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Abstract

In these expository notes we present a unified approach to explicit block diago-
nalization of the commutant of the symmetric group action on the Boolean algebra
and of the nonbinary and q-analogs of this commutant.

1 Introduction

We present a unified approach to explicit block diagonalization in three classical cases:
the commutant of the symmetric group action on the Boolean algebra and the nonbinary
and g-analogs of this commutant.

Let B(n) denote the set of all subsets of [n] = {1,2,...,n} and, for a prime power
q, let B(g,n) denote the set of all subspaces of an n-dimensional vector space over the
finite field F,. Let p > 2 and let A(p) denote the alphabet {Lg, L1,...,L,—1} with p
letters. Define B,(n) = {(ai1,...,a,) : a; € A(p) for all i}, the set of all n-tuples of
elements of A(p) (we use {Lo, ..., L,_1} rather than {0,...,p — 1} as the alphabet for
later convenience. We do not want to confuse the letter 0 with the vector 0).

Let S, denote the symmetric group on n letters and let S,(n) denote the wreath
product S,_1 ~ S,. The natural actions of S,, on B(n), S,(n) on B,(n) (permute the
n coordinates followed by independently permuting the nonzero letters {Ls,...,L,_1} at
each of the n coordinates), and GL(n,F,) on B(g,n) have been classical objects of study.
Recently the problem of explicitly block diagonalizing the commutants of these actions
has been extensively studied. In these expository notes we revisit these three results. Our
main sources are the papers by Schrijver [17], Gijswijt, Schrijver, and Tanaka [9], and
Terwilliger [22].



We emphasize that there are several other classical and recent references offering an
alternative approach and different perspective on the topic of this paper. We mention
Bachoc [2], Cecchereni-Silberstein, Scarabotti, and Tolli [3], Delsarte [4, 5], Dunkl [6, 7],
Go [10], Eisfeld [8], Marco, and Parcet [12, 13, 14], Tarnanen, Aaltonen, and Goethals
[21], and Vallentin [23].

In Section 2 we recall (without proof) a result of Terwilliger [22] on the singular
values of the up operator on subspaces. In [18], the ¢ = 1 case of this result, together
with binomial inversion, was used to derive Schrijver’s [17] explicit block diagonalization
of the commutant of the S, action on B(n). In Section 3 we show that the general
case of Terwilliger’s result, together with g-binomial inversion, yields the explicit block
diagonalization of the commutant of the GL(n,F,) action on B(g,n). In Section 4 we
define the concept of upper Boolean decomposition and use it to reduce the explicit block
diagonalization of the commutant of the S,(n) action on B,(n) to the binary case, i.e.,
the commutant of the S,, action on B(n). The overall pattern of our proof is the same as
in Gijswijt, Schrijver, and Tanaka [9] but the concept of upper Boolean decomposition
adds useful additional insight to the reduction from the nonbinary to the binary case.

Part of these notes were presented at the International Conference on Combinatorial
Matriz Theory and Generalized Inverses of Matrices, held at Manipal University, Manipal,
India during January 10-11, 2012. I thank the organizers, in particular Professors R. B.
Bapat and K. Manjunatha Prasad, for their invitation to lecture in the conference.

2 Singular values

All undefined poset terminology is from [20]. Let P be a finite graded poset with rank
functionr : P — N =1{0,1,2,...}. The rank of P is r(P) = max{r(z) : x € P} and, for
i=0,1,...,7(P), P; denotes the set of elements of P of rank i. For a subset S C P, we
set rankset(S) = {r(z) : x € S}.

For a finite set S, let V() denote the complex vector space with S as basis. Let P be
a graded poset with n = r(P). Then we have V(P) = V(B)®V(P)®---®V(P,) (vector
space direct sum). An element v € V(P) is homogeneous if v € V(P;) for some i, and if
v # 0, we extend the notion of rank to nonzero homogeneous elements by writing r(v) = 1.
Given an element v € V(P), write v = vg+- - -+vy,, v; € V(F;), 0 <7 <n. Werefer to the
v; as the homogeneous components of v. A subspace W C V(P) is homogeneous if it con-
tains the homogeneous components of each of its elements. For a homogeneous subspace
W C V(P) we set rankset(WW) = {r(v) : v is a nonzero homogeneous element of W}.

The up operator U : V(P) — V(P) is defined, for z € P, by U(z) = 3_, y, where the
sum is over all y covering x. Similarly, the down operator D : V(P) — V(P) is defined,
for z € P, by D(x) = 3_, y, where the sum is over all y covered by .

Let (,) denote the standard inner product on V(P), i.e., (z,y) = d(x,y) (Kronecker
delta), for z,y € P. The length \/(v,v) of v € V(P) is denoted || v ||.



In this paper we study three graded posets. The Boolean algebra is the rank-n graded
poset obtained by partially ordering B(n) by inclusion. The rank of a subset is given by
cardinality. The g-analog of the Boolean algebra is the rank-n graded poset obtained by
partially ordering B(g,n) by inclusion. The rank of a subspace is given by dimension. We
recall that, for 0 < k < n, the g-binomial coefficient

(n) _ (1)g(2)g - (n)g
k)y (Vg (k)L (n—k)g’

where (i), =1+ ¢+ ¢*+---+ ¢!, denotes the cardinality of B(q,n).

Given a = (ay,...,a,) € B,(n), define the support of a by S(a) = {i € {1,...,n}:
a; # Lo}. For b= (by,...,b,) € By(n), define a < b provided S(a) C S(b) and a; = b; for
all i € S(a). It is easy to see that this makes B,(n) into a rank-n graded poset with rank
of a given by |S(a)|. We call B,(n) the nonbinary analog of the Boolean algebra B(n).
Clearly, when p = 2, B,(n) is order isomorphic to B(n).

We give V(B(n)), V(B,(n)), and V(B(g,n)) the standard inner products. We use U
to denote the up operator on all three of the posets V(B(n)), V(B,(n)), and V(B(g,n))
and do not indicate the rank n (as in U, say) in the notation for U. The meaning of the
symbol U is always clear from the context.

Let P be a graded poset. A graded Jordan chain in V(P) is a sequence

s=(v1,...,0p) (1)

of nonzero homogeneous elements of V(P) such that U(v;—1) = v;, for ¢ = 2,...h, and
U(vp) = 0 (note that the elements of this sequence are linearly independent, being nonzero
and of different ranks). We say that s starts at rank r(v;) and ends at rank r(vs). A
graded Jordan basis of V(P) is a basis of V(P) consisting of a disjoint union of graded
Jordan chains in V'(P).

The graded Jordan chain (1) is said to be a symmetric Jordan chain (SJC) if the sum
of the starting and ending ranks of s equals r(P), i.e., r(v1) + r(vy) = r(P) if h > 2,
or 2r(vy) = r(P) if h = 1. A symmetric Jordan basis (SJB) of V(P) is a basis of V(P)
consisting of a disjoint union of symmetric Jordan chains in V' (P).

The graded Jordan chain (1) is said to be a semisymmetric Jordan chain (SSJC) if
the sum of the starting and ending ranks of s is > r(P). A semisymmetric Jordan basis
(SSJB) of V(P) is a basis of V(P) consisting of a disjoint union of semisymmetric Jordan
chains in V' (P). An SSJB is said to be rank complete if it contains graded Jordan chains
starting at rank ¢ and ending at rank j, for all 0 <i < j <r(P), i +j > r(P).

Suppose we have an orthogonal graded Jordan basis O of V(P). Normalize the vectors
in O to get an orthonormal basis O'. Let (vy,...,v,) be a graded Jordan chain in O. Put
vl = andau:M 1 <u < h (we take vy = vj ., = 0). We have, for 1 <u < h,

ol oull

U<Uu) Vy+1
Ulv,) = = = Uy (2)
[ [ (O !
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Thus the matrix of U with respect to O’ is in block diagonal form, with a block correspond-
ing to each (normalized) graded Jordan chain in O, and with the block corresponding to
(vi,...,v;) above being a lower triangular matrix with subdiagonal (a,...,a,—1) and
0’s elsewhere.

Now note that the matrices, in the standard basis P, of U and D are real and transposes
of each other. Since O’ is orthonormal with respect to the standard inner product, it
follows that the matrices of U and D, in the basis O’, must be adjoints of each other. Thus
the matrix of D with respect to O’ is in block diagonal form, with a block corresponding
to each (normalized) graded Jordan chain in O, and with the block corresponding to

(v],...,v}) above being an upper triangular matrix with superdiagonal (aq,...,an-1)
and 0’s elsewhere. Thus, for 0 <u < h — 1, we have
D(vy,41) = o). (3)

It follows that the subspace spanned by each graded Jordan chain in O is closed under U
and D. We use (2) and (3) without explicit mention in a few places.

The following result is due to Terwilliger [22] whose proof is based on the results of
Dunkl [7]. For a proof based on Proctor’s [15] sl(2, C) method see [19].

Theorem 2.1 There ezists a SIB J(q,n) of V(B(q,n)) such that

(i) The elements of J(q,n) are orthogonal with respect to {,) (the standard inner product).

(7) (Singular Values) Let 0 < k < n/2 and let (zg,...,T,—x) be any SJC in J(gq,n)
starting at rank k and ending at rank n — k. Then we have, for k <u <n —k,

Il Zusa || \/q (u+1—k)g(n—Fk—u), . (4)

e

Let J'(g,n) denote the orthonormal basis of V' (B(gq,n)) obtained by normalizing J (g, n).
Substituting ¢ = 1 in Theorem 2.1 we get the following result.

Theorem 2.2 There exists a SJB J(n) of V(B(n)) such that
(i) The elements of J(n) are orthogonal with respect to (,) (the standard inner product).

(7) (Singular Values) Let 0 < k < n/2 and let (v, ..., xn_) be any SJIC in J(n) starting
at rank k and ending at rank n — k. Then we have, for k <u <n — k,

[ Zusa || Va1l -k m—k—u). (5)

Iz |

Let J'(n) denote the orthonormal basis of V(B(n)) obtained by normalizing J(n).

Theorem 2.2 was proved by Go [10] using the s[(2,C) method. For an explicit con-
struction of an orthogonal SJB J(n), together with a representation theoretic interpreta-
tion, see [18]. It would be interesting to give an explicit construction of an orthogonal

SJB J(q,n) of V(B(q,n)).



3 ¢-Analog of Endg (V(B(n)))

We represent elements of End(V(B(gq,n))) (in the standard basis) as B(q,n) x B(gq,n)
matrices (we think of elements of V(B(g,n)) as column vectors with coordinates indexed
by B(q,n)). For X,Y € B(gq,n), the entry in row X, column Y of a matrix M will be
denoted M(X,Y’). The matrix corresponding to f € End(V(B(gq,n))) is denoted M;.
We use similar notations for B(q,n); X B(q,n); matrices corresponding to elements of
End(V(B(g,n);)). The finite group G(¢,n) = GL(n,F,) has a rank and order preserving
action on B(g,n). Set

Alg,n) = {M;: [ € Endgn(V(B(g,n)))},
B(g,n,i) = {My: f e Endggn(V(B(g,n)))

Thus A(g,n) and B(q,n,i) are x-algebras of matrices.
Let f:V(B(¢g,n)) — V(B(gq,n)) be linear and g € G(¢,n). Then

Flg(Y) = Mp(X,g(Y))X and g(f(Y)) =Y _ My(X,Y)g(X).

It follows that f is G(g,n)-linear if and only if
My(X)Y) = My(g(X),g(Y)), forall XY € B(g.n), g € G(g,n), (6)

i.e., My is constant on the orbits of the action of G(g,n) on B(¢,n) x B(q,n).

Now it is easily seen that (X,Y), (X', Y’) € B(q,n) x B(g,n) are in the same G(q, n)-
orbit if and only if

dim(X) = dim(X’), dim(Y) = dim(Y’), and dim(X NY) = dim(X'NY’). (7)
For 0 <i,j,t < n let M}, be the B(q,n) x B(g,n) matrix given by

1 if dim(X) =4, dim(Y) = j, dim(X NY) =1,

t _
Mz}j(X’ V)= { 0 otherwise.

It follows that
{Mf7j]i+j—t§n, 0<t<i,j}

is a basis of A(g,n) and its cardinality is (";?).

Let 0 < ¢ < n. Consider the G(g,n)-action on V(B(gq,n);). Given X,Y € B(q,n);,
it follows from (7) that the pairs (X,Y’) and (Y, X) are in the same orbit of the G(g,n)-
action on B(q,n); x B(q,n);. It thus follows from (6) that the algebra B(g,n,i) has a
basis consisting of symmetric matrices and is hence commutative. Thus V(B(q,n);) is a
multiplicity free G(q, n)-module and the *-algebra B(q, n,i) can be diagonalized. We now
consider the more general problem of block diagonalizing the *-algebra A(q,n).



Fix i,7 € {0,...,n}. Then we have

M; My ;= Z (?) M, t=0,...,m,
q

u=0

since the entry of the left hand side in row X, column Y with dim(X) =i, dim(Y) = j
is equal to the number of common subspaces of X and Y of size t. Apply ¢-binomial
inversion (see Exercise 2.47 in [1]) to get

M, = 3 (1t (“) MEMY, t=0,...n. (®)
q

u=0 ¢

Before proceeding further we observe that

[n/2]
kz; (n—2k+1)2 = (” ; 3) — dim A(q,n), 9)

since both sides (of the first equality) are polynomials in r (treating the cases n = 2r and
n = 2r + 1 separately) of degree 3 and agree for r =0, 1,2, 3.

For i,j,k,t € {0,...,n} define

Gla) = uZi%(—l)“‘t A (?) (Z__Q:)q (" u) (L. u)

For 0 <k < |n/2| and k <1i,j <n—k, define E;  to be the (n —2k+1) x (n — 2k +1)
matrix, with rows and columns indexed by {k,k + 1,...,n — k}, and with entry in row
i and column j equal to 1 and all other entries 0. Let Mat(n x n) denote the algebra of
complex n X n matrices.

In the proof of the next result we will need the following alternate expression for the

singular values:
1 1
n—2k\ 2/ n—2k \ 2
(n—k—u)q(u_k)q (u—l—l—k)q (10)

We now present a g-analog of the explicit block diagonalization of Endg, (V(B(n))) given
by Schrijver [17].

[IES

\/q’f(u—i-l—k:)q(n—k—u)q = q

Theorem 3.1 Let J(q,n) be an orthogonal SJB of V(B(q,n)) satisfying the conditions of
Theorem 2.1. Define a B(q,n) x J'(q,n) unitary matriz N(n) as follows: forv € J'(q,n),

the column of N(n) indexed by v is the coordinate vector of v in the standard basis B(q,n).
Then

(i) N(n)*A(q,n)N(n) consists of all J'(q,n) x J'(q,n) block diagonal matrices with a
block corresponding to each (normalized) SJC in J(q,n) and any two SJC’s starting and
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ending at the same rank give rise to identical blocks. Thus there are (Z)q — (kfl)q 1dentical
blocks of size (n — 2k + 1) x (n — 2k + 1), fork=0,...,|n/2].

(ii) Conjugating by N(n) and dropping duplicate blocks thus gives a positive semidefi-

niteness preserving C*-algebra isomorphism

[n/2]

®: Ag,n) = @ Mat((n — 2k + 1) x (n — 2k + 1)).

k=0
It will be convenient to re-index the rows and columns of a block corresponding to a
SJC starting at rank k and ending at rank n — k by the set {k,k+ 1,...,n — k}. Let
i,7,t €{0,...,n}. Write

Q)(ij) = (No, -+ Niny2))-

Then, for 0 <k < |n/2],

EG+) poky —3 (n—2k\ —5 Anit . .
O e R R e
0 otherwise.

Proof (i) Let i > v and let Y C X with X € B(¢q,n); and Y € B(gq,n),. The number of
chains of subspaces X, C X1 C --- C X; with X, =Y, X; = X, and dim(X;) = [, for
u <1 <iisclearly (i —u)y(i —u —1)g--- (1), Thus the action of M, on V(B(q,n),) is

(ifu)q(ifulfl)q---(l)q times the action of U™ on V(B(q,n).).

Now the subspace spanned by each SJC in J(g,n) is closed under U and D. It thus
follows by (8) that the subspace spanned by each SJC in J(gq,n) is closed under A(q,n).
The result now follows from Theorem 2.1(ii) and the dimension count (9).

(ii) Fix 0 < k < |n/2]. If both 4,j are not elements of {k,...,n — k} then clearly
Ny = 0. So we may assume k < 4,5 <n — k. Clearly, N, = AE, ; for some A. We now
find A = Ni (i, 7).

Let u € {0,...,n}. Write ®(M,) = (Ag. ..., A}, 5 ). We claim that

i—u 1 _1
Azz{ g (), (0, (), B itk <u<n—k,

otherwise.

The otherwise part of the claim is clear. If £ < u < n — k and i < u then we have
A} = 0. This also follows from the right hand side since the g-binomial coefficient (Z)q is
0 for b < 0. So we may assume that £ < u < n — k and ¢ > u. Clearly, in this case we
have A} = aE; 1, for some o. We now determine o = Aj}(¢, ). We have using Theorem
2.1(ii) and the expression (10)

12 {af (= k=0, (0%, (252, )
(i —u)g(i —u—=1)g- - (1)q

_ kw n—~k—u n — 2k %n—% —2
- 9 i-u J\u—k/) \i-k)], ’

A u) =



Similarly, if we write ®(M,; ;) = (By, ..., B[}, 5), then we have

KG=w) [y g Lo 1 _
By = { q (njfuu)q (ij); (7;,2:)(1 P Eyr itk <u<n—k,
0 otherwise.

So from (8) we have

= S (1) g = e o) ()

Thus - .
N (i, )k k
- Z(_nu—t g(">") ("Z)q {Z Al (i, l)B}j(l,j)}
- §<—1>“t ") (z‘)quu,sz(u,ﬂ
- S () (600, (62,

kG+i) [(n — 2k —2 n — 2k 2 (& u—t U n—k—u
— 5 _1u—t (2)—ku
4 (i—k)q (j—k)q {Zuo( )" t)\ i-u ),
(n—k:—u) <n—2k‘>
X ) ,
Jj—u /, u—k .

completing the proof.O

We now explicitly diagonalize B(q,n,i). Let 0 < i < n. We set i~ = max{0,2i — n}
and m(i) = min{i,n — i} (note that i~ and m(i) depend on both i and n. The n
will always be clear from the context). It follows from (6) that B(q,n,i) has a basis
consisting of M;;, for i~ <t < (here we think of M}; as B(q,n); x B(q,n); matrices).
The cardinality of this basis is 1 + m(7). Since B(q,n,7) is commutative it follows that
V(B(g,n);) is a canonical orthogonal direct sum of 1 + m(i) common eigenspaces of the

M, i~ <t < (these eigenspaces are the irreducible G/(g, n)-submodules of V' (B(q, n);)).
Let J(g,n) be an orthogonal SJB of V(B(q,n)) satisfying the conditions of Theorem
2.1. For k=0,1,...,m(i) define
J(g,n,i k) = {ve€ J(g,n):r(v) =1 and the Jordan chain containing v
starts at rank k}.
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Let W(q,n,i,k) be the subspace spanned by J(g,n,i,k) (note that this subspace is
nonzero). We have an orthogonal direct sum decomposition

V(B(q,n);) = @ Wi(q,n,i, k).

k=0

It now follows from Theorem 3.1 that the W(q, n,i, k) are the common eigenspaces of
the M{;. The following result is due to Delsarte [4].

Theorem 3.2 Let 0 <i<mn. Fori- <t <iand0 <k <mf(i) the eigenvalue of Mfl on

W(q,n,i,k) is
Syt i () (PR (1),
u=0 t/, imu JNe
Proof Follows from substituting j = ¢ in Theorem 3.1 and noting that

n—2k\ ' /n—2k n—k—u B 1 —k -
i—k ‘ u—k ‘ i—u q— i—u q'

A(n) = {M; : f € Endg, (V(B(n)))},
and for 4,7, k,t € {0,...,n} define

m = S (O CEI0G)

Substituting ¢ = 1 in Theorem 3.1 we get the following result of Schrijver [17]. We shall
use this result in the next section.

Set

Theorem 3.3 Let J(n) be an orthogonal SJB of V(B(n)) satisfying the conditions of
Theorem 2.2. Define a B(n) x J'(n) unitary matriz N(n) as follows: for v € J'(n), the
column of N(n) indexed by v is the coordinate vector of v in the standard basis B(n).
Then

(i) N(n)*A(n)N(n) consists of all J'(n) x J'(n) block diagonal matrices with a block
corresponding to each (normalized) SJC in J(n) and any two SJC’s starting and ending
at the same rank give rise to identical blocks. Thus there are (Z) — (kfl) tdentical blocks
of size(n—2k+ 1) x (n—2k+1), fork=0,...,[n/2].

(ii) Conjugating by N(n) and dropping duplicate blocks thus gives a positive semidefi-
niteness preserving C*-algebra isomorphism

[n/2]
®: A(n) = €D Mat((n — 2k + 1) x (n — 2k + 1)).

k=0



It will be convenient to re-index the rows and columns of a block corresponding to a
SJC starting at rank k and ending at rank n — k by the set {k,k+1,...,n — k}. Let
i,7,t € {0,...,n}. Write

@(ij) = (No, -, Njny2)).

Then, for 0 < k < |n/2],

1 1
n—2k\ "2 (n—2k\ "2 R/ . .o
N, =3 CD) 2000 2 Bl Eue ifk<ij<n—Fk
0 otherwise.

4 Nonbinary analog of Endg (V(B(n)))

Let (V, f) be a pair consisting of a finite dimensional inner product space V (over C)
and a linear operator f on V. Let (W, g) be another such pair. By an isomorphism
of pairs (V, f) and (W, g) we mean a linear isometry (i.e, an inner product preserving
isomorphism) 6 : V' — W such that 0(f(v)) = g(0(v)), v € V.

Consider the inner product space V(B,(n)). An upper Boolean subspace of rank t
is a homogeneous subspace W C V(B,(n)) such that rankset(W) = {n —t,n —t +
1,...,n}, W is closed under the up operator U, and there is an isomorphism of pairs
(V(B(t)),v/p—1U) = (W,U) that sends homogeneous elements to homogeneous ele-
ments and increases rank by n — t.

Consider the following identity
n n . n lon—I
N A M ([T (1)
1=0

We shall now give a linear algebraic interpretation to the identity above. For simplicity
we denote the inner product space V(A(p)), with A(p) as an orthonormal basis, by V(p).
Make the tensor product

R Vp)=V(p) @ - V(p) (n factors)
into an inner product space by defining
(@ @V u @ ®up) = (V1,u) - (Vns Un). (12)
There is an isometry
V(By(n)) = i, V(p) (13)

given by a = (a1,...,a,) — @ = a1 ® -+ ® a,, a € B,(n). The rank function (on
nonzero homogeneous elements) and the up and down operators, U and D, on V(B,(n))
are transferred to ®7_,V(p) via the isomorphism above.
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Fix a (p — 1) x (p — 1) unitary matrix P = (m;;), with rows and columns indexed

by {1,2,...,p — 1}, and with first row \/%(1,1,...,1). Fori=1,...,p— 1, define the

vector w; € V(p) by

p—1
j=1
Note that w; = \/p#fl(Ll +---+4 L,1) and that, for i = 2,...,p— 1, the sum 2?;} m;; of
the elements of row i of P is 0. Thus we have, in V(p),
Uw)) =D(w;) =0,i=2,...,p—1, (15)
U(Lo):\/p—lwl, D(wl):\/p—lLo. (17)
Set
Spn) = {(Af):ACn], f:A—={2,....p—1}}, (18)
Kpn) = {(A f,B): (A, [) € Syn), BC[n]— A} (19)
Note that

n

Sm=3 ()=t i =3 (7)o 22

1=0 =0
For (A, f,B) € K,(n) define a vector v(A, f,B) =1, ® --- ® v, € ",V (p) by

W (4) ifie A,
vy = W if1 € B,

Lo ifie[n]—(AUB).

Note that v(A, f, B) is a homogeneous vector in ® ,V (p) of rank |A| + |B|. For (A, f) €
Sp(n), define V(4 ) to be the subspace of ®}_,V (p) spanned by the set {v(A, f,B): B C
[n] — A}. Set K,(n) = {v(A, f,B) : (A, f, B) € K,(n)}.

We have, using (15), (16), and (17), the following formula in ®} ,V(p):
Uw(A, f,B)) = p—1 {Zv(A, f, B’)} : (20)
B/
where the sum is over all B’ C ([n] — A) covering B.

It follows from the unitariness of P and the inner product formula (12) that
</U(A7 f’ B)7,U<A/’ f/7 Bl)) = 5((A’ f7 B)’(A/’ f/7 Bl))’ <21)
where (A, f,B), (A", f',B") € K,(n).

We can summarize the discussion above in the following result.

11



Theorem 4.1 (i) K,(n) is an orthonormal basis of @,V (p).

(ii) For (A, f) € Sp(n), Via,p) is an upper Boolean subspace of @7,V (p) of rank n—|A|
and with orthonormal basis {v(A, f,B) : B C [n] — A}.

(#ii) We have the following orthogonal decomposition into upper Boolean subspaces:

®V(p) = P Vi (22)

(A, f)€Sp(n)

with the right hand side having (p — 2)’(7) upper Boolean subspaces of rank n—1, for each
l=0,1,...,n. O

Certain nonbinary problems can be reduced to the corresponding binary problems via
the basis K,(n). We now consider two examples of this (Theorems 4.2 and 4.5 below).

For 0 <k < n note that 0 <k~ < kand k <n+ k™ — k. For a SSJC c in V(B,(n)),
starting at rank 7 and ending at rank j, we define the offset of ¢ to be i + 7 —n. It is easy
to see that if an SSJC starts at rank k& then its offset [ satisfies k— <[ < k and the chain
ends at rankn+[1—k. For0 <k <nand &k~ <[ <k set

-0 () ()

Note that when p = 2, u(n, k,1) is nonzero only when [ = 0. The following result is
due to Terwilliger [22].

Theorem 4.2 There exists a SSJB J,(n) of V(By(n)) such that

(1) The elements of J,(n) are orthogonal with respect to (,) (the standard inner product).

(7) (Singular Values) Let 0 < k <n, k= <1<k and let (zx,...,Tpri—k) be any SSJC in
Jp(n) starting at rank k and having offset I. Then we have, for k <u <n+1—k,

”HIZIHH = V=Dt T=mo+I-k-u). 23)

(i1i) Let 0 < k <mn and k= <1 < k. Then Jy(n) contains u(n,k,l) SSJC’s starting at

rank k and having offset I. Thus, J,(n) is rank complete when p > 3 and is an SJB when
p=2.

Proof Let V(4 ), with |A| = [, be an upper Boolean subspace of rank n — [ in the
decomposition (22). Let v : {1,2,...,n — I} — [n] — A be the unique order preserving
bijection, i.e., y(i) = i"* smallest element of [n] — A. Denote by I' : V(B(n — 1)) — Viap
the linear isometry given by I'(X) = v(A, f,v(X)), X € B(n —1).

Use Theorem 2.2 to get an orthogonal SJB J(n — 1) of V(B(n —[)) with respect to
vp — 1 U (rather than just U) and transfer it to V{4 ) via I'. Each SJC in J(n — ) will
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get transferred to a SSJC in @7,V (p) of offset [ and, using (5), we see that this SSJC will

satisfy (23). The number of these SSJC’s (in V{4 f)) starting at rank & is (Z:f) — (kf;_ll)

Doing this for every upper Boolean subspace in the decomposition (22) we get an
orthogonal SSJB of @7,V (p). Transferring via the isometry (13) we get an orthogonal
SSJIB J,(n) of V(B,(n)) satisfying (23). Since the number of upper Boolean subspaces in

the decomposition (22) of rank n — I is (p — 2)'(’}), Theorem 4.2 now follows.00
Denote by J)(n) the orthonormal basis of V(B,(n)) obtained by normalizing J,(n).

We represent elements of End(V(B,(n))) (in the standard basis) as B,(n) x B,(n)
matrices. Our notation for these matrices is similar to that used in the previous section.
The group S,(n) has a rank and order preserving action on B,(n). Set

Ap(n) = {Mjy: f € Ends,m(V(By(n)))},
By(n,i) = {My: f € Ends, @ (V(By(n):))}-

Thus A,(n) and B,(n, i) are *-algebras of matrices.

Let f: V(By(n)) — V(By(n)) be linear and = € S,(n). Then f is Sy(n)-linear if and
only if

M(a,b) = M¢(m(a),n(b)), for all a,b € By(n), m € S,(n), (24)

i.e., My is constant on the orbits of the action of S,(n) on B,(n) x B,(n). Now it is easily
seen that (a,b), (¢,d) € By(n) x B,(n) are in the same S,(n)-orbit if and only if

1S(a)] = 15(c)l, [S(0)] = [S(d)], |5(a) N S(B)] = [S(c) N S(d)]; (25)
and [{i € S(a)NS(b) :a; =} = |{it € S(c)NS(d) : ¢; = d;}|.

For 0 <4,j,t,s <nlet Mzt; be the B,(n) x B,(n) matrix given by

L if [S(a)| =14, [SO) =4, |S(a) NSO =1, [{i:a; =0b # Lo}| =s,
0 otherwise.

t,s _
Mz‘,j (a,b) = {

Define
Z,(n) ={(i,j,t,s) : 0<s<t<i,j, i+j—t<n}.

It follows from (24) and (25) that {Mf]‘9 : (i,4,t,8) € Z,(n)} is a basis of A,(n). Note
that

p >3 implies |Z,(n)| = dim A,(n) = ("}%), (26)

since (7, J,t,s) € Z,(n) if and only if (i —t)+(j —t) + (t —s) +s < n and all four terms are
nonnegative. When p = 2 this basis becomes {Mf]t : (4, 4,t,t) € Iy(n)} and its cardinality
is ("37)

Let 0 < i < n. Consider the S,(n)-action on V(B,(n);), 0 < i < n. Given a,b €

B
B,(n);, it follows from (25) that the pairs (a,b) and (b,a) are in the same orbit of the
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Sp(n)-action on By(n); X By(n);. It thus follows from (24) that the algebra B,(n,4) has
a basis consisting of symmetric matrices and is hence commutative. Thus V(B,(n);) is
multiplicity free as a S,(n)-module and the x-algebra B,(n,) can be diagonalized. We
now consider the more general problem of block diagonalizing the *-algebra A, (n).

Before proceeding we observe that

zn:zk:(n+l—2k+1)2 - (”14), (27)

k=0 =k~

since both sides are polynomials in r of degree 4 (treating the cases n = 2r and n = 2r+1
separately) and agree for r =0, 1,2, 3, 4.

Consider the linear operator on V(B,(n)) whose matrix with respect to the standard
basis B,(n) is Mf . Transfer this operator to ®7_,V (p) via the isomorphism (13) above
and denote the resulting linear operator by ./\/lf;q In Theorem 4.4 below we show that
the action of ij on the basis K,(n) mirrors the binary case.

Define linear operators N, Z, R : V(p) — V(p) as follows

o Z(Ly)=Lpand Z(L;)=0fori=1,...,p—1,

e N(Ly) =0and N(L;) = L; fori=1,...,p— 1,

o R(Lyp)=0and R(L;) = (L1 +---+Lp1)—Lifori=1,...,p—1.

Note that
R(wy) = (p—2)uwn, (28)
R(w;) = —w;, 1=2,...,p—1, (29)

where the second identity follows from the fact that the sum of the elements of row
i, © > 2, of P is zero.

Let there be given a 5-tuple X = (Sy, Sp, Sy, Sz, Sr) of pairwise disjoint subsets of
[n] with union [n] (it is convenient to index the components of S in this fashion). Define
a linear operator

F(X)r(‘X)V(p)H@V(p)

by F(X) = F; ® --- ® F,, where each F; is U or D or N or Z or R according as i € Sy
or Sp or Sy or Sz or Sy, respectively.

Let b € By(n). It follows from the definitions that
F(X)(b)#0 iff SpUSyUSg=5S(b), SyUSz = [n]—S(b). (30)

Given a 5-tuple r = (rq,re,r3,74,75) of nonnegative integers with sum n define TI(r)
to be the set of all 5-tuples X = (Sy, Sp, Sn, Sz, Sr) of pairwise disjoint subsets of [n]
with union [n] and with |Sy| = r1, |Sp| = ro, |Sy| = 73, |Sz| = r4, and |Sg| = 75.
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Lemma 4.3 Let (4,j,t,s) € Z,(n) andr = (i —t,j —t,s,n+t —i—j,t —s). Then

ME = Z F(X (31)

Xell(r

Proof Let b = (by,...,b,) € By(n) and X = (Sy, Sp, Sy, Sz, 5%) € II(r). We consider

two cases:

(i) |S(b)| # j: In this case we have M3 (b) = 0. Now [Sp|+ [Sn|+ [Sr| =j —t+ s+
t — s = j. Thus, from (30), we also have F(X)(b) = 0.

(ii) [S(b)| = j: Assume F(X)(b) # 0. Then, from (30), we have that F(X)(b) =Y, @,
where the sum is over all a = (ay,...,a,) € By(n); with S(a) = Sy U Sy U Sg, ar #
by, k € Sg, and a, = by, k € Sy

Going over all elements of TI(r) and summing we see that both sides of (31) evaluate
to the same element on 0. O

Theorem 4.4 Let (A, f,B) € K,(n) with |A| =1 and (i,5,t,s) € Z,(n).
(i) M(0(A, £, B)) = 0 if | B # j = 1.
(i) If |B| = j — 1 then

M (w(A, f, B)) =

R [}

where the sum is over all B' C ([n] — A) with |B'| =i —1 and |[BNB'|=t—1.

MN

Proof Let r = (i —t,j—t,s,n+t—i—7j,t—s) and let X = (Sy, Sp, Sy, Sz, Sr) € I(r).
Assume that F(X)(v(A, f, B)) # 0. Then we must have (using (15) and the definitions
of N, Z, and R)

SUUSZI[R]—A—B, ACSyUSk, SpC B, Sy\USpUSr =AUB.

Thus |[Bl|=n—1—|SyUSz|=n—1—(i—t+n+t—i—j)=7j—1 (so part (i) follows).

Put [ANSg| =1 —g. Then |[AN Sy| = g and thus |[BN Sy| = s —g. We have
|BﬂSR]:\B—SD—(BﬂSN)\:j—l—j+t—s+g:t—l—s+g.

We now have (using (17), (28), and (29))

F(X)(w(A f,B)) = (1) (p—2)"" (p—1)F " o(A, £, B),  (32)

where B’ = Sy U(B— Sp) and |B|=i—t+j—1l—j+t=i—1,|BNB'|=|B—-Sp|=
j—l—g+t=t—-1L
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Formula (32) depends only on Sy, Sp and |[ANSk|. Once Sy, Sp are fixed the number
of choices for Sg with |[AN Sg| =1— g is clearly (é) (;:;)
Going over all elements of I1(r) and summing we get the result. O

For i,j,k,t,s,0 € {0,...,n} define

!
nits 1 (I [t—=1 s el i
ai,}'?k,l = (p_ 1)2(+J) t Z<_1)l g< )( )(p_Q)t l—s+g ﬁz‘—lg‘t—ll,k—l'
g 9/ \s—g
For 0 <k <nand k™ <1<k, define £ ;; to be the (n+1—2k+1) x (n+1—2k+1)

matrix, with rows and columns indexed by {k,k+1,...,n+[—k}, and with entry in row
7 and column j equal to 1 and all other entries 0.

The following result is due to Gijswijt, Schrijver, and Tanaka [9].

Theorem 4.5 Let p > 3 and let J,(n) be an orthogonal SSJB of V(B,(n)) satisfying the
conditions of Theorem 4.2. Define a By(n) x J)(n) unitary matriz M(n) as follows: for

v € Jy(n), the column of M(n) indexed by v is the coordinate vector of v in the standard
basis By(n). Then

(i) M(n)* Ap(n)M(n) consists of all J)(n) x J(n) block diagonal matrices with a block
corresponding to each (normalized) SSJC in J,(n) and any two SSJC’s starting and ending
at the same rank give rise to identical blocks. Thus, for each 0 < k < n, k=~ <[ <k,
there are p(n, k, 1) identical blocks of size (n+1—2k+1) x (n+1—2k+1).

(i) Congugating by M(n) and dropping duplicate blocks thus gives a positive semidef-
initeness preserving C*-algebra isomorphism

@:Ap(n)§é @Mat((n—l—l—Zk—l—l)x(n+l—2k—|—1)).

It will be convenient to re-index the rows and columns of a block corresponding to a
SSJC starting at rank k and having offset | by the set {k,k +1,...,n+1—k}. Let
i,7,t,s € {0,...,n}. Write

O(M;7) = (Nki), 0 <k <n, k~ <I<k

Then

1 1
1—2k\~ 3 1-2k\~3 _nt, - .
Ny, = (nt—k ) ’ (n?—k ) ’ a?,j,l:,l Eijry ifk<i,5<n+1-k,
’ 0 otherwise.

Proof Follows from Theorem 3.3 using Theorems 4.1 and 4.4 and the dimension counts
(26), (27). O

Remark In [18] an explicit orthogonal SJB J(n) of V(B(n)) was constructed and given
a S,-representation theoretic interpretation as the canonically defined Gelfand-Tsetlin
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basis of V(B(n)). This explicit basis from the binary case, together with a choice of the
(p — 1) x (p — 1) unitary matrix P, leads to an explicit orthogonal SSJB J,(n) in the
nonbinary case. Different choices of P lead to different SSJB’s .J,(n). One natural choice,
used in [9], is the Fourier matrix. Another natural choice is the following. Consider
the action of the symmetric group S,—; on V' = V({L4,...,L,_1}). Under this action
V' splits into two irreducibles, the one dimensional trivial representation and the p — 2

dimensional standard representation consisting of all linear combinations of Ly, ..., L,
with coefficients summing to 0. The first row of P is a basis of the trivial representation
and rows 2,...,p — 1 of P are a basis of the standard representation. Choose rows
2,...,p—1 to be the canonical Gelfand-Tsetlin basis of this representation. (Upto order)
we can write them down explicitly as follows (see [18]): for i = 2,...,p — 1 define
v; = (i—1)L;—(L1+---+L;—y) and u; = Toq- Sorows 2,...,p—lof Pareus, ..., up—y. The

resulting matrix P is called the Helmert matrix (see Section 7.6 in [16]). It is interesting
to study the resulting orthogonal SSJB J,(n) form the point of view of representation
theory of the wreath product S,(n) (for which, see Appendix B of Chapter 1 in [11]).

We now explicitly diagonalize B,(n, ).

Lemma 4.6 Let 0 <3 <n. Set

L) = {(k1):i7 <k<i, 0<1<k},
R(i) = {(k,1):0<k<n k” <I<k k<i<n+l—k}.

Then |L(i)| = |R(3))|.

Proof The identity is clearly true when ¢ < n/2. Now assume 7 > n/2. Then the set L(7)
has cardinality >, .  (k+1). The defining conditions on pairs (k,[) for membership in
R(i) can be rewritten as 0 <1 <k <i, 0 <k —1<n—i For0<j<n—i, the pairs
(k,1) with0 <l <k<iand k—1=jare (5,0),(j+1,1),...,(¢,7 — j) and their number
is i — j + 1. Thus, for i > n/2, |R(i)] = 30170(i — j+ 1) = 35, (t +1). The result
follows. O

Let 0 < i < n. It follows from (25) that B,(n,7) has a basis consisting of Mts for

(t,s) € L(i) (here we think of Mt’s as By(n); x B,(n); matrices). The cardinality of this
basis, by Lemma 4.6, is 7(i) (where 7(1) = |R(7)]). Since By(n, ) is commutative it follows
that V(B,(n);) is a canonical orthogonal direct sum of 7(i) common eigenspaces of the
Mf . (t,s) € L(i) (these eigenspaces are the irreducible S,(n)-submodules of V(B,(n);)).
Let 0 <i <mn. For (k,l) € R(i) define
Jp(n,i,k,l) = {ve€ Jy(n):r(v) =1iand the Jordan chain containing v (33)
starts at rank k& and has offset [}.

Let Wy(n,i,k,1) be the subspace spanned by J,(n,i,k,l) (note that this subspace is
nonzero). We have an orthogonal direct sum decomposition

@ Wy,(n,i,k,1).

(k,l)ER(5)
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It now follows from Theorem 4.5 that the W,(n, i, k, ) are the common eigenspaces of
the Mf *. The following result is due to Tarnanen, Aaltonen, and Goethals [21].

Theorem 4.7 Let 0 < i <n. For (t,s) € L(i) and (k,l) € R(i) the eigenvalue of Mi’f
on Wy(n, i, k,1) is

(-1 {i—w ()(2)e- 2)“5*9}

g=0
n—l .
—k—-u 1 —k
-1 u—t+1 u n
X{§< ) (t—l i—l—u)\i—l-u
Proof Follows from substituting j = ¢ in Theorem 4.5 and noting that
nHl =2\ n+l-2k\(n—k—u\ [ i—k o
i—k u+l—k)\i—-l—u) \i-l-u)
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