
A Maple program for computing θ̂2λ
2µ

Murali K. Srinivasan

Abstract

We present a simple recursive Maple implementation of the algorithm described
in Section 5 of [3] for computing the eigenvalues θ̂2λ2µ, λ, µ ` n of the Bose-Mesner
algebra B2n of the perfect matching association scheme. This algorithm does not
depend on knowing or computing the irreducible characters of the symmetric group.

The program computes, resonably efficiently, any given eigenvalue upto B40. We
were able to determine the entire spectrum of the perfect matching derangement
matrices in B2n, up to 2n = 40.

This article describes the Maple program EigenMatch, whose binary file EigenMatch.m

is available at

http://www.math.iitb.ac.in/~mks/papers/EigenMatch.m

To use this file, open a new Maple worksheet, download EigenMatch.m into the current
working directory currentdir() and enter
> read "EigenMatch.m"

Then enter
> hello()

to see some examples of its use.

We shall assume familiarity with and use the notation of [3]. For recursive Maple pro-
gramming see Wilf’s lecture notes [4].

Let λ ∈ Yn, µ ∈ Pn. Consider the three integers

χλµ, φ̂
λ
µ, θ̂

2λ
2µ,

that are, respectively, an irreducible character of Sn, a central character of Sn, and an
eigenvalue of B2n. As noted in [3], we think of φ̂λµ and θ̂2λ2µ as analogs of each other.
They are both eigenvalues of (distinguished basis elements of) commutative ∗-algebras of
matrices of dimension p(n), the sizes of the matrices being n! × n! in the first case and

1

(2n−1)!!×(2n−1)!! in the second case. We are concerned with algorithms for computing
these quantities.

From (1) of [3] we have

φ̂λµ =
|Cµ|χλµ

dim(V λ)
.

Since there are well known explicit formulas for |Cµ| and dim(V λ) we may regard the
irreducible and central characters as being equivalent from the point of view of computing
them. For instance, it is known that, given λ, µ as inputs, it is #-P hard to determine χλµ
([1]) and it is NP-hard to decide if χλµ = 0 (see [2] which gives precise statements) and

thus the same results hold for φ̂λµ. On the other hand, there is a very efficient practical
algorithm available in Maple to compute χλµ for fairly large values of n and this algorithm

can be used to calculate φ̂λµ.

How about algorithms for computing θ̂2λ2µ? The author is not conversant with computa-
tional complexity but one can expect that, given λ, µ as inputs, it is #-P hard to compute
θ̂2λ2µ and it is NP-hard to decide if θ̂2λ2µ = 0. We consider the problem of giving a practical

algorithm that computes θ̂2λ2µ for reasonable values of n.

There is a classical formula (see Theorem 3.1 in [3]) expressing (a multiple of) θ̂2λ2µ as
the sum of the values of the irreducible character χ2λ over a coset of the hyperoctahedral
subgroup of S2n. This formula is not combinatorial. Assuming that we can calculate χλµ,

or equivalently φ̂λµ, a combinatorial algorithm to calculate θ̂2λ2µ was given in Section 3 of [3].
But that algorithm is quite involved as it needs inversion of several integer matrices. In
Section 5 of [3] we gave a very different algorithm, based on eigenvectors (the so called first
Gelfand-Tsetlin vectors) and not depending on symmetric group characters, to calculate
θ̂2λ2µ. This algorithm is much easier to implement. We present a straightforward recursive
Maple implementation. The program computes, resonably quickly, any given eigenvalue
upto B40. We were also able to determine the entire spectrum of the perfect matching
derangement matrices in B2n, up to 2n = 40.

We represent partitions by weakly decreasing lists of positive integers. For example,
λ = [6, 4, 2, 1] is a partition of 13. We shall write three Maple procedures thetahat,

eigder, and specder such that, given partitions λ, µ of n, we have

• thetahat(2λ, 2µ) is the eigenvalue θ̂2λ2µ of B2n.

• eigder(2λ) is the eigenvalue of the perfect matching derangement matrix on the
eigenspace V 2λ of C[M2n] (under left action of B2n).

• specder(2n) outputs the entire spectrum of the perfect matching derangement
matrix in B2n.

2

For instance, the following values are computed:

thetahat([10,8,6,4,2],[8,6,6,6,4]) = -179200

eigder([12,10,8,6,4,2]) = -31620

specder(14) outputs the following:

[2,2,2,2,2,2,2] : 6

[4,2,2,2,2,2] : -2

[4,4,2,2,2] : -8

[4,4,4,2] : -12

[6,2,2,2,2] : 16

[6,4,2,2] : 16

[6,4,4] : 16

[6,6,2] : 34

[8,2,2,2] : -84

[8,4,2] : -92

[8,6] : -102

[10,2,2] : 664

[10,4] : 688

[12,2] : -6584

[14] : 79008

We now present 14 Maple procedures in numbered items below. The first nine are simple
book keeping procedures. The tenth procedure, updatematch, is the main workhorse of
the eigenvalue computation. This is repeatedly used by the next procedure thetarow to
recursively calculate an entire row of the eigenvalue table. Given thetarow, it is a simple
matter to write the last three procedures thetahat, eigder, and specder.

For each procedure we specify the range of validity of the input but do not check for it.

1. We shall need to count, rank, and unrank partitions and pointed partitions. We begin
with partitions. Let p(n, k) denote the number of partitions of n with largest part k. We
have the recurrence (see [4])

p(n, k) = p(n− 1, k − 1) + p(n− k, k),

with the initial values p(n, k) = 0 if n ≤ 0 or k ≤ 0 or k > n, and p(1, 1) = 1.

3

The following procedure computes p(n, k), for positive integers n, k.

park := proc(n,k)

options remember;

if n ≤ 0 or k ≤ 0 or k > n then RETURN(0) fi;

if n = 1 then RETURN(1) fi;

RETURN(park(n-1,k-1) + park(n-k,k));

end:

2. We compute the number of partitions of a positive integer n as follows.

par := proc(n)

local k;

options remember;

RETURN(add(park(n,k),k=1..n));

end:

3. We list partitions of n in lexicographic order. For instance, the ordering of the partitions
of 5 is

[1,1,1,1,1], [2,1,1,1], [2,2,1], [3,1,1], [3,2], [4,1], [5].

The rank of a partition of n is its position in the above ordering. For example, the rank
of [2,2,1] above is 3.

The following procedure computes the rank of a partition of a positive integer.

rankpar:= proc(L)

local n, i; options remember;

n := add(L[i],i=1..nops(L));

if L[1] = 1 then RETURN(1) fi;

if nops(L) = 1 then RETURN(par(n)) fi;

RETURN(add(park(n,i),i=1..L[1]-1) + rankpar(subsop(1=NULL,L)));

end:

4

4. Given positive integers r, n, with r ≤ par(n), the following procedure returns the
partition of n with rank r.

unrankpar:= proc(r,n)

local j, t; options remember;

if r = 1 then RETURN([seq(1,j=1..n)]) fi;

j := 1; t := park(n,j);

while (t + park(n,j+1)) < r do

j := j+1; t := t+park(n,j)

od;

RETURN([j+1,op(unrankpar(r-t,n-j-1))]);

end:

5. A pointed partition of n is a pair (µ, i), where µ is a partition of n and i is a part of
µ. Clearly, for a fixed i, the number of pointed partitions (µ, i) of n is the number of
partitions of n− i.

The following procedure returns the number of pointed partitions of a positive integer.

ppar:= proc(n)

local i; options remember;

if n=1 then RETURN(1) fi;

RETURN(1 + add(par(n-i),i=1..n-1));

end:

6. We represent a pointed partition (µ, i) by a list L of positive integers defined as follows:
the last element of L is i, the list is weakly decreasing from 1 to nops(L)-1, and if we
sort the elements of L we get the partition µ. For example, here is the list of all pointed
partitions of 4:

[1,1,1,1], [2,1,1], [1,1,2], [2,2], [3,1], [1,3], [4]

We list all the pointed partitions of n as follows: first list all the partitions of n − 1 as
in item 3 above. Append 1 as the last elements of all these lists (representing partitions
of n− 1). Then list all the partitions of n− 2 as in item 3 above and append a 2 as the
last elements of each of these lists. And so on till we append n − 1 as the last element.
Finally, we add the partition [n]. This procedure when applied to n = 4 produces the
following list:

[1,1,1,1], [2,1,1], [3,1], [1,1,2], [2,2], [1,3], [4]

5

The following procedure computes the rank of a pointed partition of a positive integer in
the above listing.

rankppar:= proc(L)

local n,i; options remember;

n := add(L[i],i=1..nops(L));

if nops(L)=1 then RETURN(ppar(n)) fi;

RETURN(add(par(n-i), i=1..L[-1]-1) + rankpar(subsop(nops(L)=NULL,L)));

end:

7. Given positive integers r, n, with r ≤ ppar(n), the following procedure returns the
pointed partition of n with rank r.

unrankppar:= proc(r,n)

local j, t; options remember;

if r = 1 then RETURN([seq(1,j=1..n)]) fi;

if r = ppar(n) then RETURN([n]) fi;

j := 1; t := 0;

while (t + par(n-j)) < r do

t := t + par(n-j); j:=j+1;

od;

RETURN([op(unrankpar(r-t,n-j)),j]);

end:

8. Given a weakly decreasing list of positive integers representing the row lengths of a
nonempty Young diagram the following procedure returns the contents of the outer boxes
of the Young diagram as a strictly decreasing list of integers.

cob:= proc(L)

local i, S; options remember;

if nops(L) = 1 then RETURN([L[1],-1]) fi;

S:= map(x->x-1,cob(subsop(1=NULL,L)));

if L[1] = L[2] then RETURN([L[1], op(subsop(1=NULL,S))]) fi;

RETURN([L[1],op(S)]);

end:

9. Given a possibly empty list L of weakly decreasing integers and an integer x the
following procedure returns the list obtained by inserting x into L and maintaining weak
decrease.

insert:= proc(L,x)

if nops(L)=0 then RETURN([x]) fi;

if x ≥ L[1] then RETURN([x,op(L)]) fi;

RETURN([L[1], op(insert(subsop(1=NULL,L),x))]);

end:

6

10. Given a vector v ∈ C[M2n] we store its relative orbital coefficients in an array L of
size pp(n). We have v(2µ, 2i) = L[j], where j is the rank of the pointed partition (µ, i) of
n.

Given an array L of size pp(n) containing the relative orbital coefficients of v ∈ C[M2n],
n ≥ 1 and given an integer a the following procedure computes the relative orbital coef-
ficients of (X2n−1 − aI) · v. It implements Algorithm 1 in Section 5 of [3].

updatematch:= proc(L::Array,n,a)

local S, A, i, j, u, k;

A:= Array(1..ppar(n),i->0);

for i from 1 to ppar(n) do

S:=unrankppar(i,n);

for j from 1 to nops(S)-1 do

u:= rankppar([op(subsop(j=NULL, subsop(nops(S)=NULL,S))), S[j]+S[-1]]);

A[u]:=2*S[j]*L[i] + A[u]

od;

k:= S[-1];

for j from 1 to k-1 do

u:= rankppar([op(insert(subsop(nops(S)=NULL, S), k-j)), j]);

A[u]:=L[i] + A[u];

A[i]:=L[i] + A[i];

od;

od;

for i from 1 to ppar(n) do A[i]:= A[i] - a*L[i] od;

RETURN(A);

end:

7

11. Given a weakly decreasing list L of positive length of even positive integers represent-
ing the row lengths of an even Young diagram 2λ with 2n boxes, the following procedure
returns an array thetarow(L) of length p(n) such that, for 1 ≤ i ≤ p(n), thetarow(L)[i]
is equal to θ̂2λ2µ, where µ = unrankpar(i,n). It implements Algorithm 2 in Section 5 of
[3].

thetarow:=proc(L)

local n,m,S,R,i,J,F,u,T,v;

options remember;

n:=add(L[i],i=1..nops(L))/2;

if n=1 then return(Array(1..1,1)) fi;

if L[-1]=2 then J:= subsop(nops(L)=NULL,L)

else J:= [op(subsop(nops(L)=NULL,L)), L[-1]-2]

fi;

S:= thetarow(J);

R:= Array(1..ppar(n),i->0);

for i from 1 to par(n-1) do R[i]:= S[i] od;

F:= cob(J);

if L[-1]=2 then F:= subsop(nops(F)=NULL,F)

else F:= subsop(nops(F)-1=NULL,F)

fi;

for i from 1 to nops(F) do R:= updatematch(R,n,F[i]) od;

T:= Array(1..par(n),i->0);

for i from 1 to ppar(n) do

u:= unrankppar(i,n);

v:= insert(subsop(nops(u)=NULL,u),u[-1]);

T[rankpar(v)]:= R[i] + T[rankpar(v)];

od;

m:= T[1];

for i from 1 to par(n) do T[i]:= T[i]/m od;

RETURN(T);

end:

8

12. Given two even partitions of 2n, n ≥ 1 the following procedure returns the corre-
sponding eigenvalue.

thetahat:=proc(lambda,mu)

RETURN(thetarow(lambda)[rankpar(map(x->x/2,mu))]);

end:

13. Given an even partition of 2n, n ≥ 1 the following procedure returns the correspond-
ing eigenvalue of the perfect matching derangement matrix in B2n.

eigder:= proc(lambda)

local n,i,e,T,mu;

n:= add(lambda[i],i=1..nops(lambda))/2;

e:= 0;

T:= thetarow(lambda);

for i from 1 to par(n) do

mu:= unrankpar(i,n);

if mu[-1]>1 then e:= e + T[i] fi;

od;

RETURN(e);

end:

14. Given an even integer m ≥ 2 the following procedure outputs the entire spectrum of
the perfect matching derangement matrix.

specder:= proc(m)

local n, i, L;

n:= m/2;

for i from 1 to par(n) do

L:= unrankpar(i,n);

L:= map(x->2*x,L);

printf(" %a : %a\n\n",L,eigder(L));
od;

end:

In Section 5 of [3] we gave a very similar algorithm for calculating the central characters
of Sn without first calculating the irreducible characters of Sn. We have also implemented
this algorithm in three further procedures updateperm, phirow, and phihat that are very
similar to updatematch, thetarow, and thetahat. The code for these can be viewed by
entering
> interface(verboseproc = 2):

> print(updateperm); print(phirow); print(phihat)

9

For instance, the following value is computed

phihat([6,5,4,3,2,1],[3,3,3,3,3,3,3]) = 2358125

Although this algorithm to calculate the central characters is not as efficient as the one
based on irreducible characters we have written this program to bring out the essential
analogy between φ̂λµ and θ̂2λ2µ.

Acknowledgement

I am grateful to Bharat Adsul and Srikanth Srinivasan for helpful discussions and pointers
to references about computational complexity.

References

[1] Hepler, C. T., On the complexity of computing characters of finite groups, Master’s
thesis, University of Cagary, (1994), Available at
https://dspace.ucalgary.ca/handle/1880/45530

[2] Pak, I., Panova, G., On the complexity of computing Kronecker coefficients, Comput.
Complexity 26, 1–36 (2017).

[3] Srinivasan, M. K., The perfect matching association scheme, available at
http://www.math.iitb.ac.in/~mks/papers/pm.pdf

[4] Wilf, H. S., East Side, West Side ... an introduction to combinatorial families-with
Maple programming, available at
http://www.math.upenn.edu/~wilf/eastwest.pdf

10

