A note on rigidity and triangulability of a derivation

Manoj K. Keshari and Swapnil A. Lokhande
Department of Mathematics, IIT Bombay, Mumbai - 400076, India; (keshari,swapnil)@math.iitb.ac.in

Abstract

Let A be a \mathbb{Q}-domain, $K=\operatorname{frac}(A), B=A^{[n]}$ and $D \in \operatorname{LND}_{A}(B)$. Assume rank $D=$ rank $D_{K}=r$, where D_{K} is the extension of D to $K^{[n]}$. Then we show that (i) If D_{K} is rigid, then D is rigid. (ii) Assume $n=3, r=2$ and $B=A[X, Y, Z]$ with $D X=0$. Then D is triangulable over A if and only if D is triangulable over $A[X]$. In case A is a field, this result is due to Daigle.

Mathematics Subject Classification (2000): Primary 14L30, Secondary 13B25.
Key words: Locally nilpotent derivation, rigidity, triangulability.

1 Introduction

Throughout this paper, k is a field and all rings are \mathbb{Q}-domains. We will begin by setting up some notations from [4]. Let $B=A^{[n]}$ be an A-algebra, i.e. B is A-isomorphic to the polynomial ring in n variables over A. A coordinate system of B over A is an ordered n-tuple ($X_{1}, X_{2}, \ldots, X_{n}$) of elements of B such that $A\left[X_{1}, X_{2}, \ldots, X_{n}\right]=B$.

An A-derivation $D: B \rightarrow B$ is locally nilpotent if for each $x \in B$, there exists an integer $s>0$ such that $D^{s}(x)=0 ; D$ is triangulable over A if there exists a coordinate system $\left(X_{1}, \ldots, X_{n}\right)$ of B over A such that $D\left(X_{i}\right) \in A\left[X_{1}, \ldots, X_{i-1}\right]$ for $1 \leq i \leq n$; rank of D is the least integer $r \geq 0$ for which there exists a coordinate system $\left(X_{1}, \ldots, X_{n}\right)$ of B over A satisfying $A\left[X_{1}, \ldots, X_{n-r}\right] \subset$ ker $D ; \operatorname{LND}_{A}(B)$ is the set of all locally nilpotent A-derivations of B.

Let $\Gamma(B)$ be the set of coordinate systems of B over A. Given $D \in \operatorname{LND}_{A}(B)$ of rank r, let $\Gamma_{D}(B)$ be the set of $\left(X_{1}, \ldots, X_{n}\right) \in \Gamma(B)$ satisfying $A\left[X_{1}, \ldots, X_{n-r}\right] \subset$ ker $D ; D$ is rigid if $A\left[X_{1}, \ldots, X_{n-r}\right]=A\left[X_{1}^{\prime}, \ldots, X_{n-r}^{\prime}\right]$ holds whenever $\left(X_{1}, \ldots, X_{n}\right)$ and $\left(X_{1}^{\prime}, \ldots, X_{n}^{\prime}\right)$ belong to $\Gamma_{D}(B)$.

For an example, if $D \in \operatorname{LND}_{A}(B)$ has rank 1 , then D is rigid. In this case $\operatorname{ker}(D)=$ $A\left[X_{1}, \ldots, X_{n-1}\right]$ for some coordinate system $\left(X_{1}, \ldots, X_{n}\right)$ and $D=f \partial_{X_{n}}$ for some $f \in \operatorname{ker}(D)$. If rank $D=n$, then D is obviously rigid, as no variable is in $\operatorname{ker}(D)$. If rank $D \neq 1, n$, then $\operatorname{ker}(D)$ is not generated by $n-1$ elements of a coordinate system and is generally difficult to see whether D is rigid. For an example of a non-rigid triangular derivation on $k^{[4]}$, see section 3 . We remark that there is also a notion of a ring to be rigid. We say that a ring A is rigid if $\operatorname{LND}(A)=\{0\}$, i.e. there is no non-zero locally nilpotent derivation on A. Clearly polynomial rings $k^{[n]}$ are non-rigid rings for $n \geq 1$.

We will state the following result of Daigle ([4], Theorem 2.5) which is used later.
Theorem 1.1 All locally nilpotent derivations of $k^{[3]}$ are rigid.

Our first result extends this as follows:
Theorem 1.2 Let A be a ring, $B=A^{[n]}, K=\operatorname{frac}(A)$ and $D \in \operatorname{LND}_{A}(B)$. Assume that rank $D=$ rank D_{K}, where D_{K} is the extension of D to $K^{[n]}$. If D_{K} is rigid, then D is rigid.

In ([4], Corollary 3.4), Daigle obtained the following triangulability criteria: Let D be an irreducible, locally nilpotent derivation of $R=k^{[3]}$ of rank at most 2. Let $(X, Y, Z) \in \Gamma(R)$ be such that $D X=0$. Then D is triangulable over k if and only if D is triangulable over $k[X]$. Our second result extends this result as follows:

Theorem 1.3 Let A be a ring, $B=A^{[3]}, K=\operatorname{frac}(A)$ and $D \in \operatorname{LND}_{A}(B) . \operatorname{Let}(X, Y, Z) \in \Gamma(B)$ be such that $D X=0$. Assume that rank $D=\operatorname{rank} D_{K}=2$. Then D is triangulable over A if and only if D is triangulable over $A[X]$.

2 Preliminaries

Recall that a ring is called a $H C F$-ring if intersection of two principal ideal is again a principal ideal. We state some results for later use.

Lemma 2.1 (Daigle [4], 1.2) Let D be a k-derivation of $R=k^{[n]}$ of rank 1 and let $\left(X_{1}, X_{2}, \ldots, X_{n}\right) \in$ $\Gamma(R)$ be such that $k\left[X_{1}, X_{2}, \ldots, X_{n-1}\right] \subset$ ker D. Then
(i) ker $D=k\left[X_{1}, X_{2}, \ldots, X_{n-1}\right]$;
(ii) D is locally nilpotent if and only if $D\left(X_{n}\right) \in \operatorname{ker} D$.

Proposition 2.2 (Abhyankar, Eakin and Heinzer [1], Proposition 4.8) Let R be a HCF-ring, A a ring of transcendence degree one over R and $R \subset A \subset R^{[n]}$ for some $n \geq 1$. If A is a factorially closed subring of $R^{[n]}$, then $A=R^{[1]}$.

Lemma 2.3 (Abhyankar, Eakin and Heinzer [1], 1.7) Suppose $A^{[n]}=R=B^{[n]}$. If $b \in B$ is such that $b R \cap A \neq 0$, then $b \in A$.

Theorem 2.4 ([6], Theorem 4.11) Let R be a HCF-ring and $0 \neq D \in \operatorname{LND}_{R}(R[X, Y])$. Then there exists $P \in R[X, Y]$ such that ker $D=R[P]$.

Theorem 2.5 (Bhatwadekar and Dutta [3]) Let A be a ring and $B=A^{[2]}$. Then $b \in B$ is a variable of B over A if and only if for every prime ideal \mathfrak{p} of $A, \bar{b} \in \bar{B}:=B_{\mathfrak{p}} / \mathfrak{p} B_{\mathfrak{p}}$ is a variable of \bar{B} over $A_{\mathfrak{p}} / \mathfrak{p} A_{\mathfrak{p}}$.

3 Rigidity

Theorem 3.1 Let A be a ring, $B=A^{[n]}$, $K=\operatorname{frac}(A)$ and $D \in \operatorname{LND}_{A}(B)$. Assume that rank $D=\operatorname{rank} D_{K}$, where D_{K} is the extension of D to $K^{[n]}$. If D_{K} is rigid, then D is rigid.

Proof Assume rank $D=\operatorname{rank} D_{K}=r$ and D_{K} is rigid. We need to show that D is rigid, i.e. if $\left(x_{1}, \ldots, x_{n}\right)$ and $\left(y_{1}, \ldots, y_{n}\right)$ are two coordinate systems of B satisfying $A\left[x_{1}, \ldots, x_{n-r}\right] \subset$ ker D and $A\left[y_{1}, \ldots, y_{n-r}\right] \subset \operatorname{ker}(D)$, then we have to show that $A\left[x_{1}, \ldots, x_{n-r}\right]=A\left[y_{1}, \ldots, y_{n-r}\right]$. By symmetry, it is enough to show that $A\left[x_{1}, \ldots, x_{n-r}\right] \subset A\left[y_{1}, \ldots, y_{n-r}\right]$.

Since D_{K} is rigid and rank $D_{K}=r$, we get $K\left[x_{1}, \ldots, x_{n-r}\right]=K\left[y_{1}, \ldots, y_{n-r}\right]$. If $f \in$ $A\left[x_{1}, \ldots, x_{n-r}\right]$, then $f \in K\left[y_{1}, \ldots, y_{n-r}\right]$. We can choose $a \in A$ such that $a f \in A\left[y_{1}, \ldots, y_{n-r}\right]$ and hence $f B \cap A\left[y_{1}, \ldots, y_{n-r}\right] \neq 0$. Applying (2.3) to $A\left[x_{1}, \ldots, x_{n-r}\right]^{[r]}=B=A\left[y_{1}, \ldots, y_{n-r}\right]^{[r]}$, we get $f \in A\left[y_{1}, y_{2}, \ldots, y_{n-r}\right]$. Therefore $A\left[x_{1}, \ldots, x_{n-r}\right] \subset A\left[y_{1}, \ldots, y_{n-r}\right]$. This completes the proof.

The following result is immediate from (3.1) and (1.1).
Corollary 3.2 Let A be a ring, $B=A^{[3]}, D \in L N D_{A}(B)$. If rank $D=\operatorname{rank} D_{K}$, then D is rigid.

Remark 3.3 (1) If $D \in \operatorname{LND}_{A}(B)$, then rank D and rank D_{K} need not be same. For an example, consider $A=\mathbb{Q}[X]$ and $B=A[T, Y, Z]$. Define $D \in \operatorname{LND}_{A}(B)$ as $D T=0, D(Y)=X$ and $D(Z)=Y$. Then rank $D=2$ and rank $D_{K}=1$. Further, $\left(T^{\prime}=T-Y^{2}+2 X Z, Y, Z\right) \in \Gamma_{D}(B)$ and $A[T] \neq A\left[T^{\prime}\right]$. Therefore, D is not rigid, whereas D_{K} is rigid, by (1.1).

Above example gives a $D \in \operatorname{LND}\left(k^{[4]}\right)$ which is not rigid. Hence Daigle's result (1.1) is best possible. Note that D is a triangular derivation and by [2], $\operatorname{ker}(D)$ is a finitely generated k-algebra.
(2) The condition in (3.1) is sufficient but not necessary, i.e. $D \in \mathrm{LND}_{A}(B)$ may be rigid even if rank $D \neq \operatorname{rank} D_{K}$. For an example consider $A=\mathbb{Q}[X]$ and $B=A[Y, Z]$. Define $D \in \operatorname{LND}_{A}(B)$ as $D(Y)=X$ and $D(Z)=Y$. Then rank $D=2$ and hence D is rigid. Further, rank $D_{K}=1$ and D_{K} is also rigid, by (1.1).
(3) It will be interesting to know if $D \in \operatorname{LND}\left(k^{[n]}\right)$ being rigid implies that $\operatorname{ker}(D)$ is a finitely generated k-algebra. The following example could provide an answer.

Let $D=X^{3} \partial_{S}+S \partial_{T}+T \partial_{U}+X^{2} \partial_{V} \in \operatorname{LND}(B)$, where $B=k^{[5]}=k[X, S, T, U, V]$. Daigle and Freudenberg [5] have shown that $\operatorname{ker}(D)$ is not a finitely generated k-algebra. We do not know if D is rigid. We will show that rank $D=3$.

Clearly $X, S-X V \in \operatorname{ker}(D)$ is part of a coordinate system. Hence rank $D \leq 3$. If rank $D=1$, then there exists a coordinate system $\left(X_{1}, \ldots, X_{4}, Y\right)$ of B over k such that $X_{1}, \ldots, X_{4} \in \operatorname{ker}(D)$. Hence $D=f \partial_{Y}$ for some $f \in k\left[X_{1}, \ldots, X_{4}\right]$ and $\operatorname{ker}(D)=k\left[X_{1}, \ldots, X_{4}\right]$ is a finitely generated k algebra, a contradiction. If rank $D=2$, then there exists a coordinate system $\left(X_{1}, X_{2}, X_{3}, Y, Z\right)$ of B over k such that $X_{1}, X_{2}, X_{3} \in \operatorname{ker}(D)$. If we write $A=k\left[X_{1}, X_{2}, X_{3}\right]$, then $D \in \operatorname{LND}_{A}(A[Y, Z])$. Since A is UFD, by ([6], Theorem 4.11), $\operatorname{ker}(D)=A^{[1]}$, hence $\operatorname{ker}(D)$ is a finitely generated k algebra, a contradiction. Therefore, rank of D is 3 .

4 Triangulability

We begin with the following result which is of independent interest.

Lemma 4.1 Let A be a UFD, $K=\operatorname{frac}(A), B=A^{[n]}$ and $D \in \operatorname{LND}_{A}(B)$. Let D_{K} be the extension of D on $K^{[n]}$. If D is irreducible, then D_{K} is irreducible.

Proof We prove that if D_{K} is reducible, then so is D. Let $D_{K}\left(K^{[n]}\right) \subset f K^{[n]}$ for some $f \in B$. If $B=A\left[x_{1}, \ldots, x_{n}\right]$, then we can write $D x_{i}=f g_{i} / c_{i}$ for some $g_{i} \in B$ and $c_{i} \in A$ with $\operatorname{gcd}_{B}\left(g_{i}, c_{i}\right)=$ 1. Since $D x_{i} \in B$, we get c_{i} divides f in B. If c is lcm of c_{i} 's, then c divides f. If we take $f^{\prime}=f / c \in B$, then $D x_{i} \in f^{\prime} B$ and hence D is reducible.

Proposition 4.2 Let A be a ring, $B=A^{[3]}$, and $D \in \operatorname{LND}_{A}(B)$ be of rank one. Let $(X, Y, Z) \in$ $\Gamma(B)$ be such that $D X=0$. Assume that either A is a UFD or D is irreducible. Then D is triangulable over $A[X]$.

Proof As rank $D=1$, there exists $\left(X^{\prime}, Y^{\prime}, Z^{\prime}\right) \in \Gamma(B)$ such that $D X^{\prime}=D Y^{\prime}=0$. By (2.1), ker $D=A\left[X^{\prime}, Y^{\prime}\right]$ and $D Z^{\prime} \in \operatorname{ker} D$.
(i) Assume A is a UFD. Since $A[X] \subset A\left[X^{\prime}, Y^{\prime}\right] \subset A[X]^{[2]}$ and $A\left[X^{\prime}, Y^{\prime}\right]$ is factorially closed in $A[X]^{[2]}$; by (2.2), $A\left[X^{\prime}, Y^{\prime}\right]=A[X][P]$ for some $P \in B$. Hence $B=A\left[X, P, Z^{\prime}\right]$ and $D Z^{\prime} \in A[X, P]$. Thus D is triangulable over $A[X]$.
(ii) Assume D is irreducible. Then $D Z^{\prime}$ must be a unit. To show that X is a variable of $A\left[X^{\prime}, Y^{\prime}\right]$ over A. By (2.5), it is enough to prove that for every prime ideal \mathfrak{p} of A, if $\kappa(\mathfrak{p})=A_{\mathfrak{p}} / \mathfrak{p} A_{\mathfrak{p}}$ then \bar{X} is a variable of $\kappa(\mathfrak{p})\left[X^{\prime}, Y^{\prime}\right]$ over $\kappa(\mathfrak{p})$. Extend D on $A_{\mathfrak{p}}[X, Y, Z]$ and let \bar{D} be D modulo $\mathfrak{p} A_{\mathfrak{p}}$. Then ker $\bar{D}=\kappa(\mathfrak{p})\left[X^{\prime}, Y^{\prime}\right]$. By (2.2), ker $\bar{D}=\kappa(\mathfrak{p})[X]^{[1]}$. Therefore X is a variable of $A\left[X^{\prime}, Y^{\prime}\right]$, i.e. $A\left[X^{\prime}, Y^{\prime}\right]=A[X, P]$ for some $P \in B$. Hence $B=A\left[X, P, Z^{\prime}\right]$. Thus D is triangulable over $A[X]$.

Proposition 4.3 Let A be a ring, $K=\operatorname{frac}(A), B=A^{[3]}$ and $D \in \operatorname{LND}_{A}(B)$. Let $(X, Y, Z) \in$ $\Gamma(B)$ be such that $D X=0$. Assume rank $D=\operatorname{rank} D_{K}=2$. Then D is triangulable over A if and only if D is triangulable over $A[X]$.

Proof We need to show only (\Rightarrow). Suppose that D is triangulable over A. Then there exists $\left(X^{\prime}, Y^{\prime}, Z^{\prime}\right) \in \Gamma(B)$ such that $D X^{\prime} \in A, D Y^{\prime} \in A\left[X^{\prime}\right]$ and $D Z^{\prime} \in A\left[X^{\prime}, Y^{\prime}\right]$. If $a=D X^{\prime} \neq 0$, then $D_{K}\left(X^{\prime} / a\right)=1$; which implies that rank $D_{K}=1$, a contradiction. Hence $D X^{\prime}=0$.

Since D_{K} is rigid, by (3.1), D is rigid of rank 2. Therefore $A[X]=A\left[X^{\prime}\right]$ and D is triangulable over $A[X]$.

Acknowledgements. We sincerely thank the referee for his/her remarks which improved the exposition.

References

[1] S.S. Abhyankar, P. Eakin and W. Heinzer, On the uniqueness of the coefficient ring in a polynomial ring, J. Algebra 23 (1972), 310-342.
[2] S.M. Bhatwadekar and D. Daigle, On finite generation of kernels of locally nilpotent R-derivations of $R[X, Y, Z]$, J. Algebra 322 (2009), 2915-2916.
[3] S. M. Bhatwadekar and Amartya K. Dutta, On residual variables and stably polynomial algebras, Comm. Algebra 21 (1993), no. 2, 635-645.
[4] D. Daigle, A necessary and sufficient condition for triangulability of derivations of $k[X, Y, Z]$, J. Pure Appl. Algebra 113 (1996), 297-305.
[5] D. Daigle and G. Freudenburg, A counterexample to Hilbert's fourteenth problem in dimension 5, J. Algebra 221 (1999), 528-535.
[6] G. Freudenburg, Algebraic theory of locally nilpotent derivations, volume 136 of Encyclopedia of Mathematical Sciences, Springer-Verlag, Berlin, 2006.

