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Abstract

We inductively construct an explicit (common) orthogonal eigenbasis for the
elements of the Bose-Mesner algebra of the Grassmann scheme.

The key step is a constructive, linear algebraic interpretation of the Goldman-
Rota recurrence for the number of subspaces of a finite vector space. This inter-
pretation shows that the up operator on subspaces has an explicitly given recursive
structure.

Using the interpretation above we inductively construct an explicit orthogonal
symmetric Jordan basis with respect to the up operator and write down the singular
values, i.e., the ratio of the lengths of the successive vectors in the Jordan chains.
The collection of all vectors in this basis of a fixed rank m forms a (common)
orthogonal eigenbasis for the elements of the Bose-Mesner algebra of the Grassmann
scheme of m-dimensional subspaces. We also pose a bijective proof problem on the
spanning trees of the Grassmann graphs.

1 Introduction

This paper presents constructive and explicit proofs of two basic linear algebraic re-
sults on the subspace lattice. We begin by recalling two important existence results on
subspaces.

Let P be a finite graded poset with rank function r : P → N = {0, 1, 2, . . .} (our
poset terminology follows [29]). The rank of P is r(P ) = max{r(x) : x ∈ P} and, for
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i = 0, 1, . . . , r(P ), Pi denotes the set of elements of P of rank i. For a subset S ⊆ P , we
set rankset(S) = {r(x) : x ∈ S}. A symmetric chain in a graded poset P is a sequence

(p1, p2, . . . , ph)

of elements of P such that pi covers pi−1, for i = 2, . . . , h and r(p1) + r(ph) = r(P ), if
h ≥ 2, or else 2r(p1) = r(P ), if h = 1. A symmetric chain decomposition (SCD) of a
graded poset P is a decomposition of P into pairwise disjoint symmetric chains.

Let B(n) denote the collection of all subsets of the set {1, 2, . . . , n}. Partially order
B(n) by inclusion. Let Fnq denote the n-dimensional vector space of all column vectors
of length n over Fq and let Bq(n) denote the collection of all subspaces of Fnq . Partially
order Bq(n) by inclusion. Define [k]q = 1 + q + q2 + · · ·+ qk−1, k ∈ N = {0, 1, 2, . . .}. For
0 ≤ k ≤ n, the q-binomial coefficient[

n

k

]
q

=
[1]q[2]q · · · [n]q

[1]q · · · [k]q[1]q · · · [n− k]q

denotes the number of k-dimensional subspaces inBq(n) and the total number of subspaces
is the Galois number

Gq(n) =
n∑
k=0

[
n

k

]
q

.

The following result was proved in [13] using network flow techniques.

Theorem 1.1 There exists a SCD of the graded poset Bq(n).

Although Theorem 1.1 is interesting in itself one of its main motivations was that the
existence of a SCD of a graded poset P is a stronger property than P being strongly
Sperner, a fact that was already known for Bq(n) (see [9]).

Theorem 1.1 has a linear analog, which we now state.

For a finite set S, let V (S) denote the complex vector space with S as basis. Let
v =

∑
x∈S αx x, αx ∈ C be an element of V (S). By the support of v we mean the subset

{x ∈ S : αx 6= 0}.
Let P be a graded poset with n = r(P ). Then we have V (P ) = V (P0) ⊕ V (P1) ⊕

· · ·⊕V (Pn) (vector space direct sum). An element v ∈ V (P ) is homogeneous if v ∈ V (Pi)
for some i, and if v 6= 0, we extend the notion of rank to nonzero homogeneous ele-
ments by writing r(v) = i. Given an element v ∈ V (P ), write v = v0 + · · · + vn, vi ∈
V (Pi), 0 ≤ i ≤ n. We refer to the vi as the homogeneous components of v. A sub-
space W ⊆ V (P ) is homogeneous if it contains the homogeneous components of each
of its elements. For a homogeneous subspace W ⊆ V (P ) we set rankset(W ) = {r(v) :
v is a nonzero homogeneous element of W}.

The up operator U : V (P )→ V (P ) is defined, for x ∈ P , by U(x) =
∑

y y, where the
sum is over all y covering x. We denote the up operator on V (Bq(n)) by Un. For a finite
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vector space X over Fq we denote by Bq(X) the set of all subspaces of X and we denote
by UX the up operator on V (Bq(X)).

Let 〈, 〉 denote the standard inner product on V (P ), i.e., 〈x, y〉 = δ(x, y) (Kronecker
delta), for x, y ∈ P . The length

√
〈v, v〉 of v ∈ V (P ) is denoted ‖ v ‖. We give V (Bq(n))

(and V (Bq(X)) for a finite vector space X over Fq) the standard inner product.

Let P be a finite graded poset with rank function r. A graded Jordan chain in V (P )
is a sequence

s = (v1, . . . , vh) (1)

of nonzero homogeneous elements of V (P ) such that U(vi−1) = vi, for i = 2, . . . h, and
U(vh) = 0 (note that the elements of this sequence are linearly independent, being nonzero
and of different ranks). We say that s starts at rank r(v1) and ends at rank r(vh). A graded
Jordan basis of V (P ) is a basis of V (P ) consisting of a disjoint union of graded Jordan
chains in V (P ). The graded Jordan chain (1) is said to be a symmetric Jordan chain (SJC)
if the sum of the starting and ending ranks of s equals r(P ), i.e., r(v1) + r(vh) = r(P ) if
h ≥ 2, or 2r(v1) = r(P ) if h = 1. A symmetric Jordan basis (SJB) of V (P ) is a basis of
V (P ) consisting of a disjoint union of symmetric Jordan chains in V (P ).

The following result was proved in [30] using [8].

Theorem 1.2 There exists an orthogonal SJB Tq(n) of V (Bq(n)).

Let 0 ≤ k ≤ n/2 and let (xk, . . . , xn−k) be any SJC in Tq(n) starting at rank k and
ending at rank n− k. Then we have, for k ≤ u < n− k,

‖ xu+1 ‖
‖ xu ‖

=
√
qk[u+ 1− k]q[n− k − u]q . (2)

See [26] for a proof of Theorem 1.2 based on the sl(2,C) method [22]. Very closely
related results are shown in [7, 28, 20, 1]. The numbers on the right hand side of (2)
are called the singular values of the up operator. These are important for applications.

Theorem 1.2 has several applications. In [27] we showed that the commutant of the
GL(n,Fq) action on V (Bq(n)) block diagonalizes with respect to the orthonormal basis
given by the normalization of Tq(n) and we used (2) to make this block diagonalization
explicit, thereby obtaining a q-analog of the formula from [23] for explicit block diagonal-
ization of the commutant of the symmetric group action on V (B(n)). This includes, as
a special case, a formula for the eigenvalues of the elements of the Bose-Mesner algebra
of the Grassmann scheme [6, 5]. For other approaches to explicit block diagonalization
see [23, 19, 20, 1], the first and last of which give applications to bounds on codes using
semidefinite programming. In [26] we used (2) to give a positive combinatorial formula
for the number of spanning trees of the q-analog of the n-cube and to show that the
Laplacian eigenvalues of the Grassmann graphs, known in principle since [6], admit an
elegant closed form. For another approach to the Laplacian eigenvalues of the Grassmann
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graphs see [20]. At the end of this paper we pose a bijective proof problem on spanning
trees of the Grassmann graphs.

It is natural to ask for a constructive proof of Theorem 1.1 and this was done in
the beautiful paper [31]. The underlying premise of this paper is that it is equally
natural to ask for a constructive proof of Theorem 1.2 (“More people should get used
to considering formal sums of combinatorial objects as being as natural to deal with as
individual objects”, quote from [2]) and in Section 3 we prove the following result.

Theorem 1.3 There is an algorithm to inductively construct an explicit orthogonal SJB
Jq(n) of V (Bq(n)). When expressed in the standard basis the vectors in Jq(n) have coef-
ficients that are integral multiples of qth roots of unity. In particular, the coefficients are
integral when q = 2.

Let 0 ≤ k ≤ n/2 and let (xk, . . . , xn−k) be any SJC in Jq(n) starting at rank k and
ending at rank n− k. Then we have, for k ≤ u < n− k,

‖ xu+1 ‖
‖ xu ‖

=
√
qk[u+ 1− k]q[n− k − u]q . (3)

A standard argument (recalled in Section 3) shows that the set {v ∈ Jq(n) : r(v) = m}
forms a common orthogonal eigenbasis for the elements of the Bose-Mesner algebra of the
Grassmann scheme of m-dimensional subspaces. Explicit eigenvectors for the Johnson
scheme (the q = 1 case of the Grassmann scheme) have been well studied. See, for
example, [12, 11, 18, 24, 25]. The approach in [12, 11, 18, 24] produces integral
eigenvectors with coefficients in {−1, 0, 1} while the approach in [25] produces orthogonal
integral eigenvectors, with coefficients not necessarily in {−1, 0, 1} (as remarked in [18]
it is not possible to simultaneously satisfy both requirements, i.e., orthogonality and
coefficients in {−1, 0, 1}). Substituting q = 1 in Theorem 1.3 we recover the explicit
orthogonal SJB of V (B(n)) constructed in [25]. This basis was given a representation
theoretic characterization in [25], namely, that it is the canonically defined symmetric
Gelfand-Tsetlin basis of V (B(n)). Similarly, the basis Jq(n) should also be studied from
a representation theoretic viewpoint. We hope to return to this later.

Our proof of Theorem 1.3 proceeds via another constructive result on the recursive
structure of the up operator on subspaces. It is an elementary observation that the up
operator (or equivalently, incidence matrices) on subsets of a n+ 1-set can be built from
two copies of the up operator on subsets of a n-set. We extend this inductive approach
to the subspace lattice. A classical identity of Goldman and Rota suggests that the up
operator on subspaces of a n+ 1-dimensional vector space over Fq can be built from two
copies of the up operator in dimension n and qn−1 copies of the up operator in dimension
n− 1. Let us make this precise.

We have |B(n)| = 2n and the identity 2n+1 = 2 · 2n has the following poset theoretic
interpretation: we can write B(n + 1) as a disjoint union B(n + 1) = B(n) ∪ [{n +
1}, {1, . . . , n+1}], where the interval [{n+1}, {1, . . . , n+1}] is order isomorphic to B(n).
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The Goldman-Rota identity [10, 17, 21] is the recursion

Gq(n+ 1) = 2Gq(n) + (qn − 1)Gq(n− 1), n ≥ 1, Gq(0) = 1, Gq(1) = 2. (4)

We identify Fnq with the subspace of all vectors in Fn+1
q with last component zero. Put

t = qn − 1. Motivated by the B(n) case we can ask for the following poset theoretic
interpretation of (4): is it possible to write Bq(n+ 1) as a disjoint union

Bq(n+ 1) = Bq(n) ∪ S0 ∪ S1 ∪ · · · ∪ St, (5)

where S0, . . . , St are intervals inBq(n+1), with S0 order isomorphic toBq(n) and S1, . . . , St
order isomorphic to Bq(n − 1). At least for q = 2 and n ≥ 4 the answer is no, as shown
in [14].

We show that we can get a poset theoretic interpretation of (4) by considering a linear
analog of (5). Moreover, the linear analog of the decomposition (5) can be explicitly given.

Let (V, f) be a pair consisting of a finite dimensional vector space V (over C) and a
linear operator f on V . Let (W, g) be another such pair. By an isomorphism of pairs (V, f)
and (W, g) we mean a linear isomorphism θ : V → W such that θ(f(v)) = g(θ(v)), v ∈ V .

We prove the following result on the recursive structure of the pair (V (Bq(n)), Un) in
Section 2. This result is used in Section 3 to construct the orthogonal SJB Jq(n).

Theorem 1.4 Set t = qn − 1. There is an explicit orthogonal direct sum decomposition

V (Bq(n+ 1)) = V (Bq(n))⊕W (0)⊕W (1)⊕ · · · ⊕W (t), (6)

where

(i) W (0), . . . ,W (t) are Un+1-closed (i.e., closed under the action of Un+1) homogeneous
subspaces of V (Bq(n + 1)) with rankset (W (0)) = {1, . . . , n + 1} and rankset (W (i)) =
{1, . . . , n}, for i = 1, . . . , t.

(ii) V (Bq(n))⊕W (0) is Un+1-closed and there is an explicit linear map θn : V (Bq(n))→
W (0) that is an isomorphism of pairs (V (Bq(n)), qUn) and (W (0), Un+1), sending homo-
geneous elements to homogeneous elements, increasing rank by one and satisfying

Un+1(v) = Un(v) + θn(v), v ∈ V (Bq(n)), (7)

〈θn(w), θn(v)〉 = qn−k〈w, v〉, w, v ∈ V (Bq(n)k), 0 ≤ k ≤ n. (8)

(iii) For i = 1, . . . , t there is an explicit linear map γn−1(i) : V (Bq(n − 1)) → W (i) that
is an isomorphism of pairs (V (Bq(n− 1)), Un−1) and (W (i), Un+1), sending homogeneous
elements to homogeneous elements, increasing rank by one and satisfying

〈γn−1(i)(w), γn−1(i)(v)〉 = qn+k〈w, v〉, w, v ∈ V (Bq(n− 1)k), 0 ≤ k ≤ n− 1. (9)
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Remark For v ∈ V (Bq(n)k), 0 ≤ k ≤ n, w ∈ V (Bq(n− 1)k), 0 ≤ k ≤ n− 1, i = 1, . . . t
set

θ′n(v) =
θn(v)

q(n−k)/2 ,

γn−1(i)
′(v) =

γn−1(i)(v)

q(n+k)/2
.

We may check that θ′n is an isomorphism of pairs (V (Bq(n)),
√
q Un) and (W (0), Un+1)

that preserves inner products and satisfies

Un+1(v) = Un(v) + q(n−k)/2 θ′n(v), v ∈ V (Bq(n)k), 0 ≤ k ≤ n.

Similarly, it may be checked that γn−1(i)
′ is an inner product preserving isomorphism of

pairs (V (Bq(n−1)),
√
q Un−1) and (W (i), Un+1). However, certain computations (notably

in the proofs of Theorems 1.3 and 2.5 below) then become slightly cumbersome due to
the presence of many square roots. Therefore we prefer the formulation above where the
maps θn and γn−1(i), although they do preserve orthogonality for homogeneous vectors,
do not preserve inner products.

2 Goldman-Rota recurrence

In this section we prove Theorem 1.4. As stated in the introduction, we identify Fkq ,
for k < n, with the subspace of Fnq consisting of all vectors with the last n−k components
zero. We denote by e1, . . . , en the standard basis vectors of Fnq . So Bq(k) consists of all
subspaces of Fnq contained in the subspace spanned by e1, . . . , ek.

Define Aq(n) to be the collection of all subspaces in Bq(n) not contained in the hyper-
plane Fn−1

q , i.e.,

Aq(n) = Bq(n)−Bq(n− 1) = {X ∈ Bq(n) : X 6⊆ Fn−1
q }, n ≥ 1.

For 1 ≤ k ≤ n, let Aq(n)k denote the set of all subspaces in Aq(n) with dimension k. We
consider Aq(n) as an induced subposet of Bq(n).

Define a map
H(n) : Aq(n)→ Bq(n− 1)

by H(n)(X) = X ∩ Fn−1
q , for X ∈ Aq(n). Define an equivalence relation ∼ on Aq(n) by

X ∼ Y iff H(n)(X) = H(n)(Y ). Denote the equivalence class of X ∈ Aq(n) by [X].

For X ∈ Bq(n− 1), define X̂ to be the subspace in Aq(n) spanned by X and en.

Lemma 2.1 Let X, Y ∈ Aq(n) and Z, T ∈ Bq(n− 1). Then

(i) dimH(n)(X) = dimX − 1 and ̂H(n)(X) ∈ [X].

(ii) Z ≤ T iff Ẑ ≤ T̂ .
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(iii) Y covers X iff H(n)(Y ) covers H(n)(X) and Y = span (H(n)(Y ) ∪ {v}) for any
v ∈ X − Fn−1

q .

(iv) |H(n)−1(Z)| = ql, where l = n− dimZ − 1. Thus, |[X]| = qn−k, where k = dimX.

Proof (i), (ii), and (iii) are clear.

(iv) Let H(n)−1(Z) = {Y1, . . . , Yt}. Then Yi ∩ Yj = Z, 1 ≤ i 6= j ≤ t. Let dim (Z) = m.

Now |Yi − Z| = qm+1 − qm for all i and thus t = qn−qn−1

qm+1−qm = qn−m−1. 2

We have an orthogonal decomposition

V (Bq(n+ 1)) = V (Bq(n))⊕ V (Aq(n+ 1)). (10)

We shall now give a canonical orthogonal decomposition of V (Aq(n+ 1)).

Let H(n+ 1, q) denote the subgroup of GL(n+ 1, q) = GL(n+ 1,Fq) consisting of all
matrices of the form  I

a1

·
·
an

0 · · · 0 1

 ,
where I is the n× n identity matrix.

The additive abelian group Fnq is isomorphic to H(n + 1, q) via φ : Fnq → H(n + 1, q)
given by

φ



a1

·
·
an


→

 I

a1

·
·
an

0 · · · 0 1

 .
There is a natural (left) action of H(n + 1, q) on Aq(n + 1) and Aq(n + 1)k. For

X ∈ Aq(n+ 1), let GX ⊆ H(n+ 1, q) denote the stabilizer of X.

Lemma 2.2 Let X, Y ∈ Aq(n+ 1). Then

(i) The orbit of X under the action of H(n+ 1, q) is [X].

(ii) Suppose Y covers X. Then the bipartite graph of the covering relations between [Y ]
and [X] is regular with degrees q (on the [Y ] side) and 1 (on the [X] side).

(iii) Suppose X ⊆ Y . Then GX ⊆ GY .

Proof (i) This is clear.

(ii) Since the action of H(n + 1, q) on Aq(n + 1) is clearly order preserving it follows
that the bipartite graph in the statement is regular. Let Y ′ ∈ [Y ] also cover X. Then
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H(n + 1)(Y ′) = H(n + 1)(Y ) and it follows from Lemma 2.1(iii) that Y = Y ′. So the
degree on the [X] side is 1. Let dim (X) = k. Then, by Lemma 2.1(iv), |[Y ]| = qn−k and
|[X]| = qn+1−k and hence, by regularity, the degree on the [Y ] side is q.

(iii) We may assume that Y covers X. If X 6= X ′ ∈ [X] then X ∩X ′ = H(n+ 1)(X). So,
by part (ii) and Lemma 2.1(iii), we can write Y as a union

Y = X1 ∪X2 ∪ · · ·Xq

of subspaces X = X1, . . . , Xq ∈ [X] with Xi ∩Xj = H(n+ 1)(X), 1 ≤ i 6= j ≤ q.

Now the stabilizer of all the elements X1, . . . , Xq is GX (since H(n + 1, q) is commu-
tative). It follows that GX ⊆ GY . 2

Let Iq(n) denote the set of all distinct irreducible characters (all of degree 1) of H(n+
1, q) and let Nq(n) denote the set of all distinct nontrivial irreducible characters of H(n+
1, q).

Let ψk (respectively, ψ) denote the character of the permutation representation of
H(n+1, q) on V (Aq(n+1)k) (respectively, V (Aq(n+1))) corresponding to the left action.
Clearly ψ =

∑n+1
k=1 ψk. Below [, ] denotes character inner product and the q-binomial

coefficient
[
n
k

]
q

is taken to be zero when n or k is < 0.

Theorem 2.3 (i) For 1 ≤ k ≤ n+ 1 and g ∈ H(n+ 1, q) we have

ψk(g) =


qn−k+1

[
n
k−1

]
q

if g = I,

qn−k+1
[
n−1
k−2

]
q

if g 6= I.

(ii) Let χ ∈ Iq(n) be the trivial character. Then [χ, ψk] =
[
n
k−1

]
q
, 1 ≤ k ≤ n+ 1.

(iii) Let χ ∈ Nq(n). Then [χ, ψk] =
[
n−1
k−1

]
q
, 1 ≤ k ≤ n+ 1.

(iv) [
n+ 1

k

]
q

=

[
n

k

]
q

+

[
n

k − 1

]
q

+ (qn − 1)

[
n− 1

k − 1

]
q

, n, k ≥ 1, (11)

with
[
0
k

]
q

= δ(0, k) (Kronecker delta) and
[
n
0

]
q

= 1. Note that (4) follows by summing

over k.

Proof (i) From Lemma 2.1(iv),

|Aq(n+ 1)k| = qn−k+1

[
n

k − 1

]
q

= ψk(I).

Now assume g ∈ H(n+ 1, q), g 6= I and let X ∈ Aq(n+ 1)k. Let the last column of g be
(a1, . . . , an, 1)t (t=transpose), where not all the ai’s are 0. Now note that
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(a) For b1, . . . , bn ∈ Fq,

g(b1, . . . , bn, 1)t = (a1 + b1, . . . , an + bn, 1)t.

(b) From item (a) above it follows that gX = X iff the nonzero vector (a1, . . . , an, 0)t ∈
H(n+ 1)(X).

(c) From item (b) above, if gX = X then gY = Y for all Y ∈ [X]. Thus g either fixes all
elements of [X] or no elements.

(d) The number of subspaces in Bq(n)k−1 containing the nonzero vector (a1, . . . , an, 0)t is[
n−1
k−2

]
q
.

It follows from items (b), (c), (d) above that ψk(g) = qn−k+1
[
n−1
k−2

]
q
.

(ii) This follows from the well known result that the multiplicity of the trivial represen-
tation in a permutation representation is the number of orbits, which in the present case
is
[
n
k−1

]
q
.

(iii) Since χ is nontrivial we have
∑

g∈H(n+1,q)

χ(g) = 0 and thus
∑

g∈H(n+1,q), g 6=I

χ(g) = −1.

Thus (below the sum is over all g 6= I in H(n+ 1, q))

[χ, ψk] =
1

qn

{
ψk(I) +

∑
g 6=I

χ(g)ψk(g)

}

=
1

qn

{
qn−k+1

[
n

k − 1

]
q

− qn−k+1

[
n− 1

k − 2

]
q

}

= q−(k−1)

{[
n

k − 1

]
q

−
[
n− 1

k − 2

]
q

}

=

[
n− 1

k − 1

]
q

,

where in the last step we have used q-Pascal’s triangle (see Section 1.7 in [29])[
n

k − 1

]
q

=

[
n− 1

k − 2

]
q

+ qk−1

[
n− 1

k − 1

]
q

.

(iv) Let 1 ≤ k ≤ n + 1. Restricting (10) to dimension k we get the following orthogonal
decomposition

V (Bq(n+ 1)k) = V (Bq(n)k)⊕ V (Aq(n+ 1)k). (12)

Splitting V (Aq(n + 1)k) into H(n + 1, q)-irreducibles and taking dimensions using parts
(ii) and (iii) we get the result. The initial conditions are easily verified. 2

9



For χ ∈ Iq(n), let W (χ) (respectively, W (χ)k) denote the isotypical component of
V (Aq(n+1)) (respectively, V (Aq(n+1)k)) corresponding to the irreducible representation
of H(n + 1, q) with character χ. When χ is the trivial character we denote W (χ) (re-
spectively, W (χ)k) by W (0) (respectively, W (0)k). Note that the standard inner product
on V (Bq(n+ 1)) is GL(n+ 1, q)-invariant (and thus, in particular H(n+ 1, q)-invariant).
Thus, we have the following orthogonal decompositions, the last of which is canonical
(note that W (χ)n+1, for χ ∈ Nq(n), is the zero module, by Theorem 2.3(iii)).

W (0) = W (0)1 ⊕ · · · ⊕W (0)n+1, (13)

W (χ) = W (χ)1 ⊕ · · · ⊕W (χ)n, χ ∈ Nq(n), (14)

V (Aq(n+ 1)) = W (0)⊕
(
⊕χ∈Nq(n)W (χ)

)
. (15)

Since Un+1 is GL(n+ 1, q)-linear, each of W (0) and W (χ), χ ∈ Nq(n) is Un+1-closed.

For χ ∈ Iq(n), define the following element of the group algebra of H(n+ 1, q):

p(χ) =
∑
g

χ(g) g,

where the sum is over all g ∈ H(n+ 1, q). For 1 ≤ k ≤ n+ 1, the map

p(χ) : V (Aq(n+ 1)k)→ V (Aq(n+ 1)k), (16)

given by v 7→
∑

g∈H(n+1,q) χ(g) gv, is a nonzero multiple of the H(n+1, q)-linear projection

onto W (χ)k. Similarly for p(χ) : V (Aq(n+ 1))→ V (Aq(n+ 1)).

Lemma 2.4 Let X ∈ Aq(n + 1) and χ ∈ Iq(n). Then p(χ)(X) 6= 0 iff χ : GX → C∗ is
the trivial character of GX .

Proof Let {h0 = 1, h1, . . . , ht} be a set of distinct coset representatives of GX , i.e.,

H(n+ 1, q) = GXh0 ∪GXh1 ∪ · · · ∪GXht (disjoint union).

Write [X] = {X = X0, X1, . . . , Xt} and assume without loss of generality that hiX =
Xi, 0 ≤ i ≤ t. Note that GX is the stabilizer of all the elements of [X].

We have

p(χ)(X) =
∑

g∈H(n+1,q)

χ(g) gX

=

(∑
g∈GX

χ(g)

)
X +

t∑
i=1

χ(hi)

(∑
g∈GX

χ(g)

)
Xi. (17)

The result follows since
∑

g∈GX
χ(g) = 0 for every nontrivial character of GX . 2
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Theorem 2.5 (i) Let χ ∈ Iq(n), X, Y ∈ Aq(n + 1) with X ∼ Y . Then p(χ)(X) is a
nonzero multiple of p(χ)(Y ).

(ii) Let χ ∈ Iq(n). Then {p(χ)(X̂) : X ∈ Bq(n)k−1 with p(χ)(X̂) 6= 0} is a basis of
W (χ)k, 1 ≤ k ≤ n+ 1.

(iii) Let χ ∈ Iq(n) and let X, Y ∈ Bq(n) with X covering Y . Then

p(χ)(X̂) 6= 0 implies p(χ)(Ŷ ) 6= 0.

(iv) Define θn : V (Bq(n))→ W (0) by

X 7→
∑
Y∼ bX

Y, X ∈ Bq(n).

Then θn is an isomorphism of pairs (V (Bq(n)), qUn) and (W (0), Un+1) and

Un+1(v) = Un(v) + θn(v), v ∈ V (Bq(n)), (18)

〈θn(w), θn(v)〉 = qn−k〈w, v〉, w, v ∈ V (Bq(n)k), 0 ≤ k ≤ n. (19)

(v) Let χ ∈ Nq(n). From Theorem 2.3 (iii) we have dimW (χ)n = 1. It thus follows from

part (ii) that there is a unique element X = X(χ) ∈ Bq(n)n−1 such that p(χ)(X̂) 6= 0.
Define λ(χ) : V (Bq(X))→ W (χ) by

Y 7→ p(χ)(Ŷ ), Y ∈ Bq(X).

Then λ(χ) is an isomorphism of pairs (V (Bq(X)), UX) and (W (χ), Un+1) and satisfies

〈λ(χ)(w), λ(χ)(v)〉 = qn+k〈w, v〉, w, v ∈ V (Bq(X)k), 0 ≤ k ≤ n− 1. (20)

(vi) For X ∈ Bq(n)n−1 the number of χ ∈ Nq(n) such that p(χ)(X̂) 6= 0 is q − 1.

Proof (i) By Lemma 2.2(i), X = hY for some h ∈ H(n+ 1, q). Then we have (below the
sum is over all g ∈ H(n+ 1, q))

p(χ)(X) =
∑
g

χ(g) ghY =
∑
g

χ(gh−1) gY = χ(h−1) p(χ)(Y ).

Since χ(h−1) 6= 0 (χ being of degree 1) the result follows.

(ii) The map (16) is a projection onto W (χ)k, so G = {p(χ)(X) : X ∈ Aq(n+ 1)k} spans

W (χ)k. By part (i), the subset G ′ = {p(χ)(X̂) : X ∈ Bq(n)k−1 with p(χ)(X̂) 6= 0} also

spans W (χ)k. Now, for distinct X, Y ∈ Bq(n)k−1, p(χ)(X̂) and p(χ)(Ŷ ) have disjoint
supports, so G ′ is a basis.

(iii) This follows from Lemma 2.2(iii) and Lemma 2.4.
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(iv) By Theorem 2.3 (ii) the dimensions of V (Bq(n)) and W (0) are the same. For X1 6=
X2 ∈ Bq(n) the supports of θn(X1) and θn(X2) are disjoint. It follows that θn is a vector
space isomorphism. Clearly, (18) holds.

Let X ∈ Bq(n) with dimX = k. Then |[X̂]| = qn−k by Lemma 2.1(iv), showing (19).

We have (below the sum is over all Z covering X in Bq(n))

θn(qUn(X)) = θn

(
q

(∑
Z

Z

))

= q

∑
Z

∑
Y∼ bZ

Y

 .

Similarly (in the second step below T varies over all subspaces covering Y and in the third
step Z varies over all subspaces in Bq(n) covering X. We have used Lemma 2.1(ii) and
Lemma 2.2(ii) to go from the second to the third step)

Un+1(θn(X)) = Un+1

∑
Y∼ bX

Y


=

∑
Y∼ bX

∑
T

T

= q

∑
Z

∑
Y∼ bZ

Y

 .

(v) By part (iii) it follows that λ(χ)(Y ) 6= 0 for all Y ∈ Bq(X). By Theorem 2.3 (iii) the
dimensions of V (Bq(X)) and W (χ) are the same. For Y1 6= Y2 ∈ Bq(X) the supports of
λ(χ)(Y1) and λ(χ)(Y2) are disjoint. It follows that λ(χ) is a vector space isomorphism.

Now, for Y ∈ Bq(X), we have (below the sum is over all Z covering Y in Bq(X))

λ(χ)(UX(Y )) = λ(χ)

(∑
Z

Z

)
=

∑
Z

p(χ)(Ẑ).

Let Y ∈ Bq(X). Before calculating Un+1λ(χ)(Y ) we make the following observation.

By Lemma 2.1(ii) every element covering Ŷ is of the form Ẑ, for some Z covering Y in
Bq(n). Suppose Z ∈ Bq(n)−Bq(X). Since dimW (χ) = Gq(n− 1) (by Theorem 2.3(iii)),

it follows by parts (ii) and (iii) that p(χ)(Ẑ) = 0.

We now calculate Un+1λ(χ)(Y ). In the second step below we have used the fact that
Un+1 is H(n + 1, q)-linear and in the third step, using the observation in the paragraph
above, we may restrict the sum to all Z covering Y in Bq(X).
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We have

Un+1(λ(χ)(Y )) = Un+1

(
p(χ)(Ŷ )

)
= p(χ)(Un+1(Ŷ ))

=
∑
Z

p(χ)(Ẑ).

We will now show that ‖ p(χ)(Ŷ ) ‖=
√
qn+k if Y ∈ Bq(X) with dimY = k. This will

prove (20).

By Lemma 2.1(iv), |[Ŷ ]| = qn+1−(k+1) = qn−k and so |GbY | = qk. It now follows from

(17) (since the restriction of χ to GbY must be trivial) that |p(χ)(Ŷ )| =
√
qn−k(qk)2 =√

qn+k.

(vi) By Theorem 2.3(iii),
∑

χ∈Nq(n) dimW (χ)n = qn−1 = (q−1)(1 + q+ · · ·+ qn−1). Now

|Bq(n)n−1| =
[
n
n−1

]
q

= 1+q+· · ·+qn−1 and by Lemma 2.1(iv), |[X̂]| = q for X ∈ Bq(n)n−1.

Since, for χ ∈ Nq(n) and X ∈ Bq(n)n−1, the support of p(χ)(X̂) is contained in [X̂] and

p(χ)(X̂) is orthogonal to p(π)(X̂) (where π is the trivial character), the result now follows
by part (ii). 2

To use Theorem 2.5 for computations we need the character table of H(n+1, q), which
is easy to write down explicitly since H(n+ 1, q) is direct sum of n cyclic groups of order
q. We now give a small example to illustrate part (v) of Theorem 2.5.

Example Let q = 3, n = 2, and ω = e2πi/3. Consider A3(3) with the H(3, 3)-action.
We write the elements of F3 as {0, 1, 2} and define χ ∈ N3(2) by χ(φ((a1, a2)) = ω2a1+a2 ,
where 2a1 + a2 is computed as an integer.

We have

p(χ) =

 1 0 0
0 1 0
0 0 1

+ ω2

 1 0 0
0 1 1
0 0 1

+ ω

 1 0 0
0 1 2
0 0 1


+ ω

 1 0 1
0 1 0
0 0 1

+

 1 0 1
0 1 1
0 0 1

+ ω2

 1 0 1
0 1 2
0 0 1


+ ω2

 1 0 2
0 1 0
0 0 1

+ ω

 1 0 2
0 1 1
0 0 1

+

 1 0 2
0 1 2
0 0 1


For a finite set of vectors v1, . . . , vm, we shall denote by S(v1, . . . , vm) the subspace spanned
by them.
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The four subspaces in B3(2)1 are

X1 = S

 1
0
0

 , X2 = S

 0
1
0

 , X3 = S

 1
1
0

 , X4 = S

 2
1
0

 .

It can be checked that

p(χ)(X̂1) =

S

 1
0
0

 ,
 0

0
1

+ ω2S

 1
0
0

 ,
 0

1
1

+ ωS

 1
0
0

 ,
 0

2
1


+ ωS

 1
0
0

 ,
 1

0
1

+ S

 1
0
0

 ,
 1

1
1

+ ω2S

 1
0
0

 ,
 1

2
1


+ ω2S

 1
0
0

 ,
 2

0
1

+ ωS

 1
0
0

 ,
 2

1
1

+ S

 1
0
0

 ,
 2

2
1

 .

Using ω3 = 1 and 1 + ω + ω2 = 0 we see that p(χ(X̂1)) = 0.

Similarly we can check that

p(χ)(X̂2) =

S

 0
1
0

 ,
 0

0
1

+ ω2S

 0
1
0

 ,
 0

1
1

+ ωS

 0
1
0

 ,
 0

2
1


+ ωS

 0
1
0

 ,
 1

0
1

+ S

 0
1
0

 ,
 1

1
1

+ ω2S

 0
1
0

 ,
 1

2
1


+ ω2S

 0
1
0

 ,
 2

0
1

+ ωS

 0
1
0

 ,
 2

1
1

+ S

 0
1
0

 ,
 2

2
1

 ,
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and

p(χ)(X̂4) =

S

 2
1
0

 ,
 0

0
1

+ ω2S

 2
1
0

 ,
 0

1
1

+ ωS

 2
1
0

 ,
 0

2
1


+ ωS

 2
1
0

 ,
 1

0
1

+ S

 2
1
0

 ,
 1

1
1

+ ω2S

 2
1
0

 ,
 1

2
1


+ ω2S

 2
1
0

 ,
 2

0
1

+ ωS

 2
1
0

 ,
 2

1
1

+ S

 2
1
0

 ,
 2

2
1


are both equal to 0 and

p(χ)(X̂3) =

S

 1
1
0

 ,
 0

0
1

+ ω2S

 1
1
0

 ,
 0

1
1

+ ωS

 1
1
0

 ,
 0

2
1


+ ωS

 1
1
0

 ,
 1

0
1

+ S

 1
1
0

 ,
 1

1
1

+ ω2S

 1
1
0

 ,
 1

2
1


+ ω2S

 1
1
0

 ,
 2

0
1

+ ωS

 1
1
0

 ,
 2

1
1

+ S

 1
1
0

 ,
 2

2
1


is 6= 0.

We have now proved most of Theorem 1.4 except for one small detail. Let X ∈
Bq(n)n−1. The pairs (V (Bq(X)), UX) and (V (Bq(n − 1)), Un−1) are clearly isomorphic
with many possible isomorphisms. We now define a canonical isomorphism, based on the
concept of a matrix in Schubert normal form.

A n × k matrix M over Fq is in Schubert normal form (or, column reduced echelon
form) provided

(i) Every column is nonzero.

(ii) The first nonzero entry in every column is a 1. Let the first nonzero entry in column
j occur in row rj.

(iii) We have r1 < r2 < · · · < rk and the submatrix of M formed by the rows r1, r2, . . . , rk
is the k × k identity matrix.

It is well known that every k dimensional subspace of Fnq is the column space of a
unique n × k matrix in Schubert normal form (see Proposition 1.7.3 in [29] where the
discussion is in terms of the row space).
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Let X ∈ Bq(n)n−1 and let M(X) be the n× (n− 1) matrix in Schubert normal form
with column space X. The map τ(X) : Fn−1

q → X given by ej 7→ column j of M(X) is
clearly a linear isomorphism and this isomorphism gives rise to an isomorphism

µ(X) : V (Bq(n− 1))→ V (Bq(X))

of pairs (V (Bq(n − 1)), Un−1) and (V (Bq(X)), UX) given by µ(X)(Y ) = τ(X)(Y ), Y ∈
Bq(n− 1).

Proof (of Theorem 1.4) It is convenient to write the orthogonal decomposition (6) as
follows

V (Bq(n+ 1)) = V (Bq(n))⊕W (0)⊕
(
⊕χ∈Nq(n)W (χ)

)
. (21)

Note that |Nq(n)| = qn − 1.

(i) We have already shown that each of W (0) and W (χ), χ ∈ Nq(n) is Un+1-closed. The
rank sets of W (0) and W (χ) are also easily seen to be as stated.

(ii) This follows from Theorem 2.5(iv).

(iii) Let χ ∈ Nq(n). From Theorem 2.5(v) there is a unique X ∈ Bq(n)n−1 with p(χ)(X̂) 6=
0. It now follows, again by Theorem 2.5(v), that γn−1(χ) = λ(χ)µ(X) is an isomorphism
of pairs (V (Bq(n− 1)), Un−1) and (W (χ), Un+1) satisfying (9). 2

3 Orthogonal symmetric Jordan basis and eigenvec-

tors for the Grassmann scheme

In this section we prove Theorem 1.3.

Proof (of Theorem 1.3) The proof is by induction on n, the result being clear for n = 0, 1.

Let χ ∈ Nq(n) and let (xk, . . . , xn−1−k) be a SJC in Jq(n − 1) starting at rank k and
ending at rank n − 1 − k. Then, by Theorem 1.4, applied to the decomposition (21),
(yk+1, . . . , yn−k), where yu+1 = γn−1(χ)(xu), k ≤ u ≤ n − 1 − k, is a SJC in W (χ) (with
respect to Un+1) starting at rank k+1 and ending at rank n−k. By (9) and the induction
hypothesis we have, for k + 1 ≤ u ≤ n− k,

‖ yu+1 ‖
‖ yu ‖

=

√
qn+u ‖ xu ‖√

qn+u−1 ‖ xu−1 ‖
=
√
qk+1[u+ 1− (k + 1)]q[n− k − u]q.

Doing the procedure above for every SJC in Jq(n− 1) we get an orthogonal SJB of W (χ)
satisfying (3). Note that, by definition of λ(χ), if the coefficients (in the standard basis)
of the vectors in Jq(n − 1) were integral multiples of qth roots of unity then so will be
the coefficients of the vectors in the SJB of W (χ). Similarly, doing the procedure above
for every χ ∈ Nq(n) we get an orthogonal SJB, with respect to Un+1, of ⊕χ∈Nq(n)W (χ)
satisfying (3).
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Now we consider the subspace V (Bq(n))⊕W0. Let (xk, . . . , xn−k) be a SJC in Jq(n),
starting at rank k and ending at rank n−k, and satisfying (3). Set xu = θn(xu), k ≤ u ≤
n− k. Then, by Theorem 1.4, (wk+1, . . . , wn−k+1), where wu+1 = qu−k xu, k ≤ u ≤ n− k
is a graded Jordan chain in W0 (with respect to Un+1), starting at rank k+ 1 and ending
at rank n− k + 1. We have Un+1(q

u−k xu) = qu+1−k xu+1 and so

Un+1(xu) = q xu+1, k ≤ u < n− k. (22)

Also we have, by (8),

〈xu, xu〉 = qn−u 〈xu, xu〉, k ≤ u ≤ n− k. (23)

For convenience we define xk−1 = xk−1 = xn+1−k = 0. Note that (23) also holds for
u = k − 1.

Now, by (7), we have, for k ≤ u ≤ n− k,

Un+1(xu) = xu+1 + θn(xu) = xu+1 + xu (24)

Let Z be the subspace spanned by {xk, . . . , xn−k} and {xk, . . . , xn−k}. Clearly, by (22)
and (24), Z is Un+1-closed. We shall now get an orthogonal SJB of Z satisfying (3) by
taking linear combinations of the vectors {xk, . . . , xn−k} and {xk, . . . , xn−k}.

We consider two cases:

(a) k = n− k : By (24),

(xk, xk) (25)

is an orthogonal SJB of Z going from rank k to rank k + 1. We have, from (23), that
〈xk,xk〉
〈xk,xk〉

= qk, and thus (3) is satisfied.

(b) k < n− k : Define the following vectors in Z.

yl = xl + [l − k]q xl−1, k ≤ l ≤ n+ 1− k, (26)

zl = −qn xl + ql+k−1 [n− l − k + 1]q xl−1, k + 1 ≤ l ≤ n− k. (27)

Note that, using the induction hypothesis, the coefficients of yl, zl are also integral mul-
tiples of qth roots of unity. We claim that (yk, . . . , yn+1−k) and (zk+1, . . . , zn−k) form an
orthogonal SJB of Z satisfying (3).

We check orthogonality first, for which we need to show that 〈yl, zl〉 = 0 for k + 1 ≤
l ≤ n− k. Clearly 〈xl, xl−1〉 = 0 for k + 1 ≤ l ≤ n− k. Thus

〈yl, zl〉 = −qn〈xl, xl〉+ qk+l−1 [l − k]q [n− l − k + 1]q 〈xl−1, xl−1〉.

By the induction hypothesis 〈xl, xl〉 = qk [l − k]q [n− l − k + 1]q 〈xl−1, xl−1〉 and by (23)
〈xl−1, xl−1〉 = qn+1−l 〈xl−1, xl−1〉. Thus 〈yl, zl〉 = 0.
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Now we check the Jordan chain condition. Using (22) and (24), we have, for k ≤ l <
n+ 1− k,

Un+1(yl) = xl+1 + (1 + q[l − k]q) xl

= xl+1 + [l + 1− k]q xl

= yl+1,

and clearly Un+1(yn+1−k) = 0.

Similarly, for k + 1 ≤ l ≤ n− k,

Un+1(zl) = −qnxl+1 +
(
ql+k [n− l − k + 1]q − qn

)
xl

= −qnxl+1 + ql+k [n− l − k]q xl

= zl+1.

Note that zn−k+1 = 0.

Now we check that condition (3) holds. For k ≤ u < n + 1 − k we have by the
induction hypothesis (in the second step below we have used (23). Note the second term
in the denominator after the fourth step below. This is a fraction with a term [u− k]q in
the denominator, which is zero for u = k. This is permissible here because of the presence
of the factor [u− k]q

2 in the numerator)

〈yu+1, yu+1〉
〈yu, yu〉

=
〈xu+1, xu+1〉+ [u+ 1− k]q

2 〈xu, xu〉
〈xu, xu〉+ [u− k]q

2 〈xu−1, xu−1〉

=
〈xu+1, xu+1〉+ qn−u [u+ 1− k]q

2 〈xu, xu〉
〈xu, xu〉+ qn−u+1 [u− k]q

2 〈xu−1, xu−1〉

=

〈xu+1,xu+1〉
〈xu,xu〉 + qn−u [u+ 1− k]q

2

1 + qn−u+1 [u− k]q
2 〈xu−1,xu−1〉

〈xu,xu〉

=
qk[u+ 1− k]q [n− k − u]q + qn−u [u+ 1− k]q

2

1 + qn−u+1 [u−k]q2

qk[u−k]q [n−k−u+1]q

= qk [u+ 1− k]q [n− k − u+ 1]q

(
[n− k − u]q + qn−k−u [u+ 1− k]q

[n− k − u+ 1]q + qn−k−u+1 [u− k]q

)
= qk [u+ 1− k]q [n− k − u+ 1]q.
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Similarly, for k + 1 ≤ u < n− k, we have

〈zu+1, zu+1〉
〈zu, zu〉

=
q2n〈xu+1, xu+1〉+ q2u+2k [n− u− k]q

2 〈xu, xu〉
q2n〈xu, xu〉+ q2u+2k−2 [n− u− k + 1]q

2 〈xu−1, xu−1〉

=
〈xu+1, xu+1〉+ q2k−n+u [n− u− k]q

2 〈xu, xu〉
〈xu, xu〉+ q2k−n+u−1 [n− u− k + 1]q

2 〈xu−1, xu−1〉

=

〈xu+1,xu+1〉
〈xu,xu〉 + q2k−n+u [n− u− k]q

2

1 + q2k−n+u−1 [n− u− k + 1]q
2 〈xu−1,xu−1〉

〈xu,xu〉

=
qk[u+ 1− k]q [n− k − u]q + q2k−n+u [n− u− k]q

2

1 + q2k−n+u−1 [n−u−k+1]q
2

qk[u−k]q [n−k−u+1]q

= qk+1 [u− k]q [n− k − u]q

(
[n− k − u]q + qn−k−u [u+ 1− k]q

[n− k − u+ 1]q + qn−k−u+1 [u− k]q

)
= qk+1 [u− k]q [n− k − u]q.

Since θn is an isomorphism, doing the procedure above for every SJC in Jq(n) we get an
orthogonal SJB of V (Bq(n))⊕W (0) satisfying (3). That completes the proof. 2

Example We now work out a small example to illustrate the use of Theorem 1.3 to
explicitly write down orthogonal SJB’s. Let q = 2. We consider orthogonal SJB’s of
V (B2(n)), for n = 0, 1, 2, 3. To save space we only write down the starting elements of
each of the SJC’s. We also drop the symbol S (for span) from the previous example.

(i) n = 0 : There is only one SJC and its starting element is the zero subspace [].

(ii) n = 1 : There is only one SJC and its starting element is the zero subspace [0].

(iii) n = 2 : The unique SJC in item (ii) above will give rise to two SJC’s in V (B2(2))
with starting elements (using (26) and (27))[

0
0

]
and − 2

[
1
0

]
+

[
0
1

]
+

[
1
1

]
.

The unique SJC in item (i) above will give rise to a further SJC in V (B2(2)) with
starting element (using the nontrivial character of H(2, 2))[

0
1

]
−
[

1
1

]
.

(iv) n = 3 : Take the SJC in item (iii) above starting at

[
0
0

]
. This will give rise to two

SJC’s in V (B2(3)) starting at (using (26) and (27)) 0
0
0

 and − 4


 1

0
0

+

 0
1
0

+

 1
1
0

+ 3


 0

0
1

+

 1
0
1

+

 0
1
1

+

 1
1
1

 .
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Now consider the SJC in item (iii) above starting at −2

[
1
0

]
+

[
0
1

]
+

[
1
1

]
. This

will give rise to a further SJC in V (B2(3)) starting at (using (25))

−2

 1
0
0

+

 0
1
0

+

 1
1
0

 .
Similarly, the SJC in item (iii) above starting at

[
0
1

]
−
[

1
1

]
will give rise to yet another

SJC in V (B2(3)) starting at (using (25)) 0
1
0

−
 1

1
0

 .
Finally, the unique SJC in item (ii) above will give rise to three further SJC’s in

V (B2(3)) with starting elements (using the three nontrivial characters of H(3, 2)) 0
0
1

−
 1

0
1

+

 0
1
1

−
 1

1
1

 ,
 0

0
1

+

 1
0
1

−
 0

1
1

−
 1

1
1

 ,
 0

0
1

−
 1

0
1

−
 0

1
1

+

 1
1
1

 .
We now consider the application of Theorem 1.3 to the Bose-Mesner algebra of the

Grassmann scheme ofm-dimensional subspaces. For convenience we assume 0 ≤ m ≤ n/2.
We do not define this algebra here but instead work with the well known characterization
that it equals the commutant of the GL(n, q)-action on V (Bq(n)m). For the proof of the
following result see Chapter 29 of [15] where the q = 1 case is proven. The same proof
works in general.

Theorem 3.1 Let 0 ≤ m ≤ n/2. Then V (Bq(n)m) is a multiplicity free GL(n, q)-module
with m+ 1 distinct irreducible summands.

Thus EndGL(n,q)(V (Bq(n)m))) is a commutative ∗-algebra with dimension m + 1 and so
can be unitarily diagonalized.

Theorem 3.2 Let 0 ≤ m ≤ n/2. Define Jq(n,m) = {v ∈ Jq(n) : r(v) = m}. Then
Jq(n,m) is a common orthogonal eigenbasis for the elements of EndGL(n,q)(V (Bq(n)m))).
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Proof For i = 0, 1, . . . ,m and k = 0, 1, . . . , i define

Jq(n, i, k) = {v ∈ Jq(n) : r(v) = i and the Jordan chain containing v

starts at rank k}.

Let Wq(n, i, k) be the subspace spanned by Jq(n, i, k). Then we have an orthogonal direct
sum decomposition

V (Bq(n)i) = ⊕ik=0Wq(n, i, k). (28)

Clearly dim(Wq(n, i, k)) =
[
n
k

]
q
−
[
n
k−1

]
q
.

We shall now show that, for i = 0, 1, . . . ,m, Wq(n, i, k), k = 0, 1, . . . , i are GL(n, q)-
submodules of V (Bq(n)i). We do this by induction on i, the case i = 0 being clear.

Assume inductively that Wq(n, i−1, 0), . . . ,Wq(n, i−1, i−1) are GL(n, q)-submodules,
where i < m. Since Un is GL(n, q)-linear, Un(Wq(n, i− 1, j)) = Wq(n, i, j), 0 ≤ j ≤ i− 1
are GL(n, q)-submodules. Now consider Wq(n, i, i). Let u ∈ Wq(n, i, i) and g ∈ GL(n, q).
Since Un is GL(n, q)-linear we have Un−2i+1

n (gu) = gUn−2i+1
n (u) = 0. It follows that

gu ∈ Wq(n, i, i).

We now have from Theorem 3.1 that (28) is the decomposition of V (Bq(n)i) into
distinct irreducible modules. The result follows. 2

We can also determine the eigenvalues of the elements of EndGL(n,q)(V (Bq(n)m))) using
(3). More generally, we can explicitly block diagonalize EndGL(n,q)(V (Bq(n))). We refer
to [27] for details.

Finally, we pose a bijective proof problem on the spanning trees of the Grassmann and
Johnson graphs. Actually, this application only requires the existence of an orthogonal
SJB satisfying (3) and not the actual construction from the present paper.

The number of spanning trees of a graph G is called the complexity of G and denoted
c(G). The number of rooted spanning trees (i.e., a spanning tree plus a choice of a vertex
as a root) of G is denoted c(G).

Let 0 ≤ m ≤ n/2. The Johnson graph C(n,m) is defined to be the graph with B(n)m,
the set of all subsets in B(n) of cardinality m, as the vertex set and with two vertices
X, Y ∈ B(n)m connected by an edge iff |X ∩ Y | = m− 1.

Let 0 ≤ m ≤ n/2. The Grassmann graph Cq(n,m) is defined to be the graph with
vertex set Bq(n)m, and with two vertices X, Y ∈ Bq(n)m connected by an edge iff dim(X∩
Y ) = m− 1.

Let Tq(n,m) and T (n,m) denote, respectively, the set of rooted spanning trees of
Cq(n,m) and C(n,m).

For X ∈ Bq(n)k, X
′ ∈ Bq(n)k−1, 1 ≤ k ≤ n define

UD(X) = {(Y, Z) ∈ Bq(n)k−1 ×Bq(n)k | X ⊇ Y ⊆ Z},
DU(X ′) = {(Y ′, Z ′) ∈ Bq(n)k ×Bq(n)k−1 | X ′ ⊆ Y ′ ⊇ Z ′}.
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Theorem 3.3 Let 0 ≤ m ≤ n/2. The sets

Tq(n,m)×
∏

X∈Bq(n)m−1

DU(X) and Tq(n,m− 1)×
∏

X∈Bq(n)m

UD(X)

have the same cardinality.

Proof We give an algebraic proof. For X ∈ Bq(n)k, X
′ ∈ Bq(n)k−1, 1 ≤ k ≤ n note that

|UD(X)| = |DU(X ′)| = [k]q[n− k + 1]q.

Now, using the existence of an orthogonal SJB of V (Bq(n)) satisfying (3) it was proved in
[26] that the Laplacian eigenvalues of Cq(n,m) are [k]q[n− k + 1]q, k = 0, 1, . . . ,m with
respective multiplicities

[
n
k

]
q
−
[
n
k−1

]
q
. It now follows from the matrix-tree theorem (see

[4]) that

c(Cq(n,m)) =
m∏
k=1

([k]q[n− k + 1]q)
[nk]q−[ n

k−1]q .

It follows that the sets in the statement of the theorem have the same cardinality. 2

The following result is an immediate corollary of the theorem above. We use similar
notations as above.

Theorem 3.4 Let 0 ≤ m ≤ n/2. The sets

T (n,m)×
∏

X∈B(n)m−1

DU(X) and T (n,m− 1)×
∏

X∈B(n)m

UD(X)

have the same cardinality.

For m = 1, Theorem 3.4 gives n|T (n, 1)| = nn, a result for which there is a celebrated
bijective proof [16].

Problem Find bijective proofs of Theorems 3.3 and 3.4.

Recently, a related open problem, that of finding a combinatorial proof of the product
formula for the complexity of the hypercube was solved in [3].
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