
Notes on the Vershik-Okounkov approach to the
representation theory of the symmetric groups

1 Introduction

These notes1 contain an expository account of the beautiful new ap-
proach to the complex finite dimensional irreducible representations
of the symmetric group, developed by Anatoly Vershik and Andrei
Okounkov [4].

The main task of any representation theory of the symmetric
groups is to explain the appearence of Young diagrams and Young
tableaux in the theory in a natural way. The traditional approach
(see [1, 2, 3]) is indirect and rests upon nontrivial auxiliary con-
structions. The presence of Young tableaux in the theory is justified
only in the end, after the proof of the branching rule. The main
steps of the Vershik-Okounkov approach are as follows:

(i) A direct elementary argument shows that branching from Sn to
Sn−1 is simple, i.e., multiplicity free.

(ii) Consider an irreducible Sn-module V . Since the branching
is simple the decomposition of V into irreducible Sn−1-modules is
canonical. Each of these modules, in turn, decompose canonically
into irreducible Sn−2-modules. Iterating this construction we get
a canonical decomposition of V into irreducible S1-modules, i.e.,
one dimensional subspaces. Thus there is a canonical basis of V ,
determined upto scalars, and called the the Gelfand-Tsetlin basis
(GZ-basis).

1Distributed to participants of the instructional school on Representation

Theory and its Applications, held at Pune during July 2-28, 2007.
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(iii) Let Zn denote the center of CSn. The Gelfand-Tsetlin algebra
(GZ-algebra), denoted GZn, is defined to be the (commutative) sub-
algebra of CSn generated by Z1∪Z2∪· · ·∪Zn. It is shown that GZn

consists of all elements in CSn that act diagonally in the GZ-basis
in every irreducible representation. Thus GZn is a maximal com-
mutative subalgebra of CSn and its dimension is equal to the sum
of dimensions of the distinct inequivalent irreducible Sn-modules. It
follows that any vector in the GZ-basis (in any irreducible represen-
tation) is uniquely determined by the eigenvalues of the elements of
the GZ-algebra on this vector.

(iv) For i = 1, 2, . . . , n define Xi = (1, i) + (2, i) + · · · + (i − 1, i) ∈
CSn. The Xi’s are called the Young-Jucys-Murphy elements (YJM-
elements) and it is shown that they generate the GZ-algebra. To
a GZ-vector v (i.e., an element of the GZ-basis in some irreducible
representation) we associate the tuple α(v) = (a1, a2, . . . , an), where
ai = eigenvalue of Xi on v and we let

Spec (n) = {α(v) : v is a GZ-vector}.
It follows from step (iii) that, for GZ-vectors u and v, u = v iff
α(u) = α(v) and thus #Spec (n) is equal to the sum of the di-
mensions of the distinct irreducible inequivalent representations of
Sn.

(v) In the final step we construct a bijection between Spec (n)
and Tab (n) (= set of all standard Young tableaux on the letters
{1, 2, . . . , n}) such that tuples in Spec (n) whose GZ-vectors be-
long to the same irreducible representation go to standard Young
tableaux of the same shape. This step is carried out inductively
using an elementary analysis of the commutation relation

s2
i = 1, XiXi+1 = Xi+1Xi, siXi + 1 = Xi+1si.

where si = the Coxeter generator (i, i + 1).

For more detailed explanations about the underlying philosophy
of this method as well as many remarks on extensions and analogies
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with Lie theory, see the original papers [4, 5]. Our exposition closely
follows [4] (we have added a few details here and there). In these
notes we have restricted ourselves to only the most basic result,
namely that the branching graph of the chain of symmetric groups
is the Young graph. For the further development of the theory, see
[4, 5].

Notation

A partition is a finite sequence µ = (µ1, µ2, . . . , µr) of weakly
decreasing positive integers. We say that µ has r parts and that µ
is a partiton of n = µ1 + · · · + µr. Let P(n) denote the set of all
partitions of n and let P1(n) denote the set of all pairs (µ, i), where
µ is a partition of n and i is a part in µ. A part is nontrivial if it is
≥ 2 and we let #µ denote the sum of the nontrivial parts of µ. The
number of all partitions of n is denoted p(n).

Conjugacy classes in Sn are parametrized by partitions of n.
Given a partition µ ∈ P(n), let cµ ∈ CSn denote the sum of all
partitions in Sn with cycle type µ. It is well known that {cµ : µ ∈
P(n)} is a basis of the center of CSn.

For a permutation s ∈ Sn we denote by ℓ(s) the number of inver-
sions in s. It is well known that the s can be written as a product of
ℓ(s) Coxeter transpositions si = (i, i+1), i = 1, 2, . . . , n−1 and that
s cannot be written as a product of fewer Coxeter transpositions.

All our algebras are finite dimensional, over C, and have units.
Subalgebras contain the unit, and algebra homomorphisms preserve
units. Given elements or subalgebras A1, A2, . . . , An of an algebra
A we denote by 〈A1, A2, . . . , An〉 the subalgebra of A generated by
A1 ∪ A2 ∪ · · · ∪ An.

3



2 Gelfand-Tsetlin bases and Gelfand-Tsetlin al-
gebras

In this section we shall introduce Gelfand-Tsetlin bases (GZ
bases) and Gelfand-Tsetlin algebras (GZ algebras) for an inductive
chain of finite groups with simple branching.

Let

{1} = G1 ⊆ G2 ⊆ · · · ⊆ Gn ⊆ · · · (1)

be an inductive chain of finite groups. Denote by G∧
n the set of

equivalence classes of finite dimensional complex irreducible repre-
sentations of Gn. Denote by V λ the irreducible Gn module corre-
sponding to λ ∈ G∧

n . Define the following directed graph, called the
branching multigraph or Bratelli diagram of this chain: its vertices
are the elements of the set

∐

n≥1

G∧
n (disjoint union)

and two vertices µ, λ are joined by k directed edges from µ to λ
whenever µ ∈ G∧

n−1 and λ ∈ G∧
n for some n, and the multiplicity of

µ in the restriction of λ to Gn−1 is k. We call G∧
n the nth level of

the branching multigraph. We write µ ր λ if there is an edge from
µ to λ.

For the rest of this section assume that the branching multi-
graph defined above is actually a graph, i.e., the multiplicities of all
restrictions are 0 or 1. We say that the branching or multiplicities
are simple.

Consider the Gn-module V λ, where λ ∈ G∧
n . Since the branching

is simple, the decomposition

V λ =
⊕

µ

V µ,
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where the sum is over all µ ∈ G∧
n−1 with µ ր λ, is canonical.

Iterating this decomposition we obtain a canonical decomposition
of V λ into irreducible G1-modules, i.e., one-dimensional subspaces,

V λ =
⊕

T VT , (2)

where the sum is over all possible chains

T = λ1 ր λ2 ր · · · ր λn, (3)

with λi ∈ G∧
i and λn = λ. By choosing a nonzero vector vT in

each one-dimensional space VT above, we obtain a basis {vT} of V λ,
called the Gelfand-Tsetlin basis (GZ-basis). From here till the end
of Section 6 we consider the GZ-basis as fixed. In Section 7 we shall
discuss an appropriate choice of these nonzero vectors (in the case
of symmetric groups) so that all irreducibles are realized over Q. By
the definition of vT , we have

C[Gi] · vT = V λi , i = 1, 2, . . . , n.

Also note that chains in (3) are in bijection with directed paths in
the branching graph from the unique element λ1 of G∧

1 to λ.

We have identified a canonical basis (upto scalars), namely the
GZ-basis, in each irreducible representation of Gn. A natural ques-
tion at this point is to identify those elements of C[Gn] that act di-
agonally in this basis (in every irreducible representation). In other
words, consider the algebra isomorphism

C[Gn] ∼=
⊕

λ∈G∧
n

End(V λ), (4)

given by
g 7→ (V λ g→ V λ : λ ∈ G∧

n), g ∈ Gn.

Let D(V λ) consists of all operators on V λ diagonal in the GZ-
basis of V λ. Our question can now be stated as: what is the im-
age under the isomorphism (4) of the subalgebra

⊕

λ∈G∧
n

D(V λ) of
⊕

λ∈G∧
n

End(V λ).
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Let Zn denote the center of the algebra C[Gn] and set GZn =
〈Z1, Z2, . . . , Zn〉. It is easy to see that GZn is commutative subalge-
bra of CSn. We call GZn the Gelfand-Tsetlin algebra (GZ-algebra)
of the inductive family of group algebras.

Theorem 2.1. GZn is the image of
⊕

λ∈G∧
n
D(V λ) under the iso-

morphism (4) above, i.e., GZn consists of all elements of C[Gn] that
act diagonally in the GZ-basis in every irreducible representation of
Gn. Thus GZn is a maximal commutative subalgebra of C[Gn] and

its dimension is equal to
∑

λ∈G∧
n

dim λ.

Proof Consider the chain T from (3) above. For i = 1, 2, . . . , n,
let pλi

∈ Zi denote the central idempotent corresponding to the
representation λi ∈ G∧

i . Define pT ∈ GZn by

pT = pλ1
pλ2

· · · pλn
.

A little reflection shows that the image of pT under the isomorphism
(4) is (fµ : µ ∈ G∧

n), where fµ = 0, if µ 6= λ and fλ is the projection
on VT (with respect to the decomposition (2) of V λ.)

It follows that the image of GZn under (4) includes
⊕

λ∈G∧
n

D(V λ),

which is a maximal commutative subalgebra of
⊕

λ∈G∧
n

End(V λ).
Since GZn is commutative, the result follows. 2.

By a GZ-vector of Gn (determined upto scalars) we mean a vec-
tor in the GZ-basis of some irreducible representation of Gn. As an
immediate consequence of the theorem above we get the following
result.

Corollary 2.2. (i) Let v ∈ V λ, λ ∈ G∧
n. If v is an eigenvector (for

the action ) of every element of GZn, then (a scalar multiple of) v
belongs to the GZ-basis of V λ.

(ii) Let v, u be two GZ-vectors. If v and u have the same eigenvalues
for every element of GZn, then v = u.
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We shall find an explicit set of generators for the GZ-algebras of
the symmetric groups in Section 4.

3 Simplicity of branching for symmetric groups

In this section we give a criterion for simple branching and use
the theory of involutive algebras to verify this criterion in the case
of symmetric groups.

Theorem 3.1. Let M be a finite dimensional semisimple C-algebra
and let N be a semisimple subalgebra. Let Z(M, N) denote the cen-
tralizer of this pair consisting of all elements of M that commute
with N . Then Z(M, N) is semisimple and the following conditions
are equivalent:

1. The restriction of any finite dimensional complex irreducible rep-
resentation of M to N is multiplicity free.

2. The centralizer Z(M, N) is commutative.

Proof By Wedderburn’s theorem we may assume, without loss of
generality, that M = M1 ⊕ · · · ⊕ Mk, where each Mi is a matrix
algebra. We write elements of M as (m1, . . . , mk), where mi ∈
Mi. For i = 1, . . . , k, let Ni denote the image of N under the
natural projection of M onto Mi. Being the homomorphic image of
a semisimple algebra, Ni itself is semisimple.

We have Z(M, N) = Z(M1, N1)⊕· · ·⊕Z(Mk, Nk). By the double
centralizer theorem each Z(Mi, Ni), and thus Z(M, N), is semisim-
ple.

For i = 1, . . . , k, let Vi denote the set of all (m1, . . . , mk) ∈
M with mj = 0 for j 6= i and with all entries of mi not in the
first column equal to zero. Note that V1, . . . , Vk are all the distinct
inequivalent irreducible M-modules and that the decomposition of
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Vi into irreducible N -modules is identical to the decomposition of Vi

into irreducible Ni-modules.

It now follows from the double centralizer theorem that Vi is
multiplicity free as a Ni-module, for all i iff all irreducile modules of
Z(Mi, Ni) have dimension 1, for all i iff Z(Mi, Ni) is abelian, for all
i iff Z(M, N) is abelian.2

We shall now give an elegant proof that the restriction of an
irreducible representation of Sn to Sn−1 is multiplicity free. The
proof exploits the additional structure of an involution that certain
algebras possess (like g 7→ g−1 in groups and A 7→ A∗ in matrices).

Recall the notion of an involutive algebra. Let F denote the real
field or the complex field. If F = C and α ∈ C, then ᾱ denotes the
complex conjugate of α, and if F = R and α ∈ R, then ᾱ = α.

An involutive algebra over F is an algebra A (over F ) together
with a conjugate linear anti-automorphism of order 2, i.e., a bijective
mapping x 7→ x∗ such that

(x + y)∗ = x∗ + y∗, (αx)∗ = ᾱx∗, (xy)∗ = y∗x∗, (x∗)∗ = x,

for all x, y ∈ A, and α ∈ F . We call x∗ the adjoint of x.

An element x ∈ A is said to be normal if xx∗ = x∗x and is said
to be hermitian or self-adjoint if x = x∗.

Given an involutive algebra A over R, we define an involutive
algebra over C, called the ∗-complexification of A as follows: The
elements of the complexification are ordered pairs (x, y) ∈ A × A.
We write (x, y) as x + iy. The algebra operations are the natural
ones. For α + iβ ∈ C, x, x1, x2, y, y1, y2 ∈ A we have

(x1 + iy1) + (x2 + iy2) = (x1 + x2) + i(y1 + y2)

(x1 + iy1)(x2 + iy2) = (x1x2 − y1y2) + i(x1y2 + y1x2)

(α + iβ)(x + iy) = (αx − βy) + i(αy + βx)

(x + iy)∗ = x∗ − iy∗
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By a real element of the complexification we mean an element of the
form x = x + i0, for some x ∈ A. Note that the adjoint of a real
element in the complexification is the same as its adjoint in A.

Example Let F be R or C and let G be a finite group. Then the
group algebra F [G] is an involutive algebra under the involution
(
∑

i αigi)
∗ =

∑

i ᾱig
−1
i . It can also be easily checked that C[G] is

the ∗-complexification of R[G].

Theorem 3.2. Let A be a complex involutive algebra.

(i) An element x ∈ A is normal if and only if x = y + iz, for some
self-adjoint y, z ∈ A that commute.

(ii) A is commutative if and only if every element of A is normal.

(iii) If A is the ∗-complexification of a real involutive algebra, then
A is commutative if every real element of A is self-adjoint.

Proof (i) (if) xx∗ = (y + iz)(y∗ − iz∗) = yy∗ + izy∗ − iyz∗ + zz∗ =
y2+z2, where in the last step we use the fact that y, z are commuting
self-adjoints. Similarly we can show x∗x = y2 + z2.

(only if) Write x = y + iz, where y = 1
2
(x + x∗) and z = 1

2i
(x− x∗).

It is easily checked that y and z are self-adjoint. Now

yz =
1

4i
(x2 − xx∗ + x∗x − (x∗)2) =

1

4i
(x2 − (x∗)2),

where in the last step we use the normality of x. Similarly, zy =
1
4i

(x2 − (x∗)2).

(ii) (only if) This is clear.

(if) Let y, z ∈ A be two self-adjoint elements. Then

(y + iz)(y∗ − iz∗) = y2 + z2 + i(zy − yz)

(y∗ − iz∗)(y + iz) = y2 + z2 + i(yz − zy)

Since y + iz is normal (by hypothesis) we have zy = yz. So any two
self-adjoint elements of A commute.
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Let x1, x2 ∈ A. Since x1, x2 are normal we can write x1 = y1 +
iz1 and x2 = y2 + iz2, where y1, y2, z1, z2 are self-adjoint (and all
commute with each other, by the paragraph above). We now have

x1x2 = (y1y2 − z1z2) + i(z1y2 + y1z2) = x2x1.

(iii) Let y, z be real elements of A. Then yz is also real and yz =
(yz)∗ = z∗y∗ = zy, so y and z commute. Let x = y + iz ∈ A,
where y and z are real. By part (i) x is normal and by part (ii) A
is commutative. 2

Theorem 3.3. The centralizer Z[C[Sn], C[Sn−1]] of the subalgebra
C[Sn−1] in C[Sn] is commutative.

Proof The involutive subalgebra Z[C[Sn], C[Sn−1]] of C[Sn] is the
∗-complexification of Z[R[Sn], R[Sn−1]] (why?). It therefore suffices
to show that every element of Z[R[Sn], R[Sn−1]] is self-adjoint.

Let
f =

∑

π∈Sn

αππ, απ ∈ R,

be an element of Z[R[Sn], R[Sn−1]].

Fix a permutation σ ∈ Sn. Now σ and σ−1 have the same cycle
structure and are thus conjugate. There is a well known procedure
to produce a permutation in Sn conjugating σ to σ−1. Namely, first
write down in a straight line the permutation σ in cycle form. Below
this line write down σ−1 in cycle form, the only requirement being
that the lengths of the corresponding cycles match. The permuta-
tion in Sn taking an element of the top row to the corresponding
element of the bottom row conjugates σ to σ−1. It is clear that we
can so write down the two permutations that the letter n matches
with itself. Thus we can choose τ ∈ Sn−1 such that σ−1 = τστ−1.

Since τ ∈ Sn−1 we have τf = fτ or

f = τfτ−1 =
∑

π∈Sn

απ(τπτ−1).
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It follows that ασ = ασ−1 . Since σ was an arbitrary element in Sn

it follows that f ∗ = f . 2

We denote the centralizer Z[C[Sn], C[Sn−1]] by Z(n−1,1). In the
next section we shall provide another proof that Z(n−1,1) is commu-
tative.

4 Young-Jucys-Murphy elements

From this section onwards we consider only the symmetric groups
and we put Gn = Sn. Thus chains in the branching graph (as in Sec-
tion 2) will refer to chains in the branching graph of the symmetric
groups.

For i = 2, . . . , n define the following elements of CSn:

Yi = Sum of all i-cycles in Sn−1.

Y ′
i = Sum of all i-cycles in Sn containing n.

Note that Yn = 0.

For (µ, i) ∈ P1(n) define c(µ,i) ∈ CSn to be the sum of all per-
mutations π in Sn satisfying

• type (π) = µ.

• size of the cycle of π containing n = i.

Observe that each of Y2, . . . , Yn−1, Y
′
2 , . . . , Y

′
n is equal to c(µ,i), for

suitable µ and i.

Lemma 4.1. (i) {c(µ,i) | (µ, i) ∈ P1(n)} is a basis of Z(n−1,1). It
follows that 〈Y2, . . . , Yn−1, Y

′
2 , . . . , Y

′
n〉 ⊆ Z(n−1,1).

(ii) c(µ,i) ∈ 〈Y2, . . . , Yk, Y
′
2 , . . . Y

′
k〉, where k = #µ.
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(iii) Z(n−1,1) = 〈Y2, . . . , Yn−1, Y
′
2 , . . . , Y

′
n〉.

(iv) Zn−1 = 〈Y2, . . . , Yn−1〉.

Proof (i) The first statement is left as an exercise for the reader
(it is similar to the proof that {cµ | µ ∈ P(n)} is a basis of Zn).
The second statement then follows from the observation made just
before the statement of the lemma.

(ii) By induction on #µ. If #µ = 0, then c(µ,i) is the identity
permutation and the result is clearly true. Assume the result when-
ever #µ ≤ k. Consider (µ, i) ∈ P1(n) with #µ = k + 1. Let the
nontrivial parts of µ be µ1, . . . , µl (here we are not assuming that
µ1 ≥ µ2 ≥ · · · ≥ µl). Consider the following two subcases:

(a) i = 1: Consider the product Yµ1
Yµ2

· · ·Yµl
. Then we have, using

part (i) (why?),

Yµ1
Yµ2

· · ·Yµl
= α(µ,1)c(µ,1) +

∑

(τ,1)

α(τ,1)c(τ,1),

where α(µ,1) 6= 0 and the sum is over all (τ, 1) with #τ < #µ. The
result follows by induction.

(b) i > 1: Without loss of generality we may assume that i = µ1.
Consider the product Y ′

µ1
Yµ2

· · ·Yµl
. Then we have, using part (i)

(why?),

Y ′
µ1

Yµ2
· · ·Yµl

= α(µ,i)c(µ,i) +
∑

(τ,j)

α(τ,j)c(τ,j),

where α(µ,i) 6= 0 and the sum is over all (τ, j) with #τ < #µ. The
result follows by induction.

(iii) This follows from parts (i) and (ii).

(iv) This is similar to the proof of part (iii). 2
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For i = 1, . . . , n define the following elements of CSn:

Xi = (1, i) + (2, i) + · · · + (i − 1, i)

= Sum of all 2-cycles in Si − Sum of all 2-cycles in Si−1.

Note that X1 = 0. Also note that Xi 6∈ Zi. In fact, Xi is the
difference of an element in Zi and an element in Zi−1, so Xi ∈
GZi ⊆ GZn. These elements have remarkable properties and are
called the Young-Jucys-Murphy (YJM) elements.

Theorem 4.2. (i) Z(n−1,1) = 〈Zn−1, Xn〉.
(ii) GZn = 〈X1, X2, . . . , Xn〉.

Proof (i) Clearly Z(n−1,1) ⊇ 〈Zn−1, Xn〉 (note that Xn = Y ′
2). To

show the converse it is enough to show that Y ′
2 , . . . , Y

′
n ∈ 〈Zn−1, Xn〉.

Since Y ′
2 = Xn we have Y ′

2 ∈ 〈Zn−1, Xn〉.
Assume that Y ′

2 , . . . , Y
′
k+1 ∈ 〈Zn−1, Xn〉. We shall now show that

Y ′
k+2 ∈ 〈Zn−1, Xn〉. We write Y ′

k+1 as
∑

i1,...,ik

(i1, . . . , ik, n),

where the sum is over all distinct i1, . . . , ik ∈ {1, 2, . . . , n − 1}. In
the following we use this summation convention implicitly.

Now consider the product Y ′
k+1Xn ∈ 〈Zn−1, Xn〉:

{

∑

i1,...,ik

(i1, . . . , ik, n)

} {

n−1
∑

i=1

(i, n)

}

. (5)

Take a typical element (i1, . . . , ik, n)(i, n) of this product. If i 6= ij ,
for j = 1, . . . , k this product is (i, i1, . . . , ik, n). On the other hand if
i = ij, for some 1 ≤ j ≤ k, this product becomes (i1, . . . , ij)(ij+1, . . . , n).
It follows that the element (5) above is equal to

∑

i,i1,...,ik

(i, i1, . . . , ik, n) +
∑

i1,...,ik

k
∑

j=1

(i1, . . . , ij)(ij+1, . . . , ik, n), (6)
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where the first sum is over all distinct i, i1, . . . , ik ∈ {1, 2, . . . , n− 1}
and the second sum is over all distinct i1, . . . , ik ∈ {1, 2, . . . , n− 1}.
We can rewrite (6) as

Y ′
k+2 +

∑

(µ,i)

α(µ,i)c(µ,i),

where the sum is over all (µ, i) with #µ ≤ k + 1. By induc-
tion hypothesis and part (ii) of Lemma 4.1 it follows that Y ′

k+2 ∈
〈Zn−1, Xn〉.
(ii)The proof is by induction (the cases n = 1, 2 being clear). Assume
we have proved that GZn−1 = 〈X1, X2, . . . , Xn−1〉. It remains to
show that GZn = 〈GZn−1, Xn〉. The lhs clearly contains the rhs so
it suffices to check that the lhs is contained in the rhs. For this it
suffices to check that Zn ⊆ 〈GZn−1, Xn〉. This follows from part (i)
since Zn ⊆ Z(n−1,1). 2

Note that Theorem 5(i) implies that Z(n−1,1) is commutative.

The GZ-basis in the case of symmetric groups is also called the
Young basis, since it was first considered by A.Young (though not
as a global basis as here). By Corollary 2.2(i) the Young (or GZ)
vectors are common eigenvectors for GZn. Let v be a Young vector
(for Sn). Define

α(v) = (a1, . . . , an) ∈ Cn,

where ai = eigenvalue of Xi on v. We call α(v) the weight of v (note
that a1 = 0 since X1 = 0). Set

Spec (n) = {α(v) : v is a Young vector} .

It follows from Corollary 2.2(ii) that

dim GZn = #Spec (n) =
∑

λ∈S∧
n

dim λ.
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By definition of Young vectors, the set Spec (n) is in natural bijec-
tion with chains T as in (3). Given α ∈ Spec (n) we denote by vα

the Young vector with weight α and by Tα the corresponding chain
in the branching graph. Similarly, given a chain T as in (3) we de-
note the correponding weight vector α(vT ) by α(T ). Thus we have
1-1 correspondences

T 7→ α(T ), α 7→ Tα

between chains (3) and Spec (n).

There is a natural equivalence relation ∼ on Spec (n): for α, β ∈
Spec (n),

α ∼ β ⇔ vα and vβ belong to the same irreducible Sn-module

⇔ Tα and Tβ end in the same vertex.

Clearly we have #(Spec (n)/ ∼) = #S∧
n .

5 Action of Coxeter generators on the Young
basis and the algebra H(2)

The Young vectors are a simultaneous eigenbasis for the GZ-
algebra. Let us now consider the action of the full algebra CSn

on the Young basis. The action of the Coxeter generators si =
(i, i + 1), i = 1, . . . , n− 1 on the Young basis is ”local” in the sense
of the following lemma.

Lemma 5.1. Let T be a chain

λ1 ր λ2 ր · · · ր λn, λk ∈ S∧
k (7)

and let 1 ≤ i ≤ n−1. Then si · vT is a linear combination of vectors
vT ′, where T ′ runs over chains of the form

λ′
1 ր λ′

2 ր · · · ր λ′
n, λ′

k ∈ S∧
k (8)
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such that λ′
k = λk, for k 6= i. Moreover, the coefficients of this linear

combination depend only on λi−1, λi, λi+1 and the choice of the scalar
factors for the vectors in the Young basis. That is, the action of si

affects only the ith level and depends only on levels i−1, i, and i+1
of the branching graph.

Proof Clearly, for j ≥ i+1, we have si ·vT ∈ V λj . For j ≤ i−1, the
action of si on V λi+1 is Sj-linear (since si commutes with all elements
of Sj). Thus si ·vT belongs to the V λj -isotypical component of V λi+1 .
This proves the first part of the lemma. The moreover part is left
as an exercise for the reader. 2

We shall now give explicit formulas for the action of the Coxeter
generators si on the Young basis vectors vT in terms of the weights
α(T ). For this purpose, it will be useful to know the relations sat-
isfied by the si’s and the Xj ’s since the vT ’s are eigenvectors for
X1, . . . , Xn. The following relations are easily verified.

siXj = Xjsi, j 6= i, i + 1, (9)

s2
i = 1, XiXi+1 = Xi+1Xi, siXi + 1 = Xi+1si. (10)

(The preceding lemma can also be proved using the commutation
relation (9) above. We leave this as an exercise). Let T be as in
(7) above and let α(T ) = (a1, a2, . . . , an). Let V be the subspace
of V λi+1 generated by vT and si · vT (note that V is atmost two
dimensional). The relation (10) shows that V is invariant under the
actions of si, Xi, and Xi+1 and a study of this action will enable us
to write down a formula for si · vT .

We are thus led to consider the algebra H(2) generated by ele-
ments H1, H2, and s subject to the following relations:

s2 = 1, H1H2 = H2H1, sH1 + 1 = H2s. (11)

Note that H2 can be excluded because H2 = sH1s+s, but it is most
useful to include H2 in the list of generators.
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Lemma 5.2. (i) All irreducible representations of H(2) are atmost
two dimensional.

(ii) For i = 1, 2, . . . , n − 1 the image of H(2) in CSn obtained by
setting s = si = (i, i + 1), H1 = X1, and H2 = Xi+1 is semisim-
ple, i.e., the subalgebra M of CSn generated by si, Xi, and Xi+1 is
semisimple.

Proof (i) Let V be an irreducible H(2) module. Since H1 and H2

commute they have a common eigenvector v. Let W be the space
spanned by v and s · v. Then dim W ≤ 2 and (11) shows that W is
a submodule of V . Since V is irreducible it follows that W = V .

(ii) Let Mat(n) denote the algebra of complex n!×n! matrices, with
rows and columns indexed by permutations in Sn. Consider the left
regular representation of Sn. Writing this in matrix terms gives an
embedding of CSn into Mat(n). Note that the matrix in Mat(n)
corresponding to a transposition in Sn is real and symmetric. Since
Xi and Xi+1 are sums of transpositions the matrices in Mat(n)
corresponding to them are also real and symmetric. It follows that
the subalgebra M is closed under the matrix * operation (A 7→ (Ā)t).
A standard result on finite dimensional C∗-algebras shows that M
is semisimple. 2

We can now explicitly describe the action of the Coxeter gen-
erators on the Young basis in terms of transformation of weights.
In the following it is convenient to parametrize Young vectors by
elements of Spec (n) rather than by chains T (recall that these sets
are in natural bijection).

Theorem 5.3. Let T be a chain as in (7) and let α(T ) = (a1, . . . , an) ∈
Spec (n). Consider the Young vector vα = vT . Then

(i) ai 6= ai+1, for all i.

(ii) ai+1 = ai ± 1 if and only if si · vα = ±vα.
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(iii) For i = 1, . . . , n − 2 the following statements are not true:

ai = ai+1 + 1 = ai+2, ai = ai+1 − 1 = ai+2.

(iv) If ai+1 6= ai ± 1 then

α′ = si · α = (a1, . . . , ai−1, ai+1, ai, ai+2, . . . , an)

belongs to Spec (n) and α′ ∼ α. Moreover the vector

v =

(

si −
1

ai+1 − ai

)

· vα

is a scalar multiple of vα′. Thus, in the basis {vα, v} the actions of
Xi, Xi+1, and si are given by the matrices

[

ai 0
0 ai+1

]

,

[

ai+1 0
0 ai

]

, and

[

1
ai+1−ai

1 − 1
(ai+1−ai)2

1 1
ai−ai+1

]

respectively.

Proof (i) Suppose first that vα and si · vα are linearly dependent.
Then, since s2

i = 1, we have si · vα = ±vα. The relation (10)
(equivalent to siXisi + si = Xi+1) now shows ai+1 = ai ± 1.

Now assume that vα and si · vα are linearly independent and let
V be the subspace of V λi+1 they span. Then, as checked before, V
is invariant under the action of the algebra M and the matrices for
the actions of Xi, Xi+1 and si in the basis {vα, si · vα} of V are

[

ai −1
0 ai+1

]

,

[

ai+1 1
0 ai

]

, and

[

0 1
1 0

]

respectively. The action of Xi on V λi+1 is diagonalizable and thus,
since V is Xi-invariant, the action of Xi on V is also diagonalizable.
This implies ai 6= ai+1.
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(ii) The if part has already been proved in part (i) above. Let us now
prove the only if part. Suppose ai+1 = ai + 1 (the case ai+1 = ai − 1
is similar). Assume that vα and si · vα are linearly independent and
let V be the subspace of V λi+1 they span. Now V is an M-module
and M is semisimple. But it can be easily checked that there is
only one 1-dimensional subspace of V , namely the space spanned by
si · vα − vα, that is invariant under the action of M , a contradiction.
Thus vα and si · vα are linearly dependent and this implies that
si · vα = vα.

(iii) Suppose ai = ai+1 − 1 = ai+2 (the proof in the other case is
the same). By part (ii) we have si · vα = vα and si+1 · vα = −vα.
Consider the Coxeter relation

sisi+1si = si+1sisi+1,

and let both sides act on vα. The lhs yields −vα and the rhs yields
vα, a contradiction.

(iv) By part (ii) we have that vα and si ·vα are linearly independent.
For j 6= i, i + 1 we can easily check using commutativity of Xj and
si that Xj · v = ajv. Similarly, using (10), we can easily check that
Xi ·v = ai+1v and Xi+1 ·v = aiv. It follows from Corollary 2.2(i) that
α′ ∈ Spec (n) and from Corollary 2.2(ii) that v is a scalar multiple
of vα′ . Clearly α′ ∼ α as v ∈ V λn . The matrix representations of
si, Xi and Xi+1 are easily verified. 2

If α = (a1, . . . , an) ∈ Spec (n) and ai 6= ai+1 ± 1, we say that the
transposition si is admissible for α. Note that if α ∈ Spec (n) is ob-
tained from β ∈ Spec (n) by a sequence of admissible transpositions
then α ∼ β.

In the next section we shall show that Spec (n) consists of inte-
gral vectors. This given, the matrix for the action of si from part
(iv) of Theorem 5.3 suggests that if we choose the GZ-basis {vT}
appropriately then all irreducible representations of Sn are defined
over Q. We shall show how to do this in Section 7.
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6 Content vectors and Young tableaux

In the Vershik-Okounkov theory Young tableaux are related to
irreducible Sn representations via their content vectors. Let us define
these first.

Definition 6.1. Let α = (a1, a2, . . . , an) ∈ Zn. We say that α is a
content vector if

(i) a1 = 0.

(ii) {ai − 1, ai + 1} ∩ {a1, a2, . . . , ai−1} 6= ∅, for all i > 1.

(iii) if ai = aj = a for some i < j then {a−1, a+1} ⊆ {ai+1, . . . , aj−1}
(i.e., between two occurrences of a there should also be occurrences
of a − 1 and a + 1).

Condition (ii) in the definition above can be replaced (in the
presence of conditions (i) and (iii)) by condition (ii’) below.

(ii’) For all i > 1, if ai > 0 then aj = ai − 1 for some j < i and if
ai < 0 then aj = ai + 1 for some j < i.

The set of all content vectors of length n is denoted Cont (n) ⊆
Zn.

Theorem 6.1. Spec (n) ⊆ Cont (n).

Proof Let α = (a1, . . . , an) ∈ Spec (n). Clearly a1 = 0 as X1 = 0.
We verify conditions (ii) and (iii) by induction on n. Since X2 =
(1, 2) we have a2 = ±1 and thus condition (ii) is verified (and con-
dition (iii) does not apply). Now assume n ≥ 3.

If an−1 = an ± 1 there is nothing to prove, so assume this does
not hold. Then the transposition (n − 1, n) is admissible for α
and, by Theorem 5.3(iv), (a1, . . . , an−2, an, an−1) ∈ Spec (n). Now
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(a1, . . . , an−2, an) ∈ Spec (n − 1) and by the induction hyphothesis
{an − 1, an + 1}∩ {a1, . . . , an−2} 6= ∅. Thus condition (ii) is verified.

Now assume that ai = an = a for some i < n. We may
assume that i is the largest possible index, i.e., a does not oc-
cur between ai and an: a 6∈ {ai+1, . . . , an−1}. Now assume that
a − 1 6∈ {ai+1, . . . , an−1}. We shall derive a contradiction (the case
where a + 1 6∈ {ai+1, . . . , an−1} is similar).

By induction hypothesis the number a+1 occurs in {ai+1, . . . , an−1}
at most once (for, if it occured twice, then by the induction hypoth-
esis a would also occur contradicting our assumption). Thus there
are two possibilities:

(ai, . . . , an) = (a, ∗, . . . , ∗, a) or (ai, . . . , an) = (a, ∗, . . . , ∗, a+1, ∗, . . . , ∗, a),

where ∗ stands for a number different from a − 1, a, a + 1.

In the first case we can apply a sequence of admissible transposi-
tions to infer that (. . . , a, a, . . .) ∈ Spec (n), contradicting Theorem
5.3(i) and in the second case we can apply a sequence of admissible
transpositions to infer that (. . . , a, a + 1, a, . . .) ∈ Spec (n), contra-
dicting Theorem 5.3(iii). 2

If α = (a1, . . . , an) ∈ Cont (n) and ai 6= ai+1 ± 1, we say that
the transposition si is admissible for α. We define the following
equivalence relation on Cont (n): α ≈ β if β can be obtained from
α by a sequence of (zero or more) admissible transpositions.

We are finally ready to introduce Young tableaux into the pic-
ture. Recall the definition of the Young graph Y: its vertices are
Young diagrams, and two vertices µ and τ are joined by a directed
edge from µ to τ if and only if µ ⊆ τ and τ − µ is a single box. In
this case we write µ ր τ . The content c(B) of a box B of a Young
diagram is its x-coordinate − its y-coordinate (our convention for
drawing Young diagrams is akin to drawing matrices with x-axis
running downwards and y axis running to the left). By Tab (τ) we
denote the set of all paths in Y from the unique partition of 1 to
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τ . Such paths are called standard Young tableaux. Given a path
T ∈ Tab (τ), written as

τ1 ր τ2 ր · · · ր τn = τ,

a convenient way to represent it is to take the Young diagram of τ
and write the numbers 1, 2, . . . , n in the boxes τ1, τ2−τ1, . . . , τn−τn−1

respectively. Set
Tab (n) = ∪τTab (τ),

where the union is over all partitions τ of n.

Let T1 ∈ Tab (n) and assume that i and i + 1 do not appear
in the same row or column of T1. Then exchanging i and i + 1 in
T1 produces another standard Young tableaux T2 ∈ Tab (n). We
say that T2 is obtained from T1 by an admissible transposition. For
T1, T2 ∈ Tab (n), define T1 ≈ T2 if T2 can be obtained from T1 by
a sequence of (zero or more) admissible transpositions (it is easily
seen that ≈ is an equivalence relation).

The proof of the following combinatorial lemma is left as an
exercise.

Lemma 6.2. Let Φ : Tab (n) −→ Cont (n) be defined as follows.
Given

T = τ1 ր τ2 ր · · · ր τn ∈ Tab (n),

Define
Φ(T ) = (c(τ1), c(τ2 − τ1), . . . , c(τn − τn−1)).

Then Φ is a bijection which takes ≈-equivalent standard Young tableaux
to ≈-equivalent content vectors.

Lemma 6.3. Let T1, T2 ∈ Tab (n). Then T1 ≈ T2 if and only if the
Young diagrams of T1 and T2 have the same shape.

Proof The only if part is obvious. To prove the if part we proceed
as follows. Let µ = (µ1, µ2, . . . , µr) be a partition of n. Define the
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following element R of Tab (µ): in the first row write down the
numbers 1, 2, . . . , µ1 (in increasing order), in the second row write
down the numbers µ1 + 1, µ1 + 2, . . . , µ1 + µ2 (in increasing order)
and so on till the last row. We show that any T ∈ Tab (µ) satisfies
T ≈ R. This will prove the if part. Consider the last box of the last
row of µ. Let i be written in this box of T . Exchange i and i + 1
in T (which is clearly an admissible transposition). Now repeat this
procedure with i+1 and i+2, then i+2 and i+3, and finally n−1
and n. At the end of this sequence of admissible transpositions we
have the number n written in the last box of the last row of µ. Now
repeat the same procedure for n − 1, n − 2, . . . , 2. 2

Let us make a remark about the proof of Lemma 6.3. Let s
denote the permutation that maps R to T . Then the proof shows
that R can be obtained from T by a sequence of ℓ(s) admissible
transpositions. Thus T can be obtained from R by a sequence of
ℓ(s) admissible transpositions.

We can now present one of the central results in the representa-
tion theory of the symmetric groups.

Theorem 6.4. (i) Spec (n) = Cont (n) and the equivalence rela-
tions ∼ and ≈ coincide.

(ii) The map Φ−1 : Spec (n) −→ Tab (n) is a bijection and, for
α, β ∈ Spec (n) we have α ∼ β if and only if Φ−1(α) and Φ−1(β)
have the same Young diagram.

(iii) The branching graph of the chain of symmetric groups is the
Young graph Y.

Proof We have

• Spec (n) ⊆ Cont (n).

• If α ∈ Spec (n), β ∈ Cont (n), and α ≈ β then it is easily
seen that β ∈ Spec (n) and α ∼ β. It follows that given an
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∼-equivalence class A of Spec (n) and an ≈-equivalence class
B of Cont (n), either A ∩ B = ∅ or B ⊆ A.

• #(Spec (n)/ ∼) = p(n), since the number of irreducible Sn-
representations is equal to the number of conjugacy classes in
Sn,

• #(Cont (n)/ ≈) = p(n), by Lemmas 6.2 and 6.3.

The four statements above imply part (i). Parts (ii) and (iii) are
now clear. 2

7 Young’s seminormal and orthogonal forms

We now discuss the choice of the scalar factors in the Young basis
{vT}, so that all irreducible representations of Sn are defined over
Q.

Given the results of Section 6, we can now parametrize irre-
ducible Sn-modules by partitions of n and we can parametrize the
Young basis vectors in an Sn-irreducible (parametrized by µ ∈ P(n))
by standard Young tableaux of shape µ.

Fix a partition µ of n and consider the irreducible Sn-module V µ.
Let R be the tableau defined in the proof of Lemma 6.3. Choose
any nonzero vector vR ∈ VR. Now consider a tableau T ∈ Tab (µ).
Let s be the permutation that maps R to T . Define

vT = pT (s · vR),

and define ℓ(T ) = ℓ(s). Recall, from Section 2, that pT denotes the
projection onto VT . We will now show that vT 6= 0. It will then
follow that {vT : T ∈ Tab (n)} is a basis of V µ.
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Before proceeding further we observe the following: let T ∈
Tab (µ) and choose a nonzero vector v ∈ VT . Theorem 5.3(iv)
shows that, if sj is an admissible transposition for T , then sj · v
is the sum of a nonzero rational multiple of v and a nonzero vector
in Vsj ·T . If sj is not admissible for T , then Theorem 5.3(ii) shows
that sj · v = ±v.

Fix T ∈ Tab (µ) and let s be the permutation that maps R to
T . Let k = ℓ(T ). The proof of Lemma 6.3 shows that we can write

T = s · R = c1c2 · · · ck · R,

where each cj is an admissible transposition (w.r.t cj+1 · · · ck ·R). It
now follows (why?) from the definition of vT , the observation above,
and the fact that s cannot be written as a product of fewer than k
Coxeter transpositions that

s · vR = vT +
∑

Q

uQ,

where vT 6= 0, uQ ∈ VQ and the sum is over all Q ∈ Tab (µ) with
ℓ(Q) < ℓ(T ).

Theorem 7.1. Consider the basis {vT : T ∈ Tab (n)} of V µ defined
above. Fix T ∈ Tab (n) and let α(T ) = (a1, . . . , an). Let si be a
Coxeter generator. The action of si on vT is as follows.

• If i and i + 1 are in the same column of T then si leaves vT

unchanged.

• If i and i + 1 are in the same row of T then si multiplies vT

by −1.

• Suppose i and i + 1 are not in the same row or column of T .
Let S = si · T (i.e, swap i and i + 1 in T ).

25



If ℓ(S) = ℓ(T )+1 then the action of si in the two dimensional
subspace with ordered basis {vT , vS} is given by the matrix

[

1
ai+1−ai

1 − 1
(ai+1−ai)2

1 1
ai−ai+1

]

If ℓ(S) = ℓ(T )−1 then the action of si in the two dimensional
subspace with ordered basis {vT , vS} is given by the transpose
of the matrix above.

Thus, all irreducible representations of Sn are defined over Q.

Proof Items (i) and (ii) in the statement of the theorem follow from
Theorem 5.3(ii).

Let us now consider item (iii). Assume that ℓ(S) = ℓ(T ) + 1.

We have (why?), using the expression for s · vR above,

si · vT = si · (s · vR −
∑

Q

uQ)

= si · (c1c2 · · · ck · vR −
∑

Q

uQ)

= vS +
∑

Q′

uQ′

where uQ′ ∈ VQ′ and the sum is over all Q′ ∈ Tab (µ) with ℓ(Q′) ≤
ℓ(T ). It now follows (why?) from Theorem 5.3(iv) that

si · vT =
1

ai+1 − ai

vT + vS

The expression for si · vS can be obtained by applying si to both
sides of the equation above.

If ℓ(S) = ℓ(T ) − 1 then we write T = si · S and switch T and
S in the formulas for vT , vS above along with switching ai and ai+1.
Doing this is equivalent to transposing the matrix. 2
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Another way to prove the theorem above is to directly verify the
Coxeter relations (we leave this as an exercise).

The basis and the action described above is called Young’s semi-
normal form of V µ. Now let us consider Young’s orthogonal form for
V µ. This is defined over R. Since V µ is irreducible there is a unique
(upto scalars) (why?) Sn-invariant inner product on V µ. Pick one
such inner product and normalize the vectors {vT} defined above
(we use the same notation for the normalized vectors). Note that
the vectors {vT} are orthonormal (why?). The following result now
follows from the previous result.

Theorem 7.2. Consider the orthonormal basis {vT : T ∈ Tab (n)}
of V µ defined above. Fix a chain T and let α(T ) = (a1, . . . , an). Let
si be a Coxeter generator and put r = ai+1 − ai. The action of si on
vT is as follows.

• If i and i + 1 are in the same column of T then si leaves vT

unchanged.

• If i and i + 1 are in the same row of T then si multiplies vT

by −1.

• Suppose i and i + 1 are not in the same row or column of T .
Let S = si · T (i.e, swap i and i + 1 in T ).

The action of si in the two dimensional subspace with ordered
basis {vT , vS} is given by the matrix

[

r−1
√

1 − r−2√
1 − r−2 −r−1

]

The number r is called the axial distance. It is the difference of
the contents of the corresponding boxes in the Young diagram.

27



References

[1] W. Fulton and J. Harris, Representation Theory, Springer,
1991.

[2] I. G. Macdonald, Symmetric Functions and Hall Polynomials,
Oxford University Press, 1995.

[3] B. Sagan, The Symmetric Group, Springer, 2000.

[4] A. M. Vershik and A. Yu. Okounkov, A New Approach
to the Representation Theory of the Symmetric Groups. II,
arXiv:math.RT/0503040.

[5] A. M. Vershik, A New Approach to the Representation Theory
of the Symmetric Groups. III, arXiv:math.RT/0609258.

Murali K. Srinivasan
Department of Mathematics

Indian Institute of Technology, Bombay

Powai, Mumbai-400076 INDIA

28


