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Abstract. We motivate and discuss four open problems

in polyhedral combinatorics related to threshold graphs,

degree sequences of graphs and hypergraphs, and balanced

subgraphs of 2-colored graphs.

1. Introduction

A simple graph G is threshold if every induced subgraph of G

contains a dominating or an isolated vertex. These graphs were

introduced by Chvátal and Hammer [CH] in 1977. Their origi-

nal motivation came from aggregation of inequalities in integer

programming. Since then they have been studied from several

different perspectives and a large literature has grown around

them. A comprehensive monograph on the subject is the book

by Mahadev and Peled [MP]. As explained in Chapter 3 of this

book, the study of threshold sequences (i.e., degree sequences

of threshold graphs) goes hand in hand with the study of de-

gree sequences of (simple) graphs. Threshold sequences satisfy

many of the criteria for degree sequences in an extremal way.

In this expository paper (addressed to the beginning graduate

student in graph theory) we motivate and discuss four open prob-

lems suggested by this connection between degree sequences and

threshold graphs. Briefly, these four problems are concerened

with the following topics:

• Degree sequences of ideal hypergraphs.

• Face numbers of the degree partition polytope.
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• Dimension of the alternating cone corresponding to a de-

gree partition.

• Cone of balanced subgraphs of a 2-colored graph.

The last of these topics is not really about degree sequences but

is a problem in non-bipartite matching theory (which we can

think of as generalized degree sequence theory).

Our main references for this paper are [BSS, BPS1, BPS2].

Since these are freely available on the arXiv we have chosen not

to include any proofs in this paper but have concentrated on

motivation and clear statements of problems and results. We

have also used, without proof, two characterizations of thresh-

old graphs (in Sections 2 and 4). We leave their easy proofs

as exercises. For more characterizations, generalizations, and

applications of threshold graphs see the monograph [MP].

Notation

Given a simple graph G = ([n], E) on the vertex set [n] =

{1, 2, . . . , n}, the degree dj of a vertex j is the number of edges

with j as an endpoint and dG = (d1, d2, . . . , dn) is the degree se-

quence of G. The degree partition of G is obtained by rearranging

dG in weakly decreasing order. Let DS(n) denote the set of all

degree sequences of simple graphs on the vertex set [n] and let

DP (n) denote the set of all degree partitions of n-vertex simple

graphs (note that some of the entries of a degree partition may

be zero. It is usual to have only nonzero terms in a partition,

but in this paper it is convenient to have this slight generality).

The degree sequence (respectively, degree partition) of a thresh-

old graph is called a threshold sequence (respectively, threshold

partition). Let TS(n) (respectively, TP (n)) denote the set of all

threshold sequences (respectively, threshold partitions) of length

n. If (d1, . . . , dn) ∈ TP (n) then either d1 = n − 1 or dn = 0.

Applying this recursively we see that #TP (n) = 2n−1.

2. Degree sequences of ideal hypergraphs

Several different characterizations of threshold graphs can be

generalized to the hypergraph setting to serve as definitions of

threshold hypergraphs (see [G, RRST]). For example, one of
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the characterizations of threshold sequences is that they are pre-

cisely the extreme points of the polytope of degree sequences

[K, PS]. In [BS] it was shown that much of this basic theory

generalizes to the polytope of degree sequences of hypergraphs

whose extreme points can then be defined to be the analog of

threshold sequences for hypergraphs). Unlike the case of graphs

these different definitions of thresholdness are not equivalent and

yield diferent families of hypergraphs. A survey of the inclu-

sions among these families is given in the paper of Klivans and

Reiner [KR]. Here we consider another result on degree parti-

tions of graphs, involving threshold partitions and majorization,

that generalizes to hypergraphs and that has relevance to the

long standing open question of characterizing degree partitions

of simple uniform hypergraphs.

Let S(n, r) denote the set of all r-subsets of [n]. Write each

r-subset of [n] in increasing order of its elements. Partially order

S(n, r) by componentwise ≤, i.e., {x1 < x2 < · · · < xr} ≤

{y1 < y2 < · · · < yr} iff xi ≤ yi, for all i. An r-graph ( or an

r-uniform hypergraph) is a pair ([n], E), where [n] is the set of

vertices and E ⊆ S(n, r) is the set of edges. Given an r-graph

H = ([n], E), the degree dj of a vertex j is the number of edges

in E containing j and dH = (d1, . . . , dn) is the degree sequence of

H . The degree partition of H is its degree sequence rearranged

in weakly decreasing order.

An r-graph H = ([n], E) is said to be an r-ideal if E is an order

ideal of S(n, r), i.e., X ∈ E and Y ≤ X implies Y ∈ E. It is

easy to see that the degree sequence of an r-ideal is a partition.

For graphs, one of the standard characterizations of threshold

partitions is that they are precisely the degree partitions of order

ideals in S(n, 2) (the proof of this statement is left as an exercise

for the reader).

Let a = (a(1), . . . , a(n)) and b = (b(1), . . . , b(n)) be real se-

quences of length n. Denote the i-th largest component of a
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(respectively, b) by a[i] (respectively, b[i]). We say that a ma-

jorizes b, denoted a � b, if

k∑

i=1

a[i] ≥
k∑

i=1

b[i], k = 1, . . . , n,

with equality for k = n. It was proved in [PS, RG] that a weakly

decreasing nonnegative integral sequence is a degree partition of

a graph if and only if it is majorized by a threshold partition.

This fact generalizes to hypergraphs, with essentially the same

proof ( see [BSS] (arXiv version) and [KR]): A weakly decreasing

nonnegative integral sequence is a degree partition of an r-graph

if and only if it is majorized by the degree partition of an r-ideal.

We do not know whether this characterization can be used

in any way to give an efficient (i.e., polynomial time) algorithm

for recognizing degree partitions of r-graphs. In any case, this

characterization suggests the following problem.

Problem 1: Characterize or find an efficient algorithm for rec-

ognizing degree partitons of r-ideals.

3. Face numbers of the degree partition polytope

Three basic questions on degree sequences and degree parti-

tions of simple graphs are

• Characterize degree sequences (or, equivalently, degree

partitions) of simple graphs.

• Count the number of degree sequences of simple graphs.

• Count the number of degree partitions of simple graphs.

We remark that in the second and third items above we are

concerned with exact enumeration and not with (the equally

important) asymptotic enumeration. As is well known, degree

sequences of simple graphs were characterized by Erdös and Gal-

lai [EG]. We now recall this characterization from the polytope

point of view. For later use we shall write down the characteri-

zations for both degree sequences and degree partitions although

they are trivially equivalent.

We first define two polytopes in R
n. The polytope K(n) is

defined to be the solution set of the following system of linear



SOME PROBLEMS MOTIVATED BY THE NOTION OF THRESHOLD GRAPHS5

inequalities:

∑

i∈S

xi −
∑

i∈T

xi ≤ #S(n − 1 − #T ),(1)

where S, T ⊆ [n], S ∪ T 6= ∅, S ∩ T = ∅. Note that taking

S = {i}, T = ∅ gives xi ≤ n − 1 and taking S = ∅, T = {i}

gives xi ≥ 0, showing that K(n) is indeed a polytope.

The polytope F(n) is defined to be the solution set of the

following system of linear inequalities:

x1 ≥ x2 ≥ · · · ≥ xn,(2)
k∑

i=1

xi −
n∑

i=n−l+1

xi ≤ k(n − 1 − l), 1 ≤ k + l ≤ n.(3)

Note that (3) is obtained from (1) by taking S = {1, . . . , k}

and T = {n − l + 1, . . . , n}. Intuitively, K(n) is obtained by

symmetrizing F(n) and F(n) is the asymmetric part of K(n). Also

note that K(n) has exponentially many defining inequalities while

F(n) has only quadratically many defining inequalities.

We now recall the Erdös-Gallai criterion for degree partitions,

as linearized by Fulkerson-Hoffman-McAndrew (see [FHM, MP]):

given a nonnegative integral sequence d = (d1, . . . , dn), we have

d ∈ DP (n) (respectively, d ∈ DS(n)) if and only if d1 + · · ·+ dn

is even and d ∈ F(n) (respectively, d ∈ K(n)). This characteriza-

tion suggests the following definitions: given a simple graph G

on the vertex set [n] we define its extended degree sequence to be

(e, d1, . . . , dn), where (d1, . . . , dn) is the degree sequence of G and

e is the number of edges in G (note that 2e = d1+ · · ·+dn). Sim-

ilarly, we define the extended degree partition of G. Define DS(n)

(respectively, D̂S(n)), the polytope of degree sequences (respec-

tively, polytope of extended degree sequences), to be the convex

hull (in R
n) (respectively, in R

n+1) of all degree sequences (re-

spectively, extended degree sequences) of simple graphs on the

vertex set [n]. Similarly, we define DP(n), the polytope of degree

partitions, and D̂P(n), the polytope of extended degree partitions.

Note that
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• Since the number of edges depends linearly on the de-

grees the face numbers of D̂S(n) (respectively, D̂P(n))

and DS(n) (respectively, DP(n)) are equal.

• It follows from the Erdös-Gallai criterion (why?) that the

number of degree sequences (respectively, degree parti-

tions) of length n is equal to the number of lattice points

in D̂S(n) (respectively, D̂P(n)).

The study of DS(n) was begun by Koren [K] who showed that

its extreme points are precisely the threshold sequences and that

DS(n) = K(n) (observe that the Erdös-Gallai criterion only shows

DS(n) ⊆ K(n)). Beissinger and Peled [BP] determined the (ex-

ponential) generating function of the number of threshold se-

quences. Peled and Srinivasan [PS] determined the edges and

facets of DS(n) and gave another proof of Koren’s linear inequal-

ity description. Finally, Stanley [S2] obtained detailed informa-

tion on DS(n) and D̂S(n) including generating functions for all

face numbers, volume, and number of lattice points. In particu-

lar, he obtained a formula for the number of degree sequences of

length n. It is natural to ask the same questions for the polytope

DP(n). The first few steps were taken in the paper [BSS] whose

main result we now describe.

As explained above, we can think of DS(n) as the symmetriza-

tion of DP(n) and DP(n) as the asymmetric part of DS(n). Let

us consider an example of the operation of taking the asymmet-

ric part. Let P be an integral polytope (i.e, a polytope with

integral extreme points) in R
n that is closed under permutations

of its points, i.e., x ∈ P implies π.x ∈ P , for all permutations

π of [n]. For example, DS(n) is such a polytope. Let E denote

the set of extreme points of P and let Ed ⊆ E denote the set of

extreme points that have weakly decreasing coordinates. There

are two natural ways to define the asymmetric part of P . In

terms of lattice points we define the asymmetric part of P as the

polytope

Pd = convex hull of {(x1, x2, . . . , xn) ∈ P∩N
n | x1 ≥ x2 ≥ · · · ≥ xn}.
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In terms of linear inequalities we define the asymmetric part of

P as the polytope Pl obtained by adding the inequalities x1 ≥
· · · ≥ xn to the list of inequalities defining P . It is easily seen

that Pd ⊆ Pl and Ed ⊆ set of extreme points of Pd. Equality

need not hold in these two inclusions. For instance, consider the

polytope P in R
2 defined by: x1, x2 ≥ 0, x1 + x2 ≤ 3. Then it is

easily checked that Pd is strictly contained in Pl. If we take P to

be the polytope in R
2 defined by x1, x2 ≥ 0, x1+x2 ≤ 2, then we

can check that Pd = Pl but Pd has an extreme point (1, 1) that is

not contained in Ed. It is proved in [BSS] that, in the case P =

DS(n), we do have Pd = Pl and set of extreme points of Pd =

Ed. More precisely, it is shown that DP(n) = F(n) and that the

set of extreme points of DP(n) are precisely the 2n−1 threshold

partitions. Two other face numbers of DP(n) are also calculated.

It is shown that, for n ≥ 4, DP(n) has 2n−2(2n − 3) edges, and

(n2 − 3n + 12)/2 facets.

This result suggests the following problem.

Problem 2 Determine all the face numbers of DP(n). In par-

ticular (in analogy with the face numbers of the hypercube),

is it true that the number of dimension k faces of DP(n), for

k = 0, 1, . . . , n − 1, is of the form Pk(n)2n−1−k, where Pk(n) is a

polynomial in n.

4. Dimension of the alternating cone

We start with another fundamental characterization of thresh-

old graphs. Namely, a simple graph G = (V, E) is threshold if

and only if there are real vertex weights c(v), v ∈ V such that,

for all distinct u, v ∈ V , c(u) + c(v) > 0 if {u, v} ∈ E and

c(u) + c(v) < 0 if {u, v} 6∈ E (we leave this characterization also

as an exercise).

Let G = (V, E) be an undirected graph (we allow parallel

edges but not loops). Assume that the edges of G are colored

red or blue, the coloring being given by C : E → {R, B}. We

say that (G, C) is a 2-colored graph. Consider the real vector

space R
E , with coordinates indexed by the set of edges of G. We

write an element x ∈ R
E as x = (x(e) : e ∈ E). For a subset
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F ⊆ E and v ∈ V , F (v) denotes the set of all edges in F incident

with v. For a subset F ⊆ E, FR (respectively, FB) denotes

the set of red (respectively, blue) edges in F . For an edge e ∈

E, the characteristic vector χ(e) ∈ R
E is defined by χ(e)(f) ={

1, if f = e

0, if f 6= e
. The red degree r(v) (respectively, blue degree

b(v)) of a vertex v ∈ V is the number of red (respectively, blue)

edges incident with v.

The cone of closed alternating walks, or simply the alternating

cone, A(G, C) of a 2-colored graph (G, C) (denoted simply by

A(G) when the coloring C is understood) is defined to be the set

of all vectors x = (x(e) : e ∈ E) in R
E satisfying the following

system of homogeneous linear inequalities:

∑

e∈ER(v)

x(e) −
∑

e∈EB(v)

x(e) = 0, v ∈ V,(4)

x(e) ≥ 0, e ∈ E.(5)

We refer to (4) as the balance condition at vertex v. Our moti-

vation for defining the alternating cone is as follows.

Let G = (V, E) be a simple graph. We think of the elements

of E as 2-element subsets of V . The 2-colored simple graph

associated to G is the complete graph Ĝ =
(
V,

(
V

2

))
, where e =

{i, j} ∈
(

V

2

)
is colored red if e ∈ E and colored blue if e 6∈ E. The

basic observation is that G is threshold if and only if A(Ĝ) = {0}.
This can be seen as follows.

Given e ∈
(

V

2

)
, let τ(e) = (τ(e)(v) : v ∈ V ) ∈ R

V denote the

incidence vector of e, where τ(e)(v) is 1 if v is an endpoint of e

and 0 otherwise. Let CR(G) denote the cone in R
V generated by

the incidence vectors of the edges E, and let CB(G) denote the

cone generated by the incidence vectors of the nonedges
(

V

2

)
−E.

If we write (4) in matrix notation, the columns correspond to

the incidence vectors of edges and the negatives of the incidence

vectors of nonedges. It follows that A(Ĝ) = {0} if and only if

CR(G) ∩ CB(G) = {0}.
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Now assume that G is threshold with vertex weights c(v), v ∈

V as in the characterization stated at the beginning of this sec-

tion. This means that CR(G) and CB(G) are on opposite sides

of the hyperplane
∑

v∈V c(v)x(v) = 0. Hence CR(G) ∩ CB(G) =

{0}.

Conversely, suppose that CR(G) ∩ CB(G) = {0}. Then by the

hyperplane separation theorem, there is a hyperplane
∑

v∈V c(v)x(v) =

0 such that all nonzero vectors (p(v) : v ∈ V ) ∈ CR(G) satisfy∑
v∈V c(v)p(v) > 0, and all nonzero vectors (q(v) : v ∈ V ) ∈

CB(G) satisfy
∑

v∈V c(v)q(v) < 0. Thus {u, v} ∈ E implies

c(u) + c(v) > 0, and {u, v} /∈ E implies c(u) + c(v) < 0.

A closed walk on the edges of a 2-colored graph with succesive

edges alternating in color is called a closed alternating walk. A

simple alternating walk argument shows that integral vectors in

the alternating cone are sums of characteristic vectors of closed

alternating walks (thereby justifying our terminology). In the

paper [BPS1] alternating walk arguments are used to study basic

properties of the alternating cone relating to dimension, extreme

rays, and existence of integral vectors satisfying given lower and

upper bounds on the edges. Here we focus on a problem involving

the dimension of the alternating cone.

It is well-known that for a simple graph G, the property of

dimA(Ĝ) being 0 (i.e., G being threshold) depends only on the

degree partition of G. This property is generalized in [BPS1]

by showing that, for any 2-colored graph (G, C), dimA(G, C)

depends only on the red degree sequence of (G, C). As a con-

sequence it follows that dimA(Ĝ) depends only on the degree

partition of G. Following [AP], the dimension of A(Ĝ) can be

related to the concept of majorization as follows. Partially order

the set DP (n) of all degree partitions of length n by majoriza-

tion, i.e., d ≥ e iff d � e. The set of maximal elements of

this poset is precisely the set of threshold partitions ([PS, RG]).

Define a map A : DP (n) → N by A(d) = dimA(Ĝ), where

G is any simple graph with degree partiton d. It is shown in
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[BPS1] that A is an order-reversing map (i.e., d majorizes e im-

plies A(d) ≤ A(e)). Thus, we can think of A(d) as a kind of

measure of how non-threshold the degree partition d is.

Given a degree partiton d = (d1, . . . , dn) ∈ DP (n), the proce-

dure to determine A(d) given in [BPS1] needs a realization of d as

the degree partition of a simple graph. However, it is easy to test

whether A(d) = 0 without such a realization. Namely, A(d) = 0

if and only if either d1 = n−1 and A((d2−1, . . . , dn−1)) = 0 or

dn = 0 and A((d1, . . . , dn−1)) = 0. We can ask a similar question

for higher values of A(d).

Problem 3: Given a degree partition d ∈ DP (n), is there an

algorithm to determine A(d) that works with only the entries of

d.

5. Cone of balanced subgraphs

Consider a directed graph. Assign a nonnegative real weight to

every arc so that at every vertex, the total weight of the incoming

arcs is equal to the total weight of the outgoing arcs. The set

of all such assignments forms a convex polyhedral cone in the

arc space, called the cone of circulations, and is a basic object

of study in network flow theory. It is a fundamental fact that

the cone of circulations, defined above via linear inequalities,

can also be defined as the cone generated by the characteristic

vectors of directed circuits. Moreover, an integral vector in the

cone of circulations can be written as a nonnegative integral

combination of characteristic vectors of directed circuits.

What about undirected analogs of the cone of circulations?

Thinking in terms of linear inequalities we can consider the alter-

nating cone of a 2-colored graph as a possible analog. However,

there are integral vectors in the alternating cone that do not

intuitively correspond to a circulation. For example, consider

a graph G on six vertices that consists of two disjoint triangles

together with an edge e with endpoints in the two triangles.

Consider the unique matching M in G of size three. Color the

edges in M red and the other four edges blue. The integral vec-

tor that assigns the value 2 to e and 1 to all other edges is in the
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alternating cone and does not correspond to a circulation in an

intuitive sense.

Thinking combinatorially we can consider Seymour’s cycle

cone [S] as an undirected analog of the cone of circulations. Let

G = (V, E) be a graph and let Z(G) denote the convex poly-

hedral cone in R
E generated by the characteristic vectors of the

cycles in G. We call Z(G) the cycle cone of G. Seymour [S]

characterized the rational vectors in the cycle cone and made a

conjecture concerning integral vectors in the cycle cone. Let us

recall these results. By a sum (respectively, fractional sum) of

cycles we mean a nonnegative integral (respectively, nonnegative

rational) combination of characteristic vectors of cycles.

Given a nonempty proper subset X of V , the subset D ⊆ E

of edges between X and V −X will be called a cut. Let D be a

cut, e ∈ D, and C a cycle in G. If C contains e, then C must

also contain an edge in D − {e}. Thus the characteristic vector

χ(C) of C satisfies the following inequality

x(e) ≤
∑

f∈D−e

x(f),(6)

where we write D − e for D−{e}. We call (6) the cut condition

for the pair (D, e). A nonnegative real vector on the edges that

satisfies the cut condition for every pair (D, e) is said to be cut

admissible. Seymour [S] proved that a vector y ∈ N
E is a frac-

tional sum of cycles if and only if it is cut admissible. He also

conjectured that if y ∈ 2N
E is a fractional sum of cycles then y

is a sum of cycles.

We can combine the features of both the alternating cone and

the cycle cone in a single model. Let G = (V, E) be a graph. A

(spanning) subgraph of G is said to be even if the degree of each

vertex in the subgraph is even. By Euler’s theorem the charac-

teristic vector of an even subgraph is a sum of cycles and thus the

cone generated by the (characteristic vectors of) even subgraphs

is the same as the cycle cone. Now assume that E is colored

with two colors, say red and blue. A vector x = (x(e) : e ∈ E)

in R
E is said to be balanced if it satifies the equation (4). A
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balanced subgraph is a subgraph whose characteristic vector is

balanced (i.e., red degree equals blue degree at every vertex).

By a sum (respectively, fractional sum) of balanced subgraphs

we mean a nonnegative integral (respectively, nonnegative ratio-

nal) combination of characteristic vectors of balanced subgraphs.

The 2-color analog of the cycle cone is obtained by replacing

even subgraphs with balanced subgraphs. For a 2-colored graph

G = (V, E), C : E → {R, B}, define B(G, C) ⊆ R
E to be the

convex polyhedral cone generated by the characteristic vectors

of balanced subgraphs in (G, C). We call B(G, C) the cone of

balanced subgraphs.

Consider a balanced subgraph in a 2-colored graph. By ig-

noring the colors and applying Euler’s theorem we can write its

characteristic vector as a sum of cycles. This shows that a sum of

balanced subgraphs is a balanced sum of cycles. We conjecture

that the converse of this observation is also true:

Conjecture 4: Let G = (V, E), C : E → {R, B} be a 2-colored

graph and let y ∈ N
E . If y is a balanced sum of cycles then y is

a sum of balanced subgraphs.

In [BPS2] it is proved that a balanced sum of cycles is a frac-

tional sum of balanced subgraphs. The proof is modelled on

Seymour’s proof characterizing rational vectors in the cycle cone

and is based on induction and the following colored Kotzig’s

lemma: let G = (V, E), C : E → {R, B} be a bridgeless 2-

colored graph and assume that every vertex has incident edges

of both colors. Then there exists a nonempty balanced subgraph

in G.

Conjecture 4 can be seen as strengthening both the hypothe-

sis and conclusion of colored Kotzig’s lemma. Given a bridgeless

graph G = (V, E), with edges colored red and blue, there is a

positive vector y ∈ N
E that is a sum of cycles. Colored Kotzig’s

lemma assumes that E has edges of both colors at every vertex

and concludes that G has a balanced subgraph, whereas Conjec-

ture 4 assumes more, namely that y is balanced and concludes

more, namely that y is a sum of balanced subgraphs.
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Finally, we would like to make a few remarks concerning Con-

jecture 4. Seymour’s conjecture states that a fractional sum of

cycles that is an even integer on every edge is a sum of cycles.

Analogously, in the 2-colored case, we can conjecture that a bal-

anced fractional sum of cycles that is an even integer on every

edge is a sum of balanced subgraphs. This latter conjecture fol-

lows from Seymour’s conjecture and Conjecture 4. Is there any

relation between these conjectures? Note that the hypothesis in

Seymour’s conjecture (that of a vector being a fractional sum

of cycles) is well characterized whereas we do not know whether

the hypothesis in Conjecture 4 is well characterized.
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