otimes S[T]\right)=(I S[T])$ in $E_{0}(S[T])$. Therefore, by [D-Z 1, Remark 3.26], $e\left(P_{1}\right)=(I)$ in $E_{0}(R[T])$. Follow the proof of (3.3, Case II) and use [D 2, Proposition 6.3], [D 1, Lemma 6.1, Corollary 4.10] to complete the proof.

4. Projective generation: Extended case

Next result is proved in [B-D, Lemma 3.1] when $L=R$.
Lemma 4.1. Let R be a ring of dimension $n \geq 2$ and $J \subset R$ be an ideal of height $\geq n-1$. Let $Q \in \mathcal{P}_{r}(R)$ with determinant L. Then there exists $b \in J^{2}$ such that $h t(b)=1$ and $Q_{1+b} \simeq R_{1+b}^{r-1} \oplus L_{1+b}$.

Proof. As the determinant of Q is L and $\operatorname{dim}\left(R / J^{2}\right) \leq 1$, by Serre's result [Se], it follows that $Q / J^{2} Q$ is isomorphic to $\left(R / J^{2}\right)^{r-1} \oplus L / J^{2} L$. Consequently, $Q_{1+J^{2}}$ is isomorphis to $R_{1+J^{2}}{ }^{r-1} \oplus L_{1+J^{2}}$. Therefore, there exists $b \in J^{2}$ such that Q_{1+b} is isomorphis to $R_{1+b^{r-1}} \oplus L_{1+b}$.

If $h t(b)=0$, then we can find $c \in J^{2}$ such that $\operatorname{ht}(b+b c+c)=1$. Since $1+b+$ $b c+c=(1+b)(1+c)$, without loss of generality, we can assume that $\operatorname{ht}(b)=1$ and $Q_{1+b} \simeq R_{1+b}^{r-1} \oplus L_{1+b}$.

The following result is from [B-D, Lemma 3.4]. Its proof is contained in [Bh 1, Proposition 3.1, 3.2].

Lemma 4.2. Let \widetilde{B} be a semilocal ring of dimension 1. Then $\operatorname{Pic}(\widetilde{B}[T])$ is a divisible group. Let M be an invertible ideal of $\widetilde{B}[T]$ with $\operatorname{dim}(\widetilde{B}[T] / M)=0$. Let $\mathfrak{b}=M \cap \widetilde{B}$ and $(0)=\mathfrak{b} \cap \mathfrak{a}$, where \mathfrak{a} is an ideal of \widetilde{B} with $M+\mathfrak{a}[T]=\widetilde{B}[T]$. Then given any positive integer d, there exists an invertible ideal N of $\widetilde{B}[T]$ such that
(1) $N+M \mathfrak{a}[T]=\widetilde{B}[T]$,
(2) $N^{d} \cap M=(\widetilde{f})$ for some non-zerodivisor $\tilde{f} \in \widetilde{B}[T]$,
(3) $\operatorname{dim}(\widetilde{B}[T] / N)=0$.

Proposition 4.3. Let R be a ring of dimension $n \geq 3$ and $L \in \mathcal{P}_{1}(R)$. Let $I \subset R[T]$ be an ideal of height n such that I / I^{2} is a surjective image of $L[T] \oplus R[T]^{n-1}$. Further assume that $I=M_{1} \cap \cdots \cap M_{k}$, where each M_{i} is a maximal ideal of $R[T]$ of height n. Let ω_{1} and ω_{2} be any two local orientations of I. Then $\left(I, \omega_{1}\right)=\left(I, \omega_{2}\right)$ in $E(R[T], L[T])$.

Proof. Let $\left(I, \omega_{1}\right)=\sum_{1}^{k}\left(M_{i}, \omega_{M_{i}}\right)$ in $E(R[T], L[T])$. It is enough to show that $\left(M_{i}, \omega_{M_{i}}\right)=$ $\left(M_{i}, \omega_{M_{i}}^{\prime}\right)$ in $E(R[T], L[T])$ for any other local orientation $\omega_{M_{i}}^{\prime}$ of M_{i}. Therefore, we may assume that I is a maximal ideal of height n.

If R is local, then $L \xrightarrow{\sim} R$ and we are done by [D 3, Proposition 3.12], where it is proved that if I is a maximal ideal of $R[T]$ of height n, then $\left(I, \omega_{1}\right)=\left(I, \omega_{2}\right)$ in $E(R[T])$ for any two local orientations ω_{1}, ω_{2} of I.

Now we prove the result for general R. Rest of the proof is similar to [D 3]. First we consider the case when I contains a monic polynomial. Applying [B-RS 4, Proposition 3.3], $(I, \omega)=0$ in $E(R[T], L[T])$ for any local orientation ω of I. Hence we are done in this case.

Now assume that I is a maximal ideal not containing a monic polynomial. Then $I+(T)=R[T]$ and hence $I(0)=R$. Consider the element $\left(I, \omega_{1}\right)-\left(I, \omega_{2}\right)$ in $E(R[T])$. For any maximal ideal \mathcal{M} of R, the image of $\left(I, \omega_{1}\right)-\left(I, \omega_{2}\right)$ in $E\left(R_{\mathcal{M}}[T], L_{\mathcal{M}}[T]\right)$ is zero. Use local global principle for Euler class groups [D-Z 2, Theorem 4.17] which
says that the following sequence of groups

$$
0 \rightarrow E(R, L) \rightarrow E(R[T], L[T]) \rightarrow \prod_{\mathcal{M}} E\left(R_{\mathcal{M}}[T], L_{\mathcal{M}}[T]\right)
$$

is exact. Here the product is over all maximal ideals of R. Hence there exists $\left(J, \omega_{J}\right) \in$ $E(R, L)$ such that

$$
\Phi\left(\left(J, \omega_{J}\right)\right)=\left(I, \omega_{1}\right)-\left(I, \omega_{2}\right) .
$$

Here $\Phi: E(R, L) \rightarrow E(R[T], L[T])$ and $\Psi: E(R[T], L[T]) \rightarrow E(R, L)$ are group homomorphisms such that $\Psi \circ \Phi=I d\left[\right.$ D-Z 2, Remark 4.9]. Since $I(0)=R, \Psi\left(I, \omega_{1}\right)=$ $0=\Psi\left(I, \omega_{2}\right)$ in $E(R, L)$. Use $\Psi \circ \Phi=I d$, we get $(J, \omega)=0$ in $E(R, L)$. Hence $\left(I, \omega_{1}\right)=\left(I, \omega_{2}\right)$.

Theorem 4.4. Let R be a ring of dimension $n \geq 3$. Let $L \in \mathcal{P}_{1}(R)$ and $\mathcal{L}=R[T]^{n-1} \oplus L[T]$. Let $J \subset R[T]$ be a local complete intersection ideal of height n such that $\operatorname{dim}(R[T] / J)=0$ and $J=\left(f_{1}, \cdots, f_{n}\right)+J^{2}$. Let $I=\left(f_{1}, \cdots, f_{n-1}\right)+J^{(n-1)!}$. Let $\omega: \mathcal{L} / I \mathcal{L} \rightarrow I / I^{2}$ be a surjection. Then there exists $P \in \mathcal{P}_{n}(R[T])$ and an isomorphism $\chi: L[T] \xrightarrow{\sim} \wedge^{n}(P)$ such that
(1) $[P]-[\mathcal{L}]=-[R[T] / J]$ in $K_{0}(R[T])$,
(2) there is a surjection $P \rightarrow I$ and
(3) $e(P, \chi)=(I, \omega)$ in $E(R[T], L[T])$.

Proof. Das-Mandal [D-M, Theorem 3.2] proved the following result for $E(R, L)$. Let $\widetilde{J} \subset R$ be a local complete intersection ideal of height n such that $\widetilde{J}=\left(\widetilde{f}_{1}, \cdots, \widetilde{f}_{n}\right)+\widetilde{J}^{2}$. Let $\widetilde{I}=\left(\widetilde{f}_{1}, \cdots, \widetilde{f}_{n-1}\right)+\widetilde{J}^{(n-1)!}$. Write $\widetilde{\mathcal{L}}=R^{n-1} \oplus L$. Let $\widetilde{\omega}: \widetilde{\mathcal{L}} / \widetilde{I} \widetilde{\mathcal{L}} \rightarrow \widetilde{I} / \widetilde{I}^{2}$ be a surjection. Then there exists $\widetilde{P} \in \mathcal{P}_{n}(R)$ with determinant L and $\widetilde{\chi}: L \xrightarrow{\sim} \wedge^{n}(\widetilde{P})$ an isomorphism such that
(1) $[\widetilde{P}]-[\widetilde{\mathcal{L}}]=-[R / \widetilde{J}]$ in $K_{0}(R)$,
(2) there is a surjection $\widetilde{P} \rightarrow \widetilde{I}$ and
(3) $e(\widetilde{P}, \widetilde{\chi})=(\widetilde{I}, \widetilde{\omega})$ in $E(R, L)$.

In our case, $\operatorname{dim}(R[T] / J)=0$. Since whole proof of [D-M, Theorem 3.1, 3.2] works in our case, we are done.

The proof of the next result closely follow that of [B-D, Proposition 3.3] where it is proved for $L=R$.

Proposition 4.5. Let $R \hookrightarrow B$ be a flat extension of rings such that $\operatorname{dim}(R)=\operatorname{dim}(B)=$ $n \geq 3$. Let $L \in \mathcal{P}_{1}(R)$ and write $\mathcal{L}=L \oplus R^{n-1}$. Let $Q \in \mathcal{P}_{n}(R)$ with determinant L and $P \in \mathcal{P}_{n}(B[T])$ with determinant $L \otimes B[T]$. Further, assume that $Q \otimes B \xrightarrow{\sim} \mathcal{L} \otimes B$ and $P / T P \xrightarrow{\sim} \mathcal{L} \otimes B$. Let $\chi: L \xrightarrow{\sim} \wedge^{n}(Q)$ and $\chi^{\prime}: L \otimes B[T] \xrightarrow{\sim} \wedge^{n}(P)$ be isomorphisms. Let $I \subset R[T]$ be an ideal of height n such that $h t(I(0))=n$ and both $I B[T]$ and $I(0) B$ are proper
ideals. Assume that there are surjections $\omega: \mathcal{L}[T] / I \mathcal{L}[T] \rightarrow I / I^{2}, \alpha: Q \rightarrow I(0)$ and $\beta: P \rightarrow I B[T]$ such that
(1) (α, χ) induces $e(Q, \chi)=(I(0), \omega(0))$ in $E(R, L)$, where $\omega(0)$ is induced by ω.
(2) $\left(\beta, \chi^{\prime}\right)$ induces $e\left(P, \chi^{\prime}\right)=(I B[T], \omega \otimes B[T])$ in $E(B[T], L \otimes B[T])$.

Then there exists an isomorphism $\psi: P / T P \xrightarrow{\sim} Q \otimes B$ and a surjection $\eta: P \rightarrow I B[T]$ such that $\eta(0)=(\alpha \otimes B) \circ \psi: P / T P \rightarrow I(0) B$.

Proof. Write $P / T P=P_{0}$. Let "tilde" denote reduction modulo $I B[T]$ and "bar" denote reduction modulo $I(0) B$. We have two surjections

$$
\widetilde{\beta}: \widetilde{P} \rightarrow I B[T] / I^{2} B[T] \text { and } \widetilde{\omega}: \mathcal{L}[T] \otimes B[T] \rightarrow I B[T] / I^{2} B[T]
$$

induced from β and $\omega \otimes B$ respectively. Since the pair $\left(\beta, \chi^{\prime}\right)$ induces the Euler class $e\left(P, \chi^{\prime}\right)=(I B[T], \omega \otimes B)$ in $E(B[T], L \otimes B[T])$, by definition of $e\left(P, \chi^{\prime}\right)$, if $\sigma: \mathcal{L}[T] \otimes B[T] \xrightarrow{\sim}$ \widetilde{P} is an isomorphism such that $\wedge^{n}(\sigma)=\tilde{\chi}^{\prime}$, then $\widetilde{\beta} \circ \sigma=\widetilde{\omega}$.

Let $\bar{\sigma}: \overline{\mathcal{L} \otimes B} \xrightarrow{\sim} \overline{P_{0}}$ be the isomorphism induced from σ. Since $P_{0} \xrightarrow{\sim} \mathcal{L} \otimes B$, choose an isomorphism $\tau: \mathcal{L} \otimes B \xrightarrow{\sim} P_{0}$ such that $\wedge^{n}(\tau)=\chi^{\prime}(0)$. Now we have two isomorphisms

$$
\bar{\sigma}, \bar{\tau}: \overline{\mathcal{L} \otimes B} \xrightarrow[\rightarrow]{\sim} \overline{P_{0}} \quad \text { with } \wedge^{n}(\bar{\sigma})=\wedge^{n}(\bar{\tau})=\tilde{\chi}^{\prime}(0)
$$

Therefore, $\bar{\tau}=\bar{\sigma} \circ \Theta$ for some $\Theta \in S L(\overline{\mathcal{L} \otimes B})$. Since $\operatorname{dim}(\bar{B})=0, E L(\overline{\mathcal{L} \otimes B})=$ $S L(\overline{\mathcal{L} \otimes B})$. Hence $\Theta \in E L(\overline{\mathcal{L} \otimes B})$ can be lifted to an element $\theta \in E L(\mathcal{L} \otimes B)$. Therefore, we can lift $\bar{\sigma}$ to an isomorphism $\sigma_{0}: \mathcal{L} \otimes B \xrightarrow{\sim} P_{0}$.

On the other hand, the pair (α, χ) induces the Euler class $e(Q, \chi)=(I(0), \omega(0))$ in $E(R, L)$. Hence if we choose an isomorphism $\delta: \mathcal{L} \otimes B \xrightarrow{\sim} Q \otimes B$ such that $\wedge^{n}(\delta)=$ $\chi \otimes B$, then $\overline{(\alpha \otimes B)} \circ \bar{\delta}=\omega(0)=\bar{\omega}$. Let us define

$$
\psi=\delta \circ \sigma_{0}^{-1}: P_{0} \xrightarrow{\sim} Q \otimes B \text { and } \varphi=(\alpha \otimes B) \circ \psi: P_{0} \rightarrow I(0) B
$$

Then $\bar{\beta}=\bar{\omega} \circ \bar{\sigma}^{-1}=\overline{(\alpha \otimes B)} \circ \bar{\delta} \circ \bar{\sigma}^{-1}=\bar{\varphi}$. By [B-RS 1, Remark 3.9], there is a surjection $\rho: P \rightarrow I B[T] /\left(I^{2} T\right) B[T]$ such that $\widetilde{\beta}=\widetilde{\rho}$ and $\bar{\rho}=\varphi$.

Let $B(T)$ be the ring obtained from $B[T]$ by inverting all the monic polynomials in T. Then ρ induces the surjection

$$
\rho \otimes B(T): P \otimes B(T) \rightarrow I B(T) / I^{2} B(T)
$$

and clearly $\beta \otimes B(T)$ is lift of $\rho \otimes B(T)$. Applying [D-Z 2, Theorem 4.11], we can find a surjection $\eta: P \rightarrow I B[T]$ such that η is a lift of ρ. Note that $\eta(0)=\varphi=(\alpha \otimes B) \circ \psi$. This completes the proof.

The proof of the next result closely follows [B-D, Theorem 3.5] where it is proved for $L=R$.

Theorem 4.6. Let R be an affine k-algebra of dimension $n \geq 2$. Let $L \in \mathcal{P}_{1}(R)$ and $\mathcal{L}=$ $L \oplus R^{n-1}$. Let $\left(I, \omega_{I}\right) \in E(R[T], L[T])$ and $\lambda \in k$ be such that $h t(I(\lambda)) \geq n$. When $h t(I(\lambda))>n$, write $Q=\mathcal{L}$. When $h t(I(\lambda))=n$, assume that there exists $Q \in \mathcal{P}_{n}(R)$ with determinant L and $\chi: L \xrightarrow{\sim} \wedge^{n}(Q)$ an isomorphism such that $e(Q, \chi)=\left(I(\lambda), \omega_{I(\lambda)}\right)$ in $E(R, L)$, where $\omega_{I(\lambda)}$ is induced from ω_{I}. Then there exists $P \in \mathcal{P}_{n}(R[T])$ with determinant $L[T]$ and an isomorphism $\chi_{1}: L[T] \xrightarrow{\sim} \wedge^{n}(P)$ such that $e\left(P, \chi_{1}\right)=\left(I, \omega_{I}\right)$ in $E(R[T], L[T])$. Moreover, $P / T P \simeq Q$.

Proof. When $n=2$, any $\left(I, \omega_{I}\right)$ is Euler class of a rank 2 projective $R[T]$-module, without the condition that $\left(I(\lambda), \omega_{I(\lambda)}\right)=e(P, \chi)$. To see this, note that projective modules of rank 1 are always cancellative. It follows easily using a standard patching argument that there exists $P_{1} \in \mathcal{P}_{2}(R[T])$ with determinant $L[T]$ and a surjection $\zeta: P_{1} \rightarrow I$. Fix an isomorphism $\chi^{\prime}: L[T] \xrightarrow{\sim} \wedge^{2}\left(P_{1}\right)$. Let $e\left(P_{1}, \chi^{\prime}\right)=(I, \omega)$ in $E(R[T], L[T])$ be induced from $\left(\zeta, \chi^{\prime}\right)$. Then $\omega_{I}=\bar{u} \omega$ for some unit $\bar{u} \in R[T] / I$. By (2.15), there exists $P \in \mathcal{P}_{2}(R[T])$, an isomorphism $\chi_{1}: L[T] \xrightarrow{\sim} \wedge^{2}(P)$ and a surjection $\beta: P \rightarrow I$ such that $e\left(P, \chi_{1}\right)=(I, \bar{u} \omega)$ is induced from $\left(\beta, \chi_{1}\right)$. Therefore, $e\left(P, \chi_{1}\right)=\left(I, \omega_{I}\right)$.
Assume $n \geq 3$. Replacing T by $T-\lambda$, we assume $\lambda=0$. Using (2.2), we assume that R is a reduced affine algebra. Since $\mathbb{Q} \subset R$, we get R is a geometrically reduced affine algebra.

Given a surjection $\omega_{I}: \mathcal{L}[T] / I \mathcal{L}[T] \rightarrow I / I^{2}$. If $h t(I(0))>n$, then $I(0)=R[T]$ and we can lift ω_{I} to a surjection $\omega^{\prime}: \mathcal{L}[T] \rightarrow I /\left(I^{2} T\right)$. If $\mathrm{ht}(I(0))=n$, then it is given that $e(Q, \chi)=\left(I(0), \omega_{I(0)}\right)$ in $E(R, L)$. Hence by [B-RS 3, Corollary 4.3], there exists a surjection $\alpha: Q \rightarrow I(0)$ such that $\left(I(0), \omega_{I(0)}\right)$ is obtained from the pair (α, χ). By (2.4), there is a surjection $\theta: Q[T] \rightarrow I /\left(I^{2} T\right)$ such that $\theta(0)=\alpha$.

Step 1: If $J=I \cap R$, then $\mathrm{ht}(J) \geq n-1$. By (4.1), there exists a non-zerodivisor $b \in J^{2}$ such that $Q_{1+b} \xrightarrow{\sim} \mathcal{L}_{1+b}$. By [B-D, Lemma 2.5, Remark 2.6], the surjection $\theta: Q[T] \rightarrow$ $I /\left(I^{2} T\right)$ can be lifted to a surjection $\gamma: Q[T] \rightarrow I^{\prime \prime}=I \cap I_{1}$ such that
(1) $I=I^{\prime \prime}+(b T)$,
(2) $I_{1}+(b T)=R[T]$, hence $I+I_{1}=R[T]$,
(3) $\operatorname{ht}\left(I_{1}\right)=n$ and $R[T] / I_{1}$ is reduced.

It follows that $e(Q[T], \chi \otimes R[T])=\left(I, \omega_{I}\right)+\left(I_{1}, \omega_{I_{1}}\right)$, where $\omega_{I_{1}}$ is induced by the pair $(\gamma, \chi \otimes R[T])$.

Step 2: Let $B=R_{1+b R}$. We first note that if $I_{1} B[T]=B[T]$, then the surjection $\gamma \otimes B[T]: Q \otimes B[T] \rightarrow I B[T]$ is a lift of $\theta \otimes B[T]$. By [D 1, Lemma 3.8], θ can be lifted to a surjection $\Theta: Q[T] \rightarrow I$. Further, from above, $e(Q[T], \chi \otimes R[T])=\left(I, \omega_{I}\right)$ in
$E(R[T], L[T])$ and we are done in this case by taking $P=Q[T]$. Therefore, we assume that $\operatorname{ht}\left(I_{1} B[T]\right)=n$.

Since $b B$ is contained in the Jacobson radical of B, using $(2,3)$, we conclude that $I_{1} B[T]$ is a zero dimensional radical ideal. Hence $I_{1} B[T]=\cap_{1}^{r} \mathcal{M}_{i}$, where \mathcal{M}_{i} 's are maximal ideals of $B[T]$ of height n and containing I_{1}. If $K=B \cap I_{1} B[T]$, then K is a reduced ideal of height $n-1$. Further, $K+b B$ is an ideal of B of height n. It is easy to see that $B[T]_{\mathcal{M}_{i}}$ are regular for $i=1, \ldots, r$. By [B-H, Theorem 2.2.12], if $\mathfrak{p}_{i}=\mathcal{M}_{i} \cap B$, then $B_{\mathfrak{p}_{i}}$ is regular local.

Now B / K is a reduced ring of dimension 1 and the image of b belongs to the Jacobson radical of B / K. Hence $(B / K)_{b}$ is a product of fields. Therefore, we can find $a_{1}, \cdots, a_{n-1} \in K$ such that $\operatorname{ht}\left(a_{1}, \cdots, a_{n-1}\right)=n-1, \operatorname{ht}\left(a_{1}, \cdots, a_{n-1}, b\right)=n$ and $K_{b}=\left(a_{1}, \cdots, a_{n-1}\right)_{b}+K_{b}{ }^{2}$. Therefore, $K_{\mathfrak{p}}=\left(a_{1}, \cdots, a_{n-1}\right)_{\mathfrak{p}}$ for all minimal prime ideals \mathfrak{p} over K. Let $\left(a_{1}, \cdots, a_{n-1}\right)=K \cap K_{1}$ be a reduced primary decomposition.

Step 3: Let $\widetilde{B}=B /\left(a_{1}, \cdots, a_{n-1}\right)$. Since b belongs to the Jacobson radical of B, \widetilde{B} is a semilocal ring of dimension 1 and $\widetilde{K} \cap \widetilde{b} \widetilde{K}_{1}=0$ in \widetilde{B}. Moreover, \widetilde{I}_{1} is an invertible ideal and $\widetilde{I}_{1}+\widetilde{b} \widetilde{K}_{1}[T]=\widetilde{B}[T]$. Note that \widetilde{B} is a subring of $\widetilde{B} / \widetilde{K} \oplus \widetilde{B} / \widetilde{b} \widetilde{K}_{1}$ with the conductor ideal $\widetilde{K}+\widetilde{b} \widetilde{K}_{1}$.

Applying (4.2) to the invertible ideal \widetilde{I}_{1} with $\mathfrak{a}=\widetilde{b} \widetilde{K}_{1}$, we get an invertible ideal N of $\widetilde{B}[T]$ such that
(1) $N+\widetilde{I}_{1} \widetilde{b} \widetilde{K}_{1}[T]=\widetilde{B}[T]$,
(2) $N^{d} \cap \widetilde{I}_{1} \widetilde{B}[T]=(\widetilde{f})$ for some non-zerodivisor $\widetilde{f} \in \widetilde{B}[T]$,
(3) $\operatorname{dim}(\widetilde{B}[T] / N)=0$.

Since $\widetilde{K} . \widetilde{K}_{1}=(\widetilde{0})$ in \widetilde{B} and $N+\widetilde{b} \widetilde{K}_{1}[T]=\widetilde{B}[T]$, it follows that any maximal ideal of $\widetilde{B}[T]$ containing N must contain $\widetilde{K}[T]$.

Let I_{2} be the inverse image of N in $B[T]$ and \mathcal{M} be a maximal ideal of $B[T]$ containing I_{2}. Then $\mathcal{M} \cap B=\mathfrak{q}$ is a prime ideal of B containing K and of height $n-1$, since $M+b B[T]=B[T]$. Hence \mathfrak{q} is a minimal prime over K. Therefore, $B_{\mathfrak{q}}$ is a regular local ring and consequently $B[T]_{\mathcal{M}}$ is also regular. This shows that the ideal I_{2} has finite projective dimension and it is locally generated by a regular sequence of length n.

Since \widetilde{B} is semilocal, $L \otimes \widetilde{B} \xrightarrow{\sim} \widetilde{B}$. Therefore, we can write (2) of step 3 as a surjection $\phi^{\prime}: L[T] \otimes \widetilde{B} \rightarrow N^{d} \cap \widetilde{I}_{1} \widetilde{B}[T]$. We get a surjection

$$
\phi: \mathcal{L} \otimes B[T] \rightarrow I_{2}^{(d)} \cap I_{1} B[T]
$$

such that $\left.\phi\right|_{L \otimes B[T]}$ is a lift of ϕ^{\prime} and $\phi\left(B[T]^{n-1}\right)=\left(a_{1}, \ldots, a_{n-1}\right)$. Since $I_{1} B[T]$ is reduced, by (4.3), $I_{1} B[T]$ is independent of the local orientations. Therefore, we have

$$
\left(I_{1} B[T], \omega_{I_{1}} \otimes B[T]\right)+\left(I_{2}^{(d)}, \omega\right)=0
$$

in $E(B[T], L \otimes B[T])$, where ω is induced by ϕ. By (4.4), there exists $P^{\prime} \in \mathcal{P}_{n}(B[T])$ with determinant $L \otimes B[T]$ such that:
(1) There is a surjection $\delta: P^{\prime} \rightarrow I_{2}^{(d)}$,
(2) $\left[P^{\prime}\right]-[\mathcal{L} \otimes B[T]]=-\left[B[T] / I_{2}\right]$ in $K_{0}(B[T])$ and
(3) an orientation $\chi^{\prime}: L \otimes B[T] \xrightarrow{\sim} \wedge^{n}\left(P^{\prime}\right)$ can be defined such that $e\left(P^{\prime}, \chi^{\prime}\right)=$ $\left(I_{2}^{(d)}, \omega\right)=-\left(I_{1} B[T], \omega_{I_{1}} \otimes B[T]\right)$.
Since $Q \otimes B[T] \xrightarrow{\sim} \mathcal{L} \otimes B[T]$, we have

$$
e(Q \otimes B[T], \chi \otimes B[T])=\left(I B[T], \omega_{I} \otimes B[T]\right)+\left(I_{1} B[T], \omega_{I_{1}} \otimes B[T]\right)=0
$$

in $E(B[T], L \otimes B[T])$. Therefore, $e\left(P^{\prime}, \chi^{\prime}\right)=\left(I B[T], \omega_{I} \otimes B[T]\right)$. By [D-Z 2, Corollary 4.14], there exists a surjection $\beta: P^{\prime} \rightarrow I B[T]$ such that $\left(\beta, \chi^{\prime}\right)$ induces $e\left(P^{\prime}, \chi^{\prime}\right)=$ $\left(I B[T], \omega_{I} \otimes B[T]\right)$ in $E(B[T], L \otimes B[T])$.

Since $I_{2}+(b)=B[T]$ and b belongs to the Jacobson radical of B, we have $I_{2}+(T)=$ $B[T]$. In other words, $I_{2}(0)=B$. Therefore,

$$
\left[P^{\prime} / T P^{\prime}\right]-[\mathcal{L} \otimes B]=0 \text { in } K_{0}(B)
$$

i.e. $P^{\prime} / T P^{\prime}$ is a stably isomorphic to $\mathcal{L} \otimes B$. Since height of Jacobson radical of B is ≥ 1, we get $P^{\prime} / T P^{\prime} \simeq \mathcal{L} \otimes B$.

As $\operatorname{dim}\left(\widetilde{B}_{\widetilde{b}}\right)=0$, we have $N_{\widetilde{b}} \xrightarrow{\sim} \widetilde{B}_{\widetilde{b}}$. Hence $\left(I_{2}\right)_{b}$ is a complete intersection ideal of $B_{b}[T]$. So

$$
\left[P_{b}^{\prime}\right]-\left[\mathcal{L} \otimes B_{b}[T]\right]=-\left[B_{b}[T] /\left(I_{2}\right)_{b}\right]=0 \text { in } K_{0}\left(B_{b}[T]\right)
$$

i.e. P_{b}^{\prime} is stably isomorphic to $\mathcal{L} \otimes B_{b}[T]$ and as $\operatorname{dim}\left(B_{b}\right) \leq n-1$, we get $P_{b}^{\prime} \simeq \mathcal{L} \otimes B_{b}[T]$.

Step 4: Applying (4.5) with $P=P^{\prime}$, we obtain an isomorphism $\psi: P^{\prime} / T P^{\prime} \xrightarrow{\sim} Q \otimes B$ and a surjection $\eta: P^{\prime} \rightarrow I B[T]$ such that $\eta(0)=(\alpha \otimes B) \circ \psi$. Now consider the following surjections.

$$
\begin{gathered}
\Phi=\alpha \otimes R_{b(1+b R)}[T]: Q_{b(1+b R)}[T] \rightarrow I_{b(1+b R)}=R_{b(1+b R)}[T] \\
\eta_{b}: P_{b}^{\prime} \rightarrow I_{b(1+b R)}=R_{b(1+b R)}
\end{gathered}
$$

Note that $Q_{b(1+b R)}[T] \xrightarrow{\sim} \mathcal{L}_{b(1+b R)}[T] \xrightarrow{\sim} P_{b}^{\prime}$. Since $\operatorname{dim}\left(R_{b(1+b R)}\right) \leq n-1$ and $\mathbb{Q} \subset R$, by [Ra, Corollary 2.5], $\operatorname{ker}(\Phi)$ and $\operatorname{ker}\left(\eta_{b}\right)$ are locally free. Therefore, by Quillen's localglobal principle [Q], $\operatorname{ker}(\Phi)$ and $\operatorname{ker}\left(\eta_{b}\right)$ are extended from $R_{b(1+b R)}$. Further, reducing modulo T, we observe that $\alpha_{b(1+b R)} \circ \psi_{b}=\eta_{b}(0)$. This implies that $\operatorname{ker}(\Phi) \xrightarrow{\sim} \operatorname{ker}\left(\eta_{b}\right)$ and there is an isomorphism $\Psi: P_{b}^{\prime} \xrightarrow{\sim} Q_{b(1+b R)}[T]$ such that $\Psi(0)=\psi_{b}$. By a standard patching argument, the result follows.

In (4.6), we have essentially proved the following result.

Theorem 4.7. Let R be an affine k-algebra of dimension $n \geq 3$ and $L \in \mathcal{P}_{1}(R)$. Let $I \subset R[T]$ be a local complete intersection ideal of height n such that $h t(I(0)) \geq n$. Assume that there exists $Q \in \mathcal{P}_{n}(R)$ with determinant L and a surjection $Q[T] \rightarrow I / I^{2} \cap(T)$. Then there exists $P \in \mathcal{P}_{n}(R[T])$ with determinant $L[T]$ and a surjection $P \rightarrow I$. In other words, I is projectively generated.

Proof. Write $\mathcal{L}=L[T] \oplus R[T]^{n-1}$. We have a surjection $w_{I}: \mathcal{L} / I \mathcal{L} \rightarrow I / I^{2}$ as the composition of surjections $\mathcal{L} / I \mathcal{L} \xrightarrow{\sim} Q[T] / I Q[T] \rightarrow I / I^{2}$, where the last map is induced from a given surjection $\theta_{1}: Q[T] \rightarrow I / I^{2} \cap(T)$. Take $\left(I, \omega_{I}\right) \in E(R[T], L[T])$. Let $\theta: Q[T] \rightarrow I /\left(I^{2} T\right)$ be the surjection induced from θ_{1}. Now follow the proof of (4.6).

For even dimensional ring, we have the following stronger result. In case $L=R$, it is proved in [B-D, Corollary 3.7].

Corollary 4.8. Let R be an affine k-algebra of even dimension $n \geq 2$ and $L \in \mathcal{P}_{1}(R)$. Let $I \subset R[T]$ be an ideal of height n. Write $\mathcal{L}=L \oplus R^{n-1}$ and assume that there is a surjection $\mathcal{L}[T] / I \mathcal{L}[T] \rightarrow I / I^{2}$. Let $\lambda \in k$ be such that $h t(I(\lambda)) \geq n$. Assume that there exists $Q \in \mathcal{P}_{n}(R)$ with determinant L and a surjection $Q \rightarrow I(\lambda)$. Then there exists $P \in \mathcal{P}_{n}(R[T])$ with determinant $L[T]$ and a surjection $P \rightarrow I$.

Proof. Changing T to $T-\lambda$, we assume $\lambda=0$. Let $\omega: \mathcal{L}[T] \rightarrow I / I^{2}$ be a given surjection and consider $(I, \omega) \in E(R[T], L[T])$. If $I(0)=R$, then ω can be lifted to a surjection $\mathcal{L}[T] \rightarrow I /\left(I^{2} T\right)$. Now we are done by (4.7).

Assume ht $(I(0))=n$ and consider $(I(0), \omega(0)) \in E(R, L)$. Given a surjection α : $Q \rightarrow I(0)$ with $\chi: L \xrightarrow{\sim} \wedge^{n}(Q)$. Let $e(Q, \chi)=(I(0), \sigma)$ in $E(R, L)$ be induced from α. By [B-RS 3, Remark 5.0], any two local orientations of $I(0)$ differ by a unit. Hence there exists a unit $a \in R / I(0)$ such that $a \sigma=\omega(0)$. By [B-RS 3, Lemma 5.1], there exists $Q^{\prime} \in$ $\mathcal{P}_{n}(R)$ stably isomorphic to Q and $\chi^{\prime}: L \xrightarrow{\sim} \wedge^{n}\left(Q^{\prime}\right)$ such that $e\left(Q^{\prime}, \chi^{\prime}\right)=\left(I(0), a^{n-1} \sigma\right)$. Since n is even, by [B-RS 3, Lemma 5.4], $\left(I(0), a^{n-1} \sigma\right)=(I(0), a \sigma)=(I(0), \omega(0))$. By [B-RS 3, Corollary 4.3], there is a surjection $\beta: Q^{\prime} \rightarrow I(0)$ such that $\left(\beta, \chi^{\prime}\right)$ induces $e\left(Q^{\prime}, \chi^{\prime}\right)$. By (2.4), there is a surjection $Q^{\prime}[T] \rightarrow I /\left(I^{2} T\right)$. Now we are done by (4.7).

The following result is proved in [D 2, Proposition 5.1, Corollary 5.2] when $L=R$.
Proposition 4.9. Let R be an affine k-algebra of dimension $n \geq 3$ over a C_{1} field k. Let $L \in \mathcal{P}_{1}(R)$ and $\mathcal{L}=L \oplus R^{n-1}$. Let $I \subset R$ be an ideal of height n. Assume that I is a surjective image of \mathcal{L}. Then
(1) any surjection $\phi: \mathcal{L} / I \mathcal{L} \rightarrow I / I^{2}$ can be lifted to a surjection $\psi: \mathcal{L} \rightarrow I$.
(2) $E(R, L) \simeq E_{0}(R, L)$.
(3) $E(R, L) \simeq E(R)$.

Proof. (1). Let $\theta: \mathcal{L} \rightarrow I$ be a given surjection and write $P=L \oplus R^{n-3}$. Let ω be the trivial orientation of I induced from θ. By [B-RS 3, Remark 5.0], we have $\widetilde{u} \omega=\phi$ for some unit $\widetilde{u} \in R / I$.

Write $\theta=\left(\theta_{1}, a_{1}, a_{2}\right): P \oplus R^{2} \rightarrow I$. Without loss of generality, we may assume that height of $\theta(P)=J$ is $n-2$. Let "bar" denote reduction modulo J. Since \bar{R} is an affine k-algebra of dimension 2 with k a C_{1}-field of charateristic 0 , by Suslin's cancellation result, the unimodular row $\left(\bar{u}, \bar{a}_{1}, \bar{a}_{2}\right)$ is completable to a matrix in $\mathrm{SL}_{3}(\bar{R})$. By [RS, Lemma 2.3], there exists $\bar{\sigma} \in \mathrm{GL}_{2}(\bar{R})$ with $\operatorname{det}(\bar{\sigma})=\bar{u}^{-1}$ and $\bar{\sigma}\left(\bar{a}_{1}, \bar{a}_{2}\right)=\left(\bar{b}_{1}, \bar{b}_{2}\right)$. Consider the surjection $\psi=\left(\theta_{1}, b_{1}, b_{2}\right): P \oplus R^{2} \rightarrow I$. Since $\wedge^{n}(\phi)=\wedge^{n}(\psi \otimes R / I)$, there exists $\delta \in \operatorname{SL}(\mathcal{L} / I \mathcal{L})$ such that $\phi=(\psi \otimes R / I) \circ \delta$. Since $\operatorname{dim} R / I=0$, we have $\mathrm{SL}(\mathcal{L} / I \mathcal{L})=E L(\mathcal{L} / I \mathcal{L})$. Let $\Delta \in E L(\mathcal{L})$ be a lift of δ. Then the surjection $\psi \circ \Delta: \mathcal{L} \rightarrow I$ is a lift of ϕ. This completes the proof of (1).
(2). It follows from (1).
(3). We have $E(R) \simeq E_{0}(R)$, by [D 2, Corollary 5.2] and $E_{0}(R, L) \simeq E_{0}(R)$, by [B-RS 3, Theorem 6.8]. Now (3) follows from (2).

The next result extends (4.8) when k is a C_{1}-field. In case $L=R$, it is proved in [B-D, Corollary 3.10].

Corollary 4.10. Let R be an affine k-algebra of dimension $n \geq 2$ over a C_{1} field k. Let $L \in \mathcal{P}_{1}(R)$ and write $\mathcal{L}=L[T] \oplus R[T]^{n-1}$. Let $I \subset R[T]$ be an ideal of height n and assume that there is a surjection $\mathcal{L}[T] \rightarrow I / I^{2}$. Let $\lambda \in k$ be such that $h t(I(\lambda)) \geq n$. Assume that there exists $Q \in \mathcal{P}_{n}(R)$ with determinant L and a surjection $Q \rightarrow I(\lambda)$. Then there exists $P \in \mathcal{P}_{n}(R[T])$ with determinant $L[T]$ and a surjection $P \rightarrow I$.

Proof. We may assume $\lambda=0$. Let $\omega_{I}: \mathcal{L}[T] \rightarrow I / I^{2}$ be a given surjection and $\left(I, \omega_{I}\right) \in$ $E(R[T], L[T])$. If $I(0)=R$, then ω_{I} can be lifted to a surjection $\mathcal{L}[T] \rightarrow I /\left(I^{2} T\right)$ and we are done by (4.7). Assume $h t(I(0))=n$. Then $\left(I(0), \omega_{I(0)}\right) \in E(R, L)$. By assumption, there is a surjection $\alpha: Q \rightarrow I(0)$. Let $\chi: L \xrightarrow{\sim} \wedge^{n}(Q)$ be an isomorphism. Since weak Euler class $e(Q)=I(0)$ in $E_{0}(R)$ and by (4.9), $E(R, L) \xrightarrow{\sim} E_{0}(R, L)$, it follows that the Euler class of Q induced by (α, χ) is $e(Q, \chi)=\left(I(0), w_{I(0)}\right)$. By (2.4), there exists a surjection $\theta: Q[T] \rightarrow I /\left(I^{2} T\right)$ with $\theta(0)=\alpha$. Applying (4.7), we are done.

The following result extends [B-RS 2, Theorem 2.7] and [B-D, Corollary 3.11].
Corollary 4.11. Let R be an affine k-algebra of dimension $n \geq 2$ over an algebraically closed field k and $L \in \mathcal{P}_{1}(R)$. Let $I \subset R[T]$ be an ideal of height n and there is a surjection $L[T] \oplus R[T]^{n-1} \rightarrow I / I^{2}$. Then there exists $P \in \mathcal{P}_{n}(R[T])$ with determinant $L[T]$ and a surjection $P \rightarrow I$.

Proof. Replacing T by $T-\lambda$ for some $\lambda \in k$, we may assume that $h t(I(0)) \geq n$. Write $I(0)=J$ and $L \oplus R^{n-1}=\mathcal{L}$. By hypothesis, we have a surjection $\alpha: \mathcal{L} \rightarrow J / J^{2}$. By [B-RS 3, Lemma 2.11], there exists $e \in J$ such that $(\alpha(\mathcal{L}), e)=J$ with $e(1-e) \in \alpha(\mathcal{L})$. If we write $f=1-e$, then $\alpha_{f}: \mathcal{L}_{f} \rightarrow J_{f}$ is a surjection. Define $\pi: \mathcal{L}_{1+f k[f]} \rightarrow$ $J_{1+f k[f]}=R_{1+f k[f]}$ to be the projection onto the last factor. We have two unimodular elements $\alpha_{f(1+f k[f])}$ and π_{f} in $\mathcal{L}_{f(1+f k[f])}{ }^{*}$. Note that $R_{f(1+f k[f])}$ is an affine algebra of dimension $n-1$ over a C_{1}-field $k(f)$. By [Bh 3, Theorem 4.1], projective $R_{f(1+f k[f])^{-}}$ modules of rank n are cancellative. Hence there exists an automorphism σ of $\mathcal{L}_{f(1+f R)}$ such that $\alpha_{f(1+f k[f])} \circ \sigma=\pi_{f}$. By standard patching argument there exists $Q \in \mathcal{P}_{n}(R)$ with determinant L and a surjection $Q \rightarrow J$. Now the result follows from (4.10).

Let R be a ring of dimension $n \geq 3$ and $L \in \mathcal{P}_{1}(R)$. Consider the following sets

$$
\begin{aligned}
& H=\left\{e(Q, \chi) \in E(R, L) \mid Q \in \mathcal{P}_{n}(R), \chi: L \xrightarrow{\sim} \wedge^{n}(Q)\right\} \\
& K=\left\{e(P, \chi) \in E(R[T], L[T]) \mid P \in \mathcal{P}_{n}(R[T]), \chi: L[T] \xrightarrow{\sim} \wedge^{n}(P)\right\}
\end{aligned}
$$

It is a natural question whether H and K are subgroups of $E(R, L)$ and $E(R[T], L[T])$ respectively?

The following result extends [B-D, Proposition 3.14] where it is proved for $L=R$.
Corollary 4.12. Let R be an affine k-algebra of dimension $n \geq 3$ and $L \in \mathcal{P}_{1}(R)$. Then H is a subgroup of $E(R, L)$ if and only if K is a subgroup of $E(R[T], L[T])$.

Proof. If K is a subgroup of $E(R[T], L[T])$, then it is easy to see that H is also a subgroup of $E(R, L)$.

Now suppose that H is a subgroup of $E(R, L)$. Let $\left(J_{1}, \omega_{J_{1}}\right),\left(J_{2}, \omega_{J_{2}}\right) \in K$. By moving lemma [D-Z 2, Lemma 2.11], there exists an ideal $J_{3} \subset R[T]$ of height n and a local orientation $\omega_{J_{3}}$ such that $\left(J_{2}, \omega_{J_{2}}\right)+\left(J_{3}, \omega_{J_{3}}\right)=0$ in $E(R[T], L[T])$ and $\left(J_{1} \cap J_{2}\right)+$ $J_{3}=R[T]$. Let $J_{4}=J_{1} \cap J_{3}$. Then we have

$$
\left(J_{4}, \omega_{J_{4}}\right)=\left(J_{1}, \omega_{J_{1}}\right)+\left(J_{3}, \omega_{J_{3}}\right)=\left(J_{1}, \omega_{J_{1}}\right)-\left(J_{2}, \omega_{J_{2}}\right)
$$

where $\omega_{J_{4}}$ is the local orientation of J_{4} induced by $\omega_{J_{1}}$ and $\omega_{J_{3}}$. Now there is group homomorphism $\Psi: E(R[T], L[T]) \longrightarrow E(R, L)$ which takes $\left(J, \omega_{J}\right)$ to $\left(J(0), \omega_{J(0)}\right)$, where $\omega_{J(0)}$ is the local orientation of $J(0)$ induced by $\omega_{J}\left(\right.$ if $J(0)=R$, then $\left.\Psi\left(\left(J, \omega_{J}\right)\right)=0\right)$ (see [D-Z 2, Remark 4.9]). Therefore, we have

$$
\left(J_{4}(0), \omega_{J_{4}(0)}\right)=\left(J_{1}(0), \omega_{J_{1}(0)}\right)-\left(J_{2}(0), \omega_{J_{2}(0)}\right)
$$

Since $\left(J_{1}(0), \omega_{J_{1}(0)}\right)$ and $\left(J_{2}(0), \omega_{J_{2}(0)}\right)$ are in H and H is a subgroup of $E(R, L)$, we get $\left(J_{4}(0), \omega_{J_{4}(0)}\right) \in H$. Therefore, there exists $Q \in \mathcal{P}_{n}(R)$ with determinant L and an isomorphism $\chi: L \xrightarrow{\sim} \wedge^{n}(Q)$ such that $e(Q, \chi)=\left(J_{4}(0), \omega_{J_{4}(0)}\right)$. By (4.6), there exists
$P \in \mathcal{P}_{n}(R[T])$ with determinant $L[T]$ and an isomorphism $\chi_{1}: L[T] \xrightarrow{\sim} \wedge^{n}(P)$ such that $e\left(P, \chi_{1}\right)=\left(J_{4}, \omega_{J_{4}}\right)$. This completes the proof.

5. Projective generation: General case

The following result extends (4.6) where it is proved when L is extended from R.
Theorem 5.1. Let R be a reduced affine k-algebra of dimension $n \geq 2$ and $L \in \mathcal{P}_{1}(R[T])$. Let $\left(I, \omega_{I}\right)$ be an element of $E(R[T], L)$ when $n \neq 3$ and $\widetilde{E}(R[T], L)$ when $n=3$. Let $\lambda \in k$ be such that $h t(I(\lambda)) \geq n$. Assume that there exists $Q \in \mathcal{P}_{n}(R)$ and an isomorphism $\chi: L / T L \xrightarrow{\sim} \wedge^{n}(Q)$ such that $e(Q, \chi)=\left(I(\lambda), \omega_{I(\lambda)}\right)$ in $E(R, L / T L)$. Then there exists $P \in$ $\mathcal{P}_{n}(R[T])$ and an isomorphism $\chi_{1}: L \xrightarrow{\sim} \wedge^{n}(P)$ such that $e\left(P, \chi_{1}\right)=\left(I, \omega_{I}\right)$ in $E(R[T], L)$.

Proof. The case $n=2$ is same as (4.6). Consider $n \geq 4$. We may assume $\lambda=0$. Since R is reduced, there exists an extension $R \hookrightarrow S$ such that
(1) $R \hookrightarrow S \hookrightarrow Q(R)$,
(2) S is a finite R-module,
(3) $R \hookrightarrow S$ is subintegral and
(4) $L \otimes_{R} S[T]$ is extended from S.

Note that $L \otimes S[T]$ is extended from S and $\left(I(0) S, \omega_{I(0)}^{*}\right)=e(Q \otimes S, \chi \otimes S)$ in $E(S, L / T L \otimes S)$, where $\left(I(0) S, \omega_{I(0)}^{*}\right)$ is the image of $\left(I(0), \omega_{I(0)}\right)$. Applying (4.6), there exists $P^{\prime} \in$ $\mathcal{P}_{n}(S[T])$ with determinant $L \otimes S[T]$ and an isomorphism $\chi^{\prime}: L \otimes S[T] \xrightarrow{\sim} \wedge^{n}\left(P^{\prime}\right)$ such that $e\left(P^{\prime}, \chi^{\prime}\right)=\left(I S[T], \omega_{I}^{*}\right)$ in $E(S[T], L \otimes S[T])$.

Since $R \hookrightarrow S$ is a finite subintegral extension and $\operatorname{rank}\left(P^{\prime}\right)=n=\operatorname{dim}(R)$, by (2.6), there exists $P \in \mathcal{P}_{n}(R[T])$ with determinant L such that $P \otimes S[T] \simeq P^{\prime}$. Choose an isomorphism $\chi_{1}: L \xrightarrow{\sim} \wedge^{n}(P)$

Case I: Assume n is odd. By (3.2), $e\left(P^{\prime}, \chi^{\prime}\right)=e\left(P^{\prime}, \chi_{1} \otimes S[T]\right)=e\left(P \otimes S[T], \chi_{1} \otimes S[T]\right)$. By [D-Z 2, Theorem 6.16], we have $E(R[T], L) \xrightarrow{\sim} E(S[T], L \otimes S[T])$. Therefore, $e\left(P, \chi_{1}\right)=$ $\left(I, \omega_{I}\right)$.

Case II: Assume n is even. We may assume that $R \hookrightarrow S$ is an elementary subintegral extension. If C denotes the conductor ideal of $R \subset S$, then $\operatorname{ht}(C) \geq 1$. Write $\mathcal{L}=$ $L \oplus R[T]^{n-1}$. If $J=I^{2} \cap C$, then $\operatorname{ht}(J) \geq 1$. We can choose $b \in J$ such that $\operatorname{ht}(b)=1$. The surjection $\omega_{I}: \mathcal{L} / I \rightarrow I / I^{2}$ induces a surjection $\bar{\omega}_{I}: \overline{\mathcal{L}} / \overline{I \mathcal{L}} \rightarrow \bar{I} / \bar{I}^{2}$, where bar denotes reduction modulo the ideal (b).

Since $\operatorname{dim}(R / b R)<\operatorname{dim}(R)$, by [D-Z 2, Proposition 2.13], $\bar{\omega}_{I}$ can be lifted to a surjection $\eta^{\prime}: \overline{\mathcal{L}} \rightarrow \bar{I}$. If $\eta: \mathcal{L} \longrightarrow I$ is a lift of η^{\prime} and hence a lift of ω_{I} as $b \in I^{2}$, then $(\eta(\mathcal{L}), b)=I$. Applying [B-RS 3, Corollary 2.13] to the element (η, b) of $\mathcal{L}^{*} \oplus R[T]$, there exists $\Psi \in \mathcal{L}^{*}$ such that $\operatorname{ht}\left(K_{b}\right) \geq n$, where $K=(\eta+b \Psi)(\mathcal{L})$. As the ideal
$(\eta(\mathfrak{L}), b)=I$ has height n, we further get that $\operatorname{ht}(K)=n$. Replacing η by $\eta+b \Psi$, we assume $\eta(\mathcal{L})=K$ has height n.

Applying [B-RS 3, Lemma 2.11] to $(K, b)=I$ and $b \in I^{2}$, we get an ideal $I_{1} \subset R[T]$ such that
(1) $\eta(\mathcal{L})=I \cap I_{1}$;
(2) $\eta \otimes R[T] / I=\omega_{I}$;
(3) $\operatorname{ht}\left(I_{1}\right) \geq n$;
(4) $I_{1}+b R[T]=R[T]$ and hence $I_{1}+C[T]=R[T]$.

If $\mathrm{ht}\left(I_{1}\right)>n$, then $I_{1}=R[T]$. Hence $\left(I, w_{I}\right)=0$ in $E(R[T], L)$ and we are done. Assume $h t\left(I_{1}\right)=n$. From (1), we have $\left(I, \omega_{I}\right)+\left(I_{1}, \omega_{I_{1}}\right)=0$ in $E(R[T], L)$, where $\omega_{I_{1}}$ induced by η. Proceeding as above with $\left(I_{1}, \omega_{I_{1}}\right)$, we get an ideal $I_{2} \subset R[T]$ of height n with $I_{2}+C R[T]=R[T]$ and an local orientation $\omega_{I_{2}}$ of I_{2} such that

$$
\left(I, \omega_{I}\right)=-\left(I_{1}, \omega_{I_{1}}\right)=\left(I_{2}, \omega_{I_{2}}\right) \text { in } E(R[T], L)
$$

Recall that we have $e\left(P^{\prime}, \chi^{\prime}\right)=\left(I S[T], \omega_{I}^{*}\right)=\left(I_{2} S[T], \omega_{I_{2}}^{*}\right)$ in $E(S[T], L \otimes S[T])$. Since $L \otimes S[T]$ is extended from S, by [D-Z 2, Corollary 4.14], there exists a surjection β : $P^{\prime} \rightarrow I_{2} S[T]$ such that $\left(I_{2} S[T], \omega_{I_{2}}^{*}\right)$ is obtained from $\left(\beta, \chi^{\prime}\right)$.

Since $I_{2}+C[T]=R[T]$, we have the following:
(1) $I_{2} \otimes(R / C)[T] \simeq(R / C)[T]$.
(2) $I_{2} \otimes(S / C)[T] \simeq(S / C)[T]$.
(3) $R[T] / I_{2} \simeq S[T] / I_{2} S[T]$.

Therefore, $\beta_{1}:=\beta \otimes(S / C)[T]$ is a unimodular element of $\left(P^{\prime} \otimes(S / C)[T]\right)^{*}$. So $\beta_{1} \otimes$ $(S / C)_{\text {red }}[T]$ is a unimodular element of $\left(P^{\prime} \otimes(S / C)_{\text {red }}[T]\right)^{*}$. Since $(R / C)_{\text {red }}=(S / C)_{\text {red }}$ and $P \otimes S[T] \simeq P^{\prime}$, it is easy to see that we have a lift of $\beta_{1} \otimes(S / C)_{\text {red }}[T]$ to a surjection $\gamma: P \otimes(R / C)[T] \rightarrow(R / C)[T]$. It is clear that $\gamma \otimes(S / C)[T]=\beta_{1}$ modulo the nil radical of $((S / C)[T])$. So, two unimodular elements β_{1} and $\gamma \otimes(S / C)[T]$ of $(P \otimes(S / C)[T])^{*}$ are same modulo the nil radical of $((S / C)[T])$. By [D-Z 2, Proposition 2.8], there exists a transvection τ of $P \otimes(S / C)[T]$ such that $\beta_{1} \circ \tau=\gamma \otimes(S / C)[T]$. By [B-R, Proposition 4.1], τ can be lifted to an automorphism θ of $P \otimes S[T]\left(\simeq P^{\prime}\right)$.

Consider the following Milnor square

As $\beta \circ \theta$ and γ agree over $S / C[T]$, they will patch to yield a surjection $\alpha: P \rightarrow I_{2}$.
Let $e\left(P, \chi_{1}\right)=\left(I_{2}, \omega_{I_{2}}^{\prime}\right)$ be obtained from the pair $\left(\alpha, \chi_{1}\right)$. By $(2.14),\left(I_{2}, \omega_{I_{2}}\right)=$ ($I_{2}, \bar{f} \omega_{I_{2}}^{\prime}$) for some unit $\bar{f} \in R[T] / I_{2}$. By (2.15), there exists $P_{2} \in \mathcal{P}_{n}(R[T])$ which is stably isomorphic to P, an isomorphism $\chi_{2}: L \xrightarrow{\sim} \wedge^{n}\left(P_{2}\right)$ and a surjection $v: P_{2} \rightarrow I_{2}$ such that $e\left(P_{2}, \chi_{2}\right)=\left(I_{2}, \bar{f}^{n-1} \omega_{I_{2}}^{\prime}\right)$ is obtained from $\left(v, \chi_{2}\right)$. Since n is even, by (2.18), $\left(I_{2}, \bar{f}^{n-1} \omega_{I_{2}}^{\prime}\right)=\left(I_{2}, \bar{f} \omega_{I_{2}}^{\prime}\right)$. Therefore, $e\left(P_{2}, \chi_{2}\right)=\left(I_{2}, \bar{f} \omega_{I_{2}}^{\prime}\right)=\left(I_{2}, \omega_{I_{2}}\right)$. Since $\left(I_{2}, \omega_{I_{2}}\right)=$ $\left(I, \omega_{I}\right)$, we get $e\left(P_{2}, \chi_{2}\right)=\left(I, \omega_{I}\right)$. This completes the proof in the case $n \geq 4$.

For $n=3$ case, we follow the steps of case I and use [D-Z 2, Theorem 7.2] which says that the natural group homomorphism $\widetilde{E}(R[T], L) \rightarrow \widetilde{E}(S[T], L \otimes S[T])$ is injective.

The proof of the following theorem is essentially contained in (5.1).
Theorem 5.2. Let R be a reduced affine k-algebra of dimension $n \geq 2$ and $L \in \mathcal{P}_{1}(R[T])$. Let $\left(I, \omega_{I}\right) \in \widetilde{E}(R[T], L)$. Let $\lambda \in k$ be such that $h t(I(\lambda)) \geq n$ and there exists $Q \in \mathcal{P}_{n}(R)$ and an isomorphism $\chi: L / T L \xrightarrow{\sim} \wedge^{n}(Q)$ such that $e(Q, \chi)=\left(I(\lambda), \omega_{I(\lambda)}\right)$ in $E(R, L / T L)$. Then there exists $P \in \mathcal{P}_{n}(R[T])$ with determinant L, an isomorphism $\chi_{1}: L \xrightarrow{\sim} \wedge^{n}(P)$ and a surjection $\alpha: P \rightarrow I$ such that $e\left(P, \chi_{1}\right)=\left(I, \omega_{I}\right)$ in $\widetilde{E}(R[T], L)$. In particular, I is projectively generated.

The following result generalizes (5.2) in case n is even.
Corollary 5.3. Let R be a reduced affine k-algebra of even dimension $n \geq 2$ and $L \in$ $\mathcal{P}_{1}(R[T])$. Let $\left(I, \omega_{I}\right) \in \widetilde{E}(R[T], L)$. Let $\lambda \in k$ be such that $h t(I(\lambda)) \geq n$ and there exists $Q \in \mathcal{P}_{n}(R)$ with determinant $L / T L$ and a surjection $Q \rightarrow I(\lambda)$. Then there exists $P \in \mathcal{P}_{n}(R[T])$ with determinant L, an isomorphism $\chi: L \xrightarrow{\sim} \wedge^{n}(P)$ and a surjection $\alpha: P \rightarrow I$ such that $e(P, \chi)=\left(I, \omega_{I}\right)$ in $\widetilde{E}(R[T], L)$ is obtained from the pair (α, χ). In particular, I is projectively generated.

Proof. Since n is even and there is a surjection $Q \rightarrow I(\lambda)$, by [B-RS 3, Lemma 5.1], there exists $\widetilde{Q} \in \mathcal{P}_{n}(R)$ with an isomorphism $\widetilde{\chi}: L / T L \xrightarrow{\sim} \wedge^{n}(\widetilde{Q})$ such that $e(\widetilde{Q}, \widetilde{\chi})=$ $\left(I(\lambda), w_{I(\lambda)}\right)$ in $E(R, L / T L)$. By (5.2), there exists $P_{1} \in \mathcal{P}_{n}(R[T])$, an isomorphism χ_{1} : $L \xrightarrow{\sim} \wedge^{n}\left(P_{1}\right)$ and a surjection $\alpha_{1}: P_{1} \rightarrow I$ such that $e\left(P_{1}, \chi_{1}\right)=\left(I, \omega_{I}\right)$ in $\widetilde{E}(R[T], L)$. Note that $\left(I, \omega_{I}\right)$ may not be obtained from the pair $\left(\alpha_{1}, \chi_{1}\right)$. Let $e\left(P_{1}, \chi_{1}\right)=\left(I, \widetilde{\omega}_{I}\right)$ be obtained from the pair $\left(\alpha_{1}, \chi_{1}\right)$. Then there is a unit $\bar{f} \in R[T] / I$ such that $\omega_{I}=\bar{f} \widetilde{\omega}_{I}$. Since n is even, by (2.15), there exists $P \in \mathcal{P}_{n}(R[T])$ with $P \oplus R[T] \xrightarrow{\sim} P_{1} \oplus R[T]$, an isomorphism $\chi: L \xrightarrow{\sim} \wedge^{n}(P)$ and a surjection $\alpha: P \rightarrow I$ such that $e(P, \chi)=\left(I, \omega_{I}\right)$ is obtained from the pair (α, χ).

The following result extends (5.2).
Corollary 5.4. Let R be a reduced affine k-algebra of dimension $n \geq 3$ over a C_{1} field k and $L \in \mathcal{P}_{1}(R[T])$. Let $\left(I, \omega_{I}\right) \in \widetilde{E}(R[T], L)$. Let $\lambda \in k$ be such that $h t(I(\lambda)) \geq n$ and there exists $Q \in \mathcal{P}_{n}(R)$ with determinant $L / T L$ and a surjection $Q \rightarrow I(\lambda)$. Then there exists $P \in \mathcal{P}_{n}(R[T])$ with determinant L, an isomorphism $\chi: L \xrightarrow{\sim} \wedge^{n}(P)$ and a surjection $\alpha: P \rightarrow I$ such that $e(P, \chi)=\left(I, \omega_{I}\right)$ in $\widetilde{E}(R[T], L)$. In particular, I is projectively generated.

Proof. Let $\theta: Q \rightarrow I(\lambda)$ be a surjection and $\chi_{1}: L / T L \xrightarrow{\sim} \wedge^{n}(Q)$ be an isomorphism. Let $e\left(Q, \chi_{1}\right)=(I(\lambda), \omega) \in E(R, L / T L)$ be obtained from the pair $\left(\theta, \chi_{1}\right)$. By (4.9), $(I(\lambda), \omega)=\left(I(\lambda), \omega_{I(\lambda)}\right)$ in $R(R, L / T L)$. Using (5.2), we are done.

Corollary 5.5. Let R be a reduced affine k-algebra of dimension $n \geq 3$ over an algebraically closed field k. Let $L \in \mathcal{P}_{1}(R[T])$ and $\left(I, \omega_{I}\right) \in \widetilde{E}(R[T], L)$. Then there exists $P \in \mathcal{P}_{n}(R[T])$ with determinant L, an isomorphism $\chi: L \xrightarrow{\sim} \wedge^{n}(P)$ and a surjection $\alpha: P \rightarrow I$ such that $e(P, \chi)=\left(I, \omega_{I}\right)$ in $\widetilde{E}(R[T], L)$.

Proof. We can find $\lambda \in k$ such that $h t(I(\lambda)) \geq n$. Following the proof of (4.11), we get a projective R-module Q of rank n with determinant L and a surjection $Q \rightarrow I(\lambda)$. Finally using (5.4), we are done.

The following result is immediate from (5.5).
Corollary 5.6. Let R be a reduced affine k-algebra of dimension $n \geq 3$ over an algebraically closed field k. Let $\left(I, \omega_{I}\right)$ be an element of $\widetilde{E}(R[T], L)$ when $n=3$ and and $E(R[T], L)$ when $n>3$. Then $\left(I, \omega_{I}\right)=e(P, \chi)$ for some $P \in \mathcal{P}_{n}(R[T])$ with determinant L and $\chi: L \xrightarrow{\sim} \wedge^{n}(P)$ an isomorphism.

Acknowledgement : We sincerely thank the referee for going through the manuscript with great care and suggesting improvements.

References

[Bh 1] S. M. Bhatwadekar, Projective generation of maximal ideals in polynomial rings, Journal of Algebra 91 (1984), 75-81.
[Bh 2] S. M. Bhatwadekar, Cancellation theorems for projective modules over a two dimensional ring and its polynomial extensions, Compositio Math. 128 (2001), 339-359.
[Bh 3] S. M. Bhatwadekar, A cancellation theorem for projective modules over a affine algebras over C_{1}-fields, J.Pure and Applied Algebra 183 (2003), 17-26.
[B-D] S. M. Bhatwadekar and M. K. Das, Projective generation of curves (III), IMRN Vol. 2015, No. 4 (2015), 960-980.
[B-R] S. M. Bhatwadekar and Amit Roy, Some theorems about projective modules over polynomial rings, J. Algebra 86 (1984), 150-158.
[B-RS 1] S. M. Bhatwadekar and Raja Sridharan, Projective generation of curves in polynomial extensions of an affine domain and a question of Nori, Invent. Math. 133 (1998), 161-192.
[B-RS 2] S. M. Bhatwadekar and Raja Sridharan, Projective generation of curves in polynomial extensions of an affine domain (II), K-Theory 15 (1998), 293-300.
[B-RS 3] S. M. Bhatwadekar and Raja Sridharan, Euler class group of a Noetherian ring, Compositio Math. 122 (2000), 183-222.
[B-RS 4] S. M. Bhatwadekar and Raja Sridharan, On a question of Roitman, J. Ramanujan Math.Soc. 16 (2001), 45-61.
[B-H] W. Bruns and J. Herzog, Cohen Macaulay rings, Cambridge university press, 1993.
[D 1] M. K. Das, The Euler class group of a polynomial algebra, J. Algebra 264 (2003), 582-612.
[D 2] M. K. Das, The Euler class group of a polynomial algebra II, J. Algebra 299 (2006), 94-114.
[D 3] M. K. Das, Revisiting Nori's question and homotopy invariance of Euler class groups. Journal of K-Theory 8 (2011), 451-480.
[D-M] M. K. Das and Satya Mandal, Euler class construction, J. Pure Appl. Algebra 198 (2005), 93-104.
[D-Z 1] M. K. Das and Md. Ali Zinna, On invariance of the Euler class group under a subintegral base change, J. Algebra 398 (2014), 131-155.
[D-Z 2] M. K. Das and Md. Ali Zinna, The Euler class group of a polynomial algebra with coefficients in a line bundle, Math. Z. 276 (2014) 257-283.
[D-Z 3] M. K. Das and Md. Ali Zinna, "Strong" Euler class of a stably free module of odd rank, J. Algebra 432 (2015), 185-204.
[M] Satya Mandal, On efficient generation of ideals, Invent. Math. 75 (1984), 59-67.
[Q] D. Quillen, Projective modules over polynomial rings, Inventiones Mathematicae 36 (1976), 167171.
[P] B. R. Plumstead, The conjectures of Eisenbud and Evans, Am. J. Math. 105(6) (1983), 1417-1433.
[Ra] Ravi A. Rao, The Bass-Quillen conjecture in dimension three but characteristic $\neq 2,3$ via a question of A. Suslin, Inventiones Mathematicae 93 (1988), 609-618.
[RS] Raja Sridharan, Projective modules and complete intersections, K-Theory 13 (1998), 269-278.
[Se] Serre, J-P, Sur les modules projectifs, Semin. Dubreil-Pisot 14 (1960-61).

Department of Mathematics, Indian Institute of Technology Bombay, Powai, Mumbai 400076, InDIA.

E-mail address: keshari@math.iitb.ac.in
School of Mathematical Sciences, National Institute of Science Education and Research Bhubaneswar, Odisha 752050, India.

E-mail address: zinna@niser.ac.in, zinna2012@gmail.com

[^0]: Date: September 5, 2017.
 2000 Mathematics Subject Classification. 13C10, 13B25.
 Key words and phrases. Projective modules, Euler class groups.

