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Abstract

We revisit the Bose-Mesner algebra of the perfect matching association scheme. Our
main results are:

• An inductive algorithm, based on solving linear equations, to compute the eigenvalues
of the orbital basis elements given the central characters of the symmetric groups.

• Universal formulas, as content evaluations of symmetric functions, for the eigenval-
ues of fixed orbitals.

• An inductive construction of an eigenvector (the so called first Gelfand-Tsetlin vec-
tor) in each eigenspace leading to a different inductive algorithm (not using central
characters) for the eigenvalues of the orbital basis elements.

1 Introduction

In this paper we revisit the Bose-Mesner algebra of the perfect matching association scheme.
The symmetric group S2n has a natural substitution action on the setM2n of all perfect match-
ings in the complete graph K2n. The corresponding permutation representation of S2n on
C[M2n] (the complex vector space with M2n as basis) is multiplicity free and the (commu-
tative) algebra B2n = EndS2n(C[M2n]) is called the Bose-Mesner algebra of the perfect match-
ing association scheme. The eigenspaces of B2n, in its left action on C[M2n], are indexed by
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even Young diagrams with 2n boxes (i.e., Young diagrams with 2n boxes having an even num-
ber of boxes in every row) and the orbital basis of B2n is indexed by even partitions of 2n (i.e.,
partitions of 2n with all parts even). The present work is motivated by the following two results.

Diaconis and Holmes [8] determined all the eigenvalues of the orbital basis element of B2n
indexed by the even partition (4, 2n−2) of 2n (here (4, 2n−2) denotes the even partition with one
part equal to 4 and n − 2 parts equal to 2). We generalize this result to all fixed orbitals in
Theorem 1.2 below.

Godsil and Meagher [10, 11] and Lindzey [16] write down an eigenvector (using a quotient
argument) belonging to the eigenspace indexed by the even Young diagram (2n− 2, 2) with 2n
boxes, yielding the eigenvalues of all orbital basis elements on this eigenspace. We generalize
this result by giving an inductive procedure to write down an eigenvector in every eigenspace
in Theorem 1.3 below. This yields a practical algorithm to compute the eigenvalues that we
have implemented in Maple, see [26]. The program computes, reasonably efficiently, any given
eigenvalue upto B40. We were able to determine the entire spectrum of the perfect matching
derangement matrix in B2n, upto 2n = 40 (see Problem 16.10.1 in [10]).

The rest of the introduction gives a more detailed, although still informal, description of our
results.

A partition (or a Young diagram) λ is called even if all parts (or all row lengths) of λ are
even. Clearly, λ = (λ1, . . . , λk) 7→ 2λ = (2λ1, . . . , 2λk) is a bijection between the set of all
partitions of n (or Young diagrams with n boxes) and the set of all even partitions of 2n (or
even Young diagrams with 2n boxes). Let P denote the set of all partitions and Y denote the
set of all Young diagrams (there is a unique partition of 0 and there is a unique Young diagram
with 0 boxes, both denoted (0)). Let Pn denote the set of all partitions of n and let Yn denote
the set of all Young diagrams with n boxes. If λ is a partition of n or if λ is a Young diagram
with n boxes we write λ ` n and |λ| = n (it will be clear from the context whether a partition
or a Young diagram is meant).

Given a Young diagram λ with n boxes, denote the (complex) irreducible representation of
Sn parametrized by λ by V λ and denote the character of V λ by χλ. For µ ` n, denote the
conjugacy class of permutations in Sn of cycle type µ by Cµ and set χλµ = χλ(π), for (any)
π ∈ Cµ. We let kµ ∈ C[Sn] (= the group algebra of Sn) denote the sum of elements in Cµ.

Let Z[C[Sn]] denote the center of the group algebra of Sn. Then Z[C[Sn]] is a semisimple
commutative algebra of dimension p(n), the number of partitions of n, with {kµ | µ ` n} as a
basis. The eigenspaces of this algebra, in its left action on C[Sn], are the isotypical components
of V λ, λ ` n in C[Sn]. Let φ̂λµ denote the eigenvalue of kµ on the isotypical component of V λ.
By taking traces we see that

φ̂λµ =
|Cµ|χλµ

dim(V λ)
. (1)

We call φ̂λµ a central character. It can be easily shown to be an integer. As there are well known
explicit formulas for |Cµ| and dim(V λ) we may regard φ̂λµ and χλµ as being equivalent from the
point of view of computing them. There are very efficient practical algorithms, based on the
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Murnaghan-Nakayama rule, to compute χλµ for fairly large values of n and these algorithms can
be used to calculate φ̂λµ.

We now define an analog of Z[C[Sn]]. We have the following basic result (see [3, 13, 17,
25, 27]): there is a S2n-linear isomorphism

C[M2n] ∼= ⊕λ`nV 2λ. (2)

Let B2n = EndS2n(C[M2n]). Since C[M2n] is multiplicity free, B2n is a semisimple com-
mutative algebra called the Bose-Mesner algebra of the perfect matching association scheme.
Its dimension is also p(n).

From (2) above we have that the common eigenspaces of B2n, in its left action on C[M2n],
are (S2n-isomorphic to) V 2λ, λ ` n. The orbits of the diagonal action of S2n onM2n ×M2n,
and thus the orbital basis of B2n, can be shown to be indexed by even partitions of 2n (see
Section 2). Given µ ` n, let N2µ denote the orbital basis element of B2n indexed by the even
partition 2µ and let θ̂2λ2µ, λ, µ ` n, denote the eigenvalue (which can be shown to be an integer,
see Section 2) of N2µ on V 2λ. We refer to the θ̂2λ2µ as the eigenvalues of B2n. We think of θ̂2λ2µ as
an analog of φ̂λµ.

We are interested in combinatorial algorithms (recursive or direct) that compute θ̂2λ2µ. In this
paper we give two such algorithms. The first algorithm, given in Section 3, is quite involved and
is not really suitable for implementation. It however has an important theoretical consequence
which we present in Section 4. The second algorithm, given in Section 5, is extremely simple
and is much easier to implement. Moreover, there is a parallel and virtually identical algorithm
that calculates the central characters (not using (1) above). We now discuss these results.

In Section 3 we address the following question: assuming the central characters of Sn as
given, how can we calculate the eigenvalues of the Bose-Mesner algebra. We give a recursive
combinatorial algorithm for this task: we show that we can inductively compute the eigenvalues
of B2,B4, . . . ,B2n from the central characters of S2, S4, . . . , S2n by solving systems of linear
equations.

Let Θ̂(2n) denote the eigenvalue table of B2n, i.e., Θ̂(2n) is the Yn × Pn matrix with entry
in row λ, column µ given by θ̂2λ2µ.

Theorem 1.1. Assume given the central characters of S2, S4, . . . , S2n and the eigenvalues of
B2,B4, . . . ,B2n−2. There is an algorithm that determines the eigenvalues of B2n by solving
nonsingular systems of linear equations with coefficient matrices Θ̂(2), Θ̂(4), . . . , Θ̂(2n − 2)
and with right hand sides determined by the central characters of S4, S6, . . . , S2n.

Thus we can inductively compute the eigenvalues of the Bose-Mesner algebra from the cen-
tral characters of the symmetric groups by solving linear equations.

Theorem 1.1, when combined with the work of Corteel, Goupil, and Schaeffer [6] and Gar-
sia [9] expressing central characters (at fixed conjugacy classes) as content evaluations of sym-
metric functions, yields similar formulas for the eigenvalues of fixed orbital basis elements. Let
us explain this. First we introduce notation concerning fixed classes and symmetric functions.
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Let P(2) denote the set of partitions with all parts ≥ 2. Note that the unique partition of 0
belongs to P(2). For µ ∈ P(2), let µ be the partition of |µ|− `(µ) (`(µ) = number of parts of µ)
obtained by subtracting 1 from every part of µ. The map P(2)→ P given by µ 7→ µ is clearly
a bijection. Let P(2, n) denote the set of all µ ∈ P(2) with |µ| ≤ n.

By a nontrivial cycle of a permutation we mean a cycle of length ≥ 2. Given µ ∈ P(2) and
n ≥ 1, define cµ(n) to be element of Z[C[Sn]] given by the sum of all permutations π in Sn that
have µ as the partition determined by the lengths of the nontrivial cycles of π. Thus, cµ(n) is 0 if
n < |µ| and is equal to k(µ,1n−|µ|) if n ≥ |µ| (here (µ, 1n−|µ|) denotes the partition of n obtained
by adding, to µ, n − |µ| parts equal to 1). In this notation, c(3)(n) denotes the conjugacy class
sum of 3-cycles in C[Sn] (which is automatically zero if n = 1, 2), c(0)(n) denotes the identity
element of C[Sn], and {cµ(n) | µ ∈ P(2, n)} is a basis of Z[C[Sn]].

Given µ ∈ P(2) and λ ∈ Y , define φλµ to be the eigenvalue of cµ(|λ|) on V λ. That is, if λ
has n boxes, φλµ is equal to φ̂λ

(µ,1n−|µ|)
if n ≥ |µ| and is equal to 0 if n < |µ|.

Similarly, given µ ∈ P(2) and n ≥ 1, define M2µ(2n) to be the element of B2n given as
follows: it is equal to the orbital basis element N2(µ,1n−|µ|) if n ≥ |µ| and it is 0 if n < |µ|. For
instance, if µ = (3, 2, 1, 1) ` 7 and τ = (3, 2) we can write the element N2µ of B14 as M2τ (14).
The orbital basis of B2n can be written as {M2τ (2n) | τ ∈ P(2, n)}.

Given µ ∈ P(2) and λ ∈ Y , define θ2λ2µ to be the eigenvalue of M2µ(2|λ|) on V 2λ. That is, if
λ has n boxes, θ2λ2µ is equal to θ̂2λ

2(µ,1n−|µ|)
if n ≥ |µ| and is equal to 0 if n < |µ|.

We think of φ̂λµ and θ̂2λ2µ as functions of λ, µ ` n, for fixed n . While considering φλµ and θ2λ2µ,
we regard µ as fixed, and think of φλµ, θ2λ2µ as functions on Y .

The content c(b) of a box b of a Young diagram λ is its y-coordinate minus its x-coordinate
(our convention for drawing Young diagrams is akin to writing down matrices with x-axis run-
ning downwards and y axis running to the right). Thus the content of the boxes in the first row
(from left to right) are 0, 1, 2, . . ., in the second row are −1, 0, 1, . . ., and so on. We denote by
c(λ) the multiset of contents of all the boxes of λ. So c(λ) has (multiset) cardinality |λ|.

Let Λ[t] denote the algebra, over Q[t], of symmetric functions in {x1, x2, x3, . . .}. Define
p0 = 1 and pn =

∑
i x

n
i , n ≥ 1. For λ ∈ P the power sum symmetric function pλ is defined as

follows:

pλ = pλ1pλ2 · · · if λ = (λ1, λ2, . . .).

The set {pλ | λ ∈ P} is a Q[t]-module basis of Λ[t] ([5, 17, 23, 24, 27]).

Given f ∈ Λ[t] and λ ∈ Y with n boxes we define the content evaluation f(c(λ)) to be the
rational number obtained from f by setting t = n, xi = 0 for i > n, and

{x1, x2, . . . , xn} = (the multiset) c(λ).

Note that this definition makes sense as f is symmetric.

Frobenius proved that the central character at the conjugacy class of transpositions is given
by content evaluation of the symmetric function p1 ∈ Λ[t] and Ingram proved that the central
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character at the conjugacy class of 3-cycles is given by content evaluation of the symmetric
function p2− t(t−1)

2
∈ Λ[t] (see [6]). These are universal formulas (i.e., independent of λ) made

precise as follows:

φλ(2) = p1(c(λ)) = Sum of contents of all boxes of λ , λ ∈ Y ,

φλ(3) =

(
p2 −

t(t− 1)

2

)
(c(λ))

= Sum of squares of contents of all boxes of λ − |λ|(|λ| − 1)

2
, λ ∈ Y .

Note that φλ(3) is 0 when |λ| = 1, 2. These formulas can be generalized to all fixed conjugacy
classes.

For each µ ∈ P(2), it is shown in [6] that there is a symmetric function Wµ ∈ Λ[t] such that
{Wµ | µ ∈ P(2)} is a Q[t]-module basis of Λ[t] and, for all µ ∈ P(2), λ ∈ Y ,

φλµ = Wµ(c(λ)).

An algorithm to compute Wµ is given in [9]. We motivate and discuss this result in Section 4.

Diaconis and Holmes [8] observed, using Frobenius’ result, that the eigenvalues of the or-
bital basis element of B2n corresponding to 4-cycles (i.e., the even partition (4, 2n−2)) are given
by content evaluation of the symmetric function p1

2
− t

4
∈ Λ[t], i.e.,

θ2λ2(2) =

(
p1
2
− t

4

)
(c(2λ))

=
Sum of contents of all boxes of 2λ

2
− 2|λ|

4
, λ ∈ Y .

Note that θ2λ2(2) = 0 when |λ| = 1. This can be generalized to all fixed orbital basis elements.

In Section 4, we show that the algorithm of Theorem 1.1 converts the basis {Wµ} of Λ[t]
into another basis {Eµ} of Λ[t] with the following property.

Theorem 1.2. For each µ ∈ P(2) there is a symmetric function Eµ ∈ Λ[t] such that

(i) {Eµ | µ ∈ P(2)} is a Q[t]-module basis of Λ[t].

(ii) For all µ ∈ P(2) and λ ∈ Y , we have

θ2λ2µ = Eµ(c(2λ)).

Information about the coefficients in the expansion of Wµ and Eµ in the power sum basis is
given in Section 4. Example 4.4 in Section 4 lists these symmetric functions for |µ| ≤ 4.

One method for computing the eigenvalues {θi} of a real symmetric matrix N is to write
down eigenvectors {vi}, one in each eigenspace, and then to solve for θi in the equation Nvi =
θivi. In Section 5 we use this method to give a different inductive algorithm (not using the
characters or central characters of Sn) for computing the eigenvalues θ̂2λ2µ of B2n.
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Every Sn-irreducible V λ has a canonically defined basis, determined upto scalars, and called
the Gelfand-Tsetlin (GZ) basis. We systematically choose one of these basis vectors and call it
the first GZ vector (see Sections 4 and 5 for definitions). Let v2λ denote the first GZ vector of
the eigenspace V 2λ of B2n. Let λ′ ∈ Yn+1 with λ = λ′−{ last box in the last row of λ′ }. Then
there is a simple expression for v2λ′ in terms of v2λ (see Section 5). The simplest nontrivial case
of this occurs when λ′ = (n, 1). Here λ = (n) and V 2(n) is the trivial representation giving
v2λ =

∑
A∈M2n

A. In this case the eigenvector v2λ′ coincides with that written down by Godsil
and Meagher [10, 11] and Lindzey [16] (using a quotient argument).

Of course, explicitly writing down these vectors is inefficient since v2λ lives in a space of
dimension (2n − 1)!! = 1 · 3 · 5 · · · · (2n − 1). However, we use this expression implicitly to
give an algorithm that works with only the rows of Θ̂(2n). Note that a row of Θ̂(2n) has only
p(n) components, which is subexponential and is only moderately large for small values of n
(for example, compare p(13) = 101 with 25!! = 7905853580625).

Theorem 1.3. Let λ′ ∈ Yn+1 with λ = λ′ − { last box in the last row of λ′ }. Assume that the
row of Θ̂(2n) indexed by λ, i.e., the vector (θ̂2λ2µ)µ`n, is known.

There is an algorithm to determine (θ̂2λ
′

2µ′)µ′`n+1, i.e., the row of Θ̂(2n+ 2) indexed by λ′.

The statement of Theorem 1.3 hides some details. Strictly speaking, we need to work not
with row vectors of length p(n) but of length pp(n), the number of pointed partitions of n (see
Section 5 for the definition). The main point is that pp(n) is also subexponential and is only
moderately large for small values of n. For instance, pp(13) = 272.

The eigenvector approach also applies to the central characters and in Section 5 we give a
very similar inductive algorithm (not using irreducible characters) to compute φ̂λµ. Although
this method of computing the central characters is not as efficient as the one based on (1) (since
the irreducible characters can be very efficiently calculated), it further brings out the essential
analogy between θ̂2λ2µ and φ̂λµ. A simple recursive implementation of these algorithms in Maple
is given in [26].

Finally, we would like to add a terminological remark. The Bose-Mesner algebra B2n is
isomorphic to the Hecke algebra (also called the double coset algebra) of the Gelfand pair
(S2n, Hn), where Hn is the hyperoctahedral group (see Example 5 of Chapter VII.2 of [17]),
and the two settings are equivalent. Except in the last section, in this paper we adopt the perfect
matching point of view.

2 The Sn-module C[Mn]

The regular modules C[Sn] have the following recursive structure

ind Sn+1

Sn
(C[Sn]) ∼= C[Sn+1]. (3)

The modules C[M2n] have a similar recursive structure. Informally, we can say that the induc-
tion happens at every other step and we do nothing in between (see items (v) and (vi) of Lemma
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2.1 below). This is best brought out by simultaneously considering the odd case, i.e., the action
of S2n+1 on near perfect matchings (= matchings with n edges) of K2n+1. This idea is implicit
in the detailed proof of (2) given in Chapter 43 of Bump’s book [3] (also see [13, 25]) but it is
useful to make it explicit as it simplifies certain technicalities and also suggests an approach to
writing down the eigenvectors of B2n in Section 5. We adopt a uniform notation for both the
even and odd cases.

Let Pn denote the set of all even partitions of n, if n is even, or the set of all near even
partitions of n (i.e., exactly one part odd), if n is odd. Let Yn denote the set of all even Young
diagrams with n boxes, if n is even, or the set of all near even Young diagrams with n boxes
(i.e., exactly one row length odd), if n is odd.

LetMn denote the set of all maximum matchings in Kn (i.e., perfect matchings if n is even
and near perfect matchings if n is odd). Given A,B ∈ Mn, let d(A,B) be the partition whose
parts are the number of vertices in the connected components of the spanning subgraph of Kn

with edge set A ∪B. It is easily seen that d(A,B) ∈ Pn.

For µ ∈ Pn, A ∈Mn define

M(A, µ) = {B ∈Mn | d(A,B) = µ},

and define a linear operator

Nµ : C[Mn]→ C[Mn]

by setting, for A ∈Mn,
Nµ(A) =

∑
B∈M(A,µ)

B.

The symmetric group Sn has a natural action onMn and this gives rise to the Sn-module
C[Mn]. We have the diagonal action of Sn onMn ×Mn. Set Bn = EndSn(C[Mn]).

For n odd, given A ∈ Mn we denote by v(A) the unique vertex of Kn that is not the
endpoint of any edge in A. An edge connecting vertices i and j will be denoted [i, j] (or [j, i]).
The following result collects together basic properties of the Sn-action onMn.

Lemma 2.1. Let n be a positive integer.

(i) (A,B), (C,D) ∈Mn ×Mn are in the same Sn-orbit if and only if d(A,B) = d(C,D).

(ii) The set {Nµ | µ ∈ Pn} is a basis of Bn.

(iii) (A,B), (B,A) are in the same Sn-orbit, for all (A,B) ∈Mn ×Mn.

(iv) The Sn-module C[Mn] is multiplicity free.

(v) Assume n is odd. We have an Sn-module isomorphism (treating Sn as the subgroup of Sn+1

fixing n+ 1)
C[Mn] ∼= res Sn+1

Sn
(C[Mn+1])

given by A 7→ A ∪ {[v(A), n+ 1]}, A ∈Mn.
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(vi) Assume n is even. We have an Sn+1-module isomorphism

ind Sn+1

Sn
(C[Mn]) ∼= C[Mn+1].

Proof. (i) This is clear.

(ii) This follows from part (i) by a standard result (see [5, 10]).

(iii) Follows from part (i).

(iv) This follows from part (iii) by a standard result (see [5, 10]).

(v) This is clear.

(vi) Consider the disjoint union given by coset decomposition

Sn+1 = Sn ∪ (1 n+ 1)Sn ∪ · · · ∪ (n n+ 1)Sn.

We think of ind Sn+1

Sn
(C[Mn]) as the (left) C[Sn+1]-module C[Sn+1] ⊗C[Sn] C[Mn] with basis

{(i n+ 1)⊗A : 1 ≤ i ≤ n+ 1, A ∈Mn} (here (n+ 1 n+ 1) = ε, the identity permutation).

Define a bijective linear map f : ind Sn+1

Sn
(C[Mn])→ C[Mn+1] by

f((i n+ 1)⊗ A) = (i n+ 1) · A, 1 ≤ i ≤ n+ 1, A ∈Mn.

Fix 1 ≤ i ≤ n+ 1 and A ∈Mn. Let τ ∈ Sn+1. Set j = τ(i) and write τ(i n+ 1) = (j n+ 1)τ ′

where τ ′ = (j n+ 1)τ(i n+ 1). Note that τ ′(n+ 1) = (n+ 1). Then

f(τ · ((i n+ 1)⊗ A)) = f((j n+ 1)⊗ (j n+ 1)τ(i n+ 1) · A)

= (j n+ 1) · ((j n+ 1)τ(i n+ 1) · A)

= τ · f((i n+ 1)⊗ A).

Thus, f is an Sn+1-module isomorphism. 2

We call {Nµ | µ ∈ Pn} the orbital basis of Bn. Parts (ii) and (iv) of Lemma 2.1 show that
the eigenvalues of Nµ are integers using the following standard argument (and the fact that the
irreducible characters of Sn are integer valued).

Lemma 2.2. Let a finite groupG act on a finite setX and for, g ∈ G, let ρ(g) denote theX×X
permutation matrix corresponding to the action of g onX . LetA be aX×X matrix with integer
entries that commutes with the action of G on X , i.e., Aρ(g) = ρ(g)A for all g ∈ G. Assume
that

(i) The permutation representation of G on C[X] is multiplicity free.

(ii) The character of every G-irreducible appearing in C[X] is integer valued.

Then the eigenvalues of A are integral.

Proof. Write
C[X] = V1 ⊕ · · · ⊕ Vt,
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where V1, . . . , Vt are nonisomorphic irreducible G-submodules of C[X]. Let χi be the character
of Vi.

Let λ be an eigenvalue of A. By Schur’s lemma, every Vj is contained in an eigenspace of
A. Thus the eigenspace of λ is a direct sum of some of the Vj’s. Say Vi is contained in the
eigenspace of λ.

The G-linear projection C[X]→ C[X] onto Vi is given by

v 7→ dimVi
|G|

∑
g∈G

χi(g) g · v.

Since χi is integer valued the matrix of the projection above (in the standard basis X) has
rational entries and thus there is an eigenvector for λ with rational entries. Since A is integral it
follows that λ is a rational number and since it is also an algebraic integer (being an eigenvalue
of an integer matrix) it follows that λ is an integer. 2

The recursive structure of the modules C[Mn] given by parts (v) and (vi) of Lemma 2.1,
together with the branching rule, yields a proof of (2). This part of the proof, which we include
for completeness, is essentially the same as in [3]. Let us first recall the branching rule.

A fundamental result (see [5, 13, 22, 23, 24]) in the representation theory of the symmetric
groups states that there is a unique assignment, denoted λ 7→ V λ, which associates to each
Young diagram λ an equivalence class V λ of irreducible S|λ|-modules (we also let V λ denote
an irreducible Sn-module in the corresponding equivalence class) such that properties (a) and
(b) below are satisfied:

(a) Initialization: V (2) is the trivial representation of S2 and V (1,1) is the sign representation
of S2 (here (2), respectively (1, 1), denotes the Young diagram with a single row of two boxes,
respectively a single column of two boxes).

(b) Branching rule: Given µ ∈ Y , we denote by µ− the set of all Young diagrams obtained
from µ by removing a box corresponding to one of the inner corners in the Young diagram
µ. For n ≥ 2, given λ ∈ Yn, consider the irreducible Sn-module V λ. Viewing Sn−1 as the
subgroup of Sn fixing n we have an Sn−1-module isomorphism

res SnSn−1
(V λ) ∼=

⊕
µ∈λ− V

µ. (4)

It is a consequence of properties (a) and (b) above that {V λ | λ ∈ Yn} is a complete set of
pairwise inequivalent irreducible representations of Sn. Another consequence is that, for any
n, the Young diagram consisting of a single row of n boxes (respectively, a single column of
n boxes) corresponds to the trivial representation of Sn (respectively, the sign representation of
Sn).

Given µ ∈ Y , we denote by µ+ the set of all Young diagrams obtained from µ by adding
a box corresponding to one of the outer corners in the Young diagram µ. For n ≥ 1, given
λ ∈ Yn, consider the irreducible Sn-module V λ. By Frobenius reciprocity, the branching rule
can be equivalently stated as

ind Sn+1

Sn
(V λ) ∼=

⊕
µ∈λ+ V

µ. (5)
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Theorem 2.3. Let n be a positive integer. There is a Sn-linear isomorphism

C[Mn] ∼=
⊕
λ∈Yn

V λ.

Proof. The proof is by induction on n, the cases n = 1, 2 being clear. Let n ≥ 3 and consider
the following two cases.

(i) n is odd: This easily follows from the induction hypothesis, Lemma 2.1 (iv), (vi), and the
branching rule.

(ii) n is even: Let V λ, λ ∈ Yn occur in C[Mn] and assume that `(λ) ≥ 3. Suppose that not all
rows of λ are of even length. Then, since n is even, we can find an inner corner of λ such that
deleting the corresponding box leaves a Young diagram with at least two rows of odd length.
By Lemma 2.1 (v) and the branching rule, this contradicts the induction hypothesis (for n− 1).
Thus, V λ cannot occur in C[Mn].

Define Young diagrams λk = (n − k, k), 0 ≤ k ≤ n/2. Note that λ0, . . . , λn/2 are all
the Young diagrams with at most two rows. We shall show, by induction on k, that V λk , 0 ≤
k ≤ n/2 occurs in C[Mn] if and only if k is even. Now V λ0 is the trivial representation
and thus occurs in permutation representation C[Mn]. Assume, inductively, that our claim has
been proven for V λ0 , . . . , V λt−1 and consider V λt . Suppose t is even. By the main induction
hypothesis on n, V (n−t,t−1) occurs in C[Mn−1]. By Lemma 2.1 (v) and the branching rule,
one of V (n−t,t−1,1), V (n−t+1,t−1), V (n−t,t) must occur in C[Mn]. The first cannot occur by
the paragraph above, the second cannot occur by the secondary induction hypothesis on k, and
so the third must occur. Now suppose that t is odd and that V (n−t,t) occurs in C[Mn]. Then,
since V (n−t+1,t−1) occurs in C[Mn] (by the secondary induction hypothesis on k), V (n−t,t−1)

will occur at least twice in C[Mn−1] contradicting its multiplicity freeness. Thus the claim on
V λk , 0 ≤ k ≤ n/2 is established.

What we have shown so far implies that if V λ, λ ∈ Yn occurs in C[Mn] then all rows
of λ must have even length. Since, by the branching rule, res SnSn−1

(V λ) and res SnSn−1
(V µ), for

λ, µ ∈ Pn, µ 6= λ can have no irreducibles in common, the result follows from the induction
hypothesis and Lemma 2.1 (v). 2

3 Eigenvalues and (class-coset) intersection numbers

Assuming the central characters of S2, S4, . . . , Sn as given, we show in this section that we
can compute the eigenvalues of B2n by solving linear equations.

We begin by recalling, without proof, the following classical formula for the eigenvalues of
B2n that appears in Bannai and Ito [2] (see page 179), Hanlon, Stanley, and Stembridge [12]
(see equation (3.3) of Lemma 3.3) and in Godsil and Meagher [10] (see Lemma 13.8.3). It is
proved by writing down the primitive idempotents of B2n and then expanding the orbital basis
in terms of these. Another paper, using Jack symmetric functions, on the eigenvalues of B2n is
Muzychuk [21].
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Denote by I the perfect matching {[1, n+1], [2, n+2], . . . , [n, 2n]} ofK2n. If µ is a partition
with mi parts equal to i we set zµ = 1m1m1! 2m2m2! 3m3m3! · · · .
Theorem 3.1. [2, 12, 10] Let λ, µ ` n. Fix A ∈M2n with d(I, A) = 2µ. Then

θ̂2λ2µ =
1

2`(µ)zµ

{ ∑
π∈S2n, π·I=A

χ2λ(π)

}
. 2

The formula above has 2nn! terms on the right hand side. We can group terms by cycle type
to reduce this number.

Let µ ` n. Fix A ∈M2n with d(I, A) = 2µ. For τ ` 2n, define

m(τ, 2µ) = |Cτ ∩ {π ∈ S2n | π · I = A}|,

i.e., m(τ, 2µ) is the number of permutations in S2n of cycle type τ taking I to A (this number is
clearly independent of A as long as d(I, A) = 2µ). We refer to the m(τ, 2µ) as the (class-coset)
intersection numbers of B2n (being the cardinality of the intersection of a conjugacy class with
a coset of the subgroup fixing I).

We thus have the following formula which has only p(2n) terms

θ̂2λ2µ =
1

2`(µ)zµ

{∑
τ`2n

m(τ, 2µ)χ2λ
τ

}
. (6)

There is, however, no simple formula for m(τ, 2µ). Thus, in the identity (6) above, the charac-
ters of S2n are known but we have two sets of unknowns: eigenvalues of B2n and the intersection
numbers of B2n. The idea of the present approach is the following bootstrap procedure:

(i) Given the central characters, we shall simultaneously inductively calculate the eigenval-
ues and intersection numbers of B2n.

(ii) In Theorems 3.3 and 3.4 below we show that the eigenvalues of B2n can be found from
the central characters of S2n and the intersection numbers of B2, . . . ,B2n−2.

(iii) In Lemma 3.2 below we show that we can find the intersection numbers of B2n from
the central characters of S2n and the eigenvalues of B2n by solving linear equations.

For τ ` n, µ ` 2n define column vectors of length p(n)

φ̂µ = (φ̂2λ
µ )λ`n and θ̂τ = (θ̂2λ2τ )λ`n.

Note that θ̂τ is the column of Θ̂(2n) indexed by τ . We have

Lemma 3.2. Let µ ` 2n. Then

φ̂µ =
∑
τ`n

m(µ, 2τ)θ̂τ ,

i.e., defining the column vector m(µ) = (m(µ, 2τ))τ`n we have

φ̂µ = Θ̂(2n)m(µ).

11



Proof. Consider the element kµ ∈ Z[C[S2n]]. Then

kµ · I =
∑
τ`n

m(µ, 2τ)N2τ (I).

It follows that the actions of kµ and
∑

τ`nm(µ, 2τ)N2τ on C[M2n] are identical. The eigen-
value of kµ on V 2λ is φ̂2λ

µ and that of N2τ on V 2λ is θ̂2λ2τ . The result follows. 2

The matrix Θ̂(2n) of eigenvalues of B2n is clearly nonsingular. Thus, Lemma 3.2 above
shows that, given the central characters of S2n and the eigenvalues of B2n, and given µ ` 2n,
we can find all the m(µ, 2τ), τ ` n by solving a single system of nonsingular linear equations
of size p(n) × p(n). We shall now use this result to inductively compute the eigenvalues of
B2,B4, . . . ,B2n from the central characters of S2, S4, . . . , S2n.

For π ∈ S2n define

supp(π) = {i ∈ {1, 2, . . . , n} | π(i) 6= i or π(n+ i) 6= n+ i ( or both )}.

That is, supp(π) ∪ (n + supp(π)) (here, n + supp(π) = {n + i | i ∈ supp(π)}) is the set of
end points of all the edges of I that are touched by the nontrivial cycles of π (i.e., by cycles of
length ≥ 2).

Let µ ∈ P(2). For n ≥ 1, define

f(µ, 2n) : C[M2n]→ C[M2n], (7)

by x 7→ cµ(2n) · x. Note that 2n < |µ| implies that f(µ, 2n) = 0.

Clearly f(µ, 2n) ∈ B2n. Write

f(µ, 2n) =
∑

τ∈P(2,n)

dτµ(2n)M2τ (2n). (8)

The nonnegative integers dτµ(2n) defined above can be calculated as follows, for n ≥ |µ|.
Below a ∨ b denotes the maximum of two nonnegative integers a, b.

Theorem 3.3. (i) Let µ ∈ P(2) with |µ| = k and let n ≥ k. For τ ∈ P(2, n) we have

dτµ(2n) =


0 if |τ | > k
0 if |τ | = k and τ 6= µ

2`(µ) if τ = µ

and, for |τ | = j < k, dτµ(2n) equals

k−1∑
r=j∨b k+1

2
c


r∑

s=j∨b k+1
2
c

(−1)r−s
(
r − j
s− j

)
m((µ, 12s−k), 2(τ, 1s−j))


(
n− j
r − j

)
. (9)

(ii) The set {f(µ, 2n) | µ ∈ P(2, n)} is a basis of B2n.
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Proof. (i) The result is clearly true if k = 0 (in which case f(µ, 2n) is the identity map). So
we may assume that k ≥ 2. Let π ∈ C(µ,12n−k). A nontrivial r-cycle of π can touch at most r
edges of I and thus |supp(π)| ≤ k. Moreover, if |supp(π)| = k then each nontrivial r-cycle of
π touches exactly r edges of I and no edge of I is touched by two distinct nontrivial cycles. It
follows that |supp(π)| = k implies d(I, π · I) = 2(µ, 1n−|µ|) and |supp(π)| ≤ k − 1 implies
d(I, π · I) = 2(λ, 1n−|λ|), where λ ∈ P(2) satisfies |λ| ≤ k − 1. Thus dτµ(2n) = 0 if |τ | > k or
|τ | = k and τ 6= µ.

We now determine dµµ(2n). Consider the nontrivial r-cycle σ = (1 2 · · · r) ∈ S2n, 2 ≤
r ≤ n. Then supp(σ) = {1, 2, . . . , r} and d(I, σ · I) = 2(r, 1n−r). It can be checked that the
only other r-cycle π with π · I = σ · I is π = (n + 1 n + r n + r − 1 · · ·n + 2). Since any
element of C(µ,12n−k) has `(µ) nontrivial cycles it now follows from the paragraph above that
dµµ(2n) = 2`(µ).

Now let τ ∈ P(2) with |τ | = j < k. We now calculate dτµ(2n).

Fix A ∈M2n with d(I, A) = 2(τ, 1n−j) and with I ∩A, the intersection of the set of edges
of I and A, given by

I ∩ A = {[j + 1, n+ j + 1], [j + 2, n+ j + 2], . . . , [n, 2n]}.

We have

dτµ(2n) = |{π ∈ C(µ,12n−k) | π · I = A}|. (10)

Let π ∈ C(µ,12n−k) with π · I = A. Then we clearly have

{1, 2, . . . , j} ⊆ supp(π), bk+1
2
c ≤ |supp(π)|, and |supp(π)| ≤ k − 1, (11)

where the last inequality follows from the first paragraph of the proof.

Let S(j, k, n) denote the set of all subsets X of {1, 2, . . . , n} satisfying {1, 2, . . . , j} ⊆ X
and bk+1

2
c ≤ |X| ≤ k − 1, i.e., S(j, k, n) consists of all subsets of {1, 2, . . . , n} containing the

elements {1, 2, . . . , j} and with cardinality between j ∨ bk+1
2
c and k − 1 (inclusive). Partially

order S(j, k, n) by set inclusion.

For X ∈ S(j, k, n) define

α(X) = |{π ∈ C(µ,12n−k) | supp(π) ⊆ X, π · I = A}|,
β(X) = |{π ∈ C(µ,12n−k) | supp(π) = X, π · I = A}|.

Note that, from (10) and (11), we have

dτµ(2n) =
∑

X∈S(j,k,n)

β(X). (12)

We have

α(X) =
∑

Y⊆X, Y ∈S(j,k,n)

β(Y ), X ∈ S(j, k, n),

13



and by the principle of inclusion-exclusion

β(X) =
∑

Y⊆X, Y ∈S(j,k,n)

(−1)|X−Y |α(Y ), X ∈ S(j, k, n). (13)

If X ∈ S(j, k, n) with |X| = s, then a little reflection shows that

α(X) = m((µ, 12s−k), 2(τ, 1s−j)).

If X ∈ S(j, k, n) with |X| = r, then we have (from (13) above)

β(X) =
r∑

s=j∨b k+1
2
c

(−1)r−s
(
r − j
s− j

)
m((µ, 12s−k), 2(τ, 1s−j)). (14)

Thus, from (12) above, we have

dτµ(2n) =
∑

X∈S(j,k,n)

β(X)

=
k−1∑

r=j∨b k+1
2
c

∑
X∈S(j,k,n),|X|=r

β(X).

Since the number of sets X ∈ S(j, k, n) with |X| = r is clearly
(
n−j
r−j

)
the result follows from

(14) above.

(ii) This follows from the triangularity of the coefficients dτµ(2n) established in part (i)
above. 2

Choose a linear ordering of Pn in which the partitions are listed in weakly increasing order
of the sum of their nontrivial parts (i.e, parts ≥ 2). List the columns of the Yn × Pn matrix
Θ̂(2n) in this order.

Theorem 3.4. The first column of Θ̂(2n), indexed by (1n), is the all 1’s vector. Let µ ∈ P(2, n)
with |µ| > 0. Then the column of Θ̂(2n), indexed by (µ, 1n−|µ|), is given by

(
θ̂2λ2(µ,1n−|µ|)

)
λ`n

=
1

2`(µ)

(φ̂2λ
(µ,12n−|µ|)

)
λ`n
−

∑
τ∈P(2,|µ|−1)

dτµ(2n)
(
θ̂2λ2(τ,1n−|τ |)

)
λ`n

 .

Proof. This follows by taking the eigenvalues on V 2λ on both sides of (8) and using Theorem
3.3. 2

Proof of Theorem 1.1. Assume the central characters of S2, S4, . . . , S2n and the eigenvalues of
B2,B4, . . . ,B2n−2 as given.

Let µ ∈ P(2, n) with |µ| = k. For bk+1
2
c ≤ s ≤ k − 1, we can, by Lemma 3.2, find all the

nonnegative integersm((µ, 12s−k), 2(τ, 1s−|τ |)), τ ∈ P(2, s) by solving a single system of linear
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equations of size p(s) × p(s) (this requires the central characters of S2s and the eigenvalues of
B2s but since s ≤ k − 1 ≤ n− 1 the latter are known).

Thus the numbers dτµ(2n), for µ ∈ P(2, n), |τ | < |µ| can computed from (9).

We can now calculate the eigenvalues of B2n using the recurrence in Theorem 3.4. 2

Example 3.5. To illustrate, we calculate the eigenvalue tables Θ̂(4) and Θ̂(6) starting from
Θ̂(2). The central characters of S4, S6 can be calculated from the character tables of S4, S6

given in [13].

We rewrite Lemma 3.2 as follows: for µ ` 2n

(m(µ, 2τ))τ`n = Θ̂(2n)−1(φ̂2λ
µ )λ`n. (15)

Θ̂(2) is the Y1 × P1 matrix [1]. Thus, from (15) above we have

m((2), 2(1)) = φ̂
2(1)
(2) = 1.

We list the elements of Y2 as{(2), (1, 1)} and the elements of P2 as {(1, 1), (2)}. The first

column of Θ̂(4) is
(

1
1

)
. From Theorem 3.4, the second column is

(
θ̂
2(2)
2(2)

θ̂
2(1,1)
2(2)

)
=

1

2

{(
φ̂
2(2)

(2,12)

φ̂
2(1,1)

(2,12)

)
− d(0)(2)(4)

(
1
1

)}
.

From Theorem 3.3 we have
d
(0)
(2)(4) = 2m((2), 2(1)) = 2,

and hence the second column is
(

2
−1

)
. Thus we get

Θ̂(4) =

[
1 2
1 −1

]
, Θ̂(4)−1 =

[
1/3 2/3
1/3 −1/3

]
.

From (15) above we get(
m((3, 1), 2(1, 1))
m((3, 1), 2(2))

)
=

[
1/3 2/3
1/3 −1/3

](
φ̂
2(2)
(3,1)

φ̂
2(1,1)
(3,1)

)
=

(
0
4

)
.

We list the elements of Y3 as {(3), (2, 1), (13)} and the elements of P3 as {(13), (2, 1), (3)}.
The first column of Θ̂(6) is the all 1’s vector. From Theorem 3.4, the second column is θ̂

2(3)
2(2,1)

θ̂
2(2,1)
2(2,1)

θ̂
2(13)
2(2,1)

 =
1

2


 φ̂

2(3)

(2,14)

φ̂
2(2,1)

(2,14)

φ̂
2(13)

(2,14)

− d(0)(2)(6)

 1
1
1


 .
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From Theorem 3.3 we have
d
(0)
(2)(6) = 3m((2), 2(1)) = 3,

and hence the second column is

 6
1
−3

.

From Theorem 3.4, the third column of Θ̂(6) is θ̂
2(3)
2(3)

θ̂
2(2,1)
2(3)

θ̂
2(13)
2(3)

 =
1

2


 φ̂

2(3)

(3,13)

φ̂
2(2,1)

(3,13)

φ̂
2(13)

(3,13)

− d(2)(3)(6)

 6
1
−3

− d(0)(3)(6)

 1
1
1


 .

From Theorem 3.3 we have

d
(0)
(3)(6) = 3m((3, 1), 2(12)) = 0, d

(2)
(3)(6) = m((3, 1), 2(2)) = 4,

and hence

Θ̂(6) =

 1 6 8
1 1 −2
1 −3 2

 .
We now refine the triangularity of the coefficients dτµ(2n) shown in part (i) of Theorem 3.3

above. Define a partial order on P as follows: µ ≤ λ provided |µ| < |λ| or |µ| = |λ| and µ
can be obtained from λ by partitioning the parts of λ into disjoint blocks and then summing
the parts in each block. For instance, (5, 3, 2) ≤ (4, 2, 2, 1, 1) but (3, 1, 1) 6≤ (2, 2, 1) and
(2, 2, 1) 6≤ (3, 1, 1).

Lemma 3.6. Let µ ∈ P(2) with |µ| = k and let n ≥ k. Let τ ∈ P(2, n) be such that the
coefficient dτµ(2n) defined in (8) above is nonzero. Then

(i) |τ | ≤ |µ|.
(ii) |τ | = |µ| implies τ = µ.

(iii) τ ≤ µ.

Proof. Parts (i), (ii) follow from part (i) of Theorem 3.3.

(iii) Let π ∈ C(µ,12n−k) with d(I, π · I) = 2(τ, 1n−|τ |). Let D(I, π · I) denote the (set) partition
of [2n] = {1, 2, . . . , 2n} whose blocks are the vertex sets of the connected components of the
spanning subgraph of K2n with edge set I ∪ π · I (note that each block has an even number of
elements). Define a graph on the vertex set [2n] by declaring vertices i 6= j to be connected
by an edge provided i = n + j or j = n + i or i and j are in the same nontrivial cycle of π
and define pπ to be the set partition of [2n] whose blocks are the vertex sets of the connected
components of this graph. Note that each block of pπ has an even number of elements. Clearly,
as set partitions, we have

D(I, π · I) ≤ pπ. (16)
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Define µπ to be the partition in P(2) obtained from pπ by taking half the sizes of all blocks of
pπ of cardinality ≥ 4. It is easy to see, using (16), that

|τ | ≤ |µπ| ≤ |µ|, (17)
|τ | = |µ| implies τ = µπ = µ. (18)

Write the parts of µ as {µ1, . . . , µt} so that the parts of µ are {µ1 − 1, . . . , µt − 1}. Let B be
a block of pπ of size ≥ 4. Suppose this block contains m nontrivial cycles of π whose sizes
(we may assume without loss of generality) to be µ1, . . . , µm. Consider the hypergraph with
vertex set B and edge set the nontrivial cycles of π contained in B together with the edges of I
contained in B. This hypergraph is connected (since B is a block of pπ) and so we have

|B|
2
≤ µ1 + (µ2 − 1) + (µ3 − 1) + · · ·+ (µm − 1),

or, equivalently, |B|
2
− 1 ≤ (µ1 − 1) + · · ·+ (µm − 1).

Writing the above inequality for every block of pπ of size ≥ 4 and summing we see that

|µπ| ≤ |µ|. (19)

If |µπ| = |µ| then the argument above also shows that µπ ≤ µ and if |µπ| < |µ| then µπ ≤ µ by
definition. So we have

µπ ≤ µ. (20)

We now show that τ ≤ µ. This is clear from (18) if |τ | = |µ|. Otherwise, by (17), |τ | < |µ|.
We consider two cases.

(a) D(I, π · I) 6= pπ: By (16) and (19) we have |τ | < |µπ| ≤ |µ| and so τ ≤ µ.

(b) D(I, π · I) = pπ: We have τ = µπ. The result follows from (20). 2

We now define a polynomial in Q[t] using (9). In Theorem 3.8 below we shall evaluate this
polynomial at values not covered by Theorem 3.3.

Given τ, µ ∈ P(2) with j = |τ | ≤ |µ| = k, define a polynomial ζτµ(t) ∈ Q[t] as follows:

ζτµ(t) =

{
0 if j = k and τ 6= µ

2`(µ) if τ = µ

and, for j < k, ζτµ(t) equals

k−1∑
r=j∨b k+1

2
c


r∑

s=j∨b k+1
2
c

(−1)r−s
(
r − j
s− j

)
m((µ, 12s−k), 2(τ, 1s−j))


(
t
2
− j

r − j

)
.

Lemma 3.7. Fix τ, µ ∈ P(2) with |τ | ≤ |µ|. Then

(i) ζµµ (t) = 2`(µ).
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(ii) ζτµ(t) is a polynomial in Q[t] with degree ≤ |µ| − |τ |.
(iii) ζτµ(t) = 0 unless τ ≤ µ.

(iv) |τ | = |µ| implies that ζτµ(t) does not depend on t, i.e., is a constant.

Proof. Parts (i) and (ii) follow from the definition of ζτµ(t).

(iii) The result is true if |τ | = |µ| and so we may assume |τ | < |µ|. Part (iii) of Lemma 3.6 and
(9) show that if τ 6≤ µ then ζτµ(2n) = 0 for all n ≥ |µ|. The result follows.

(iv) The result is true if |τ | = |µ| and so we may assume |τ | < |µ|. Let |τ | = |µ| and let n ≥ |µ|.
Let π, σ ∈ C(µ,12n−k) satisfy d(I, π · I) = 2(τ, 1n−|τ |) and σ · I = π · I . Then

(a) By (16) and by case (a) in the proof of part (iii) in Lemma 3.6 above we have pσ =
D(I, σ · I) = D(I, π · I) = pπ.

(b) By case (b) in the proof of part (iii) in Lemma 3.6 above |µπ| = |µσ| = |µ|. This implies
that π and σ have no transpositions of the form (i n+ i).

It follows from (a) and (b) above that ζτµ(2n) does not depend on n. The result follows. 2

Theorem 3.8. Let µ ∈ P(2) with |µ| = k.

(i) For k ≤ n we have

f(µ, 2n) = 2`(µ)M2µ(2n) +
∑

τ∈P(2,k−1)

ζτµ(2n)M2τ (2n).

(ii) For n < k ≤ 2n we have

f(µ, 2n) =
∑

τ∈P(2,k−1)

ζτµ(2n)M2τ (2n).

(iii) For 2n < k and τ ∈ P(2), |τ | ≤ n, we have ζτµ(2n) = 0.

Proof. (i) This follows from Theorem 3.3.

Before proving parts (ii) and (iii) we make the following observation.

Let 2n ≥ k so that cµ(2n) 6= 0. Then, from (8) and the statement of Theorem 3.3(i) we have

f(µ, 2n) = dµµ(2n)M2µ(2n) +
∑

τ∈P(2,k−1)

dτµ(2n)M2τ (2n). (21)

Fix τ ∈ P(2, k − 1) with |τ | = j < k. Define γτ to be the number of perfect matchings A in
M2j with d({[1, j + 1], [2, j + 2], . . . , [j, 2j]}, A) = 2τ . Thus the number of perfect matchings
A inM2n with d(I, A) = 2(τ, 1n−j) is γτ

(
n
j

)
.

For j ∨ bk+1
2
c ≤ r ≤ k define

α(r, τ) = |{π ∈ C(µ,12n−k) | supp(π) = {1, 2, . . . , r}, d(I, π · I) = 2(τ, 1n−j)}|.
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Note that α(r, τ) is defined and is independent of n whenever n ≥ max{r, k/2}.
A little reflection shows that

dτµ(2n) =

k∑
r=j∨b k+1

2
c

α(r, τ)
(
n
r

)
γτ
(
n
j

)
=

k∑
r=j∨b k+1

2
c

j!

r!

α(r, τ)

γτ
(n− j)(n− j − 1) · · · (n− r + 1). (22)

The expression in (22) above is valid for all n ≥ k/2 and thus it follows that

ζτµ(t) =
k∑

r=j∨b k+1
2
c

j!

r!

α(r, τ)

γτ

(
t

2
− j
)(

t

2
− j − 1

)
· · ·
(
t

2
− r + 1

)
. (23)

(ii) Since n < k we have M2µ(2n) = 0 (and dµµ(2n) = 0 is undefined). The result now
follows from (21), (22), and (23) above.

(iii) This follows from (23) on noting that, for 2n < k and |τ | = j ≤ n we have n ∈
{j, j + 1, . . . , bk+1

2
c − 1}. 2

4 Content evaluation of symmetric functions

We now consider algorithms for expressing φλµ and θ2λ2µ, for fixed µ ∈ P(2) and varying
λ ∈ Y , as content evaluations of symmetric functions. The motivation comes from certain basic
results in the representation theory of symmetric groups [5, 9, 22]. We now recall these in items
(I)-(III) below (this will also be used in the next section on eigenvectors).

(I) Consider an irreducible Sn-module V λ, for λ ∈ Yn. Since the branching is multiplicity
free, the decomposition into irreducible Sn−1-modules of V λ is canonical. Each of these
modules, in turn, decompose canonically into irreducible Sn−2-modules. Iterating this
construction, we get a canonical decomposition of V λ into irreducible S1-modules, i.e.,
one dimensional subspaces. Thus, there is a canonical basis of V λ, determined up to
scalars, and called the Gelfand-Tsetlin (or GZ-) basis of V λ. Since V λ is irreducible an
Sn-invariant inner product on V λ is unique upto scalars and we note that the GZ-basis is
orthogonal with respect to this inner product.

(II) For i = 1, 2, . . . , n define Xi = (1, i) + (2, i) + · · · + (i − 1, i) ∈ C[Sn]. The Xi’s are
called the Young-Jucys-Murphy elements (YJM-elements). Note that X1 = 0.

Consider the Fourier transform, i.e., the algebra isomorphism

C[Sn] ∼=
⊕
λ∈Yn

End(V λ), (24)
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given by
π 7→ (V λ π→ V λ : λ ∈ Yn), π ∈ Sn.

We have identified a canonical basis, the GZ-basis, in each Sn-irreducible. Let D(V λ)
consist of all operators on V λ diagonal in the GZ-basis of V λ. It is known that the im-
age of

⊕
λ∈Yn D(V λ) (a maximal commutative subalgebra of the right hand side of (24))

under the inverse Fourier transform is the subalgebra of C[Sn] generated by X1, . . . , Xn,
which is thus a maximal commutative subalgebra of C[Sn]. It follows that the only com-
mon eigenvectors of X1, . . . , Xn in an irreducible module V λ are (up to scalars) the ele-
ments of the GZ-basis of V λ. Moreover, the eigenvalues of the YJM elements on the GZ-
basis vectors in each irreducible module can also be written down once we parametrize
the GZ-basis by standard Young tableaux. We recall this in the next item below.

(III) Let µ ∈ Y . A Young tableau of shape µ is obtained by taking the Young diagram µ
and filling its |µ| boxes (bijectively) with the numbers 1, 2, . . . , |µ|. A Young tableau is
said to be standard if the numbers in the boxes strictly increase along each row and each
column of the Young diagram of µ. Let tab(n, µ), where µ ∈ Yn, denote the set of all
standard Young tableaux of shape µ and let tab(n) = ∪µ∈Yntab(n, µ). There is a well
known bijection between tab(n, λ) and sequences (λ1, λ2, . . . , λn) of Young diagrams
with λn = λ and λi ∈ λ−i+1, for 1 ≤ i ≤ n − 1 (given T ∈ tab(n, λ), define λi to be
the diagram obtained by considering the boxes of T containing the numbers 1, . . . , i). It
now easily follows from the branching rule that the GZ-basis of V λ can be parametrized
by tab(n, λ). Given T ∈ tab(n, λ), we write vT for the corresponding GZ-basis vector of
V λ.

Given T ∈ tab(n, λ), the eigenvalue of Xi on vT is c(bT (i)), the content of the box bT (i)
of T containing i.

Let f = f(X1, . . . , Xn) be a symmetric polynomial in X1, . . . , Xn (with complex coeffi-
cients). By considering the GZ-basis of V λ we see that the action of f on V λ is multiplication
by the scalar f(c(λ)). Using the Fourier transform, it now follows that any symmetric polyno-
mial in X1, . . . , Xn is in Z[C[Sn]]. The converse of this assertion is also true.

Given n variables x1, . . . , xn and 1 ≤ k ≤ n, we let ek(x1, . . . , xn) denote the elementary
symmetric polynomials. Suppose a = {a1, . . . , an} and b = {b1, . . . , bn} are two multisets of
(complex) numbers of cardinality n. By considering the polynomials (x− a1) · · · (x− an) and
(x−b1) · · · (x−bn) we see that a = b as multisets if and only if ek(a1, . . . , an) = ek(b1, . . . , bn),
for 1 ≤ k ≤ n.

Let λ, µ ∈ Yn. The number of 0’s in c(λ) is the number of boxes in the main diagonal of
λ, the number of 1’s is the number of boxes in the first superdiagonal, the number of -1’s is
the number of boxes in the first subdiagonal and so on. It follows that µ = λ if and only if
c(µ) = c(λ) if and only if ek(c(λ)) = ek(c(µ)) for 1 ≤ k ≤ n.

Fix λ ∈ Yn. For 1 ≤ k ≤ n, define the following symmetric polynomials in X1, . . . , Xn:

fk(X1, . . . , Xn) =
∏
µ

(ek(X1, . . . , Xn)− ek(c(µ)),
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where the product is over all µ ∈ Yn with ek(c(µ)) 6= ek(c(λ)).

Let µ ∈ Yn. If µ 6= λ then, by the observation above, ek(c(µ)) 6= ek(c(λ)) for some
1 ≤ k ≤ n. It follows that(

n∏
k=1

fk(X1, . . . , Xn)

)
· V µ =

{
0 if µ ∈ Yn, µ 6= λ,
nonzero scalar if µ = λ.

Using the Fourier transform we now see that every element in Z[C[Sn]] is a symmetric polyno-
mial in X1, . . . , Xn.

Thus Z[C[Sn]] consists of all symmetric polynomials in X1, . . . , Xn. This is Jucys’ fun-
damental theorem given, with a different proof, in [14]. Constructive proofs of this result are
given in Murphy [19], Moran [18], Diaconis and Greene [7], and Garsia [9]. A good reference
for this material is the book of Cecchereni-Silberstein, Scarabotti, and Tolli [5].

For instance, the symmetric polynomial X1 + X2 + · · · + Xn is the sum of transpositions
c(2)(n). The eigenvalue of c(2)(n) on V λ is φλ(2). By considering any element of the GZ-basis
of V λ we see, from item (III) above, that the eigenvalue of X1 + · · · + Xn on V λ is p1(c(λ)).
Thus we get Frobenius’ formula from the introduction. Similarly (letting ε denote the identity
permutation),

X2
n =

(
n−1∑
i=1

(i n)

)(
n−1∑
j=1

(j n)

)
=

∑
1≤i,j≤n−1,i 6=j

(j i n) + (n− 1)ε,

and thus we get

X2
1 + · · ·+X2

n = c(3)(n) +
n(n− 1)

2
ε.

By considering the action of both sides of the identity above on GZ-basis element of V λ we get
Ingram’s formula from the introduction.

We thus come to the following basic problem in the present context: for fixed µ ∈ P(2),
write the conjugacy class sum cµ(n) ∈ Z[C[Sn]] as a linear combination of, say, the power sum
symmetric functions in X1, . . . , Xn and say something about the dependence of the coefficients
on n. This problem was solved in [6, 9].

Given f ∈ Λ[t] and n ≥ 1 we define the YJM evaluation f(n,X) to be the element of
Z[C[Sn]] obtained from f by setting t = n, xi = 0 for i > n, and xi = Xi, i = 1, . . . , n.

The following result was proved in [6]. An algorithm for constructing the symmetric func-
tion Wµ was given in [9]. See [5] for another proof ( Part (iv) below is taken from Theorem
5.4.7 of this reference).

Theorem 4.1. For each µ ∈ P(2) there is an algorithm to compute a symmetric function
Wµ ∈ Λ[t] such that

(i) {Wµ : µ ∈ P(2)} is a Q[t]-module basis of Λ[t].
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(ii) For µ ∈ P(2) and n ≥ 1 we have

Wµ(n,X) = cµ(n).

(iii) For µ ∈ P(2) and λ ∈ P we have

Wµ(c(λ)) = φλµ.

(iv) Let µ ∈ P(2) with multiplicity of i equal to mi, i ≥ 2. The expansion of Wµ in the power
sum basis has the form

Wµ =
∑
λ ≤ µ

aλµ(t) pλ,

where

(a) aλµ(t) ∈ Q[t] with degree ≤ |µ|−|λ|
2

+ `(µ)− `(λ).

(b) aµµ = 1∏
i≥2mi!

and aλµ ∈ Q (i.e., does not depend on t) for |λ| = |µ|.

(c) aλµ(t) = 0 if |µ| and |λ| do not have the same parity.

Remark Let µ, τ ∈ P(2). Using Theorem 4.1(i), we can write

WµWτ =
∑
λ

ωλµ,τ (t) Wλ,

where the sum is over finitely many λ ∈ P(2) and ωλµ,τ (t) ∈ Q[t]. From Theorem 4.1(ii) we
have

cµ(n)cτ (n) =
∑
λ

ωλµ,τ (n) cλ(n), n ≥ 1.

In other words, the structure constants of the algebra of fixed conjugacy classes (the so-called
Farahat-Higman algebra) are integer valued rational polynomials. See [6, 5] for more details.

We now consider a perfect matching analog of Theorem 4.1 above. We begin with a simple
example. The symmetric polynomial X1 + · · ·+X2n is the conjugacy class sum c(2)(2n). It is
easy to see (in the notation of (7) above) that

f((2), 2n) = nε+ 2M2(2)(2n).

Taking the eigenvalue of both sides on V 2λ and using Frobenius’ result we get the formula ([8])

θ2λ2(2) =

(
p1
2
− t

4

)
(c(2λ)).

The example above can be generalized to all fixed orbitals.
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Theorem 4.2. For each µ ∈ P(2) there is an algorithm to compute a symmetric function
Eµ ∈ Λ[t] such that

(i) {Eµ : µ ∈ P(2)} is a Q[t]-module basis of Λ[t].

(ii) For µ ∈ P(2) and λ ∈ P we have

Eµ(c(2λ)) = θ2λ2µ.

(iii) Let µ ∈ P(2) with multiplicity of i equal to mi, i ≥ 2. The expansion of Eµ in the power
sum basis has the form

Eµ =
∑
λ ≤ µ

bλµ(t) pλ,

where

(a) bλµ(t) ∈ Q[t] with degree ≤ |µ| − |λ|+ `(µ)− `(λ).

(b) bµµ = 1
2`(µ)

∏
i≥2mi!

and bλµ ∈ Q (i.e., does not depend on t) for |λ| = |µ|.

Remark Let µ, τ ∈ P(2). Using Theorem 4.2(i), we can write

EµEτ =
∑
λ

βλµ,τ (t) Eλ,

where the sum is over finitely many λ ∈ P(2) and βλµ,τ (t) ∈ Q[t]. From Theorem 4.2(ii) we
have

M2µ(2n)M2τ (2n) =
∑
λ

βλµ,τ (2n) M2λ(2n), n ≥ 1.

In other words, the structure constants of the algebra of fixed orbitals are integer valued rational
polynomials. For a direct study of these structure constants in much more detail see the two
recent papers [1, 4, 28] (our focus in this paper is more on the eigenvalues and eigenvectors
of B2n). These papers work in the context of the Hecke algebra of the Gelfand pair (S2n, Hn)
(which explains the extra factor 2nn! in their structure constants).

Proof. We proceed by induction on |µ|. Set E(0) = 1 and assume that, for some k ≥ 1, we
have defined Eµ ∈ Λ[t], for all µ ∈ P(2) with |µ| ≤ k − 1, such that items (ii) and (iii) in the
statement of the theorem are satisfied.

Now let µ ∈ P(2) with |µ| = k and with multiplicity of i equal to mi, i ≥ 2. Define

Eµ =
1

2`(µ)

Wµ −
∑

τ∈P(2,k−1)

ζτµ(t) Eτ

 .

We shall now verify items (ii) and (iii)(a), (iii)(b) in the statement for Eµ. We begin with item
(iii).
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By Theorem 4.1(iv) we can write

Wµ =
∑
λ ≤ µ

aλµ(t) pλ, (25)

where degree of aλµ(t) ≤ |µ|−|λ|
2

+ `(µ)− `(λ) ≤ |µ| − |λ|+ `(µ)− `(λ).

Let τ ∈ P(2) with |τ | ≤ k − 1. By the induction hypothesis we can write

Eτ =
∑
λ ≤ τ

bλτ (t) pλ, (26)

where degree of bλτ (t) ≤ |τ | − |λ|+ `(τ)− `(λ).

Now, degree of ζτµ(t) ≤ |µ| − |τ | = |µ| − |τ | − `(τ) (by Lemma 3.7(ii)) and thus degree of
ζτµ(t)bλτ (t)≤ |µ| − |λ| − `(λ) = |µ| − |λ|+ `(µ)− `(λ).

By Lemma 3.7(iii) we have that ζτµ(t) 6= 0 implies τ ≤ µ. Item (iii)(a) now follows from
(25) and (26).

Item (iii)(b) also follows from (25) and (26) by using the induction hypothesis, Theorem 4.1
(iv)(b) and Lemma 3.7(iii,iv).

We now verify item (ii). Let λ ∈ Ym and consider the following three cases:

(a) k ≤ m: This follows from Theorems 4.1(iii), Theorem 3.8(i), and the induction hypothesis.

(b) m < k ≤ 2m: We need to show that Eµ(c(2λ)) = 0. This follows from Theorem 4.1(iii),
Theorem 3.8(ii), and the induction hypothesis.

(c) k > 2m: We need to show that Eµ(c(2λ)) = 0. By Theorem 4.1(iii) we have Wµ(c(2λ)) =
0. By the induction hypothesis Eτ (c(2λ)) = 0 for m < |τ | and by Lemma 3.8(iii) ζτµ(2m) = 0
for |τ | ≤ m. The result follows.

That completes the proof of items (ii) and (iii). Item (i) now follows from Theorem 4.1(i)
and the triangular definition of the Eµ. 2

It is easily seen that property (ii) of Theorem 4.2 characterizes the symmetric function Eµ.

Corollary 4.3. Let f, g ∈ Λ[t]. Suppose that there exists n0 such that f(c(2λ)) = g(c(2λ)) for
all λ ∈ Y , |λ| ≥ n0. Then f = g.

Proof. Suppose f 6= g. Write

f − g = aµ1(t)Eµ1 + aµ2(t)Eµ2 + · · ·+ aµk(t)Eµk , (27)

where µi ∈ P(2) for all i and aµi(t) 6= 0 for all i.

Choose a positive integer m such that m ≥ n0, |µi| ≤ m for 1 ≤ i ≤ k, and aµi(2m) 6= 0
for 1 ≤ i ≤ k. We can now rewrite (27) (by adding terms with zero coefficients) as

f − g =
∑

µ∈P(2,m)

aµ(t)Eµ, (28)
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where not all aµ(2m) are zero.

Evaluate both sides of (28) on the contents of 2λ, for every λ ` m. By assumption we get

0 =
∑

µ∈P(2,m)

aµ(2m)θ̂2λ2(µ,1m−|µ|), λ ` m. (29)

From (29) we get that a nontrivial linear combination of the columns of (the nonsingular matrix)
Θ̂(2m) is zero, a contradiction. 2

Example 4.4. Below we give tables of Wµ and Eµ polynomials for |µ| ≤ 4. The Wµ polyno-
mials are from [6, 9] while the Eµ polynomials were calculated using the definition given in the
proof of Theorem 4.2.

W(0) = 1 E(0) = 1

W(2) = p1 E(2) =
p1
2
− t

4

W(3) = p2 −
t(t− 1)

2
E(3) =

p2
2
− p1 +

3t− t2

4

W(2,2) =
p21
2
− 3p2

2
+
t(t− 1)

2
E(2,2) =

p21
8
− 3p2

4
+

(10− t)p1
8

+
9t2 − 24t

32

W(4) = p3 − (2t− 3)p1 E(4) =
p3
2
− 9p2

4
+

(11− 2t)p1
2

+
8t2 − 23t

8

We can calculate the eigenvalue table Θ̂(8) of B8 using the list above. We list the ele-
ments of P4 in the order {(14), (2, 12), (2, 2), (3, 1), (4)} and the elements of Y4 in the order
{(4), (3, 1), (2, 2), (2, 12), (14)}. We have

Θ̂(8) =


1 12 12 32 48
1 5 −2 4 −8
1 2 7 −8 −2
1 −1 −2 −2 4
1 −6 3 8 −6

 .

5 Eigenvectors: similar algorithms for φ̂λµ and θ̂2λ
2µ

In this section we shall give an inductive procedure to write down a specific eigenvector (a
so called first GZ-vector) in each eigenspace of the (left) actions of Z[C[Sn]] and B2n on C[Sn]
and C[M2n] respectively. This then yields simple inductive algorithms to calculate φ̂λµ and θ̂2λ2µ
(that do not depend on knowing the symmetric group characters).
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To begin with, it will be useful to know (as suggested by (3) and Lemma 2.1) how GZ-
vectors behave under restriction and induction.

The case of restriction follows from the following result.

Lemma 5.1. Let λ ∈ Yn and consider the irreducible Sn-module V λ.

(i) Let v ∈ V λ be an eigenvector for the action of X1, . . . , Xn−1. Then v is also an eigen-
vector for the action of Xn.

(ii) Suppose T ∈ tab(n, λ) and v ∈ V λ satisfy

Xi · v = c(bT (i))v, 1 ≤ i ≤ n− 1.

Then Xn · v = c(bT (n))v.

(iii) The GZ-basis of V λ is the union of the GZ-bases of V µ, as µ varies over λ−.

Proof. (i) Let X be the sum of all transpositions in Sn. Note that X = X1 + · · ·+Xn and that
X is in the center of C[Sn]. Thus, by Schur’s lemma, the action of X on V λ is multiplication
by a scalar. Thus v is an eigenvector for the action of Xn = X − (X1 + · · ·+Xn−1).

(ii) The action of X on V λ is multiplication by a scalar α. By considering a GZ-vector of
V λ we see that α is equal to the sum of the contents of all boxes of the Young diagram λ. The
result follows.

(iii) This follows from parts (i) and (ii) above using the branching rule (4). 2

Now we consider the case of induction. Since we will also be applying this construction to
the case of the regular module C[Sn], which is not multiplicity free, we first extend the notion
of a GZ-vector to a Sn-module with a single isotypical component.

Let V be a Sn-module with a single isotypical component, the irreducibles occuring in V all
being isomorphic to V λ, for some λ ∈ Yn. Let T ∈ tab(n, λ) and define the following subspace
of V :

VT = {v ∈ V | Xi(v) = c(bT (i))v, i = 1, . . . , n}.
It is easy to see that we have the canonical decomposition:

V = ⊕
T∈tab(n,λ)

VT .

By a GZ-vector of V associated to T we mean a nonzero vector in VT .

For a Young diagram λ letO(λ) be the set of boxes corresponding to the outer corners of λ.
Note that no two boxes in O(λ) have the same content. For λ ∈ Yn, we denote the isotypical
component of V λ in a Sn-module W by W λ.

Lemma 5.2. Let W be a Sn-module and let

U = C[Sn+1]⊗C[Sn] W = ind Sn+1

Sn
(W ).

Let T ∈ tab(n, λ) and let v ∈ W λ be a GZ-vector associated to T . Let µ ∈ λ+ and let
b ∈ O(λ) be the box added to λ to get µ. Let S ∈ tab(n + 1, µ) be the standard tableau
obtained from T by adding n+ 1 in box b.
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Then ∏
d∈O(λ)\{b}

(Xn+1 − c(d)ε) · (ε⊗ v)

is a GZ-vector of Uµ associated to S.

Proof. It suffices to prove the case W = V λ. In this case v = vT (upto scalars) and, by the
branching rule, U = ⊕τ∈λ+V τ . Clearly, ε ⊗ vT ∈ U is 6= 0. Write ε ⊗ vT =

∑
τ∈λ+ vτ , where

vτ ∈ V τ .

For 1 ≤ i ≤ n we have Xi · (ε ⊗ vT ) = ε ⊗ (Xi · vT ) = c(bT (i))(ε ⊗ vT ). It follows that
Xi · vτ = c(bT (i))vτ , 1 ≤ i ≤ n, τ ∈ λ+. From part (ii) of Lemma 5.1 it now follows that
Xn+1 · vτ = c(d)vτ , τ ∈ λ+, where d is the box added to λ to get τ . The result follows. 2

Let λ = (λ1, . . . , λt) ` n. Define the standard tableau R ∈ tab(n, λ) by filling the boxes of
λ with the integers 1, 2, . . . , n in row major order, i.e., the first row is filled with the numbers
1, 2, . . . , λ1 (from left to right), the second row with the numbers λ1 + 1, λ1 + 2, . . . , λ1 + λ2
and so on. We call R the first tableau in tab(n, λ) and given a Sn-module W , a nonzero vector
v in (W λ)R will be called a first Gelfand-Tsetlin vector in W λ.

We now give an example of a first GZ-vector and rederive a result from [11, 16]. First, we
make a definition. The perfect matching derangement operator

D2n : C[M2n]→ C[M2n]

is defined as follows: for A ∈ M2n set D2n(A) =
∑

B B, where the sum is over all B ∈ M2n

with d(A,B) having no part equal to 2. In other words, D2n =
∑

µN2µ, where the sum is over
all µ ∈ P(2) with |µ| = n. For λ ` n, let m2λ

2n denote the eigenvalue of D2n on V 2λ.

Fix a matching A ∈ M2n. The number of B ∈ M2n with d(A,B) having no part equal to
2 is easily seen (by inclusion-exclusion) to be

d(2n) =
n∑
i=0

(−1)i
(
n

i

)
(2n− 2i− 1)!!

where we let (−1)!! = 1.

We denote by v2λ the first GZ-vector in the subspace V 2λ of C[M2n]. For the rest of this
section fix J = {[1, 2], [3, 4], . . . , [2n− 1, 2n]} ∈ M2n.

Example 5.3. (i) Clearly, v2(n) =
∑

A∈M2n
A. Let µ ∈ Pn. The coefficient of J in v2(n) is 1

while the coefficient of J in N2µ(v2(n)) (respectively, D2n(v2(n))) is |M(J, 2µ)| (respectively,
d(2n)). It follows that

θ̂
2(n)
2µ = |M(J, 2µ)|,

m
2(n)
2n = d(2n).

It is easy to see that

|M(J, 2µ)| = 2nn!

zµ2`(µ)
.
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(ii) We now write down v2(n−1,1). Using the inductive structure of C[M2n] given in Lemma
2.1 (v), (vi) and applying Lemmas 5.1 and 5.2, we get from item (i) above,

v2(n−1,1) = (X2n−1 − (2n− 2)ε) ·

 ∑
A∈M2n−2

(A ∪ {[2n− 1, 2n]})


=

2n−2∑
i=1

∑
A∈M2n,[i,2n]∈A

A

− (2n− 2)

 ∑
A∈M2n,[2n−1,2n]∈A

A


=

∑
A∈M2n

A− (2n− 1)

 ∑
A∈M2n,[2n−1,2n]∈A

A

 .

The coefficient of J in v2(n−1,1) is−(2n− 2) and the coefficient of J in D2n(v2(n−1,1)) is d(2n).
We can easily calculate the coefficient of J in N2µ(v2(n−1,1)). Two cases arise:

(a) µ has no part equal to 1: The coefficient of J in N2µ(v2(n−1,1)) is |M(J, 2µ)|.
(b) µ has a part equal to 1: Let µ′ ∈ Pn−1 be obtained from µ by deleting a 1 from the

parts of µ and let J ′ = {[1, 2], [3, 4], . . . , [2n − 3, 2n − 2]} ∈ M2n−2. The coefficient of J in
N2µ(v2(n−1,1)) is |M(J, 2µ)| − (2n− 1)|M(J ′, 2µ′)|.

It follows that

θ̂
2(n−1,1)
2µ =


|M(J,2µ)|
−(2n−2) , if 1 is not a part of µ,

|M(J,2µ)|−(2n−1)|M(J ′,2µ′)|
−(2n−2) , if 1 is a part of µ.

and that

m
2(n−1,1)
2n =

d(2n)

−(2n− 2)
.

In principle, it is possible to extend the method of Example 5.3 to certain other eigenspaces,
such as V 2(n−2,2) and V 2(n−2,1,1), and derive complicated explicit formulas for m2(n−2,2)

2n and
m

2(n−2,1,1)
2n . We do not pursue this here. Instead we shall show how Lemmas 5.1 and 5.2 can be

used to give a practical recursive algorithm for calculating θ̂2λ2µ.

Before developing our algorithm we shall show that the coefficient of J in the first GZ-vector
of V 2λ is nonzero.

The construction of Lemma 5.2 leads to the following elements pT ∈ C[Sn], T ∈ tab(n)
(originally defined in [20] and further studied in [9, 5]):

(i) pT = ε for T the unique element of tab(1).

(ii) Let T ∈ tab(n + 1, µ), where µ ∈ Yn+1. Let b be the box corresponding to the inner
corner of µ containing n + 1. Drop this box from µ to get λ ∈ Yn and drop this box from T to
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get S ∈ tab(n, λ). Note that b ∈ O(λ). Inductively define

pT = pS

 ∏
d∈O(λ)\{b}

Xn+1 − c(d)ε

c(b)− c(d)

 .

We consider every V λ to be equipped with a (unique upto scalars) Sn-invariant inner prod-
uct. The fundamental property of the elements pT is given in part (i) of the result below and
parts (ii,iii) are simple consequences of part (i).

Theorem 5.4. (i) Let λ, µ ∈ Yn, λ 6= µ and let T ∈ tab(n, µ).

(a) The action of pT on V λ is the zero map, i.e., pT · v = 0 for all v ∈ V λ.

(b) The action of pT on V µ is orthogonal projection onto the one dimensional subspace
spanned by the GZ-vector vT .

(ii) We have the following identity in C[Sn]:∑
T∈tab(n)

pT = ε. (30)

(iii) For T ∈ tab(n, µ) the coefficient of ε in pT is nonzero.

Proof. (i)(a) Let S ∈ tab(n, λ) and let vS be the corresponding GZ-vector in V λ. It is enough
to show that pT · vS = 0 (as the GZ-vectors form a basis of V λ).

The element 1 is in row 1, column 1 in both T and S. Let i ∈ {2, . . . , n} be the least integer
whose coordinates differ in T and S. Let d be the box of S containing i. Then pT contains the
term (Xi − c(d)ε). Since vS is the GZ-vector corresponding to S we have Xi · vS = c(d)vS . It
follows that pT · vS = 0.

(i)(b) Let S ∈ tab(n, µ) with T 6= S and with vS the corresponding GZ-vector. Then a
similar argument as in the previous paragraph shows that pT · vS = 0. From the definition of pT
it follows that pT · vT = vT . Since the GZ-basis is orthogonal with respect to the Sn-invariant
inner product on V µ the result follows.

(ii) Decompose C[Sn] into irreducibles and consider the basis of C[Sn] that is the union of
the GZ-bases of each of the irreducibles. Part (i) shows that the left hand side of (30) acts as the
identity on each basis element. The result follows since the regular representation is faithful.

(iii) Given an Sn-module W and a ∈ C[Sn] by TraceW (a) we mean the trace of the action
of a on W . Let us first recall the Fourier inversion formula. If a =

∑
π∈Sn aππ ∈ C[Sn] then

aπ =
1

n!

∑
λ∈Yn

dim(V λ)TraceV λ(π−1a). (31)

The coefficient of ε in pT is thus

1

n!

∑
λ∈Yn

dim(V λ)TraceV λ(pT ).
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By part (i)(a) the sum above is equal to 1
n!

dim(V µ)TraceV µ(pT ) and by part (i)(b) this is equal
to dim(V µ)

n!
. 2

Lemma 5.5. (i) let λ ∈ Yn and T ∈ tab(n, λ). Then pT ∈ C[Sn]λ and is itself a GZ-vector
associated to T .

(ii) Let S, T ∈ tab(n). Then pTpS = δTS pS .

(iii) Let W be a Sn-module. Let 0 6= v ∈ W , λ ∈ Yn, and T ∈ tab(n, λ). Then v ∈ W λ and
is a GZ-vector associated to T if and only if pT · v = v.

Proof. (i) Consider the GZ-vector ε of V (1). It follows from (3) and Lemma 5.2 that

pT · ε = pT

is a GZ-vector of C[Sn]λ associated to T .

(ii) This follows from part (i) and Theorem 5.4(i).

(iii) This follows by decomposing W into irreducibles, writing v as a linear combination of
the basis of W consisting of the union of the GZ-bases of the irreducibles in the decomposition
and applying Theorem 5.4(i). 2

We now consider the coefficient of J in GZ-vectors in C[M2n]. Given λ ∈ Yn, call T ∈
tab(2n, 2λ) good if i+ 1 is in the same row as i (and therefore immediately following i) for all
odd i. For instance, the first tableau is good. It is easily seen that the number of good tableaux
in tab(2n, 2λ) is equal to |tab(n, λ)|.

Lemma 5.6. Let λ ∈ Yn and T ∈ tab(2n, 2λ). Then

(i) pT · J 6= 0 implies that the GZ-vector in C[M2n]2λ associated to T is pT · J .

(ii) pT · J 6= 0 if and only if T is good.

Proof. (i) This follows from parts (ii) and (iii) of Lemma 5.5.

(ii) If the recursive definition of pT is expanded out it will be a product of terms of the form
Xj−c(d)ε
c(b)−c(d) . Collect all the terms with j even and call the product peT and collect all the terms with
j odd and call the product poT . Then pT = peTp

o
T .

(if) It follows from Lemma 2.1(v,vi) and Lemma 5.2 that v = poT · J 6= 0 is the GZ-vector
associated to T . We claim that peT · v = v. This will prove the result. Let j be even and let it
appear in box b in T . Then Xj · v = c(b)v. By definition every term involving Xj in peT will be
of the form Xj−c(d)ε

c(b)−c(d) where b 6= d. The claim follows.

(only if) Suppose T is not good. Let 2j be the least even number not in the same row as
2j−1. Define a standard tableau T ′ with 2j boxes as follows. Let T2j−1 be the standard tableau
obtained from T by considering the boxes containing the numbers {1, 2, . . . , 2j − 1}. Now
add a box b at the end of the row containing 2j − 1 and fill it with the number 2j. Note that
T ′ ∈ tab(2j, λ′) (for some λ′) is good.
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Set qoT to be the product of all odd terms in pT involving {X1, X3, . . . , X2j−1}. It follows
from Lemma 2.1(v,vi) and Lemma 5.2 that v = qoT · J satisfies X2j · v = c(b)v. Now pT has a
term of the form X2j−c(b)ε

c(d)−c(b) , where d 6= b, and thus it follows that pT · J = 0. 2

It remains to show that the coefficient of J in pT · J is nonzero whenever T is good. At
this point it is convenient to switch to the Gelfand pair viewpoint and consider a realization of
C[M2n] as a submodule of C[S2n] (see sections 7.1 and 7.2 in [17]).

Let Hn denote the subgroup of all permutations π ∈ S2n with π · J = J . Then |Hn| = 2nn!
and we set

e =
1

2nn!

∑
π∈Hn

π ∈ C[S2n].

We have e2 = e. The submodule C[S2n]e of C[S2n] is isomorphic to the representation of
S2n obtained by inducing from the trivial one dimensional representation of Hn.

For an arbitrary v =
∑

π∈S2n
αππ ∈ C[S2n] the coefficients of ve are constant on the left

cosets of Hn (and are equal to the average of the α’s on the cosets). Thus v ∈ C[S2n] is in
C[S2n]e if and only if the coefficients of v are constant on the left cosets of Hn. The number
of left cosets of Hn is equal to |M2n| and every left coset of Hn is the set of all π ∈ S2n with
π · J = A, for some A ∈M2n.

For A ∈M2n define eA ∈ C[S2n]e by

eA =
1

2nn!

∑
π

π,

where the sum is over all π ∈ S2n with π · J = A (note that eJ = e). It follows that {eA | A ∈
M2n} is a basis of C[S2n]e and the mapping

C[S2n]e→ C[M2n]

sending eA 7→ A, A ∈M2n is a S2n-linear isomorphism.

Given λ ∈ Yn consider the following central idempotent in C[S2n]:

ψ2λ =
dim(V 2λ)

(2n)!

∑
π∈S2n

χ2λ(π)π.

For any S2n-module W action of the element ψ2λ is projection onto W 2λ. We have

ψ2λψ2µ = δλµψ
2λ. (32)

For λ ∈ Yn set e2λ = ψ2λe. Note that e2λ 6= 0 as otherwise V 2λ will not occur in C[S2n]e. We
have

e =
∑
λ∈Yn

e2λ, (33)

e2λe2µ = ψ2λeψ2µe = δλµe
2λ. (34)
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Similarly we can show that, for λ 6= µ, we have

e2λC[S2n]e2µ = 0. (35)

The algebra B2n is isomorphic to the endomorphism algebra EndC[S2n](C[S2n]e) which,
since it is commutative and since e is idempotent, is isomorphic to eC[S2n]e, the isomorphism
being given by f 7→ f(e). We have, from (33,35),

eC[S2n]e = (
∑
λ∈Yn

e2λ)C[S2n](
∑
µ∈Yn

e2µ) =
∑
λ∈Yn

e2λC[S2n]e2λ. (36)

It follows from (34) that the sum in (36) is direct. Now, dimension of eC[S2n]e is p(n)
and each summand on the right hand side of (36) in nonzero (as it contains e2λ) so each is one
dimensionsal. It follows that

e2λC[S2n]e2λ = Ce2λ. (37)

Now consider C[S2n] with the standard inner product (i.e., the standard basis S2n is or-
thonormal) which is S2n-invariant. The matrix, in the standard basis, for the left action of e is
real and symmetric. Since e2 = e this matrix is idempotent. It follows that the action of e on
C[S2n]e is orthogonal projection onto its image eC[S2n]e. It now follows from (33,34,35,37)
that the action of e2λ on (C[S2n]e)2λ is orthogonal projection onto Ce2λ and thus its trace is 1.

Theorem 5.7. Let λ ∈ Yn and let T ∈ tab(2n, 2λ) be good. Then the coefficient of J in
pT · J 6= 0.

Proof. From Lemma 5.6 pT · J 6= 0. By the S2n-linear isomorphism between C[S2n]e and
C[M2n] we see that pT e 6= 0. Write

pT e =
∑

A∈M2n

αAeA.

We need to show that αJ 6= 0 or, equivalently, |Hn|αJ 6= 0. Now, |Hn|αJ is the sum of
the coefficients of elements of Hn in pT e. By the Fourier inversion formula the sum of the
coefficients of elements of Hn in pT e is

2nn!

(2n)!

{∑
µ∈Y2n

dim(V µ)TraceV µ(epT e)

}
.

By Theorem 5.4(i)(a) and (33,35) this sum reduces to

2nn!

(2n)!
dim(V 2λ)TraceV 2λ(epT e) =

2nn!

(2n)!
dim(V 2λ)TraceV 2λ(e2λpT e

2λ). (38)

Let S ∈ tab(2n, 2λ) and assume that S is good. By Lemma 5.6 and the S2n-linear isomor-
phism between C[M2n] and C[S2n]e we see that 0 6= pSe is the GZ-vector associated to S in
(C[S2n]e)2λ. From (33) and Theorem 5.4(i)(a) we have pSe = pSe

2λ.
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By (30), Theorem 5.4(i)(a), and Lemma 5.6(ii) we have

e2λ =
∑
S

pSe
2λ, (39)

where the sum is over all good S ∈ tab(2n, 2λ).

The vectors on the right hand side of (39) are nonzero and orthogonal (being GZ-vectors
associated to distinct tableaux). It follows that the projection of pT e2λ on e2λ is nonzero and
thus e2λpT e2λ = βe2λ, where β is the square of the ratio of the lengths of pT e2λ and e2λ. Thus
the expression in (38) is equal to β 2nn!

(2n)!
dim(V 2λ). That completes the proof. 2

Remark Let T ∈ tab(2n, 2λ) be not good. Let aT e2λ, where aT ∈ C[S2n] be the GZ-vector in
C[S2n]2λ associated with T . As the GZ-basis is orthogonal it follows from (39) that aT e2λ is
orthogonal to e2λ and thus e2λaT e2λ = 0.

We shall now develop our algorithm for computing the eigenvalues of B2n by writing down
the eigenvectors. To be efficient we shall not write down the eigenvectors explicitly but only
keep track of the values of these eigenvectors at a (subexponential) number of linear functionals
on C[M2n].

For µ ∈ Pn define a linear functional

f2µ : C[M2n]→ C

as follows: given v ∈ C[M2n] write

v =
∑

A∈M2n

αAA, αA ∈ C.

Define f2µ(v) =
∑

A αA, where the sum is over all A ∈ M2n with d(J,A) = 2µ. We call
(f2µ(v))µ`n the orbital coefficients of v ∈ C[M2n]. Note that the vector v, living in a vector
space of dimension (2n− 1)!!, has only p(n) orbital coefficients.

Given λ ∈ Yn, let v2λ denote the first GZ-vector of the submodule C[M2n]2λ of C[M2n],
normalized so that the coefficient of J in v2λ is 1. Then it follows that

θ̂2λ2µ = f2µ(v2λ).

Thus, the eigenvalues can be determined once we know the orbital coefficients of the first
GZ-vectors. The basic idea of the algorithm is to inductively compute the orbital coefficients
using Lemmas 5.1 and 5.2. This leads to the following problem, called the update problem:

Given the orbital coefficients of v ∈ C[M2n], determine the orbital coefficients of X2n−1 ·v.

In order to solve the update problem we need to go slightly beyond orbital coefficients to
relative orbital coefficients.

Let
P ′n = {(µ, i) | µ ∈ Pn and i is a part of µ}.
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Elements of P ′n are called pointed partitions of n. Let pp(n) denote the number of pointed
partitions of n. Clearly, pp(n) = 1+p(1)+· · ·+p(n−1) (note that pp(n) is also subexponential).
Pointed partitions play an important role in Okounkov-Vershik theory (see [22, 5]) as pp(n) is
the dimension of the relative commutant {π ∈ C[Sn] | πC[Sn−1] = C[Sn−1]π}.

For (µ, i) ∈ P ′n define a linear functional

f(2µ,2i) : C[M2n]→ C

as follows: given v ∈ C[M2n] write

v =
∑

A∈M2n

αAA, αA ∈ C.

Define f(2µ,2i)(v) =
∑

A αA, where the sum is over all A ∈ M2n with d(J,A) = 2µ and
with the size of the component of J ∪ A containing the edge [2n − 1, 2n] being 2i. We call
(f(2µ,2i)(v))(µ,i)∈P ′n the relative orbital coefficients of v ∈ C[M2n].

For λ ∈ Yn, µ ∈ Pn we now have

θ̂2λ2µ =
∑
i

f(2µ,2i)(v2λ),

where the sum is over all parts i of µ.

The update problem for relative orbital coefficients can be easily solved using the following
lemma.

Lemma 5.8. Let A ∈M2n. Let C1, C2, . . . , Ct be the components of the spanning subgraph of
K2n with edge set J ∪ A, with Ct containing the edge [2n − 1, 2n]. Let 2µi be the number of
vertices of Ci, i = 1, . . . , t. Thus {2µ1, . . . , 2µt} is the multiset of parts of d(J,A).

(i) Let s be a vertex of Cj , j = 1, . . . , t− 1 and put A′ = (s 2n− 1) · A. Then the multiset
of parts of d(A′, J) is

({2µ1, . . . , 2µt} − {2µj, 2µt}) ∪ {2(µj + µt)},

with 2(µj + µt) as the size of the component of A′ ∪ J containing the edge [2n− 1, 2n].

(ii) Traverse the vertices of the alternating cycle Ct in cyclic order, beginning at the vertex
2n and going towards 2n−1. List the vertices encountered as {2n, 2n−1, i1, i2, . . . , i2k−1, i2k},
where k ≥ 0 and 2µt = 2k + 2. Then

(a) Let j ∈ {1, 2, . . . , k} and put A′ = (i2j 2n− 1) · A. The multiset of parts of d(A′, J) is
{2µ1, . . . , 2µt−1, 2µt− 2j, 2j}, with 2µt− 2j as the size of the component of A′ ∪ J containing
the edge [2n− 1, 2n].

(b) Let j ∈ {1, 2, . . . , k} and put A′ = (i2j−1 2n−1) ·A. The multiset of parts of d(A′, J) is
{2µ1, . . . , 2µt}, with 2µt as the size of the component ofA′∪J containing the edge [2n−1, 2n].
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Proof. (i) Let [s, x], [2n− 1, y] ∈ A. Then A′ = (A\{[s, x], [2n− 1, y]})∪{[2n− 1, x], [y, s]}.
It follows that Ck, k ∈ {1, . . . , t− 1} \ {j}, continue to remain components of J ∪ A′ and that
Cj and Ct merge into a single alternating cycle in J ∪ A′.

(ii)(a) It is clear that C1, . . . , Ct−1 continue to be components of J ∪ A′ and that Ct splits
into two alternating cycles with vertex sets

{i2j+1, i2j+2, . . . , i2k−1, i2k, 2n, 2n− 1} and {i1, i2, . . . , i2j−1, i2j}.

(ii)(b) Similar to case (ii)(a) except that Ct does not split. 2

For v ∈ C[M2n], define

[v] = (f(2µ,2i)(v))(µ,i)∈P ′n

to be the vector of the relative orbital coefficients of v. We denote f(2µ,2i)(v) by v(2µ, 2i).

The following is the algorithm for updating the vector of relative orbital coefficients. Its
correctness directly follows from Lemma 5.8.

Algorithm 1. (Update for relative orbital coefficients)

Input: [v], for some v ∈ C[M2n], and an integer a.

Output: [u], where u = (X2n−1 − aε) · (v) ∈ C[M2n]. We denote the output by Fa([v]).

Method:

1. For all (µ, i) ∈ P ′n do γ(2µ, 2i) = 0.

2. For all (µ, i) ∈ P ′n do

2a. Write the multiset of parts of µ as {µ1, µ2, . . . , µt}, where µt = i.

2b. For j = 1 to t− 1 do

2b.1. µ′ = ({µ1, µ2, . . . , µt} \ {µj, µt}) ∪ {µj + µt}, i′ = µj + µt.

2b.2. γ(2µ′, 2i′) = 2µjv(2µ, 2i) + γ(2µ′, 2i′).

2c. k = µt − 1.

2d. For j = 1 to k do

2d.1. µ′ = ({µ1, µ2, . . . , µt−1, µt − j, j}, i′ = µt − j.
2d.2. γ(2µ′, 2i′) = v(2µ, 2i) + γ(2µ′, 2i′).

2d.3. γ(2µ, 2i) = v(2µ, 2i) + γ(2µ, 2i).

3. For all (µ, i) ∈ P ′n do u(2µ, 2i) = γ(2µ, 2i)− av(2µ, 2i).

4. RETURN (u(2µ, 2i))(µ,i)∈P ′n .

We now give the inductive algorithm for computing the rows of the eigenvalue tables Θ̂(2n).
In Step 5 below we use the convention that, for a proposition P , [P ] equals 1 if P is true and is
equal to 0 if P is false.
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Algorithm 2 (Computing rows of the eigenvalue table inductively)

Input: (i) λ′ ∈ Yn+1, with λ = λ′ − {last box in last row of λ} ∈ Yn.

(ii) The row of Θ̂(2n) indexed by λ, i.e., (θ̂2λ2µ)µ∈Pn .

Output: The row of Θ̂(2n+ 2) indexed by λ′, i.e., (θ̂2λ
′

2µ′)µ′∈Pn+1 .

Method:

1. For all (µ′, i) ∈ P ′n+1 do v(2µ′, 2i) = 0.

2. For all µ ∈ Pn do v(2µ ∪ {2}, 2) = θ̂2λ2µ.

3. Let the Young diagram 2λ have k + 1 outer corners. Adding two boxes (in a row) in the
place of one of these outer corners yields 2λ′. Denote the k other outer boxes by b1, . . . , bk.

4. For j = 1 to k do [v] = Fc(bj)([v]).

5. For all µ′ ∈ Pn+1 do θ̂2λ′2µ′ =

n+1∑
i=1

[i is a part of µ′] v(2µ′, 2i)

v(2(1n+1),2)
.

6. RETURN (θ̂2λ
′

2µ′)µ′∈Pn+1 .

Theorem 5.9. Algorithm 2 is correct.

Proof. Let u ∈ C[M2n] be the first GZ-vector in V 2λ, normalized so that the coefficient of J
is 1. Let v ∈ C[M2n+2] be the vector corresponding to 1 ⊗ u ∈ indS2n+1

S2n
(C[M2n]), under the

isomorphism between indS2n+1

S2n
(C[M2n]) and resS2n+2

S2n+1
(C[M2n+2]) (Lemma 2.1(v,vi)). Then it

follows that steps 1 and 2 of Algorithm 2 correctly calculate [v].

It now follows from Lemma 5.2 that steps 3, 4, 5, and 6 of Algorithm 2 correctly compute
the (normalized) orbital coefficients of the first GZ-vector of V 2λ′ . 2

It is clear that a similar algorithm exists for any good tableau and the use of the first tableau
is only for convenience. We have implemented Algorithms 1 and 2 in Maple. Both the program
and its binary file are available at [26]. The program is able to compute θ̂2λ2µ reasonably quickly
for |λ| = |µ| ≤ 20. We were able to determine the entire spectrum of D40.

Example 5.10. We give below the eigenvalue table Θ̂(10) computed using this program. We list
the elements of P5 in the order {(15), (2, 13), (22, 1), (3, 12), (3, 2), (4, 1), (5)} and the elements
of Y5 in the order {(5), (4, 1), (3, 2), (3, 12), (22, 1), (2, 13), (15)}. We have

Θ̂(10) =



1 20 60 80 160 240 384
1 11 6 26 −20 24 −48
1 6 11 −4 20 −26 −8
1 3 −10 2 −4 −8 16
1 0 5 −10 −10 10 4
1 −4 −3 2 10 6 −12
1 −10 15 20 −20 −30 24


.
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Summing the fifth and seventh columns of Θ̂(10) we get the spectrum of D10:

m
(10)
10 = 544,m

(8,2)
10 = −68,m

(6,4)
10 = 12,m

(6,2,2)
10 = 12,

m
(4,4,2)
10 = −6,m

(4,2,2,2)
10 = −2,m

(2,2,2,2,2)
10 = 4.

Note the sole zero value in row 5, column 2. The eigenvalue table Θ̂(2n) tends to have far fewer
zero values than the character (or central character) table of Sn. For instance, p(15) = 176 and
of the 1762 = 30976 entries in the character table of S15 as many as 11216 are zero while only
878 of the entries in Θ̂(30) are zero.

Recently, Ku and Wong [15] gave elegant explicit formulas for m2(1n)
2n and m2(2m,1n−2m)

2n .
Namely, they showed that

m
2(1n)
2n = (−1)n−1(n− 1), m

2(2m,1n−2m)
2n = (−1)n−2((m− 1)n−m2 + 2m+ 1).

It would be interesting to see whether these formulas can be derived from the algorithm pre-
sented here. This possibility arises as follows. The number k of times the for loop in Step 4 of
Algorithm 2 is executed depends on the number of outer boxes of the input Young diagram. In
the case of the Young diagrams 2(1n) and 2(2m, 1n−2m) this number is 1 or 2 throughout (i.e.,
at every level of recursion). This considerably simplifies the recursion and it may be possible to
use generating function techniques to derive the formulas above. We hope to return to this later.

We shall now give an almost identical algorithm for computing the central characters of Sn,
based on the inductive structure (3) of the regular modules C[Sn].

For µ ∈ Pn define a linear functional

gµ : C[Sn]→ C

as follows: given v ∈ C[Sn] write

v =
∑
π∈Sn

αππ, απ ∈ C.

Define gµ(v) =
∑

π απ, where the sum is over π ∈ Cµ. We call (gµ(v))µ`n the class coefficients
of v ∈ C[Sn]. Note that the vector v, living in a vector space of dimension n!, has only p(n)
class coefficients.

Given λ ∈ Yn, let R ∈ tab(n, λ) be the first tableau and consider pR ∈ C[Sn]λ, a GZ-vector
associated to R. Let vλ denote the vector obtained by normalizing pR so that the coefficient of
ε is 1. Then it follows that

φ̂λµ = gµ(vλ).

Thus, the eigenvalues can be determined once we know the class coefficients of vλ. The
basic idea of the algorithm is to inductively compute the class coefficients using Lemma 5.2.
Like before, this leads to the update problem:
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Given the class coefficients of v ∈ C[Sn], determine the class coefficients of Xn · v.

To solve the update problem we define relative class coefficients. For (µ, i) ∈ P ′n define a
linear functional

g(µ,i) : C[Sn]→ C

as follows: given v ∈ C[Sn] write

v =
∑
π∈Sn

αππ, απ ∈ C.

Define g(µ,i)(v) =
∑

π απ, where the sum is over all π ∈ Sn with π ∈ Cµ and with the size of
the cycle of π containing n being i. We call (g(µ,i)(v))(µ,i)∈P ′n the relative class coefficients of
v ∈ C[Sn].

For λ ∈ Yn, µ ∈ Pn we now have

φ̂λµ =
∑
i

g(µ,i)(vλ),

where the sum is over all parts i of µ.

The update problem for relative class coefficients can be easily solved using the following
lemma.

Lemma 5.11. Let π ∈ Sn with C1, C2, . . . , Ct as its disjoint cycles and with Ct containing n.
Let µi = |Ci|, i = 1, . . . , t, so that {µ1, . . . , µt} is the multiset of cycle lengths of π.

(i) Let s be an element of Cj , j = 1, . . . , t − 1 and put π′ = (s n)π. Then the multiset of
cycle lengths of π′ is

({µ1, . . . , µt} − {µj, µt}) ∪ {µj + µt},

with µj + µt as the length of the cycle containing n.

(ii) Write Ct = (n ik ik−1 · · · i1), where k ≥ 0 and µt = k + 1. Let j ∈ {1, 2, . . . , k} and
put π′ = (ij n)π. Then the multiset of parts of π′ is {µ1, . . . , µt−1, µt − j, j}, with µt − j as the
length of the cycle containing n.

Proof. This is similar to the proof of Lemma 5.8. 2

For v ∈ C[Sn], define

[v] = (g(µ,i)(v))(µ,i)∈P ′n

to be the vector of the relative class coefficients of v. We denote g(µ,i)(v) by v(µ, i).

The following is the algorithm for updating the vector of relative class coefficients. Its
correctness directly follows from Lemma 5.11.

Algorithm 3. (Update for relative class coefficients)

Input: [v], for some v ∈ C[Sn], and an integer a.
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Output: [u], where u = (Xn − aε) · (v) ∈ C[Sn]. We denote the output by Ga([v]).

Method:

1. For all (µ, i) ∈ P ′n do γ(µ, i) = 0.

2. For all (µ, i) ∈ P ′n do

2a. Write the multiset of parts of µ as {µ1, µ2, . . . , µt}, where µt = i.

2b. For j = 1 to t− 1 do

2b.1. µ′ = ({µ1, µ2, . . . , µt} \ {µj, µt}) ∪ {µj + µt}, i′ = µj + µt.

2b.2. γ(µ′, i′) = µjv(µ, i) + γ(µ′, i′).

2c. k = µt − 1.

2d. For j = 1 to k do

2d.1. µ′ = ({µ1, µ2, . . . , µt−1, µt − j, j}, i′ = µt − j.
2d.2. γ(µ′, i′) = v(µ, i) + γ(µ′, i′).

3. For all (µ, i) ∈ P ′n do u(µ, i) = γ(µ, i)− av(µ, i).

4. RETURN (u(µ, i))(µ,i)∈P ′n .

We now give the inductive algorithm for computing the rows of the central character tables
of Sn.

Algorithm 4 (Computing rows of the central character table inductively)

Input: (i) λ′ ∈ Yn+1, with λ = λ′ − {last box in last row of λ} ∈ Yn.

(ii) The row of the central character table of Sn indexed by λ, i.e., (φ̂λµ)µ∈Pn .

Output: The row of the central character table of Sn indexed by λ′, i.e., (φ̂λ
′

µ′)µ′∈Pn+1 .

Method:

1. For all (µ′, i) ∈ P ′n+1 do v(µ′, i) = 0.

2. For all µ ∈ Pn do v(µ ∪ {1}, 1) = φ̂λµ.

3. Let λ have k + 1 outer corners. One of these outer corners, when added to λ, yields λ′.
Denote the k other outer boxes by b1, . . . , bk.

4. For j = 1 to k do [v] = Gc(bj)([v]).

5. For all µ′ ∈ Pn+1 do φ̂λ′µ′ =

n+1∑
i=1

[i is a part of µ′] v(µ′, i)

v(1n+1,1)
.

6. RETURN (φ̂λ
′

µ′)µ′∈Pn+1 .

Theorem 5.12. Algorithm 4 is correct.

Proof. Let R ∈ tab(n, λ) be the first tableau. Normalize pR ∈ C[Sn]λ to get a GZ-vector u
associated to R so that the coefficient of ε is 1.
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Let v correspond to u under the embedding of C[Sn] into C[Sn+1] (adding (n + 1) as a
singleton cycle to each permutation in Sn). Then it follows that steps 1 and 2 of Algorithm 4
correctly calculate [v]. It now follows from Lemma 5.2 that steps 3, 4, 5, and 6 of Algorithm 4
correctly compute the (normalized) class coefficients of pR′ (where R′ ∈ tab(n + 1, λ′) is the
first tableau). 2

It is clear that a similar algorithm exists for any tableau and the use of the first tableau is
only for convenience. This algorithm has also been implemented in [26].
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