
THE CONE OF BALANCED SUBGRAPHS

AMITAVA BHATTACHARYA, URI N. PELED,

AND MURALI K. SRINIVASAN

Dedicated to the memory of Malka Peled

Abstract. In this paper we study a 2-color analog of the cycle

cone of a graph. Suppose the edges of a graph are colored red and

blue. A nonnegative real vector on the edges is said to be balanced

if the red sum equals the blue sum at every vertex. A balanced sub-

graph is a subgraph whose characteristic vector is balanced (i.e.,

red degree equals blue degree at every vertex). By a sum (respec-

tively, fractional sum) of cycles we mean a nonnegative integral

(respectively, nonnegative rational) combination of characteristic

vectors of cycles. Similarly, we define sum and fractional sum of

balanced subgraphs. We show that a balanced sum of cycles is a

fractional sum of balanced subgraphs.

1. Introduction

Let G = (V, E) be a graph (we allow parallel edges but not loops) and

let Z(G) denote the convex polyhedral cone in RE generated by the

characteristic vectors of the cycles in G. We call Z(G) the cycle cone

of G. Seymour [S] found the linear inequalities determining this cone.

Let us recall this result.
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Given a vector q ∈ RE we denote its components using the notation

q = (q(e) : e ∈ E). To write linear inequalities satisfied by the com-

ponents of vectors in RE we use the variables x(e), e ∈ E. By a sum

(respectively, fractional sum) of cycles we mean a nonnegative integral

(respectively, nonnegative rational) combination of characteristic vec-

tors of cycles. Given a nonempty proper subset X of V , the subset

D ⊆ E of edges between X and V − X will be called a cut. Let D be

a cut, e ∈ D, and C a cycle in G. If C contains e, then C must also

contain an edge in D − {e}. Thus the characteristic vector χ(C) of C

satisfies the following linear inequality

(1) x(e) ≤
∑

f∈D−e

x(f),

where we write D − e for D − {e}. We abbreviate the right-hand side

of (1) by x(D − e). We call (1) the cut condition for the pair (D, e).

A vector in RE is said to be cut admissible if it satisfies the following

linear inequalities:

x(e) ≤ x(D − e), for all cuts D and all e ∈ D,(2)

x(e) ≥ 0, for all e ∈ E.(3)

It follows that every vector in Z(G) is cut admissible. Being the solu-

tion set of a finite system of homogeneous linear inequalities, the set

of all cut admissible vectors also forms a convex polyhedral cone in

RE and is thus equal to the set of all nonnegative real linear combina-

tions of finitely many vectors. Moreover, these vectors may be taken to

be rational (i.e., all components rational) since the coefficients in (2)

and (3) are rational (see Chapter 7 in [Sc]). That every cut admissible

vector is in Z(G) now follows from the following combinatorial result

proved in [S].

Theorem 1.1. Let G = (V, E) be a graph. A vector p ∈ QE is a

fractional sum of cycles if and only if p is cut admissible.

The proof of Theorem 1.1 in [S] is based on induction and the Seymour-

Giles lemma on cycles in bridgeless graphs which states the following:

let G = (V, E) be a bridgeless graph and let φ : V → E map each

vertex v to an edge incident with v. Then G has a nonempty cycle K

such that for each vertex w of K, φ(w) is an edge of K.
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The main object of study of this paper is a 2-color analog of the cycle

cone. Let G = (V, E) be a graph and assume that E is colored with two

colors, say red and blue. A real vector in RE is said to be balanced if

the red sum equals the blue sum at every vertex. In order to motivate

our main definition we first rephrase the definition of Z(G) in terms of

the important concept of even subgraphs (see Section 2.6 in [BM]). A

spanning subgraph of G (i.e., a subgraph of G whose vertex set is V ) is

said to be even if the degree of each vertex in the subgraph is even. By

Euler’s theorem the characteristic vector of an even subgraph is a sum

of cycles and thus the cone generated by the (characteristic vectors of)

even subgraphs is the same as the cycle cone. A balanced subgraph is

a spanning subgraph whose characteristic vector is balanced (i.e., red

degree equals blue degree at every vertex). By a sum (respectively,

fractional sum) of balanced subgraphs we mean a nonnegative inte-

gral (respectively, nonnegative rational) combination of characteristic

vectors of balanced subgraphs.

The 2-color analog of the cycle cone is obtained by replacing even

subgraphs with balanced subgraphs. Given a 2-colored graph G =

(V, E), with coloring given by C : E → {R, B}, define B(G, C) ⊆ RE to

be the convex polyhedral cone generated by the characteristic vectors

of balanced subgraphs in (G, C). We call B(G, C) the cone of balanced

subgraphs.

Consider a balanced subgraph in a 2-colored graph. By ignoring the

colors and applying Euler’s theorem we can write its characteristic

vector as a sum of cycles. This shows that a fractional sum of balanced

subgraphs is a balanced fractional sum of cycles and thus is a balanced

cut admissible vector. The main result of this paper is the converse of

this observation.

Theorem 1.2. Let G = (V, E), C : E → {R, B} be a 2-colored graph.

A vector p ∈ QE is a fractional sum of balanced subgraphs if and only

if p is balanced and cut admissible.

Theorem 1.2 shows that B(G, C) equals the set of all balanced cut

admissible vectors.

Let us say a few words here about the relation between Theorems 1.1

and 1.2.
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We can easily derive Theorem 1.1 from Theorem 1.2. What we mean

here is the use of Theorem 1.2 as a black box without going into any

details of its proof. Let G = (V, E) be a graph and let p ∈ QE be a

cut admissible vector. We want to show that p is a fractional sum of

cycles. For each v ∈ V , let p(v) =
∑

p(e), where the sum is over all

edges e incident with v. Attach vertex disjoint triangles to each vertex

of G to get a new graph G′. Two color the edges of G′ as follows. The

edges of G get the color blue. In each of the attached triangles, the two

edges that touch a vertex of G get the color red and the other edge gets

the color blue. Now define a (nonnegative rational) weight function p′

on the edges of G′ as follows. All the edges e in G have p′(e) = p(e)

and all the edges e of an attached triangle at vertex v ∈ V get weight

p′(e) = p(v)/2. Note the following:

• p′ is balanced.

• Consider a triangle and a cut in a graph. Then the number of

edges of the triangle contained in the cut is either 0 or 2. This

fact together with the facts that p is cut admissible and that all

the edges of the attached triangles get the same weight under

p′ shows that p′ is cut admissible.

• Every balanced subgraph of G′ consists of a vertex disjoint

union of cycles of G together with the attached triangles at

the vertices of these cycles.

It follows, by Theorem 1.2 and the first two items above, that p′ is a

fractional sum of balanced subgraphs from which it easily follows, by

the last item above, that p is a fractional sum of cycles.

It would be very interesting if there were a similar proof of Theorem 1.2

using Theorem 1.1. Such a proof would proceed as follows. Given a

balanced cut admissible vector p on the edges of a 2-colored graph G

we produce a related graph G′ and a cut admissible vector p′ on the

edges of G′. Theorem 1.1 will then show that p′ is a fractional sum of

cycles and somehow, using this information, we need to show that p is

a fractional sum of balanced subgraphs. We do not know such a proof.

Our proof of Theorem 1.2 is closely modelled on the proof of Theo-

rem 1.1 in [S] and runs parallel to it. Basically, we have to replace

the use of Seymour-Giles lemma by an appropriate colored analog. In
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the original version of this paper (see [BPS2]) we used the Grossmann-

Haggvist [GH] lemma for this purpose. This lemma states the follow-

ing: a bridgeless graph whose edges have been colored red and blue so

that both colors are present at every vertex contains a nonempty bal-

anced subgraph (Yeo [Y] generalized this result to an arbitrary number

of colors (see Theorem 2.1 in Section 2)). Subsequently, following a sug-

gestion of Jácint Szabó, we formulated a technical result, the colored

Seymour-Giles lemma (Theorem 2.2 in Section 2) that interpolates be-

tween the Seymour-Giles and Grossmann-Haggvist-Yeo lemmas. Using

the colored Seymour-Giles lemma we prove another technical result,

Theorem 3.1 in Section 3, that includes both Theorems 1.1 and 1.2 as

special cases and whose proof is considerably shorter than the proof of

Theorem 1.2 in [BPS2].

2. Colored Seymour-Giles lemma

In this section we formulate a colored Seymour-Giles lemma and show

that it follows from the Grossmann-Haggvist-Yeo lemma. We begin

with a few definitions and the statement of the Grossmann-Haggvist-

Yeo lemma.

Let G = (V, E) be a graph. A trail in G is a sequence

T = (v0, e1, v1, e2, v2, . . . , em, vm), m ≥ 0,

where vi ∈ V for all i, ej ∈ E for all j, ej has endpoints vj−1 and vj

for all j, and all the ej are distinct. We say that T is a v0 − vm trail of

length m. The trail T is said to be closed when v0 = vm.

Now assume that the edges of G are colored with a set S of colors, the

coloring being given by C : E → S. The trail T above is alternating

when C(ej) 6= C(ej+1) for each j = 1, . . . , m − 1 and if T is closed

then C(em) 6= C(e1). A closed alternating trail is abbreviated as CAT.

There is a close connection between CAT’s and balanced subgraphs

when the number of colors is two. Indeed, in the case of two colors,

the characteristic vector of a CAT is balanced and, conversely, a simple

alternating walk argument (see Theorem 2.2 (iii) in [BPS1]) shows that

the characteristic vector of a balanced subgraph of a 2-colored graph

can be written as a sum of characteristic vectors of edge-disjoint CAT’s.
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Theorem 2.1. (Grossmann-Haggvist-Yeo Lemma [Y]) Let G = (V, E)

be a bridgeless graph with an edge-coloring C : E → S. Assume that

for each v ∈ V , there are two edges with different colors incident at v.

Then (G, C) has a CAT of positive length.

Actually, a slightly more general result is proved in [Y] but the state-

ment given above follows immediately from it.

Let G = (V, E) be a graph and let C : E → S be an edge coloring.

Suppose we are given a subset A ⊆ V of vertices, called alternating

vertices. Vertices in V − A are called special. A closed A-alternating

trail (A-CAT) in G is a closed trail

T = (v0, e1, v1, e2, v2, . . . , em, v0), m ≥ 0,

that alternates at vertices in A, i.e., v0 ∈ A implies C(e1) 6= C(em)

and vi ∈ A, 1 ≤ i ≤ m − 1 implies C(ei) 6= C(ei+1). Now suppose we

are given a function φ : V − A → E that maps every special vertex

v ∈ V −A to an edge φ(v) incident with v. An (A,φ)-closed trail (Aφ-

CT) is an A-CAT T satisfying the following property: for every special

vertex v, the number of edges in T incident with v is 0 or 2 and, in

the case this number is 2, one of these edges is φ(v). Note that when

every vertex is alternating an Aφ-CT is a CAT and when every vertex

is special an Aφ-CT is a cycle C containing the edge φ(u) for every

vertex u on C.

Theorem 2.2. (Colored Seymour-Giles Lemma) Let G = (V, E) be

a bridgeless graph with an edge-coloring C : E → S. Assume that

we are a given a subset A ⊆ V of alternating vertices and a function

φ : V −A → E mapping every special vertex v ∈ V −A to an edge φ(v)

incident with v. Assume that for every alternating vertex v ∈ A, there

are two edges with different colors incident with v. Then (G, C) has a

Aφ-CT of positive length.

Proof. Choose a color not in the set S and call this color black.

Consider a special vertex v ∈ V − A. Subdivide each edge e ∈

EG(v) − {φ(v)} (EG(v) = set of all edges in G with v as an end-

point) by introducing a new vertex (in the middle of) e. The two edges

created get the following colors: the edge incident with v gets colored

black and the other edge retains the color of e. Now do this procedure

in turn for every special vertex. The resulting edge colored graph H is
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easily seen to satisfy the hypothesis of Theorem 2.1. A positive length

CAT in H gives rise to the required Aφ-CT in G. �

Szeider [Se] has made a detailed study of theorems equivalent (in the

sense of being easily derivable from each other) to the classical Kotzig

lemma of matching theory. In particular, he shows that the Seymour-

Giles and Grossmann-Haggvist-Yeo lemmas are equivalent to Kotzig’s

lemma. Since the colored Seymour-Giles lemma trivially implies the

Seymour-Giles lemma it follows that Theorem 2.2 is also equivalent to

Kotzig’s lemma.

3. The Cone of Balanced Subgraphs

In this section we prove Theorem 1.2.

In proving Theorem 1.2 by induction it is technically convenient to

incorporate alternating and special vertices and prove the following

result.

Theorem 3.1. Let G = (V, E), C : E → {R, B} be a 2-colored graph

and let A ⊆ V be a subset of alternating vertices. A vector p ∈ QE

is a fractional sum of A-CAT’s if and only if p is cut admissible and

satisfies the balance condition at every alternating vertex.

When there are no alternating vertices an A-CAT is just a closed trail

and, since a closed trail is a disjoint union of cycles, it follows that

Theorem 3.1 implies Theorem 1.1. When every vertex is alternating

an A-CAT is a CAT and hence Theorem 3.1 also implies Theorem 1.2.

Given a graph G = (V, E), we denote by K(G) the set of all closed

trails in G. If D denotes the cut of all edges between X and V − X,

we say that X and V −X are the two sides of the cut, and their sizes

are |X| and |V − X|. If, for some e ∈ D, the cut condition (1) holds

with equality for q ∈ RE, the pair (D, e) is said to be tight for q.

Lemma 3.2. Let G = (V, E) be a graph and let p : E → Q. Let D be

a cut in G, and let e ∈ D be such that (D, e) is tight for p. Suppose p

is a fractional sum of closed trails, i.e., p can be expressed as

p =
∑

C∈K(G)

α(C)χ(C), α(C) ∈ Q+.
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Let C ∈ K(G) with α(C) > 0. Then C ∩D is either empty or equal to

{e, h} for some h ∈ D − e (we think of C as a set of edges). In other

words, (D, e) is tight for every χ(C) with α(C) > 0.

Proof. We have
∑

C∈K(G)

|C ∩ {e}| α(C) =
∑

C∈K(G), e∈C

α(C)

= p(e)

= p(D − e)

=
∑

h∈D−e

∑

C∈K(G)
h∈C

α(C)

=
∑

C∈K(G)

|C ∩ (D − e)| α(C).

Since each C ∈ K(G) satisfies |C ∩{e}| ≤ |C ∩ (D− e)|, it follows that

each C ∈ K(G) with α(C) > 0 satisfies |C ∩{e}| = |C∩ (D−e)|. Since

|C ∩ {e}| ∈ {0, 1}, the result follows. �

We now fix some notation to be used in the statement and proof of the

next result.

(4) Let G = (V, E), C : E → {R, B} be a 2-colored graph and A ⊆ V

a subset of alternating vertices.

(5) Let D be a cut in G with sides X and V − X. Set AX = A ∩ X

and AV −X = A ∩ (V − X). For an edge h ∈ D we let hX and hV −X

denote the endpoints of h in X and V − X, respectively.

(6) Denote by GX (respectively, GV −X) the graph obtained from G by

shrinking X (respectively, V − X) to a single vertex (and deleting the

resulting loops). The vertex set of GX is V − X plus the shrunken

vertex, which we denote by X. The edge set of GX consists of all edges

h of G that have at least one endpoint in V −X. If both endpoints of

an edge h ∈ E are in V − X, then it has the same endpoints in GX ;

otherwise, if h has only one endpoint in V − X, then its endponts in

GX are hV −X and X. We use a similar notation for the graph GV −X .

(7) Let T be a closed trail in the graph GX which contains exactly two

edges of D, say e and h. Then by cyclically shifting T (and reversing

direction, if necessary) we may arrange that T has the form (below ∗
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denotes concatenation of trails)

(eV −X , e, X) ∗ (X, h, hV −X) ∗ T V −X ,

where T V −X is the hV −X -eV −X trail (that is the portion of T ) whose

vertices are in V − X.

Analogously, let T be a closed trail in the graph GV −X which contains

exactly two edges of D, say e and h. Then by cyclically shifting T (and

reversing direction, if necessary) we may arrange that T has the form

(V − X, e, eX) ∗ TX ∗ (hX , h, V − X),

where TX is the eX-hX trail (that is the portion of T ) whose vertices

are in X.

We have the following important observation about this notation. Let

e, h ∈ D. Let T1 be a closed AV −X-alternating trail in GX that contains

exactly two edges of D, e and h. Let T2 be a closed AX -alternating

trail in GV −X that contains exactly two edges of D, e and h. Then

(eV −X , e, eX) ∗ TX
2 ∗ (hX , h, hV −X) ∗ T V −X

1 ,

is a closed A-alternating trail in G.

(8) p : E → N−{0}. Denote by pX (respectively, pV −X) the restriction

of p to the edges of GX (respectively, GV −X).

Lemma 3.3. Let the notation be as in items (4)-(8) above.

(i) If p is cut admissible for G, then pX (respectively, pV −X) is cut

admissible for GX (respectively, GV −X).

(ii) Suppose that, for some e ∈ D, the pair (D, e) is tight for p

and that pX (respectively, pV −X) is a sum of closed AV −X-

alternating trails (respectively, closed AX-alternating trails) in

GX (respectively, GV −X). Then p is a sum of closed A-

alternating trails in G.

Proof. (i) This follows since each cut in GX , GV −X is also a cut in G.

(ii) The hypothesis on pX implies that there is a multiset LX of closed

AV −X-alternating trails in GX such that every edge h in GX appears

pX(h) times in the various trails contained in LX . Similarly, there is a

multiset LV −X of closed AX -alternating trails in GV −X such that every

edge h in GV −X appears pV −X(h) times in the various trails contained

in LV −X .
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Consider a trail in LX or LV −X that intersects D. By Lemma 3.2,

the intersection of each such trail with D must be {e, h}, for some

h ∈ D − e. For h ∈ D − e, let LX(h) (respectively, LV −X(h)) consist

of the multiset of trails in LX (respectively, LV −X) whose intersection

with D is {e, h}. By the definition of LX and LV −X , pX and pV −X ,

we have |LX(h)| = pX(h) = p(h) = pV −X(h) = |LV −X(h)| for each

h ∈ D − e. For each h ∈ D − e, fix a bijection φh : LX(h) → LV −X(h).

We now build a multiset L of closed A-alternating trails in G such that

every edge h in G appears p(h) times in the trails contained in L. This

will prove the result.

We first take L to be empty and add trails to it as follows:

• Add to L all trails in LX whose vertices are contained in V −X

(each such trail is added the same number of times as it appears

in LX).

• Add to L all trails in LV −X whose vertices are contained in X.

• For every h ∈ D − e and every T ∈ LX(h) add the trail

(eV −X , e, eX) ∗ (φh(T ))X ∗ (hX , h, hV −X) ∗ T V −X ,

to L.

It is easily checked that each edge h in G appears p(h) times in the

trails contained in L and that each trail in L is A-alternating. �

We now give the proof of the main result of this section.

Proof. (of Theorem 3.1) (only if): This is clear.

(if): Consider a vector p : E → Q that satisfies the balance condition at

every alternating vertex in A and that is cut admissible for G. Without

loss of generality we may assume that p(e) > 0 for all e ∈ E (we may

drop edges e with p(e) = 0 and maintain the balance condition at

alternating vertices and cut admissibility). The proof is by induction

on the pairs (|V |, |E|) ordered lexicographically.

The following two cases arise.

Case (i): there exists a cut D in G with sides X and V − X of sizes

at least 2, and an edge e ∈ D such that (D, e) is tight for p.

Clearly pX satisfies the balance condition at every vertex in AV −X

and, by Lemma 3.3(i), is cut admissible for GX . Since GX has fewer
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vertices than G, we see by induction that pX is a fractional sum of

closed AV −X-alternating trails in GX . Similarly, pV −X is a fractional

sum of closed AX -alternating trails in GV −X . Thus, for a suitably large

positive integer M , MpX is a sum of closed AV −X-alternating trails in

GX and MpV −X is a sum of closed AX -alternating trails in GV −X .

Thus, by Lemma 3.3(ii), Mp is a sum of closed A-alternating trails in

G and thus p is a fractional sum of closed A-alternating trails in G.

Case (ii): for each cut D in G with sides X and V − X of sizes at

least 2 and each e ∈ D, we have p(e) < p(D − e).

It follows from the hypothesis for this case that if the pair (D, e) is tight

for p then D = EG(v) for some v ∈ V . Define a map φ : V − A → E

as follows: let v ∈ V − A. If the pair (EG(v), e) is tight for p for

some (unique) edge e ∈ EG(v) then put φ(v) = e, otherwise let φ(v)

be an arbitrary edge in EG(v). Since p is positive on every edge and

cut admissible for G, it follows that G is bridgeless. Since p is positive

and balanced at every alternating vertex, it follows that both colors

are present at every alternating vertex. Thus p satisfies the hypothesis

of Theorem 2.2 and it follows that G has a Aφ-CT T .

Consider the vector pt = p − tχ(T ), t ≥ 0. We claim that

• For all t ≥ 0, pt is balanced at every alternating vertex in A.

• For all sufficiently small t > 0, pt is positive, i.e, pt(e) > 0, for

all e ∈ E.

• For all sufficiently small t > 0, pt is cut admissible.

The first claim follows from the fact that both p and χ(T ) are balanced

at the alternating vertices. The second claim follows from the fact that

p is positive. We now show the third claim. Let D be a cut in G with

sides X and V −X and let e ∈ D. We have the following two subcases.

Case (a): p(e) < p(D−e). Clearly pt(e) < pt(D−e) for all sufficiently

small t > 0.

Case (b): p(e) = p(D − e). By assumption, one of X and V − X,

say X, has size 1. Let v be the unique vertex in X. We claim that

either T contains no edge of D or it contains precisely two edges of D,

one of which is e . If v is special this follows from the definition of a

Aφ-CT. If v is alternating then, since p is positive and balanced at v

and p(e) = p(D−e), we have that all the edges in D−e have the same
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color and this color is different than the color of e. The claim about T

follows since T alternates at v. Thus pt(e) = pt(D − e) for all t ≥ 0.

From these considerations we see that the maximum value of t such

that pt(e) ≥ 0 for all e ∈ E, pt is balanced at every alternating vertex,

and pt is cut admissible for G is a positive finite rational t0. Set q = pt0 .

The following two subcases arise:

Subcase (ii.1): q(f) = 0 for some f ∈ E. By dropping f we obtain

a graph with the same number of vertices as G but with fewer edges.

By induction, q is a fractional sum of A-CAT’s and thus so is p =

q + t0χ(T ).

Subcase (ii.2): q(f) > 0 for all f ∈ E. From case (b) above we see

that p(e) = p(D − e) implies q(e) = q(D − e). Since q is positive on

every edge, it must be that the cutoff determining t0 occurs by case (a)

above and not by case (b) or by the requirement that pt ≥ 0. Therefore

there is a cut D∗ and an edge e∗ ∈ D∗ such that p(e∗) < p(D∗−e∗) and

q(e∗) = q(D∗− e∗). Thus q is a positive rational vector, cut admissible

for G, balanced at alternating vertices, and more pairs (D, e) are tight

for q than for p. We may now repeat the whole argument with q in

place of p. Since the total number of pairs (D, e) where D is a cut

in G and e ∈ D is finite, eventually we will reach case (i) or subcase

(ii.1). �

Finally, we would like to propose the following conjecture. Theorem 1.2

has a reformulation that reads: a nonnegative rational vector p on the

edges of a 2-colored graph is a fractional sum of balanced subgraphs if

and only if p is a balanced fractional sum of cycles. We conjecture a

stronger integral version of this statement.

Conjecture 3.1. Let G = (V, E), C : E → {R, B} be a 2-colored

graph. A vector p ∈ NE is sum of balanced subgraphs if and only if p

is a balanced sum of cycles.

Note that, by Theorem 1.2, a balanced sum of cycles is a fractional

sum of balanced subgraphs.

There is a well-known conjecture due to Seymour [S] asserting that a

fractional sum of cycles that is an even integer on every edge is a sum

of cycles. Analogously, in the 2-colored case, we can conjecture that a

balanced fractional sum of cycles that is an even integer on every edge
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is a sum of balanced subgraphs. This latter conjecture follows from

Seymour’s conjecture and Conjecture 3.1. There is a significant differ-

ence between Seymour’s conjecture and Conjecture 3.1. Namely, the

hypothesis in Seymour’s conjecture (that of a vector being a fractional

sum of cycles) is well characterized (by means of cut admissibility)

whereas we do not know whether the property of an edge weighted

vector being a sum of cycles is well characterized.
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