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Abstract

The number of spanning trees of a graph G is called the complexity of G and
denoted c(G). A classical result in algebraic graph theory explicitly diagonalizes the
Laplacian of the n-cube C(n) and yields, using the Matrix-Tree theorem, an explicit
formula for c(C(n)). In this paper we explicitly block diagonalize the Laplacian of
the q-analog Cq(n) of C(n) and use this, along with the Matrix-Tree theorem, to give
a positive combinatorial formula for c(Cq(n)). We also explain how setting q = 1
in the formula for c(Cq(n)) recovers the formula for c(C(n)).

1 Introduction

The number of spanning trees of a graph G is called the complexity of G and denoted
c(G). The hypercube C(n) is the graph whose vertex set is the set B(n) of all subsets of
the n-set {1, 2, . . . , n} and where two subsets X, Y ∈ B(n) are connected by an edge iff
X ⊆ Y or Y ⊆ X, and ||X| − |Y || = 1. A classical result in enumerative combinatorics
(see Example 5.6.10 in [St2]) states that

c(C(n)) =
1

2n

{
n∏

k=1

(2k)(
n
k)

}
=

n∏
k=2

(2k)(
n
k). (1)

We now define a q-analog of C(n). Let q be a prime power and let Bq(n) denote
the set of all subspaces of an n-dimensional vector space over the finite field Fq. Define
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[k]q = 1 + q + q2 + · · · + qk−1, k ∈ N = {0, 1, 2, . . .}. For 0 ≤ k ≤ n, the q-binomial
coefficient [

n

k

]
q

=
[1]q[2]q · · · [n]q

[1]q · · · [k]q[1]q · · · [n− k]q

denotes the number of k-dimensional subspaces in Bq(n). The q-analog Cq(n) of the
hypercube is the graph whose vertex set is Bq(n) and where subspaces X, Y ∈ Bq(n) are
connected by an edge iff X ⊆ Y or Y ⊆ X, and |dim(X)− dim(Y )| = 1. The number of
vertices of Cq(n) is the Galois number

Gq(n) =
n∑

k=0

[
n

k

]
q

.

In this paper we present a positive, combinatorial formula for c(Cq(n)). While this
formula is not as explicit as (1) it can be used to efficiently write down c(Cq(n)) for a
given n.

Let us first reformulate the original formula (1) for c(C(n)) in order to bring out the
similarity with our formula for c(Cq(n)). We have

c(C(n)) =
1

2n

{
n∏

k=1

(2k)(
n
k)

}

=
1

2n

{
n∏

k=1

(2k)

}
bn/2c∏
k=1

(
n−k∏
j=k

(2j)

)(n
k)−( n

k−1)


= n!


bn/2c∏
k=1

(
n−k∏
j=k

(2j)

)(n
k)−( n

k−1)
 . (2)

To see the equivalence of the first and second lines above note that, for 1 ≤ j ≤ n/2, the
exponent of 2j in the base of the first line is

(
n
j

)
and in the base of the second line is also(

n
j

)
= 1 +

(
n
1

)
−
(

n
0

)
+ · · · +

(
n
j

)
−
(

n
j−1

)
. Since

(
n
k

)
=
(

n
n−k

)
the same conclusion holds for

n/2 ≤ j ≤ n.

Let k, n ∈ N with k ≤ n/2. For k ≤ j ≤ n− k + 1, define polynomials Fq(n, k, j) in q
with integral coefficients using the following recursion:

Fq(n, k, n− k + 1) = 1, (3)

Fq(n, k, n− k) = [k]q + [n− k]q, (4)

and, for k ≤ j < n− k,

Fq(n, k, j) =

([j]q + [n− j]q)Fq(n, k, j + 1)− (qk[j + 1− k]q[n− k − j]q)Fq(n, k, j + 2). (5)
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In Section 3 we prove the following formula for c(Cq(n)). It is similar to formula (2) above

except that the explicit term
∏n−k

j=k (2j) is replaced by a recursive calculation.

Theorem 1.1 We have

c(Cq(n)) = [1]q[2]q · · · [n]q


bn/2c∏
k=1

Fq(n, k, k)[
n
k]q−[ n

k−1]q

 .

The following table, computed using Maple, gives the first five values of c(Cq(n)).

c(Cq(1)) = 1,

c(Cq(2)) = [2]q2
q,

c(Cq(3)) = [2]q[3]q(4 + 3q + q2)q(1+q),

c(Cq(4)) = [2]q[3]q[4]q(8 + 12q + 12q2 + 10q3 + 4q4 + 2q5)q(1+q+q2)

×(2 + 2q)q2(q2+1),

c(Cq(5)) = [2]q[3]q[4]q[5]qFq(5, 1, 1)q(1+q)(1+q2)

×Fq(5, 2, 2)q2(1+q+q2+q3+q4),

where Fq(5, 2, 2) = 4 + 8q + 7q2 + 4q3 + q4 and

Fq(5, 1, 1) = 16 + 36q + 53q2 + 65q3 + 69q4 + 58q5 + 42q6 + 26q7 + 13q8 + 5q9 + q10.

The table above suggests that the formula for c(Cq(n)) in Theorem 1.1 is positive, i.e.,
for k ≤ n/2, both

[
n
k

]
q
−
[

n
k−1

]
q

and Fq(n, k, k) have nonnegative coefficients. A special

case of a result of Butler [B] shows that indeed
[
n
k

]
q
−
[

n
k−1

]
q
, k ≤ n/2 has nonnegative

coefficients.

In Section 4 we give an explicit combinatorial formula for Fq(n, k, j) and prove the
following result.

Theorem 1.2 Fq(n, k, j) has nonnegative coefficients for 0 ≤ k ≤ n/2, k ≤ j ≤ n−k+1.

We add here a remark on our notation which may be nonstandard in the algebraic
graph theory literature. The notations C(n) and B(n) are from [St2, St1], except that
they are called Cn and Bn there. This explains our notations Cq(n) and Bq(n) for the
q-analogs. The Grassmann graphs (also called q-Johnson graphs) Cq(n,m) in Section 4
are normally denoted Jq(n,m) (or by some variant) whereas in this paper the symbol J
stands for a Jordan basis.

In the next section we discuss the framework of orthogonal symmetric Jordan bases
with respect to the up operator on a graded poset.
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2 Singular values

In this section we recall a result of Terwilliger [T] and give a proof of it based on
Proctor’s sl(2,C) technique [P].

Let P be a finite graded poset with rank function r : P → N (our poset terminology
follows [St1]). The rank of P is r(P ) = max{r(p) : p ∈ P} and, for i = 0, 1, . . . , r(P ), Pi

denotes the set of elements of P of rank i.

For a finite set S, let V (S) denote the complex vector space with S as basis. Let P
be a graded poset with n = r(P ). Then we have V (P ) = V (P0) ⊕ V (P1) ⊕ · · · ⊕ V (Pn)
(vector space direct sum). An element v ∈ V (P ) is homogeneous if v ∈ V (Pi) for some i,
and if v 6= 0, we extend the notion of rank to nonzero homogeneous elements by writing
r(v) = i. The up operator U : V (P ) → V (P ) is defined, for p ∈ P , by U(p) =

∑
p′ p
′,

where the sum is over all p′ covering p. A symmetric Jordan chain (SJC) in V (P ) is a
sequence

s = (vk, . . . , vn−k), k ≤ n/2, (6)

of nonzero homogeneous elements of V (P ) such that r(vi) = i for i = k, . . . , n − k,
U(vi−1) = vi, for i = k + 1, . . . , n − k, and U(vn−k) = 0 (note that the elements of this
sequence are linearly independent, being nonzero and of different ranks). We say that s
starts at rank k and ends at rank n − k. A symmetric Jordan basis (SJB) of V (P ) is a
basis of V (P ) consisting of a disjoint union of symmetric Jordan chains in V (P ).

Let 〈, 〉 denote the standard inner product on V (P ), i.e., 〈p, p′〉 = δ(p, p′) (Kronecker
delta) for p, p′ ∈ P . The length

√
〈v, v〉 of v ∈ V (P ) is denoted ‖ v ‖.

Suppose we have an orthogonal SJB J(n) of V (P ). Normalize the vectors in J(n) to
get an orthonormal basis J ′(n). Let (vk, . . . , vn−k) be a SJC in J(n). Put v′u = vu

‖vu‖ and

αu = ‖vu+1‖
‖vu‖ , k ≤ u ≤ n− k (we set v′k−1 = vn−k+1 = 0). We have, for k ≤ u ≤ n− k,

U(v′u) =
U(vu)

‖ vu ‖
=

vu+1

‖ vu ‖
= αuv

′
u+1. (7)

Thus the matrix of U wrt J ′(n) is in block diagonal form, with a block corresponding to
each (normalized) SJC in J(n), and with the block corresponding to (v′k, . . . , v

′
n−k) above

being a lower triangular matrix with subdiagonal (αk, . . . , αn−k−1) and 0’s elsewhere.

The down operator D : V (P )→ V (P ) is defined, for p ∈ P , by D(p) =
∑

p′ p
′, where

the sum is over all p′ covered by p. Note that the matrices, in the standard basis P , of U
and D are real and transposes of each other. Since J ′(n) is orthonormal with respect to
the standard inner product, it follows that the matrices of U and D, in the basis J ′(n),
must be adjoints of each other. Thus the matrix of D with respect to J ′(n) is in block
diagonal form, with a block corresponding to each (normalized) SJC in J(n), and with
the block corresponding to (v′k, . . . , v

′
n−k) above being an upper triangular matrix with

superdiagonal (αk, . . . , αn−k−1) and 0’s elsewhere. So, for k− 1 ≤ u ≤ n− k− 1, we have

D(v′u+1) = αuv
′
u. (8)
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In particular, the subspace spanned by {vk, . . . , vn−k} is closed under U and D.

Another useful observation is the following: take scalars β0, β1, . . . , βn and define the
operator γ : V (P ) → V (P ) by γ(p) = βr(p)p, p ∈ P . Since each element of the SJC
(vk, . . . , vn−k) is homogeneous, it follows from the definition of γ that the subspace spanned
by {vk, . . . , vn−k} is closed under U,D and γ.

The Boolean algebra is the graded poset of rank n obtained by partially ordering B(n)
by containment (with rank of a subset given by cardinality). The q-analog of the Boolean
algebra is obtained by partially ordering Bq(n) by inclusion. This gives a graded poset of
rank n with rank of a subspace given by dimension.

Theorem 2.1 (Terwilliger [T], Item 5 of Theorem 3.3)

There exists a SJB J(q, n) of V (Bq(n)) such that

(i) The elements of J(q, n) are orthogonal with respect to 〈, 〉 (the standard inner product).

(ii) (Singular Values) Let 0 ≤ k ≤ n/2 and let (vk, . . . , vn−k) be any SJC in J(q, n) starting
at rank k and ending at rank n− k. Then we have, for k ≤ u < n− k,

‖ vu+1 ‖
‖ vu ‖

=
√
qk[u+ 1− k]q[n− k − u]q . (9)

Proof The existence of an orthogonal SJB follows from standard well known results
(recalled in parts (a) and (b) below). To determine the singular values we use the sl(2,C)
technique of Proctor [P]. The expression for the singular values written down in [T] (see
item 5 on top of page 208) can be easily shown to equal the one given here.

(a) The map Un−2k : V (Bq(n)k) → V (Bq(n)n−k), 0 ≤ k ≤ n/2 is well known to be
bijective (see [K]). It follows, using a standard Jordan canonical form argument (see
Chapter 6 of [E]), that an SJB of V (Bq(n)) exists.

(b) Now we show existence of an orthogonal SJB. We use the action of the group
GL(n,Fq) on Bq(n). As is easily seen the existence of an orthogonal SJB of V (Bq(n))
(under the standard inner product) follows from facts (i)-(iv) below by an application of
Schur’s lemma:

(i) Existence of some SJB of V (Bq(n)).

(ii) U is GL(n,Fq)-linear.

(iii) For 0 ≤ k ≤ n, V (Bq(n)k) is a multiplicity free GL(n,Fq)-module (this is well
known. The corresponding result for the symmetric group action on V (B(n)k) is proved
in Chapter 29 of [JL]. An identical proof works here).

(iv) For a finite group G, a G-invariant inner product on an irreducible G-module is unique
up to scalars.

(c) Now we prove part (ii) of the Theorem. Define an operator H : V (Bq(n)) →
V (Bq(n)) by

H(X) = ([k]q − [n− k]q)X, X ∈ Bq(n)k, 0 ≤ k ≤ n.
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It is easy to check that [U,D] = UD−DU = H. To see this, fix X ∈ Bq(n)k, and note that
UD(X) = [k]qX+

∑
Y Y , where the sum is over all Y ∈ Bq(n)k with dim(X ∩Y ) = k−1.

Similarly, DU(X) = [n− k]qX +
∑

Y Y , where the sum is over all Y ∈ Bq(n)k with
dim(X ∩ Y ) = k − 1. Subtracting we get [U,D] = H.

Let J(q, n) be an orthogonal SJB of V (Bq(n)) and let (vk, . . . , vn−k) be a SJC in J(q, n)

starting at rank k and ending at rank n−k. Put v′j =
vj

‖vj‖ and αj =
‖vj+1‖
‖vj‖ , k ≤ j ≤ n−k.

We have, from (7) and (8),

U(v′j) = αjv
′
j+1, D(v′j+1) = αjv

′
j, k ≤ j < n− k.

We need to show that

α2
j = qk[j + 1− k]q[n− k − j]q, k ≤ j < n− k. (10)

We show this by induction on j. We have DU = UD −H. Now DU(v′k) = αkD(v′k+1) =
α2

kv
′
k and (UD −H)(v′k) = ([n− k]q − [k]q)v

′
k (since D(v′k) = 0). Hence α2

k = [n− k]q −
[k]q = qk[n− 2k]q. Thus (10) holds for j = k.

As in the previous paragraph DU(v′j) = α2
jv
′
j and (UD −H)(v′j) = (α2

j−1 + [n− j]q −
[j]q)v

′
j. By induction, we may assume α2

j−1 = qk[j − k]q[n− k − j + 1]q. Thus we see that
α2

j is

= qk[j − k]q[n− k − j + 1]q + [n− j]q − [j]q

= qk
{

([j + 1− k]q − qj−k)([n− k − j]q + qn−k−j)
}

+ [n− j]q − [j]q

= qk
{

[j + 1− k]q[n− k − j]q + qn−k−j[j + 1− k]q − qj−k[n− k − j]q − qn−2k
}

+[n− j]q − [j]q

= qk[j + 1− k]q[n− k − j]q + qn−j[j + 1− k]q − (qj[n− k − j]q + qn−k)

+[n− j]q − [j]q

= qk[j + 1− k]q[n− k − j]q + [n+ 1− k]q − [n− j]q − ([n+ 1− k]q − [j]q)

+[n− j]q − [j]q

= qk[j + 1− k]q[n− k − j]q,

completing the proof.2

3 Complexity of Cq(n)

In this section we apply the block diagonalization technique of Schrijver [S] to prove
Theorem 1.1.

Before proceeding further we recall the matrix tree theorem (see Theorem 5.6.8 in
[St2]). Let G be a simple graph on the vertex set S. Define the degree and adjacency
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operators deg, A : V (S)→ V (S) of G as follows : for v ∈ S, deg(v) = (degree of v)v and
A(v) =

∑
u, the sum being over all u ∈ S adjacent to v in G. The Laplacian operator

L of G is defined by L = deg − A. Assume G is connected. It is known that 0 is an
eigenvalue of L of multiplicity 1. The matrix tree theorem states that

c(G) =
product of the nonzero eigenvalues of L

#S

If c(G) denotes the number of rooted spanning trees (i.e., a spanning tree plus a choice of
a vertex as a root) then the product of the nonzero eigenvalues of L equals c(G).

The eigenvalues of the Laplacian of C(n) are well known to be 2k, k = 0, . . . , n, with
respective multiplicities

(
n
k

)
(see Example 5.6.10 in [St2]), thereby explaining (1). The

eigenvalues of the Laplacian of Cq(n) are not known but we will give a formula for the
product of the nonzero eigenvalues.

For 0 ≤ k ≤ n/2, define a real, symmetric, tridiagonal matrix Nq(n, k) of size n−2k+1,
with rows and columns indexed by the set {k, k+ 1, . . . , n− k}, and with entries given as
follows: for k ≤ i, j ≤ n− k define

Nq(n, k)(i, j) =



−
√
qk[j − k]q[n− k − j + 1]q if i = j − 1,

[j]q + [n− j]q if i = j,

−
√
qk[j + 1− k]q[n− k − j]q if i = j + 1,

0 if |i− j| ≥ 2.

Let 0 ≤ k ≤ n/2. For k ≤ j ≤ n−k+1 define Nq(n, k, j) to be the principal submatrix
of Nq(n, k) indexed by the rows and columns in the set {j, j+ 1, . . . , n−k}. Similarly, for
k− 1 ≤ j ≤ n− k define Mq(n, k, j) to be the principal submatrix of Nq(n, k) indexed by
the rows and columns in the set {k, j + 1, . . . , j}. Thus Nq(n, k, k) = Mq(n, k, n − k) =
Nq(n, k) and Nq(n, k, k+1), Mq(n, k, k−1) are empty matrices, which by convention have
determinant 1.

Before stating the next result we recall the following standard recursion for the deter-
minants of tridiagonal matrices: Let X = (xij) be a square tridiagonal matrix, X ′ be X
with first row, first column removed, and X ′′ be X with first two rows, first two columns
removed. Then det(X) = x11 det(X ′)− x12x21 det(X ′′).

Lemma 3.1 We have

(i) Fq(n, k, j) = det(Nq(n, k, j)), 0 ≤ k ≤ n/2, k ≤ j ≤ n− k + 1.

(ii) Fq(n, 0, j) = [n]q[n− 1]q · · · [j]q, 0 ≤ j ≤ n+ 1.

(iii) det(Mq(n, 0, j)) = [n]q[n− 1]q · · · [n− j]q, −1 ≤ j ≤ n.

(iv) The sum of the determinants of all n×n principal submatrices of Nq(n, 0) is equal
to ([1]q[2]q · · · [n]q)Gq(n).
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Proof (i) By (reverse) induction on j. The base cases j = n − k + 1, n − k are clear
from (3), (4) and the general case follows by the recursion for the determinant of the
tridiagonal matrix Nq(n, k, j).

(ii) By (reverse) induction on j. The base cases j = n + 1, n are clear. By induction
and the defining recurrence for Fq(n, k, j) we have

Fq(n, 0, j) = ([j]q + [n− j]q)Fq(n, 0, j + 1)− ([j + 1]q[n− j]q)Fq(n, 0, j + 2)

= ([j]q + [n− j]q)[n]q · · · [j + 1]q − ([j + 1]q[n− j]q)[n]q · · · [j + 2]q

= [n]q · · · [j]q.

(iii) Treat the diagonal entries of Nq(n, 0) as a row vector of length n + 1. Then this
vector is symmetric, i.e., reads the same from left to right as right to left. Similarly for
the subdiagonal and superdiagonal vectors. The result now follows from parts (i) and (ii).

(iv) For 0 ≤ j ≤ n, deleting row and column j from Nq(n, 0) leaves a block diagonal
matrix with blocks Nq(n, 0, j+ 1) and Mq(n, 0, j− 1). Thus, the sum of the determinants
of all n× n principal submatrices of Nq(n, 0) is equal to

n∑
j=0

det(Nq(n, 0, j + 1)) det(Mq(n, 0, j − 1))

=
n∑

j=0

[n]q[n− 1]q · · · [j + 1]q [n]q[n− 1]q · · · [n− j + 1]q

= ([1]q[2]q · · · [n]q)

{
n∑

j=0

[
n

j

]
q

}
= ([1]q[2]q · · · [n]q) Gq(n),

completing the proof.2

Proof (of Theorem 1.1): We can write the Laplacian operator L of Cq(n) as L = deg −
U −D, where U,D are the up and down operators on V (Bq(n)).

Let J(q, n) be a SJB of V (Bq(n)) satisfying the conditions of Theorem 2.1. Normalize
J(q, n) to get an orthonormal basis J ′(q, n). The degree of a vertex X of Cq(n) is [k]q +
[n− k]q, where k = dim(X). Since the vertex degrees are constant on Bq(n)k it follows
that the subspace spanned by each SJC in J(q, n) is closed under L. Using part (ii) of
Theorem 2.1 we can write down the matrix of L in the basis J ′(q, n).

Let 0 ≤ k ≤ n/2. Let (vk, . . . , vn−k) be a (normalized) SJC in J ′(q, n) starting at rank
k. Let W be the subspace spanned by {vk, . . . , vn−k}. Then W is invariant under L.

It follows from Theorem 2.1 that Nq(n, k) is the matrix of L : W → W with respect
to the (ordered) basis {vk, . . . , vn−k} (we take coordinate vectors with respect to a basis
as column vectors). Thus the matrix of L with respect to (a suitable ordering of) J ′(q, n)
is in block diagonal form, with blocks Nq(n, k), for all 0 ≤ k ≤ n/2, and each such block
is repeated

[
n
k

]
q
−
[

n
k−1

]
q

times. The number of distinct blocks is 1 + bn/2c.
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It follows from parts (i), (ii) of Lemma 3.1 that Nq(n, 0) is singular. Since Cq(n) is
connected we see that Nq(n, k), 0 < k ≤ n/2 are all nonsingular and Nq(n, 0) has 0 as
an eigenvalue of multiplicity 1. The result now follows from the matrix tree theorem and
parts (i) and (iv) of Lemma 3.1.2

Remark Since the subdiagonal entries of Nq(n, k), 0 ≤ k ≤ n/2 are nonzero it easily
follows that any eigenspace will have dimension 1 and thus Nq(n, k) has n−2k+1 distinct
eigenvalues. Data suggest that Nq(n, k) and Nq(n, l), k 6= l do not have any eigenvalue

in common. In other words, the Laplacian of Cq(n) seems to have
∑bn/2c

k=0 (n− 2k + 1) =
(bn/2c + 1)(dn/2e + 1) distinct eigenvalues (in contrast to the q = 1 case, where the
Laplacian has n + 1 distinct eigenvalues), with each of the n − 2k + 1 eigenvalues of
Nq(n, k) having multiplicity

[
n
k

]
q
−
[

n
k−1

]
q
, k = 0, 1, . . . , bn/2c. Is this true and can it be

proved without explicitly writing down the eigenvalues?

4 Positivity

In this section we define certain combinatorial objects and a matchings type polynomial
based on them with the property that an appropriate positive specialization satisfies the
recurrence (5).

Consider the set [n, n] = {1, 2, . . . , n} ∪ {1, 2, . . . , n} of 2n elements. We are going to
recursively define a set S(n) of certain subsets of [n, n]. The cardinality of an element
of S(n) will be between 0 and n (inclusive) and will have the same parity as n. Define
S(0) = {∅}, S(1) = {{1}, {1}} and, for n ≥ 1,

S(n+ 1) =

{X ∪ {n+ 1} : X ∈ S(n)} ∪ {X ∪ {n+ 1} : X ∈ S(n), n 6∈ X} ∪ S(n− 1).

It is easy to show by induction that |S(n)| = 2n and that the number of elements of S(n)
not containing n is 2n−1. Let x = (x1, x2, . . .), y = (y1, y2, . . .), and t be indeterminates.
For n ≥ 0 define the following polynomial

P (n,x,y, t) =
∑

X∈S(n)

 ∏
i∈X∩{1,...,n}

xi

 ∏
i∈X∩{1,...,n}

yi

 t
n−|X|

2 .

Example We have

S(2) = {∅, {1, 2}, {1, 2}, {1, 2}},
S(3) = {{1}, {1}, {3}, {3}, {1, 2, 3}, {1, 2, 3}, {1, 2, 3}, {1, 2, 3}}.

Thus P (0,x,y, t) = 1, P (1,x,y, t) = x1 + y1, P (2,x,y, t) = t+ (x1x2 + y1x2 + y1y2) and

P (3,x,y, t) = (x1 + y1 + x3 + y3)t+ (x1x2x3 + y1x2x3 + y1y2x3 + y1y2y3).
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The recursive structure of S(n) yields the following recurrence for the polynomials P .

Theorem 4.1 We have

P (n+ 1,x,y, t) = (xn+1 + yn+1)P (n,x,y, t)− (xnyn+1 − t)P (n− 1,x,y, t), n ≥ 1.

Proof Write the right hand side as T (1) + T (2) + T (3), where

T (1) = xn+1P (n,x,y, t),

T (2) = yn+1P (n,x,y, t)− xnyn+1P (n− 1,x,y, t),

T (3) = tP (n− 1,x,y, t).

Let X ∈ S(n+ 1). In the expansion of the left hand side P (n+ 1,x,y, t), consider the
term corresponding to X: ∏

i∈X∩{1,...,n+1}

xi

 ∏
i∈X∩{1,...,n+1}

yi

 t
n+1−|X|

2 .

We consider three cases:

(i) n+ 1 ∈ X: the term above will appear exactly once in T (1) and not at all in T (2) and
T (3).

(ii) n+ 1 ∈ X: the term above will appear exactly once T (2) and not at all in T (1) and
T (3).

(iii) X ∈ S(n − 1): The term above will appear exactly once in T (3) and not at all in
T (1) and T (2).

It is clear that there are no other terms corresponding to X on the right hand side.
The result follows. 2

Given n, k ∈ N with k ≤ n/2 define

dq(n, k) = ([n− k]q, [n− k − 1]q, . . . , [k]q, 0, 0, . . .),

eq(n, k) = ([k]q, [k + 1]q, . . . , [n− k]q, 0, 0, . . .).

We now prove Theorem 1.2.

Theorem 4.2 Let n, k ∈ N with k ≤ n/2 and let k ≤ j ≤ n− k + 1. Then

Fq(n, k, j) = P (n− k − j + 1, dq(n, k), eq(n, k), [k]q[n− k + 1]q), (11)

showing that the coefficients of Fq(n, k, j) are nonnegative.

Proof Denote the right hand side of (11) by Eq(n, k, j). We verify that Eq(n, k, j) satisfies
the same recurrence (5) (and the same initial conditions (3), (4)) as Fq(n, k, j). It follows
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from the formulas for P (0,x,y, t) and P (1,x,y, t) in the example above that (3), (4) are
satisfied.

Now note the following alternate expression for the square of the singular values:

qk[j + 1− k]q[n− k − j]q
= ([j + 1]q − [k]q)([n− j]q − qn−k−j[k]q)

= [j + 1]q[n− j]q − [k]q([n− j]q + qn−k−j[j + 1]q − qn−k−j[k]q)

= [j + 1]q[n− j]q − [k]q[n− k + 1]q. (12)

We now have from Theorem 4.1 and (12) that, for k ≤ j < n− k, Eq(n, k, j) is

= ([j]q + [n− j]q)Eq(n, k, j + 1)− ([j + 1]q[n− j]q − [k]q[n− k + 1]q)Eq(n, k, j + 2)

= ([j]q + [n− j]q)Eq(n, k, j + 1)− (qk[j + 1− k]q[n− k − j]q)Eq(n, k, j + 2).

Thus Eq(n, k, j) satisfies (5). The result follows. 2

Example Let n = 3 and k = 0. Then

dq(3, 0) = ([3]q, [2]q, [1]q, [0]q, 0, 0, . . .), eq(3, 0) = ([0]q, [1]q, [2]q, [3]q, 0, 0, . . .).

Thus Fq(3, 0, 1) = P (3, dq(3, 0), eq(3, 0), 0) = [3]q[2]q[1]q.

Now let n = 3 and k = 1. Then

dq(3, 1) = ([2]q, [1]q, 0, 0, . . .), eq(3, 1) = ([1]q, [2]q, 0, 0, . . .).

Thus Fq(3, 1, 1) = P (2, dq(3, 1), eq(3, 1), [1]q[3]q) = [1]q[3]q + [2]q[1]q + [1]q[1]q + [1]q[2]q =
4 + 3q + q2.

We now discuss the connection between the q = 1 case of Theorem 1.1 and formula
(2), yielding an eigenvalue interpretation to (2). Substituting q = 1 in Theorem 2.1 we
get an orthogonal SJB J(1, n) of V (B(n)) satisfying (9) with q = 1. For i = 0, 1, . . . , n,
define the following vectors in V (B(n)):

ui =
∑

X∈B(n)i

X,

vi =
ui

‖ ui ‖
.

Let R(n) be the subspace V (B(n)) spanned by {v0, . . . , vn}. Clearly, dim(R(n)) = n+ 1.
Elements of R(n) are called radial vectors in V (B(n)) (this notion is defined, in the context
of lumpable Markov chains, in [CST] (see Sections 1.10 and 2.6)). It is easy to see that
R(n) is invariant under the adjacency and Laplacian operators A and L of C(n).

In [CST] it is shown that the eigenvalues of A : R(n)→ R(n) are n−2i, i = 0, 1, . . . , n.
Since C(n) is regular of degree n it follows that the eigenvalues of L : R(n) → R(n) are
2i, i = 0, 1, . . . , n.
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Now note the following:

(i) The unique SJB in J(1, n) starting at rank 0 is (u0, . . . , un) and thus the matrix of
L : R(n)→ R(n) with respect to {v0, . . . , vn} is N1(n, 0).

(ii) We have N1(n, k) = 2kI + N1(n − 2k, 0). This can be easily seen by checking
that the matrix entries on both sides of the identity are equal. The rows and columns of
the matrices on the two sides of the identity are indexed by different sets (of the same
cardinality) but the intended meaning is clear.

It follows that the eigenvalues of N1(n, k) are 2k, 2(k + 1), . . . , 2(n − k) and thus we
have F1(n, k, k) =

∏n−k
j=k (2j), 0 ≤ k ≤ n/2.

Substituting q = 1 in Theorem 4.2 we now get the following identity

P (n− 2k + 1, d1(n, k), e1(n, k), k(n− k + 1)) = 2n−2k+1 · k · (k + 1) · · · (n− k).

Finally, we consider the Grassmann graphs (see section 12.4.3 in Brouwer and Haemers
[BH]). Let 0 ≤ m ≤ n/2. The Grassmann graph Cq(n,m) is defined to be the graph
with Bq(n)m as the vertex set and with two vertices X, Y ∈ Bq(n)m connected by an edge
iff dim(X ∩ Y ) = m− 1. The adjacency eigenvalues and hence the Laplacian eigenvalues,
since Cq(n,m) is regular, were determined by Delsarte [D]. We now show that using
identity (12) the Laplacian eigenvalues can be written down in an elegant form yielding
a positive formula for the (rooted) complexity of Cq(n,m). For the sake of completeness
we do not assume Delsarte’s [D] result but give a proof using Theorem 2.1.

Theorem 4.3 Let 0 ≤ m ≤ n/2. The Laplacian eigenvalues of Cq(n,m) are given by

[k]q[n− k + 1]q, k = 0, . . . ,m,

with respective multiplicities
[
n
k

]
q
−
[

n
k−1

]
q
. Thus

c(Cq(n,m)) =
m∏

k=1

([k]q[n− k + 1]q)
[nk]q−[ n

k−1]q .

Proof Let U,D denote the up, down operators on V (Bq(n)) and let A,L : V (Bq(n)m)→
V (Bq(n)m) denote the adjacency and Laplacian operators of Cq(n,m). Let I denote the
identity operator on V (Bq(n)m). Then it is easy to see that V (Bq(n)m) is invariant under
DU and we have the identity

A = DU − [n−m]qI. (13)

Let J(q, n) be an orthogonal SJB of V (Bq(n)) satisfying the conditions of Theorem
2.1. For k = 0, 1, . . . ,m define

J(q, n,m, k) = {v ∈ J(q, n) : r(v) = m and the Jordan chain containing v

starts at rank k}.
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Let W (q, n,m, k) be the subspace spanned by J(q, n,m, k). Then we have an orthogonal
direct sum decomposition

V (Bq(n)m) = ⊕m
k=0W (q, n,m, k).

Clearly dim(W (q, n,m, k)) =
[
n
k

]
q
−
[

n
k−1

]
q
. We have from (13) and Theorem 2.1

A(v) = (qk[m+ 1− k]q[n− k −m]q − [n−m]q)v, v ∈ W (q, n,m, k).

Now the degree of a vertex of Cq(n,m) is q[m]q[n−m]q (see Lemma 3 in [D]) and
thus, for v ∈ W (q, n,m, k), we have L(v) = θv, where θ is

= q[m]q[n−m]q − qk[m+ 1− k]q[n− k −m]q + [n−m]q

= [n−m]q(1 + q[m]q)− qk[m+ 1− k]q[n− k −m]q

= [n−m]q[m+ 1]q − qk[m+ 1− k]q[n− k −m]q

= [k]q[n+ 1− k]q,

where in the last step we have used identity (12). The result now follows on observing
that [k]q[n− k + 1]q 6= [l]q[n− l + 1]q for k 6= l. 2
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