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1. Introduction

LetR be a normal affine domain of dimensionn � 3 over an algebraically closed fieldk.
Suppose chark = 0 or chark = p � n. Let g,f1, . . . , fr be aR-regular sequence an
A = R[f1/g, . . . , fr/g]. Let P be a stably freeA-module of rankn − 1. Then, Murthy
proved that there exists a projectiveR-moduleQ such thatQ⊗R A = P and

∧n−1
Q = R

[9, Theorem 2.10]. As a consequence of Murthy’s result, iff,g ∈ C[X1, . . . ,Xn] with
g �= 0, then all stably free modules overC[X1, . . . ,Xn,f/g] of rank � n − 1 are free
[9, Corollary 2.11].

In this paper, we prove the following result (3.5), which generalizes the above res
Murthy.

Theorem 1.1. Let R be an affine algebra of dimension n � 3 over an algebraically closed
field k. Suppose chark = 0 or chark = p � n. Let g,f1, . . . , fr be a R-regular sequence
and A = R[f1/g, . . . , fr/g]. Let P ′ be a projective A-module of rank n − 1 which is
extended from R. Let (a,p) ∈ Um(A⊕P ′) and P = A⊕P ′/(a,p)A. Then, P is extended
from R.
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Now, we will describe our next result. LetR be an affine algebra overR of dimensionn.
Let g ∈ R be an element not belonging to any real maximal ideal. LetQ be a projective
R-module of rank� n−1. Let(a,p) ∈ Um(Rg ⊕Qg) andP = Rg ⊕Qg/(a,p)Rg . Then,
P is extended fromR [5, Theorem 3.10]. This result was proved earlier by Ojanguren
Parimala in caseQ is free [11, Theorem]).

In this paper, we prove the following result (4.4), which is similar to 1.1.

Theorem 1.2. Let R be an affine algebra of dimension n � 3 over R. Let g,f1, . . . , fr

be a R-regular sequence and A = R[f1/g, . . . , fr/g]. Assume that g does not belong to
any real maximal ideal of R. Let P ′ be a projective A-module of rank � n − 1 which is
extended from R. Let (a,p) ∈ Um(A⊕P ′) and P = A⊕P ′/(a,p)A. Then, P is extended
from R. In particular, every stably free A-module of rank n is extended from R.

As a consequence of above result, iff,g ∈ R[X1, . . . ,Xn] with g not belonging to any
real maximal ideal, then all stably free modules of rank� n − 1 overR[X1, . . . ,Xn,f/g]
are free (4.6).

The proof of the main theorem makes crucial use of results and techniques of [2]

2. Preliminaries

In this paper, all the rings are assumed to be commutative Noetherian and all th
jective modules are finitely generated. We denote the Jacobson radical ofA by J (A).

Let B be a ring and letP be a projectiveB-module. Recall thatp ∈ P is called a
unimodular element if there exists aψ ∈ P ∗ = HomB(P,B) such thatψ(p) = 1. We
denote by Um(P ), the set of all unimodular elements ofP . We writeO(p) for the ideal of
B generated byψ(p), for all ψ ∈ P ∗. Note that, ifp ∈ Um(P ), thenO(p) = B.

Given an elementϕ ∈ P ∗ and an elementp ∈ P , we define an endomorphismϕp of P

as the compositeP
ϕ−→ B

p−→ P . If ϕ(p) = 0, thenϕ2
p = 0 and, hence, 1+ϕp is a unipotent

automorphism ofP .
By a transvection, we mean an automorphism ofP of the form 1+ϕp, whereϕ(p) = 0

and eitherϕ ∈ Um(P ∗) or p ∈ Um(P ). We denote byE(P ), the subgroup of Aut(P )

generated by all transvections ofP . Note that,E(P ) is a normal subgroup of Aut(P ).
An existence of a transvection ofP pre-supposes thatP has a unimodular elemen

Let P = B ⊕ Q, q ∈ Q, α ∈ Q∗. Then, the automorphisms∆q and Γα of P defined
by ∆q(b, q ′) = (b, q ′ + bq) andΓα(b, q ′) = (b + α(q ′), q ′) are transvections ofP . Con-
versely, any transvectionΘ of P gives rise to a decompositionP = B ⊕ Q in such a way
thatΘ = ∆q or Θ = Γα .

Definition 2.1. Let A be a ring and letP be a projectiveA-module. We say thatP is
cancellative if P ⊕Ar � Q⊕Ar for some positive integerr and some projectiveA-module
Q implies thatP � Q.

We begin by stating two classical results due to Serre [14] and Bass [1] respectiv
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Theorem 2.2. Let A be a ring with dimA/J (A) = d . Then, any projective A-module P of
rank > d has a unimodular element.

Theorem 2.3. Let A be a ring of dimension d and let P be a projective A-module of
rank > d . Then E(A⊕P) acts transitively on Um(A⊕P). In particular, P is cancellative.

The above result of Bass is best possible in general. But, in case of affine algebr
algebraically closed fields, we have the following result due to Suslin [17].

Theorem 2.4. Let A be an affine algebra of dimension n over an algebraically closed field.
Then, all projective A-modules of rank � n are cancellative.

Remark 2.5. Let P be a finitely generated projectiveA-module of rankd . Let t be a
non-zero divisor ofA such thatPt is free. Then, it is easy to see that there exits a
submoduleF = Ad of P and a positive integerl such that, ifs = t l , thensP ⊂ F . There-
fore, sF ∗ ⊂ P ∗ ⊂ F ∗. If p ∈ F , then∆p ∈ E(A ⊕ F) ∩ E(A ⊕ P) and if α ∈ F ∗, then
Γsα ∈ E(A ⊕ F) ∩ E(A ⊕ P).

The following result is due to Bhatwadekar and Roy [3, Proposition 4.1].

Proposition 2.6. Let A be a ring and let J be an ideal of A. Let P be a projective A-mod-
ule of rank n. Then, any transvection Θ̃ of P/JP , i.e., Θ̃ ∈ E(P/JP ), can be lifted to
a (unipotent) automorphism Θ of P . In particular, if P/JP is free of rank n, then any
element Ψ̄ of E((A/J )n) can be lifted to Ψ ∈ Aut(P ). If, in addition, the natural map
Um(P ) → Um(P/JP ) is surjective, then the natural map E(P ) → E(P/JP ) is surjec-
tive.

Definition 2.7. For a ringA, we say that projective stable range ofA is � r (notation:
psr(A) � r) if for all projectiveA-modulesP of rank� r and(a,p) ∈ Um(A ⊕ P), we
can findq ∈ P such thatp + aq ∈ Um(P ). Similarly, A has stable range� r (notation:
sr(A) � r) is defined the same way as psr(A) but withP required to be free.

The following result is due to Bhatwadekar [2, Corollary 3.3] and is a generalizati
a result of Suslin [15, Lemma 2.1]. See [5], for the definition ofESp4(B).

Proposition 2.8. Let B be a ring with psr(B) � 3 and let I be an ideal of B . Let P be a
projective B-module of rank 2 such that P/IP is free. Then, any element of SL2(B/I) ∩
ESp4(B/I) can be lifted to an element of SL(P ).

Remark 2.9. In [2, Corollary 3.3], Proposition 2.8 is stated with the assumption
dimB = 2. However, the proof works equally well in above case.

The following result is due to Mohan Kumar, Murthy and Roy [8, Theorem 3.7] an
used in 3.6.
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Theorem 2.10. Let A be an affine algebra of dimension d � 2 over F̄p . Suppose that A is
regular when d = 2. Then psr(A) � d .

The following two results are due to Lindel ([7, Theorem] and [6, Theorem 2.6]). R
that a ringA is called essentially of finite type over a fieldk, if A is the localisation of an
affine algebra overk.

Theorem 2.11. Let A be a regular ring which is essentially of finite type over a field k.
Then, every projective A[X]-module is extended from A.

Theorem 2.12. Let B be a ring of dimension d and let R = B[T1, . . . , Tn]. Let P be
a projective R-module of rank � max(2, d + 1). Then E(P ⊕ R) acts transitively on
Um(P ⊕ R).

The following result is due to Suslin [16, Theorem 2]. The special case, namelyn = 2
was proved earlier by Swan and Towber [20].

Theorem 2.13. Let A be a ring and [a0, a1, . . . , an] ∈ Umn+1(A). Then, there exists Γ ∈
SLn+1(A) with [an!

0 , a1, . . . , an] as the first row.

The next three results are due to Suslin [15, Propositions 1.4, 1.7 and Corollary 2
are very crucial for the proof of our main theorem (see also [9, Remark 2.2]). Here
stands for cohomological dimension (see [13] for definition).

Proposition 2.14. Let X be a regular affine curve over a field k and let l be a prime with
l �= chark. Suppose that cdl k � 1. Then, the group SK1(X) is l-divisible.

Proposition 2.15. Let X be a regular affine curve over a field k of characteristic �= 2 and
cd2 k � 1. Then, the canonical homomorphism K1Sp(X) → SK1(X) is an isomorphism.

Proposition 2.16. Let A be a ring and [a1, . . . , an] ∈ Umn(A) (n � 3). Let I = ∑
i�3 Aai

and J = ∑
i�4 Aai be ideals of A. Let b1, b2 ∈ A be such that Ab1 + Ab2 + I = A. Let

“bar” denotes reduction mod I . Suppose that

(i) dimA/I � 1 and sr(A/J ) � 3,
(ii) there exists an ᾱ ∈ SL2(Ā) ∩ ESp(Ā), such that [ā1, ā2]ᾱ = [b̄1, b̄2].

Then, there exists a γ ∈ En(A) such that [a1, . . . , an]γ = [b1, b2, a3 . . . , an].
Using above results, Suslin proved the following cancellation theorem [15, T

rem 2.4].

Theorem 2.17. Let A be an affine algebra of dimension d � 2 over an infinite perfect
field k. Suppose cdk � 1 and d! ∈ k∗. Let [a0, a1, . . . , ad ] ∈ Umd+1(A) and let r be a posi-
tive integer. Then, there exists Γ ∈ Ed+1(A) such that [a0, a1, . . . , ad ]Γ = [cr

0, c1, . . . , cd ].
As a consequence, every stably free A-module of rank d is free (Theorem 2.13).
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The following result is due to Bhatwadekar [2, Theorem 4.1] and is a generalisat
above result of Suslin.

Theorem 2.18. Let A be an affine algebra of dimension d � 2 over an infinite perfect
field k. Suppose cd k � 1 and d! ∈ k∗. Then, every projective A-module P of rank d is
cancellative.

The following result is very crucial for our main theorem and the proof of it is conta
in [2, Theorem 4.1].

Proposition 2.19. Let A be a ring and let P be a projective A-module of rank d . Let s ∈ A

be a non-zero-divisor such that Ps is free. Let F = Ad be a free submodule of P with Fs =
Ps and sP ⊂ F . Let e1, . . . , ed denote the standard basis of F . Let (a,p) ∈ Um(A ⊕ P)

be such that

(1) a = 1 mod As,
(2) p ∈ F ⊂ P with p = cd

1e1 + c2e2 + · · · + cded , for some ci ∈ A,
(3) every stably free A/Aa-module of rank � d − 1 is free.

Then, there exists ∆ ∈ Aut(A ⊕ P) such that (a,p)∆ = (1,0).

The following result is used to prove our second result (4.4) and is due to Ojan
and Parimala [11, Propositions 3 and 4].

Proposition 2.20. Let C = SpecC be a smooth affine curve over a field k of characteris-
tic 0. Suppose that every residue field of C at a closed point has cohomological dimension
� 1. Then, SK1(C) is divisible and the natural homomorphism K1Sp(C) → SK1(C) is an
isomorphism.

3. Main theorem 1

In this section, we will prove our first result (3.5). We begin with the following res
the proof of which is similar to [9, Corollary 2.8].

Lemma 3.1. Let R be an affine algebra of dimension n � 3 over a field k. Let g,f1, . . . , fr

be a R-regular sequence and A = R[f1/g, . . . , fr/g]. Let P be a projective A-module
of rank � n − 1 and (a,p) ∈ Um(A ⊕ P). Then, there exists Ψ ∈ SL(A ⊕ P) such that
(a,p)Ψ = (1,0) mod Ag.

Proof. Sinceg,f1, . . . , fr is a R-regular sequence,A = R[X1, . . . ,Xr ]/I , whereI =
(gX1 − f1, . . . , gXr − fr). Let “bar” denote reduction moduloAg. Then Ā = R̄[X1,

. . . ,Xr ], whereR̄ = R/(g,f1, . . . , fr ). Since dimR̄ � n − 2, by 2.12, there exists̄Ψ ∈
E(Ā⊕ P̄ ) such that(ā, p̄)Ψ̄ = (1,0). By 2.6, we can liftΨ̄ to Ψ ∈ SL(A⊕P). Hence, we
have(a,p)Ψ = (1,0) mod Ag. �
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Lemma 3.2. Let R be an affine algebra of dimension n � 3 over a field k. Let
g,f1, . . . , fr ∈ R with g a non-zero-divisor and A = R[f1/g, . . . , fr/g]. Let S = 1 + gR

and B = AS . Let P be a projective B-module of rank � n − 1 which is extended from RS .
Let (a,p) ∈ Um(B ⊕ P) with (a,p) = (1,0) mod Bg. Then, we have the followings:

(1) there exists s ∈ R such that Ps is free and
(2) there exists ∆ ∈ Aut(B ⊕ P) such that (a,p)∆ = (1,0) mod Bsg.

Further, given any ideal J of R of height � 1 with ht(g, J )R � 2, we can choose s such
that s ∈ J .

Proof. Chooses1 ∈ J such that hts1R = 1 and ht(s1, g)R � 2. By replacing(a,p) by (a+
α(p),p) for someα ∈ P ∗, if necessary, we may assume that htaB = 1 and ht(a, s1)B � 2.
Supposep1, . . . ,pt are minimal primes ofgRS ; p̃1, . . . , p̃t ′ : minimal primes ofRS and
q1, . . . ,qt ′′ : minimal primes ofaB. SinceP is extended fromRS , PΣ is free, where

Σ = RS

∖ t⋃
i=1

pi

t ′⋃
j=1

p̃j

t ′′⋃
l=1

(ql ∩ RS)

(any projective module over a semi local ring is free). Hence, there exists somes2 ∈ Σ

such thatPs2 is free. We may assumes2 ∈ R. Hence htRs2 � 1, ht(s2, g)RS � 2 and
ht(a, s2)B � 2.

Write s = s1s2. Then ht(g, s)RS � 2 and ht(a, s)B � 2. Since dimRS/(J (RS), s) �
n − 2 andP is extended fromRS , by 2.2,P/sP has a unimodular element. WriteB1 =
B/Bs, P/sP = B1 ⊕ P1 and(b,p1) as the image ofp in P/sP .

Let “bar” denotes reduction modulo the idealB1a. Since a = 1 mod Bg and
ht(s, a)B � 2, dimB̄1 � n − 3. Note that,p̄ = (b̄, p̄1) ∈ Um(P̄ = B̄1 ⊕ P̄1). Since rank
of P̄ � n − 1, by 2.3, there exists̄Φ ∈ E(P̄ ) such that(b̄, p̄1)Φ̄ = (1,0). In general, the
natural map Um(B1 ⊕ P1) → Um(B̄1 ⊕ P̄1) is surjective. Hence, by 2.6, we can lift̄Φ to
some elementΦ ∈ E(B1 ⊕ P1). Let (b,p1)Φ = (c,p2). Then(c,p2) = (1,0) mod B1a.

Let (c,p2) = (1,0) − a(c1,p3) for some(c1,p3) ∈ B1 ⊕ P1. Then(a, c,p2)∆(c1,p3) =
(a,1,0), where∆(c1,p3) ∈ E(B1 ⊕ P1). Recall thatP/sP = B1 ⊕ P1. By 2.6, we can
lift (1,Φ)∆(c1,p3) ∈ E(B ⊕ P/s(B ⊕ P)) to some elementΨ ∈ Aut(B ⊕ P) such
that (a,p)Ψ = (a, q) with O(q) = B mod Bs. Since a = 1 mod Bg, there exists
Ψ1 ∈ E(B ⊕ P) such that(a, q)Ψ1 = (1,0) mod Bsg. Let ∆ = Ψ Ψ1. Then(a,p)∆ =
(1,0) mod Bsg. This proves the lemma.�
Lemma 3.3. Let R be an affine algebra of dimension n � 3 over an algebraically closed
field k. Suppose chark = 0 or chark = p � n. Let g,f1, . . . , fr ∈ R with g a non-zero-
divisor and A = R[f1/g, . . . , fr/g]. Let S = 1 + Rg and B = AS . Let P be a projective
B-module of rank n−1 which is extended from RS . Let (a,p) ∈ Um(B ⊕P) with (a,p) =
(1,0) mod Bg. Then, there exists ∆ ∈ Aut(B ⊕ P) such that (a,p)∆ = (1,0).

Proof. Without loss of generality, we can assume thatR is reduced. LetJ1 be the ideal of
Rg defining the singular locus SingRg . SinceRg is reduced, htJ1 � 1. Note that

√
J1 = J1.
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Let J = J1 ∩ R. Then, we may assume thatg does not belong to any minimal primes ofJ

and htJ � 1. Hence ht(g, J )R � 2.
Since(a,p) = (1,0) mod Bg, by 3.2, there exists somes ∈ J andΦ ∈ Aut(B ⊕ P)

such thatPs is free and(a,p)Φ = (1,0) mod Bsg. Hence, replacing(a,p) by (a,p)Φ,
we can assume that(a,p) = (1,0) mod Bsg. It is easy to see that we can replaceB by
C = AT , whereT = (1+ gk[g])h for someh ∈ 1+ gR. Note that,B = CS .

SincePs is free of rankn − 1, there exists a free submoduleF = Cn−1 of P such that
Fs = Ps . By replacings by a power ofs, we may assume thatsP ⊂ F . Let e1, . . . , en−1

denote the standard basis ofCn−1. Since(a,p) = (1,0) mod Csg, p ∈ sgP ⊂ gF . Let
p = b1e1 + · · · + bn−1en−1, for somebi ∈ gC. Then[a, b1, . . . , bn−1] ∈ Umn(C). As 1−
a ∈ Csg, [a, sb1, . . . , sbn−1] ∈ Umn(C).

Forn = 3, by Swan’s Bertini theorem [19, Theorem 1.3] as quoted in [10, Theorem
there existsc1, c2 ∈ C such that, ifa′ = a+ sb1c1+ sb2c2, thenC/Ca′ is a reduced regula
(sincea′ = 1 modCsg ands ∈ J ) affinek(g)-algebra of dimension 1. Forn � 4, by prime
avoidance, there existsc1, . . . , cn−1 ∈ C such that, ifa′ = a + sb1c1 + · · · + sbn−1cn−1,
thenC/Ca′ is affinek(g)-algebra of dimension� n − 2. Note that,a′ = 1 mod Csg.

Let e∗
1, . . . , e

∗
n−1 be a dual basis ofF ∗ and letθi = cie

∗
i ∈ F ∗. Then, by 2.5,Γsθi

∈
E(C ⊕ P) and Γsθi

(a,p) = (a + sbici,p). Hence, it follows that there existsΨ1 ∈
E(C ⊕ P) such thatΨ1(a,p) = (a′,p).

Let “bar” denote reduction moduloCa′. SinceCa′ + Cs = C andPs = Fs is free, the
inclusionF ⊂ P gives rise to equalityF̄ = P̄ . In particular,P̄ is free of rankn − 1 � 2
with a basisē1, . . . , ēn−1 andp̄ ∈ Um(P̄ ). Recall thatC̄ is an affine algebra of dimensio
n − 2 over aC1-field k(g). Hence, by 2.18, every projectivēC-module of rankn − 2 is
cancellative.

If n = 3, thenC̄ is a regular affine algebra of dimension 1 over aC1-field k(g). Hence,
by 2.14, 2.15,SK1(C̄) is a divisible group and the canonical homomorphismK1Sp(C̄) →
SK1(C̄) is an isomorphism. Hence, there existsΘ ′ ∈ SL2(C̄) ∩ ESp(C̄) andt1, t2 ∈ C such
that, if p1 = t2

1e1 + t2e2 ∈ F , thenΘ ′(p̄) = p̄1. We have dimB/Bg = dimA/Ag = 2
and Bg is an k(g)-algebra of dimension two. Thus SpecB = SpecB/Bg ∪ SpecBg

with dimB/Bg = 2 = dimBg . Hence psr(B) � 3. Hence, by 2.8,Θ ′ ⊗ B̄ has a lift
Θ ∈ SL(P ⊗ B).

Forn � 4. SinceP̄ is free of rankn−1,En−1(C̄) = E(P̄ ). Hence, by 2.17, there exis
Θ̃ ∈ E(P̄ ) andti ∈ C, 1� i � n−1 such that, ifp1 = tn−1

1 e1 + t2e2 +· · ·+ tn−1en−1 ∈ F ,
thenΘ̃(p̄) = p̄1. By 2.6,Θ̃ can be lifted to an elementΘ ∈ SL(P ).

Write P for P ⊗ B. Thus, in either case, there existsq ∈ P such that

Θ(p) = p1 − a′q, where p1 = tn−1
1 e1 + t2e2 + · · · + tn−1en−1.

The automorphismΘ of P induces an automorphismΛ1 = (IdB,Θ) of B ⊕ P . Let Λ2

be the transvection∆q of B ⊕ P . Then(a′,p)Λ1Λ2 = (a′,p1).
By 2.19, there existsΛ3 ∈ Aut(B ⊕ P) such that(a′,p1)Λ3 = (1,0). Let ∆ =

Ψ1Λ1Λ2Λ3. Then∆ ∈ Aut(B ⊕ P) and(a,p)∆ = (1,0). This proves the result.�
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Remark 3.4. LetA be a ring andg,h ∈ A with Ag+Ah = A. Then, any projectiveA-mod-
ule E is given by a triple(Q,α,P ), whereQ,P are projective modules overAh andAg ,
respectively, andα is a prescribedAgh-isomorphismα :Qg

∼−→ Ph.
Let g,h ∈ A with Ag + Ah = A and letP be a projectiveA-module. Let(a,p) ∈

Um(Ag ⊕ Pg) andQ = Ag ⊕ Pg/(a,p)Ag . If ϕ :Qh
∼−→ Pgh is an isomorphism, then th

triple (Ph,ϕ,Q) yields a projectiveA-moduleE such thatQ = E ⊗ Ag .

Now, we prove the main result of this section. In caseP ′ is free (i.e.,P is stably free),
it is proved in [9, Theorem 2.10].

Theorem 3.5. Let R be an affine algebra of dimension n � 3 over an algebraically closed
field k. Suppose chark = 0 or chark = p � n. Let g,f1, . . . , fr be a R-regular sequence
and A = R[f1/g, . . . , fr/g]. Let P ′ be a projective A-module of rank n − 1 which is
extended from R. Let (a,p) ∈ Um(A⊕P ′) and P = A⊕P ′/(a,p)A. Then, P is extended
from R.

Proof. By 3.1, there existsΨ ∈ SL(A ⊕ P ′) such that(a,p)Ψ = (1,0) mod Ag. Let
S = 1 + Rg and B = AS . Applying 3.3, there existsΨ1 ∈ Aut(B ⊕ (P ′ ⊗ B)) such
that (a,p)Ψ Ψ1 = (1,0). Let ∆ = Ψ Ψ1. Then, there exists someh ∈ 1 + Rg such that
∆ ∈ Aut(Ah ⊕ P ′

h) and(a,p)∆ = (1,0). We have the isomorphismΓ :Ph
∼−→ P ′

h induced
from ∆. The moduleP is given by the triple(P ′

h,Γg,Pg). SinceRg + Rh = R, Rg = Ag ,
Rgh = Agh andΓg :Pgh

∼−→ P ′
gh is an isomorphism ofRgh module, the triple(P ′

h,Γg,Pg)

defines a projectiveR-moduleQ of rank n − 1 such thatP = Q ⊗ A. This proves the
theorem. �

The following result is a generalisations of [9, Theorem 2.12], where it is prove
stably free modules.

Theorem 3.6. Let R be an affine domain of dimension n � 4 over F̄p . Suppose p � n. Let
K be the field of fractions of R and let A be a subring of K with R ⊂ A ⊂ K . Let P ′ be
a projective A-module of rank n − 1 which is extended from R. Let (a,p) ∈ Um(A ⊕ P ′)
and P = A ⊕ P ′/(a,p)A. Then, P is extended from R.

Proof. We may assume thatA is finitely generated overR, i.e., there existg,f1, . . . , fr ∈
R such thatA = R[f1/g, . . . , fr/g]. SinceP ′ is extended fromR, we can choose a
elements ∈ R such thatP ′

s is free. Let “bar” denote reduction moduloAsg. Then
Ā = A/Asg is an affine algebra of dimension� n − 1 overF̄p . Sincen − 1 � 3, by 2.10,
psr(Ā) � n − 1. Hence, there exists̄Ψ ∈ E(Ā ⊕ P̄ ′) such that(ā, p̄)Ψ̄ = (1,0). By 2.6,Ψ̄
can be lifted toΨ ∈ SL(A⊕P ′). Replacing(a,p) by (a,p)Ψ , we can assume that(a,p) =
(1,0) mod Asg. Let B = A1+gR . Then, by 3.3 there existsΓ ∈ Aut(B ⊕ (P ′ ⊗ B)) such
that(a,p)Γ = (1,0). Rest of the argument is same as in 3.5.�

The following result is a generalisations of [9, Theorem 2.14], where it is prove
stably free modules.
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Theorem 3.7. Let R be a regular affine algebra of dimension n − 1 � 2 over an al-
gebraically closed field k. Let A = R[X,f/g], where g,f is a R[X]-regular sequence.
Suppose

(1) chark = 0 or chark = p � n,
(2) either g is a monic polynomial or g(0) ∈ R∗.

Let P ′ be a projective A-module of rank n − 1 which is extended from R. Let (a,p) ∈
Um(A ⊕ P ′) and P = A ⊕ P ′/(a,p)A. Then P

∼−→ P ′.

Proof. By 3.5, there exists a projectiveR[X]-moduleQ′ of rank n − 1 such thatP =
Q′ ⊗ A. By 2.11,Q′ = Q ⊗ R[X] with Q a projectiveR-module of rankn − 1. Hence
P = Q ⊗R A. From [9, Theorem 2.14], we have thatK0(R) → K0(A) is injective. Since
P ′ is extended fromR andP is stably isomorphic toP ′, henceQ is stably isomorphic to
P ′ asR-modules. By 2.4,Q ∼−→ P ′ asR-modules and henceP ∼−→ P ′. This proves the
result. �

4. Main theorem 2

In this section we prove our second result (4.4). Given an affine algebraA overR and
a subsetI ⊂ A, we denote byZ(I), the closed subset ofX = SpecA defined byI and by
ZR(I ), the setZ(I) ∩ X(R), whereX(R) is the set of all real maximal idealsm of A (i.e.,
A/m

∼−→ R).
We begin by stating the following result of Ojanguren and Parimala [11, Lemma 2

Lemma 4.1. Let A be a reduced affine algebra of dimension n over R and X = SpecA.
Let [a1, . . . , ad ] ∈ Umd(A). Suppose a1 > 0 on X(R). Then, there exists b2, . . . , bd ∈ A

such that ã = a1 + b2a2 + · · · + bdad > 0 on X(R) and Z(ã) is smooth on X\SingX of
dimension � n − 1.

The following result is analogous to [11, Proposition 1] and [5, Lemma 3.8].

Lemma 4.2. Let R be a reduced affine algebra of dimension n � 3 over R and let
g,f1, . . . , fr ∈ R with g not belonging to any real maximal ideal of R. Let A =
R[f1/g, . . . , fr/g] and X = SpecA. Let P be a projective A-module and let (a,p) ∈
Um(A ⊕ P) with a − 1 ∈ sgA for some s ∈ R. Then, there exists h ∈ 1 + gR and
∆ ∈ Aut(Ah ⊕ Ph) such that if (a,p)∆ = (ã, p̃), then

(1) ã > 0 on X(R) ∩ SpecAh,
(2) Z(ã) is smooth on SpecAh\SingX of dimension � n − 1, and
(3) (ã, p̃) = (1,0) (mod sgAh).

Proof. By replacingg by g2, we may assume thatg > 0 onX(R). Sincea = 1 mod sgA,
(a, sp) ∈ Um(A ⊕ P). Therefore,a has no zero onZR(O(sp)). Let r be a positive intege
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such thatgra ∈ gR. Let Y = SpecR. Thengra has no zero onZR(O(sp)) ∩ Y(R). By
Łojasiewicz’s inequality [4, Proposition 2.6.2], there existsc ∈ R with c > 0 on Y(R)

such that 1/|a|gr < c on ZR(O(sp)) ∩ Y(R). Let (1 + agrc)a = a′. Thengra′ > 0 on
ZR(O(sp)) ∩ Y(R) and hencea′ > 0 onZR(O(sp)). Write h = 1+ agrc ∈ 1+ gR. Then
a′ = ha.

Let W be the closed semi-algebraic subset ofX(R) defined by a′ � 0. Since
ZR(O(sp)) ∩ W = ∅, if O(p) = (b1, . . . , bd) then s2(b2

1 + · · · + b2
d) > 0 on W .

Hence, by Łojasiewicz’s inequality, there existsc1 ∈ A with c1 > 0 on X(R) such that
|a′|/gs2(b2

1 + · · · + b2
d) < c1. Hencea′′ = a′ + c1gs2(b2

1 + · · · + b2
d) > 0 onW and hence

a′′ > 0 onX(R).
We still havea′′ = 1 mod sgAh. Since[a′′, gs2b2

1, . . . , gs2b2
d ] ∈ Umd+1(Ah), by 4.1,

there existshi ∈ Ah such thatã = a′′ + ∑d
i=1 gs2b2

i hi > 0 onX(R) ∩ SpecAh andZ(ã)

is smooth on SpecAh\SingX of dimension� n − 1. It is clear from the proof that ther
exists∆1 ∈ Aut(Ah ⊕ Ph) such that(a,p)∆1 = (ã,p). Sinceã = 1 mod sgAh, there
exists∆2 ∈ E(Ah ⊕ Ph) such that(ã,p)∆2 = (ã, p̃) with p̃ ∈ sgPh. Take∆ = ∆1∆2.
This proves the result.�
Lemma 4.3. Let R be an affine algebra of dimension n � 3 over R. Let g,f1, . . . , fr ∈ R

with g a non-zero-divisor and A = R[f1/g, . . . , fr/g]. Assume that g does not belong
to any real maximal ideal of R. Let S = 1 + gR and B = AS . Let P be a projective
B-module of rank � n − 1 which is extended from RS . Let (a,p) ∈ Um(B ⊕ P) with
(a,p) = (1,0) mod Bg. Then, there exists ∆̃ ∈ Aut(B ⊕ P) such that (a,p)∆̃ = (1,0).

Proof. In view of 2.3, it is enough to prove the result when rank ofP is � n. For the sake
of simplicity, we assume that rank ofP = n − 1. The same proof goes through when ra
P = n.

Without loss of generality, we may assume thatR is reduced. LetJ1 be the ideal ofRg

defining the singular locus SingRg . SinceRg is reduced, htJ1 � 1. Note that
√

J1 = J1.
Let J = J1 ∩ R. Then, we may assume thatg does not belong to any minimal primes ofJ

and htJ � 1. Hence ht(g, J )R � 2.
Since(a,p) = (1,0) mod Bg, by 3.2, there exists somes ∈ J andΦ ∈ Aut(B ⊕ P)

such thatPs is free and(a,p)Φ = (1,0) mod Bsg. Hence, replacing(a,p) by (a,p)Φ,
we can assume that(a,p) = (1,0) mod Bsg.

There exists someh ∈ S such thatP is a projectiveAh-module withPs free and(a,p) ∈
Um(Ah ⊕P) with (a,p) = (1,0) modsgAh. Applying 4.2, there exists someh′ ∈ 1+gRh

and∆ ∈ Aut(Ahh′ ⊕ Phh′) such that(a,p)∆ = (a′,p′) with

(1′) a′ > 0 onX(R) ∩ SpecAhh′ , whereX = SpecAh,
(2′) (a′,p′) = (1,0) mod sgAhh′ , and
(3′) Z(a′) is smooth (sincea′ = 1 mod sgAhh′ and s ∈ J1) on SpecAhh′ of dimension

� n − 1.

Note that, sincehrh′ ∈ 1 + Rg for some positive integerr , Ahh′ ⊂ B. Hence, replacing
Ahh′ by A and(a′,p′) by (a,p), we assume that the above properties(1′)–(3′) holds for
(a,p) in the ringA, i.e., we have
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(1) a > 0 onX(R), whereX = SpecA,
(2) (a,p) = (1,0) mod sgA, and
(3) Z(a) is smooth on SpecA of dimension� n − 1.

SincePs is free of rankn − 1, there exists a free submoduleF = An−1 of P such
that Fs = Ps . Replacings by a suitable power ofs, we may assume thatsP ⊂ F . Let
e1, . . . , en−1 denote the standard basis ofAn−1.

Sincep ∈ sgP ⊂ gF , p = b1e1 + · · · + bn−1en−1 for somebi ∈ gA. Then [a, b1,

. . . , bn−1] ∈ Umn(A). Let T = 1+ gR[g] andC = AT . Note thatB = AS = C ⊗ CS . Let
“bar” denotes reduction moduloCa. Sincea − 1 ∈ Csg ands ∈ J , C̄ is a smooth affine
algebra overR(g) of dimensionn − 2. SincePs = Fs is free, the inclusionF ⊂ P gives
rise to equalityF̄ = P̄ . In particular,P̄ is free of rankn − 1 � 2 with a basis̄e1, . . . , ēn−1
andp̄ ∈ Um(P̄ ).

Assumen � 4. We have[b̄1, . . . , b̄n−1] ∈ Umn−1(C̄). As in [9, Lemma 2.6], by
Swan’s Bertini theorem [19, Theorem 1.3], there exists anΘ ∈ En−1(C̄) such that
[b̄1, . . . , b̄n−1]Θ = [b̄1, b̄2, c̄3, . . . , c̄n−1] with the following properties:

(1) C̄/J̄ is smooth affineR(g)-algebra of dimension 2, whereJ denotes the ideal ofC
generated by(c4, . . . , cn−1),

(2) C̄/Ī is smooth affineR(g)-algebra of dimension 1, whereI denotes the ideal ofC
generated by(c3, . . . , cn−1).

Every maximal idealm of C̄/Ī is the image in Spec̄C/Ī of a prime idealp of C of
heightn − 1 containinga. Sincea does not belongs to any real maximal ideal ofC, by
Serre’s result [13], the residue fieldR(p) = k(m) of m has cohomological dimension�
1. By 2.20,SK1(C̄/Ī ) is divisible and the natural mapK1Sp(C̄/Ī ) → SK1(C̄/Ī ) is an
isomorphism.

Let “tilde” denotes reduction modulōI . Write D = C̄, D̃ = D/Ī . Then, there exist
Θ ′ ∈ SL2(D̃) ∩ ESp(D̃) andt1, t2 ∈ D such that

[
b̃1, b̃2

]
Θ ′ = [

t̃ n−1
1 , t̃2

]
.

SinceB = CS , B̄ = C̄S . We haveΘ ′ ∈ SL2(B̄/Ī ) ∩ ESp(B̄/Ī ) and t1, t2 ∈ B̄ such that
[b̃1, b̃2]Θ ′ = [t̃ n−1

1 , t̃2].
If n = 3, thenĪ = 0 and hencēB/Ī = B̄ = B/Ba. We have dimB/Bg = dimA/Ag =

2 andBg is an R(g)-algebra of dimension two. Thus SpecB = SpecB/Bg ∪ SpecBg

with dimB/Bg = 2 = dimBg . Hence psr(B) � 3. Therefore, by 2.8,Θ ′ has a liftΘ1 ∈
SL(P ⊗ B).

For n � 4. Since dimB̄/Ī � 1 and dimB̄/J̄ � 2, by 2.16, there existsΘ ′′ ∈
En−1(B/Ba) such that

[
b̄1, b̄2, c̄3, . . . , c̄n−1

]
Θ ′′ = [

t̄
n−1
1 , t̄2, c̄3, . . . , c̄n−1

]
.

Recall that, there existsΘ ∈ En−1(B/Ba) such that[b̄1, . . . , b̄n−1]Θ = [b̄1, b̄2, c̄3, . . . , c̄n−1
SinceP̄ is free of rankn − 1� 3, En−1(Ā) = E(P̄ ). By 2.6,ΘΘ ′′ ∈ En−1(B/Ba) can be
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lifted to an elementΘ1 ∈ SL(P ⊗ B). (In particular, the above argument shows that ev
stably freeB/Ba-module of rank� n − 2 is cancellative.)

Write P for P ⊗ B. Thus, in either case (n � 3), there existsq ∈ P such that

Θ1(p) = p1 − aq, where p1 = tn−1
1 e1 + t2e2 + c3e3 + · · · + cn−1en−1.

The automorphismΘ1 of P induces an automorphismΛ1 = (IdB,Θ1) of B ⊕ P . Let
Λ2 be the transvection∆q of B ⊕ P . Then(a,p)Λ1Λ2 = (a,p1).

By 2.19, there existsΛ3 ∈ Aut(B ⊕P) such that(a,p1)Λ3 = (1,0). Let ∆̃ = Λ1Λ2Λ3.
Then∆̃ ∈ Aut(B ⊕ P) and(a,p)∆̃ = (1,0). This proves the result.�

Now, we prove the main theorem of this section.

Theorem 4.4. Let R be an affine algebra of dimension n � 3 over R. Let g,f1, . . . , fr

be a R-regular sequence and A = R[f1/g, . . . , fr/g]. Assume that g does not belong to
any real maximal ideal of R. Let P ′ be a projective A-module of rank � n − 1 which is
extended from R. Let (a,p) ∈ Um(A⊕P ′) and P = A⊕P ′/(a,p)A. Then, P is extended
from R.

Proof. By 3.1, there exists∆ ∈ Aut(A ⊕ P ′) such that(a,p)∆ = (1,0) mod Ag. Let
S = 1 + Rg andB = AS . Applying 4.3, there exists∆1 ∈ Aut(B ⊕ (P ′ ⊗ B)) such that
(a,p)∆∆1 = (1,0). LetΨ = ∆∆1. Then, there existsh ∈ 1+Rg such thatΨ ∈ Aut(Ah ⊕
P ′

h) and(a,p)Ψ = (1,0). Rest of the argument is same as in 3.5.�
Remark 4.5. The proof of 4.4 works for any real closed fieldk. For simplicity, we have
takenk = R.

Corollary 4.6. Let R = R[X1, . . . ,Xn] and f,g ∈ R with g not belonging to any real
maximal ideal. Then, every stably free R[f/g]-modules P of rank � n − 1 is free.

Proof. Write A = R[f/g]. We may assume thatf,g have no common factors so thatg,f

is a regular sequence inR. Since rankP � n−1,P ⊕A2 is free. Applying 4.4, we get tha
P ⊕A is extended fromR. By Quillen–Suslin theorem [12,18], every projectiveR-module
is free. HenceP ⊕ A is free. Again, by 4.4,P is extended fromR and hence is free.�

The proof of the following result is similar to 3.7, hence we omit it.

Theorem 4.7. Let R be a regular affine algebra of dimension n − 1 � 2 over R. Let A =
R[X,f/g], where g, f is a R[X]-regular sequence. Suppose that

(1) g does not belongs to any real maximal ideal,
(2) g is a monic polynomial or g(0) ∈ R∗.

Let P ′ be a projective A-module of rank n which is extended from R. Let (a,p) ∈
Um(A ⊕ P ′) and P = A ⊕ P ′/(a,p)A. Then P

∼−→ P ′.
In particular, every stably free A-module of rank n is free.
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